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Abstract

First-principle gyrokinetic particle-in-cell simulations of a global Toroidal Alfvén Eigenmode

(TAE) are undertaken in the presence of a strong coupling with the continuum. Effects of the

bulk plasma temperature on the interplay between the TAE and Kinetic Alfvén Waves (KAW) are

investigated. A global TAE-KAW structure is identified which appears to be more unstable with

respect to the fast ions than a simple (fluid-like) TAE mode.
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I. INTRODUCTION

Fast particles can destabilize various shear Alfvén waves (SAW) [1]. These unstable

perturbations are considered to be the primary candidate for causing fluctuation-induced

transport of the fast particles [2]. Destabilization of the SAW occurs if the mode drive

resulting from interaction of a shear Alfvén wave with fast particles exceeds damping from

various mechanisms, including Landau damping, continuum damping [3–5], radiative damp-

ing [6–8], and others. It is known that weakly damped gap modes, such as Toroidal Alfvén

Eigenmodes (TAE) [9], can be destabilized relatively easily [10]. There are many types of

Alfvén Eigenmodes (AE) in toroidal plasmas, reflecting asymmetries of various magnetic

geometries (e. g. there is a very rich spectrum in non-axisymmetric stellarator geometries

[11]). Although TAE modes exist in all toroidal devices, in this paper we limit our attention

to the TAE modes in tokamak geometry. The tokamak TAE is used here as a representative

for Alfvén Eigenmodes in general and the basic results of our investigation could also be of

relevance for other types of AE.

In this paper, we focus on how the bulk plasma parameters may affect the properties

of TAE modes destabilised by fast ions. For example, it is well known that many AE

damping mechanisms are provided by the bulk plasma. For the Landau mechanism, the

TAE instability is damped since it resonantly modifies the velocity-space distribution of

the bulk ions or electrons. In the case of the continuum or radiative mechanisms, the

mode damping appears in the form of a resonant excitation of Alfvén (continuum) waves or

Kinetic Alfvén Waves (KAW) at the radial resonant positions [3–5]. In such a case, there is

mode conversion and a resulting coupling between the global TAE mode and the Alfvénic

continuum. These resonantly excited Alfvén-continuum waves or KAW themselves represent

bulk plasma motion and depend, consequently, on the bulk plasma parameters, such as the

temperature. There is a tendency of such resonant mode-conversion processes to generate

small scales [3–5], both in the real and velocity spaces. Small scales in the real space imply

sensitivity of the associated modes (e. g. KAW) to both ion Finite Larmor Radius (FLR)

effects (ion kinetics), and the parallel electric field which eventually may make the electron

kinetics important. In other words, the interaction between the global Alfvén modes and

the SAW continuum occurs in thin resonant layers and the physics associated with these

layers is intrinsically kinetic. In this paper, we are interested in a quantitative description
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of the continuum-coupling effect and the associated locally-kinetic physics on the global

properties of the TAE mode. We demonstrate numerically that the AE interaction with the

continuum is not always limited to the damping processes, continuum or radiative, caused

by the mode conversion. Eventually, coupling to the continuum can make the perturbation

more unstable.

Historically, the subject of AE interaction with the continuum has been addressed by

many researchers. In 1976, an early influential paper [12] by Hasegawa and Chen introduced

the idea of the resonant shear Alfén mode conversion into the KAW. An interest in the

subject appeared again in the early 1990s when extensive heating capabilities were installed

on the big US and European tokamaks which were approaching fusion-relevant (Deuterium-

Tritium) regimes of operation. By that time, the concepts of the “toroidal gap” and the

“TAE mode” had already been considered and basic questions of mode stability with respect

to energetic ions were addressed (late 1980s, see Refs. [13, 14]). In 1992–1994, a number

of papers, mostly analytical, appeared [3–5] which considered mode conversion and the

associated AE (TAE) damping in detail. The perturbative approach was the core of these

studies, in which the continuum coupling represented only a small perturbation modifying

neither the spatial structure of the mode nor its frequency. In 1995–2000, a number of

experiments [15] dedicated to mode conversion were carried out on JET. Recently (2012),

similar experimental studies [16] have been repeated there.

The problem of Alfvén dynamics in toroidal plasmas is of great interest in view of ITER

approaching operation in the burning plasma regime. During the last decade, a number of

global gyrokinetic numerical models have been developed and implemented in order to tackle

this problem from ‘first principles’, taking into account the effect of the bulk plasma non-

perturbatively [17–24]). In this paper, we use the global gyrokinetic particle-in-cell (PIC)

code GYGLES [20–22] in order to address the continuum coupling effect on the global TAE

mode in tokamak plasmas.

The structure of the paper is as follows. In Sec. II, the basic equations and numerical

methods are presented. Section III describes our simulations. Conclusions are drawn in

Sec. IV.
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II. BASIC EQUATIONS AND NUMERICAL APPROACH

The equations to be solved and the numerical approach used here are identical to Ref. [21].

The code solves the gyrokinetic Vlasov-Maxwell system of equations [25]. The distribution

function is split into a background part and a perturbation fs = F0s+ δfs with s = i, e, f in-

dicating the particle species (bulk plasma ions, electrons and fast particles). The background

distribution function is taken to be a Maxwellian. The perturbed distribution function δfs

is found from the linearized gyrokinetic Vlasov equation:

∂δfs
∂t

+ Ṙ(0) · ∂δfs
∂R

+ v̇
(0)
‖

∂δfs
∂v‖

= − Ṙ(1) · ∂F0s

∂R
− v̇

(1)
‖

∂F0s

∂v‖
. (1)

Here, [Ṙ(0), v̇
(0)
‖ ] correspond to the unperturbed gyrocenter trajectories, while [Ṙ(1), v̇

(1)
‖ ] are

the perturbations of the trajectories (proportional to the electromagnetic field fluctuations).

The equations of motion are (p‖-formulation [25] employed):

Ṙ =
(

v‖ −
q

m
〈A‖〉

)

b∗ +
1

qB∗
‖

b×
[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

(2)

v̇‖ = − 1

m

[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

· b∗ (3)

with φ and A‖ being the perturbed electrostatic and magnetic potentials, µ the magnetic

moment, m the mass of the particle, B∗
‖ = b·∇×A∗, b∗ = ∇×A∗/B∗

‖ , A
∗ = A0+(mv‖/q)b

the so-called modified vector potential, A0 the magnetic potential corresponding to the

equilibrium magnetic field, B = ∇×A0, and b = B/B the unit vector in the direction of

the equilibrium magnetic field. The gyro-averaged potentials are defined as usual:

〈φ〉 =
∮ dθ

2π
φ(R+ ρ) , 〈A‖〉 =

∮ dθ

2π
A‖(R+ ρ) , (4)

where ρ is the gyroradius of the particle and θ is the gyro-phase. The perturbed electro-

static and magnetic potentials are found self-consistently from the gyrokinetic quasineutral-

ity equation and parallel Ampère’s law:

−∇ ·








∑

s=i,f

q2sns

Ts
ρ2s



∇⊥φ



 =
∑

s=i,e,f

qsδns ,





∑

s=i,e,f

β̂s
ρ2s

−∇2
⊥



A‖ = µ0

∑

s=i,e,f

δj‖s , (5)

where δns =
∫

d6Z δfs δ(R + ρ− x) is the perturbed gyrocenter density (distinct from the

physical density), δj‖s = qs
∫

d6Z δfs v‖ δ(R + ρ − x) is the perturbed gyrocenter current

(distinct from the physical current), qs is the charge of the particle, d6Z = B∗
‖ dR dv‖ dµ dθ
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is the phase-space volume, ρs =
√
msTs/(eB) is the thermal gyroradius and β̂s = µ0nsTs/B

2

is half the “partial” plasma beta corresponding to a particular species. The polarization

density is treated in the long-wavelength approximation and finite Larmor radius (FLR)

effects are neglected for electrons. The zeroth-order densities of the particle species satisfy

the quasineutrality equation
∑

s qsns = 0 with s = i, e, f .

The perturbed part of the distribution function is discretized with markers:

δfs(R, v‖, µ, t) =
Np
∑

ν=1

wsν(t)δ(R−Rν)δ(v‖ − v‖ν)δ(µ− µν) , (6)

where Np is the number of markers, (Rν , v‖ν , µν) are the marker phase space coordinates

and wsν is the weight of a marker. The electrostatic and magnetic potentials are discretized

with the finite-element method (Ritz-Galerkin scheme):

φ(x) =
Ns
∑

l=1

φlΛl(x) , A‖(x) =
Ns
∑

l=1

alΛl(x) , (7)

where Λl(x) are the finite elements (tensor product of B splines [26, 27]), Ns is the total

number of the finite elements, φl and al are the spline coefficients. A detailed description

of the discretization procedure can be found in Refs. [28–32]. We apply the so-called phase

factor transform [28] to all perturbed quantities in the code. The integrals over the gyro-

angle, Eq. (4), are approximated by an N-point discrete sum [31, 33, 34]. The cancellation

problem [29, 35] is solved using the iterative scheme No. 2 described in Ref. [32]. For the

numerical parameters, we choose 1600 radial grid points, 32 poloidal grid points, Ni = 107 ion

markers, Ne = 4×107 electron markers, andNf = 2×107 fast ion markers. A poloidal Fourier

filter 8 ≤ m ≤ 14 and a single toroidal mode n = − 6 are employed in the simulations.

The number of the gyro-points used for the gyro-average, Eq. (4), varies between 4 and

64 depending on the actual value of the marker’s gyroradius. The choice of the numerical

parameters is similar to Refs. [20, 21] and has been verified with convergence studies.

III. SIMULATIONS

In Ref. [36], a successful benchmark has been undertaken among the majority of existing

energetic-particle codes in the context of a linear TAE mode, first considered in Ref. [21].

This benchmark has been carried out in the framework of the International Tokamak Physics

Activity (ITPA). Perturbative kinetic-MHD hybrid codes (CKA-EUTERPE [37] and others,
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see [36] for references), non-perturbative kinetic-MHD hybrid codes [38, 39] and fully gy-

rokinetic codes [21, 40] (where all the species have been treated kinetically) participated in

this benchmark and found good agreement in their results. This raises a question about the

degree of numerical complexity required to model the energetic-particle physics in burning

plasmas, since the least computationally expensive adequate approach is preferred. The an-

swer to this question depends on the particular physical problem under consideration. Thus,

a simple perturbative hybrid approach of CKA-EUTERPE was adequate when addressing

the ITPA benchmark [36]. In this paper, however, we will design a more complicated case

aiming beyond the limits of the perturbative kinetic-MHD approach while keeping the mag-

netic geometry and plasma parameters similar to the ITPA benchmark [36]. Understanding

such limits is important when deciding which numerical complexity is required when ad-

dressing a particular physics.

For that purpose, we consider a minor modification of the magnetic geometry used in

Refs. [21, 36]: a large-aspect-ratio tokamak with a circular cross-section which has the minor

radius ra = 1 m, the major radius R0 = 10 m, the magnetic field on axis B0 = 3 T, and the

safety factor profile q(r) = 1.5 + (r/ra)
2, where r is the minor radius of the plasma. The

background plasma profiles (Maxwellian unperturbed distribution function) are chosen to be

flat with the ion (hydrogen) density ni = 2× 1019 m−3, and flat temperatures Ti = Te. Note

that only the safety factor profile has been modified here compared to the ITPA benchmark

case [36]. It is plotted in Fig. 1 versus the profile used in Refs. [21, 36]. The corresponding

continuum is shown in Fig. 2. It is striking how much more complex the structure becomes

when the magnetic shear increases (cf. the continuum plotted in Fig. 1 of Ref. [21] for the

ITPA case). As a consequence, one could expect here much stronger coupling between global

TAEs and the continuum.

Similar to Ref. [21], we start our simulations initializing the perturbed electron distribu-

tion function with the toroidal mode number n = −6 and a poloidal spectrum which includes

two harmonics with m = 10 and m = 11. The velocity dependence of the initial electron

distribution function is Maxwellian. The initial perturbed ion distribution function is zero.

The radial dependence of the initial perturbed electron distribution function is chosen to be

a Gaussian centered at the position s = 0.5 of the accumulation point corresponding to the

toroidicity-coupled poloidal harmonics m = 10 and m = 11 (see Fig. 2). Here, s =
√

ψ/ψa

with ψ the poloidal flux and ψa the poloidal flux on the plasma edge.
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Following further Ref. [21], we choose a Maxwellian for the unperturbed distribution

function of the fast particles (deuterium ions), a flat fast-particle temperature Tf and the

fast particle density given by the expression:

nf(s) = n0f exp

[

− ∆nf

Lnf
tanh

(

s− snf
∆nf

)]

(8)

Here, snf = 0.5 is the position of the maximal value of κnf = |∇nf |/nf , n0f is the fast

particle density at s = snf , ∆nf = 0.2 is the “width” of the density profile, and Lnf = 0.3 is

the “gradient length” of the fast-particle density profile.

First, we perform a gyrokinetic PIC simulation using the fast ion density n0f = 1.5 ×
1017 m−3 and the fast ion temperature Tf = 400 keV. For these parameters, the characteristic

fast-particle beta is βfast = 0.0027, computed at s = 0.5. The characteristic bulk plasma

beta is βbulk = 0.016, computed at s = 0.5 and for Ti = Te = 9 keV. In Fig. 3, we study

how the bulk-ion temperature affects the frequency of the (K)TAE mode. One sees that

the frequency increases with the bulk-ion temperature. A similar dependence would result

from the finite-pressure effect (frequency upshift due to acoustic coupling [41]). However,

the deviation observed in simulations is larger than this explanation alone would suggest.

In Fig. 4, the growth rate dependence on the bulk-ion temperature is shown. One sees

that the mode is destabilised by the bulk-ion temperature. This effect is clearly absent in

the perturbative kinetic-MHD picture where the bulk plasma temperature does not appear

as a relevant quantity. It is also in contradiction with the “continuum/radiative damping

intuition”, which would suggest a stronger damping at higher bulk plasma temperatures,

since these correspond to larger bulk-ion gyro-radii.

As a possible explanation, we hypothesise that the original TAE mode is replaced by a

‘global kinetic structure’ (with the radial patterns plotted in Fig. 5). This structure builds

up when the bulk plasma temperature increases. It consists of the TAE (or Kinetic TAE [6],

KTAE) mode and the KAW mode. The dominant poloidal harmonic m = 10 of the KAW

mode is excited by the original (K)TAE through the mode conversion at the resonance

position s ≈ 0.3. Here, the (K)TAE frequency closely approaches the m = 10 continuum

branch (see Fig. 2). It appears that the KAW part of the global structure starts to absorb the

fast ion ‘free energy’ at the continuum resonance position and grows instead of dissipating

the (K)TAE-mode energy into heat as it would in the conventional continuum/radiative

damping mechanism. As a result, the global (K)TAE-KAW structure is more efficient in
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tapping the fast ion free energy compared to a single (K)TAE mode since it interacts with a

larger fraction of the fast ion density gradient. The mechanism proposed works if the KAW

mode is indeed destabilised by the fast particles. This requires the intrinsic KAW damping,

caused e.g. by the phase mixing between the neighbouring Alfvén-continuum waves, to be

smaller than the fast-particle drive. One could hypothesise that the value of the bulk plasma

temperature controls exactly this parameter: increasing the temperature, we decrease the

intrinsic KAW damping so that the resulting KAW mode is destabilised. In this case, the

continuum/radiative damping can be ‘inverted’ into growth. The numerical observations

presented here call for future analytical consideration.

In Figs. 6 and 7, we plot the dependence of the global-mode frequency and the growth

rate on the fast ion temperature Tf at the fixed fast ion density n0f = 1.5× 1017 m−3. Two

cases are considered, with the bulk plasma temperatures Ti = Te = 9 keV and Ti = Te =

1 keV. The gyrokinetic result is then compared with the perturbative hybrid-gyrokinetic

computation. In the perturbative hybrid scheme, one uses the ideal-MHD TAE eigenmode

and eigenfrequency. The growth rate is then computed from the energy transfer between

the fast particles and the wave (see Ref. [37] for details). In Fig. 7, one sees that the

non-perturbative growth rate closely agrees with the perturbative hybrid result at low bulk

plasma temperature Ti = Te = 1 keV. This provides a good verification of the gyrokinetic

code used here. In contrast, at higher bulk plasma temperature Ti = Te = 9 keV, the

non-perturbative gyrokinetic compound (K)TAE-KAW mode is substantially more unstable

than the perturbative hybrid mode based on the single ideal-MHD TAE, since the global

(K)TAE-KAW structure is more efficient in tapping the fast ion energy.

This global (K)TAE-KAW structure becomes especially distinct when we perform a scan

with respect to the fast ion density, varying n0f , see Eq. (8), at fixed fast ion temperature. At

larger fast ion densities, the KAW is so strongly driven that it becomes an Energetic Particle

Mode (EPM) with the same dominant m = 10 poloidal harmonic. The spatial location of

the mode maximum is largely determined by the fast ion density profile. As a result, the

global (K)TAE-EPM structure appears. In Fig. 8, the mode frequency dependence on n0f

is shown. One sees that the frequency increases with n0f , but not too strongly, remaining

in the proximity of the toroidicity-induced gap. In Fig. 9, the dependence of the growth

rate is shown. We hypothesise that the KAW mode, whose interaction with the fast ions

is weaker, transforms at the higher fast ion densities into the EPM, strongly interacting
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with the fast ions. Both, the low-n0f KAW and the high-n0f EPM are non-locally coupled

to the global (K)TAE mode. The resulting eigenmode structures are shown in Fig. 10 for

different values of the fast ion density n0f . The ‘composite’ nature of the mode becomes

apparent if the fast ion density is increased. One sees clearly the maximum of the harmonic

with m = 10, which corresponds to the KAW/EPM part of the global structure, related

to the resonance at s = 0.3 (cf. the continuum in Fig. 2), and the (K)TAE maximum at

the accumulation point s ≈ 0.5, along with the characteristic TAE-like coupling between

m = 10 and m = 11 poloidal harmonics at this location. At low fast ion density, the mode

is stabilised (Fig. 9) since the fast ion energy is not sufficient for the drive to overcome

the intrinsic KAW damping. The eigenmode structure reduces to a single TAE with some

mode conversion, which is now a sink of energy, occurring at the resonant location without

creating an unstable ‘compound’ there (see Fig. 10).

Interestingly, a ‘pure’ EPM mode, with no coupling to the TAE mode, can also be easily

created in the system considered. For this purpose, one performs a scan with respect to

Tf but now at fixed fast ion pressure with βfast = 0.0027, computed at the position of the

maximum fast ion density gradient snf = 0.5. In Fig. 11 showing the frequency dependence

on Tf , one can see how the TAE mode transforms into the EPM mode at lower fast ion

temperatures or, equivalently, at higher fast ion densities (since βfast is fixed). A similar

trend has been observed in Ref. [21] using the “low-shear” safety factor, plotted in Fig. 1.

In Fig. 12, one sees that the growth rate of the EPM mode increases considerably at smaller

Tf in the case considered here (stronger than in Fig. 7 of Ref. [21]). In the present paper,

however, the fast ion density is twice as large as in Ref. [21] and, perhaps more importantly,

the spatial location of the continuum resonances is shifted to areas with higher fast ion

density gradient, since dωA/dr is larger for the higher magnetic shear considered in this

paper. In Fig. 13, the eigenmode is shown. Its structure is similar to the EPM eigenmode

found in Ref. [21]. However, the present mode is wider since it is more strongly driven.

IV. CONCLUSION

We have considered the Alfvén mode stability in the presence of strong coupling between

the global TAE mode and the shear Alfvén continuum. The role of the bulk plasma tem-

perature has been studied. In contrast to the conventional picture of TAE-KAW coupling,
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leading to the continuum and radiative damping [6–8], it has been seen that the effect of the

mode conversion can be destabilising. A global coupled (K)TAE-KAW(EPM) structure can

form as a consequence of the mode conversion at the continuum-resonance position where

both the original TAE and the excited KAW modes resonantly interact with the fast parti-

cles. This global structure appears to be more efficient in tapping the fast ion ‘free energy’

than the narrower TAE mode. The (K)TAE-EPM instability appears when the KAW mode

transforms into an EPM. At low fast ion drive, the KAW mode coupled to the original TAE

is stable. In this case, the usual continuum/radiative damping picture is valid. A detailed

theoretical assessment of the global kinetic structure observed is of future interest.

It is often assumed that the growth rate can be obtained as a simple superposition of the

fast ion drive and the bulk plasma damping. In reality, however, the structure of the TAE

eigenmode as well as its frequency can be influenced, sometimes strongly, by coupling to the

continuum. As a consequence, the simple perturbative picture does not always apply. For

example, the perturbative hybrid kinetic-MHD approach fails in the case considered here.

The simulations described in this paper are based on the magnetic geometry which is

very similar to that of the ITPA benchmark [36]. Yet, the physical content appears to

be much more complex. Such a combination may be of interest for further verification of

numerical codes, focusing on non-ideal and non-perturbative capabilities.
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FIG. 1: (Color online) Safety factor profile used in this paper vs. the low-shear profile implemented

in Refs. [21, 36] (“ITPA benchmark” case).
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FIG. 2: (Color online) Reduced ideal MHD shear Alfvén continuum (includes the frequency upshift

corresponding to Ti = Te = 9 keV). One can see the toroidal gap corresponding to the coupled

poloidal mode numbers m1 = 10 and m2 = 11. The frequencies of the MHD TAE mode and the

gyrokinetic TAE mode (at Ti = Te = 9 keV) are also shown. The gyrokinetic TAE mode can

interact with the continuum at a number of locations (marked with grey vertical lines). Here, the

Kinetic Alfvén Waves can be excited.
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FIG. 3: (Color online) bulk plasma temperature effect on the TAE mode frequency. Here, the

bulk plasma temperature Ti = Te, the fast-particle temperature Tf = 0.4 × 106 eV and the fast

ion density is given by nf0 = 1.5 × 1017 m−3 [see Eq. (8)]. The acoustic modification of the SAW

spectrum is indicated with the black lines (corresponding to the gap boundaries and the ideal

eigenfrequency upshift).
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FIG. 4: (Color online) bulk plasma temperature effect on the TAE mode growth rate. The mode is

more unstable at higher Ti since a global kinetic (K)TAE-KAW structure builds up which is more

efficient in tapping the fast ion free energy than the mere TAE mode. Here, the fast ion temperature

Tf = 0.4×106 eV and the fast ion density computed at s = 0.5 is nf0 = 1.5×1017 m−3 [see Eq. (8)].

There is a competition between the stabilising phase-mixing effect and destabilising fast particles.

Such a trade-off may be responsible for the relative stabilisation at Ti > 9 keV although a detailed

understanding of the associated physics is beyond the scope of the numerical study here.
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FIG. 5: (Color online) The gyrokinetic mode structure at two different bulk plasma temperatures.

The global unstable (K)TAE-KAW structure forms at Ti = Te = 9 keV (on the right). In this

case, the KAW part of the structure is destabilised by the fast ions which leads to larger growth

rates of the global “compound” mode (compared to a single TAE with an energy sink at the

continuum-resonance position). The same fast ion parameters were used for both simulations. For

comparison, the ideal reduced-MHD TAE eigenmode is also shown.
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FIG. 6: (Color online) fast ion temperature scan at fixed fast ion density nf0 = 1.5 × 1017 m−3

and the bulk plasma temperature (the cases with Ti = Te = 9 keV and Ti = Te = 1 keV have

been considered). The ideal-MHD frequency computed neglecting the acoustic effect is shown

for comparison (this frequency has been used in the hybrid-gyrokinetic simulations, see Fig. 7).

The toroidal gap shown between the dashed lines is measured at s = 0.5 and corresponds to

Ti = Te = 9 keV.
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FIG. 7: (Color online) fast ion temperature scan at fixed fast ion density nf0 = 1.5 × 1017 m−3

and the bulk plasma temperature (corresponding to the cases with Ti = Te = 9 keV and Ti = Te =

1 keV). The dependencies of the gyrokinetic growth rates are compared with the hybrid-gyrokinetic

computation [37, 42]. The dependence at the low bulk plasma temperature agrees well with the

gyrokinetic result, in contrast to the high bulk plasma temperature case.
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FIG. 8: (Color online) The frequency of the global mode is shown as a function of the fast ion

density. Here, Ti = Te = 9 keV and Tf = 400 keV. The ideal-MHD gap boundaries are computed

at s = 0.5 for the consistent bulk plasma pressure but neglecting the pressure of the fast ions.
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FIG. 9: (Color online) The growth rate of the global mode is shown as a function of the fast ion

density. Here, Ti = Te = 9 keV and Tf = 400 keV. The (K)TAE mode coupled to the KAW

transforms into the strongly unstable global (K)TAE-EPM structure when the fast ion density

increases. This process is illustrated with the corresponding eigenmode structures shown in Fig. 10.
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FIG. 10: (Color online) (K)TAE + KAW/EPM global mode structure appearing at different fast

ion densities [see Eq. (8)]. The fast ion temperature Tf = 400 keV, the bulk plasma temperature

Ti = Te = 9 keV. A sketch of a fast ion density profile is shown, too.
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FIG. 11: (Color online) The frequency of the global mode as a function of the fast ion temperature

at fixed βfast = 0.0027 and Ti = Te = 9 keV. There are two distinct branches: the coupled (K)TAE-

KAW branch at higher fast ion temperatures (i.e. lower fast ion densities) and the “pure” EPM

mode at the lower temperatures (which correspond to higher fast ion densities).
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FIG. 12: (Color online) The growth rate of the global mode as a function of the fast ion temperature

at fixed βfast = 0.0027 and Ti = Te = 9 keV. The EPM mode is strongly driven since the radial

location of the corresponding fast ion resonance is in the region with a large fast ion density

gradient.
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FIG. 13: (Color online) A “pure” EPM eigenmode structure (single-peak, cf. Fig. 10) corresponding

to Tf = 200 keV and n0f = 3 × 1017 m−3. The bulk plasma temperature Ti = Te = 9 keV. A

sketch of a fast ion density profile is also shown [see Eq. (8)]. The “pure” EPM mode dominates

since the drive of the (K)TAE mode is too week for the parameters considered (low Tf ).
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