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Abstract

Within two specific string cosmology scenarios –differing in the way the pre-

and post-big bang phases are joined– we compute the size and spectral slope

of various types of cosmologically amplified quantum fluctuations that arise in

generic compactifications of heterotic string theory. By further imposing that

these perturbations become the dominant source of energy at the onset of the

radiation era, we obtain physical bounds on the background’s moduli, and

discuss the conditions under which both a (quasi-) scale-invariant spectrum

of axionic perturbations and sufficiently large seeds for the galactic magnetic

fields are generated. We also point out a potential problem with achieving the

exit to the radiation era when the string coupling is near its present value.
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‡Present address: Dipartimento di Fisica, Università di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy.
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I. INTRODUCTION

Perhaps the most appealing feature of standard inflationary cosmology [1] is its ability

to stretch out generic/arbitrary initial classical inhomogeneities and to replace them by a

calculable spectrum of cosmologically amplified quantum fluctuations. The latter behave,

for all physical purposes, as a set of properly normalized stochastic classical perturbations.

A much advertised outcome of slow-roll inflation is a (quasi-) scale-invariant (Harrison-

Zeldovich (HZ)) spectrum of density fluctuations, a highly desirable feature for explaining

both the CMB temperature fluctuations on large angular scales and the large-scale structure

of the visible part of our Universe.

The so-called pre-big bang (PBB) scenario [2,3] offers, within the context of string the-

ory, an alternative to the usual inflationary paradigm. Provided a graceful exit can be

achieved (see [4,5] for recent progress on this issue), the PBB scenario exhibits several

appealing advantages, e.g.

• it naturally provides inflationary solutions through the duality symmetries [6]

of string theory;

• it assumes a natural, simple, initial state for the Universe, which is fully under

control: the perturbative vacuum of superstring theory;

• it needs no fine-tuning of couplings and/or potentials: the inflaton is identified

with the dilaton, which is ubiquitous in string theory, is effectively massless

at weak coupling, and provides inflation through its kinetic energy;

• it can provide a hot big bang initial state as a late-time outcome of the pre-

big bang phase, through the amplification of vacuum quantum fluctuations

generated in this latter phase.

In recent work [7,8] we have discussed the conditions under which classical inhomo-

geneities get efficiently erased in string cosmology. In general, this does occur provided two

moduli of the classical solutions at weak coupling and curvature (basically an initial coupling

and an initial curvature scale) are bounded from above. Whether such conditions correspond

to an acceptable degree of fine-tuning of the initial conditions or not is still the matter of

some controversy [9,10,8].
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An interesting outcome of these investigations has been a motivated conjecture [8] that,

for negative spatial curvature, the pre-big bang phase itself is generically preceded by a

contracting “Milne” phase, corresponding to a particular parametrization of the past light

cone of trivial Minkowski space-time with a constant dilaton. Such a background, the trivial

all-order classical vacuum of superstring theory, turns out to be an unstable early-time fixed

point of the evolution. Thanks to dilaton/metric fluctuations, it appears to lead, inevitably,

to pre-big bang-type inflation at later times.

In this paper we shall assume that the above classical picture effectively wipes out, during

its long pre-big bang phase, spatial curvature and classical inhomogeneities, and we move on

to analyse the second alleged virtue of inflationary cosmology, the generation of an interesting

spectrum of amplified quantum fluctuations. As several previous investigations have shown

[11–13], achieving this is not at all automatic in string cosmology. It was soon realized that,

in the simplest PBB scenario, tensor [11] and scalar-dilaton [12] perturbations tend to have

steep spectra (typically a spectral index n = 4, as compared to HZ’s n = 1). Perturbations

of gauge fields coming from compactification of the extra 16 bosonic dimensions of heterotic

string theory can have somewhat smaller spectral indices [13], but still in the range 3 < n < 4.

The situation can be improved by assuming [11] that a long string phase (during which

the dilaton grew linearly in cosmic time while the Universe expanded exponentially) took

place between the dilaton and the usual FRW phase. In such a case, it is possible to get either

an interesting spectrum of gravitational waves [11] in the range of interest for detection, or

enough EM perturbations to explain the magnetic fields [13], but not both, apparently. A flat

spectrum of EM perturbations, which can possibly provide a new mechanism for generating

large scale structure [14] is not excluded either.

Recently, however, Copeland et al. [15] made the interesting observation that axionic

perturbations, even in the absence of a string phase, can have a flat spectrum, depending on

how the internal dimensions evolve during the dilatonic phase. Unfortunately, Copeland et

al. stopped short of computing the axionic spectrum after re-entry. Nonetheless, their result

hints at a possible dominance of axionic perturbations over all others and calls for a revision

of the whole scenario and of the phenomenological constraints that must be imposed on it.

In this paper we analyse quantum fluctuations of various kinds in two distinct scenarios

for the background, with or without an intermediate string phase. We may expect either

possibility to occur, depending on the precise mechanism providing the transition (exit) from
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the PBB phase into the FRW phase.

An intermediate string phase is natural if we assume [4] that α′ corrections provide a

non-perturbative fixed point with a high constant curvature and a linearly growing dilaton.

In this case we expect the transition to the FRW phase to occur during the string phase

as soon as the energy stored in the quantum fluctuations reaches criticality (recall that the

condition of criticality depends on the coupling). This is like saying that the final transition

to the radiation-dominated era will be induced by string-loop, back-reaction effects (see, e.g.

[5]).

We can imagine, instead, that α′ corrections are sufficient to provide by themselves a

sudden branch-change from the perturbative PBB phase to another duality-related vacuum

phase, with the Hubble parameter making a bounce around its maximal value. In the

language of [4] this would correspond to a square-root-type vanishing of a β-function. Again,

the dual (− branch) phase will gently yield to a FRW Universe as soon as the energy stored

in the quantum fluctuations becomes critical.

As already mentioned, an important ingredient of our approach is the (self-consistency)

requirement of criticality at the beginning of the radiation era. This provides a new relation

between the moduli of the PBB background and the coupling and energy density (or tem-

perature) at the beginning of the radiation era. As we will see, the dilaton at the beginning

of this era is generically displaced from its eventual/present value; hence this primordial

radiation era is not yet quite the one of standard cosmology. It may take a while before

the non-perturbative dilaton potential makes its presence felt and forces the dilaton to its

minimum. The detailed study of such post-big bang phase is left to further work.

One of the main conclusions of this paper is that, provided U(1)em has a component in

the Kaluza-Klein gauge group produced in the compactification from D = 10 to D = 4,

sufficiently large seeds for galactic magnetic fields can be generated, even in the absence

of a string phase. Furthermore, this happens in the same range of moduli for which a

nearly scale-invariant spectrum of axionic perturbations is generated. Such a range includes

a particularly symmetric point in moduli space, the one corresponding to isotropy (up to

T-duality transformations) in all nine spatial dimensions.

The outline of the paper is as follows: In Sec. II we give, for the sake of completeness,

the four-dimensional low-energy string-level heterotic effective action that we will work with.

In Sec. III we fix our parametrization of the backgrounds for the two previously discussed
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scenarios. In Sec. IV we derive general formulae for the spectra of various perturbations,

which get amplified by a generic background of the kind discussed in Sec. III. We will verify

that our spectra satisfy a “duality” symmetry that can be shown to follow from general

arguments [16]. In Sec. V we give the explicit form of the spectra for the two backgrounds

discussed in Sec. III, and present them in various tables and plots. We will also impose

the criticality condition and discuss its immediate consequences. Finally, Sec. VI contains a

discussion of the results and some conclusions.

This paper is somewhat technical in nature and contains explicit general formulae that

can be useful to the practitioner but do not carry easy messages: these can be better found

in the tables and figures. At any rate, in order to help the reader, we have relegated the

most complicated formulae to an appendix.

II. STRING EFFECTIVE ACTION FROM DIMENSIONAL REDUCTION

Following the notations of [17] we consider superstring theory in a space-time M× K,

where M, with Minkowskian signature, has four non-compact dimensions, and K consists

of six compact dimensions upon which all fields are assumed to be independent. Local

coordinates of M are labelled by µ, ν, ρ = 0, . . . , 3, those of K by a, b, c = 4, . . . , 9. Moreover,

all ten-dimensional fields and indices are distinguished by a hat.

We will limit ourselves to the case of a diagonal metric for the internal six-dimensional

compact space, of a non-vanishing internal antisymmetric-tensor and of one Abelian heterotic

U(1) gauge field Aµ:

ĝµ̂ν̂ =







gµν + gab V
a

µ V b
ν gab V

b
µ

gab V
b

ν gab





 , (2.1)

B̂µ̂ν̂ =







Bµν Wµa − Bab V
b

µ

−Wνa +Bab V
b

ν Bab





 . (2.2)

In the following we take gab = e2σa δab.

The low-energy four-dimensional effective string action is

SB
eff =

1

2λ2
s

∫

d4x
√−g e−ϕ

[

R + gµν ∂µϕ∂νϕ− gµν ∂µσa ∂νσa −
1

4
e2σa V a

µν V µνa

−1

4
e−2σa HµνaH

µν
a −

1

12
Hµνρ H

µνρ +
1

4
Fµν F

µν − 1

4
gµνe−2σb e−2σc ∂µBbc ∂νBbc

]

, (2.3)
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where λs =
√

8π/Ms is the string-length parameter,

Hµνρ = ∂µBνρ −
1

2

[

V a
µ Wνρa +Wµa V

a
νρ

]

− 1

2
Aµ Fνρ + cyclic perm. , (2.4)

Hµνa = Wµνa − Bab V
b

µν , Fµν = ∂µAν − ∂νAµ , (2.5)

V a
µν = ∂µV

a
ν − ∂νV

a
µ , Wµνa = ∂µWνa − ∂νWµa , (2.6)

and ϕ stands for the effective four-dimensional dilaton field:

ϕ = φ−
∑

a

σa .

The components of the antisymmetric tensor Hµνρ with µ, ν, ρ = 0, 1, 2, 3 can be rewritten

in terms of the pseudoscalar axion A as

Hµνρ ≡ Eµνρσ eϕ ∂σA , (2.7)

where Eµνρσ is the covariant full antisymmetric Levi-Civita tensor, which satisfies DαE
µνρσ =

0. Using Eq. (2.4), and imposing the Bianchi identity (d2B = 0), we get the equation of

motion for the axion field

∂µ(eϕ √−g gµν ∂νA) − 1

8

ǫµνρσ

√−g
[

2Wµνa V
a

ρλ + Fµν Fρσ

]

= 0 . (2.8)

The reduced action then becomes

SA
eff =

1

2λ2
s

∫

d4x
√−g e−ϕ

[

R + gµν ∂µϕ∂νϕ− gµν ∂µσa ∂νσa −
1

4
e2σa V a

µν V µνa

−1

4
e−2σa Hµνa H

µν
a −

1

2
e2ϕ gµν ∂µA∂νA− 1

8
eϕ A ǫ

µνρσ

√−g
[

2Wµνa V
a

ρλ + Fµν Fρσ

]

+
1

4
Fµν F

µν − 1

4
gµνe−2σb e−2σc ∂µBbc ∂νBbc

]

. (2.9)

We are interested in fluctuations around a homogeneous background with ϕ = ϕ(t),

gµν = (−1, a2(t) δij , b
2
c(t) δcd) , i, j = 1, 2, 3 , c, d = 4, . . . , 9 , all other fields = 0 .

In the following we will also use the metric gµν = (−a2(η), a2(η)δij, b
2
c(η) δdc), where we have

introduced the conformal time η by dη = dt/a.
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III. TWO MODELS FOR THE BACKGROUND

If the initial value of the string coupling is sufficiently small, it is possible for the Universe

to reach the high curvature regime, where higher-derivative corrections are important, while

the string coupling is still small enough to neglect loop corrections (g = expϕ/2 ≪ 1). As

discussed in the introduction, we will consider two extreme alternatives. In the first, α′

corrections “lock” the Universe in a string phase with a constant H and a linearly growing

dilaton (with respect to cosmic time) [4]; in the second scenario, α′ corrections induce a

sudden transition from a perturbative (+) branch solution to a perturbative (−) branch

phase. We will refer to the latter as the dual-dilaton phase.

We will thus consider a PBB cosmological background in which the Universe starts in

the perturbative string vacuum, reaches the string curvature scale while in a dilaton-vacuum

solution, goes either to the dual-dilaton phase or to the string phase, and finally enters the

radiation era as a result of the back-reaction from the amplified quantum fluctuations. We

now parametrize these two scenarios for the backgrounds, imposing the continuity of a, a′,

ba, b
′
a, ϕ.

A. Intermediate dual dilaton phase

1 Dilaton phase

For −∞ < η < ηs, with ηs < 0 we have

a(η) = − 1

Hs ηs

∣

∣

∣

∣

∣

η (1 − δ) − ηs

δ ηs

∣

∣

∣

∣

∣

δ/(1−δ)

, (3.1)

ba(η) = −Hs ηs

∣

∣

∣

∣

∣

(η − ηs) (1 − δ) − βa ηs

βa ηs

∣

∣

∣

∣

∣

βa/(1−δ)

= eσa , (3.2)

ϕ(η) = ϕs +
3δ − 1

1 − δ
log

∣

∣

∣

∣

∣

η (1 − δ) − ηs

δ ηs

∣

∣

∣

∣

∣

, (3.3)

1 = 3δ2 +
∑

a

β2
a , (3.4)

where Hs = a′(ηs)/a
2(ηs) is of order Ms. We will consider the case δ < 0 and βa > 0, i.e.

a superinflationary solution with contracting internal dimensions. Because of the constraint

between δ and βa, if |δ| < 1/
√

3, some of the βa must be non-vanishing. In what follows we

will pick two extreme cases: i) the most isotropic case, with βa =
√

(1 − 3δ2)/6, or ii) the
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most anisotropic one, with βa = δa1

√

(1 − 3δ2). In figures we shall denote these two cases

by a subscript 6 and 1, respectively.

2 Dual-dilaton phase

For ηs < η < η1, with η1 > 0 we take

a(η) = − 1

Hs ηs

∣

∣

∣

∣

∣

η (1 − θ) − ηs

θ ηs

∣

∣

∣

∣

∣

θ/(1−θ)

, (3.5)

ba(η) = −Hs ηs

∣

∣

∣

∣

∣

(η − ηs) (1 − θ) − ξa ηs

ξa ηs

∣

∣

∣

∣

∣

ξa/(1−θ)

, (3.6)

ϕ(η) = ϕs +
3θ − 1

1 − θ
log

∣

∣

∣

∣

∣

η (1 − θ) − ηs

θ ηs

∣

∣

∣

∣

∣

, (3.7)

where 3θ2 +
∑

a ξ
2
a = 1 and we will fix θ > 0 and ξa < 0, i.e. a decelerated expansion

for the external scale factor and a decelerated contraction for the internal ones. Again, we

distinguish two cases, ξa = −
√

(1 − 3θ2)/6 or ξa = −δa1

√

(1 − 3θ2).

3 Radiation phase

In the region η1 < η < ηeq, with ηeq the time of equivalence between radiation and matter

density, we write

a(η) =
(η − η1 − ηs)

Hs η2
s

∣

∣

∣

∣

∣

η1 (1 − θ) − ηs

θ ηs

∣

∣

∣

∣

∣

θ/(1−θ)

, (3.8)

ϕ(η) = const. , ba(η) = const. (3.9)

B. Intermediate string phase

1 Dilaton phase

We parametrize this phase exactly as before. Thus, for −∞ < η < ηs < 0, Eqs. (3.1) to

(3.4) hold.

2 String phase

For ηs < η < η1, with η1 < 0

a(η) = − 1

Hs η
, ba(η) = const. , ϕ(η) = ϕs − 2ζ log

(

η

ηs

)

, (3.10)

hence a constant Hubble parameter for the external scale factor.
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3 Radiation phase

In the range η1 < η < ηeq we have

a(η) =
1

Hs η2
1

(η − 2η1) , ba(η) = const. , ϕ(η) = const. (3.11)

An important property of these backgrounds is that the derivative of the field ϕ is not

continuous across the two transitions. This reflects the fact that we do not have as yet a

satisfactory model for the transitions from one epoch to another. As discussed below, this

discontinuity creates a technical problem, which has to be judiciously solved in order to

correctly compute the spectrum of perturbations around this kind of backgrounds.

IV. AMPLIFICATION OF VACUUM FLUCTUATIONS

Let us consider a generic massless field, whose quadratic fluctuations are described by

the action

δS =
∫

dη ã2
[

(Ψ′)2 − (∇Ψ)2
]

, (4.1)

where a prime stands for derivative with respect to conformal time η and ã, the so-called

“pump” field, is a homogeneous background field that depends on the particular perturbation

under study.

The safest way to analyse the amplification of the vacuum fluctuations of Ψ makes use

of a canonical Hamiltonian approach and leads to the derivation [16] of certain duality

symmetries of the spectra. We will use instead the simpler Lagrangian method and fix some

ambiguity encountered in that approach by demanding agreement with the Hamiltonian

treatment. We believe, of course, that our prescription can also be fully justified within the

Lagrangian framework.

The equation of motion for the Fourier components of Ψ is

Ψ′′
k + 2

ã′

ã
Ψ′

k + k2 Ψk = 0 . (4.2)

Introducing the canonical variable

vk = ãΨk , (4.3)
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Eq. (4.2) can be rewritten in the form

d2vk

dη2
+
[

k2 − U(η)
]

vk = 0 , U(η) =
1

ã

d2ã

dη2
. (4.4)

In order to get general formulae for the spectrum we parametrize the pump field in the three

epochs as follows1

ã =

(

η

ηs

)γ

−∞ < η < ηs < 0 , (4.5)

ã =

∣

∣

∣

∣

∣

η − 2ηs

ηs

∣

∣

∣

∣

∣

κ

ηs < η < η1 , η1 > 0 , (4.6)

ã =

(

η

η1

)α ∣
∣

∣

∣

∣

η1 − 2ηs

ηs

∣

∣

∣

∣

∣

κ

η1 < η < ηeq , (4.7)

A. Analytic form for the Bogoliubov coefficients

The solutions of the equation of motion (4.4) for the pump fields (4.5), (4.6) and (4.7)

are respectively

vk(η) =
√

|η|C H(1)
ν (k|η|) , (4.8)

vk(η) =
√

|(η − 2ηs)|
[

A+H
(1)
µ (k|(η − 2ηs)|) + A−H

(2)
µ (k|(η − 2ηs)|)

]

, (4.9)

vk(η) =
√

|η|
[

B+H
(1)
ρ (k|η|) +B−H

(2)
ρ (k|η|)

]

, (4.10)

where

ν = |γ − 1/2| , µ = |κ− 1/2| , ρ = |α− 1/2| (4.11)

and we have normalized (4.8) allowing only positive frequencies in the flat vacuum state at

η → −∞, so that

vk(η) →
C√
k
e−ikη (4.12)

1 In order to simplify the final expression of the Bogoliubov coefficients, we have slightly changed

the constant parameters appearing in the pump field in the three phases. With the original param-

eters of Sect. 3, the Bogoliubov coefficients would just change by numerical factors O(1), but the

spectral slopes and the “duality” symmetry (see sect. IVB) would still be the same.
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and |C| = 1. For reasons explained below we impose the continuity of Ψk and of its first

derivative at ηs, η1, not the continuity of the canonical field vk. Using the relation

H(2)′
µ (z)H(1)

µ (z) −H(1)′
µ (z)H(2)

µ (z) = −4i/(πz) ,

we obtain

A+ = C
iπ

4

{

(k|ηs|)
[

H(1)
ν (k|ηs|)H(2)′

µ (k|ηs|) −H(1)′
ν (k|ηs|)H(2)

µ (k|ηs|)
]

+

(γ − κ)H(1)
ν (k|ηs|)H(2)

µ (k|ηs|)
}

, (4.13)

A− = C
iπ

4

[

(k|ηs|)
[

H(1)
µ (k|ηs|)H(1)′

ν (k|ηs|) −H(1)′
µ (k|ηs|)H(1)

ν (k|ηs|)
]

+

+(κ− γ)H(1)
ν (k|ηs|)H(1)

µ (k|ηs|)
}

, (4.14)

and

B+ =
iπ

4

{[

A+H
(1)
µ (k |η1|) + A−H

(2)
µ (k |η1|)

] [

(k η1)H
(2)′
ρ (k |η1|) + (κ− α)

H(2)
ρ (k |η1|)

]

− (k η1)
[

A+H
(1)′
µ (k |η1|) + A−H

(2)′
µ (k |η1|)

]

H(2)
ρ (k |η1|)

}

, (4.15)

B− = −iπ
4

{[

A+H
(1)
µ (k |η1|) + A−H

(2)
µ (k |η1|)

] [

(k η1)H
(1)′
ρ (k |η1|) + (κ− α)

H(1)
ρ (k |η1|)

]

− (k η1)
[

A+H
(1)′
µ (k |η1|) + A−H

(2)′
µ (k |η1|)

]

H(1)
ρ (k |η1|)

}

, (4.16)

where the prime stands for derivative with respect to the argument of the Hankel function.

From the condition |C| = 1 we get |A+|2 − |A−|2 = 1 and |B+|2 − |B−|2 = 1, as needed for

generic Bogoliubov coefficients.

B. “Duality” of the Bogoliubov coefficients

In this section we analyse the behaviour of the Bogoliubov coefficients B− and A− under

the “duality” transformation γ → −γ, κ → −κ and α → −α, under which the pump fields

are reversed. We will thus check that, with a careful choice of the matching conditions, the

symmetry that can be shown to be exact in the Hamiltonian approach [16] is preserved.

In our context we need the following relations among Hankel functions (see e.g. [18])

H
(1,2)
−ξ (z) = e±iπξ H

(1,2)
ξ (z) , (4.17)

z H
(1,2)
ξ−1 (z) + z H

(1,2)
ξ+1 (z) = 2ξ H

(1,2)
ξ (z) , (4.18)

z
d

dz
H

(1,2)
ξ (z) + z H

(1,2)
ξ (z) = ξ H

(1,2)
ξ−1 (z) . (4.19)
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Independently of the range of frequencies we get

A−(γ, κ)

A−(−γ,−κ) = exp
[

iπ +
iπ

2

(∣

∣

∣

∣

γ +
1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

κ+
1

2

∣

∣

∣

∣

−
∣

∣

∣

∣

γ − 1

2

∣

∣

∣

∣

−
∣

∣

∣

∣

κ− 1

2

∣

∣

∣

∣

)]

, (4.20)

B−(γ, κ, α)

B−(−γ,−κ,−α)
= exp

[

iπ +
iπ

2

(∣

∣

∣

∣

γ +
1

2

∣

∣

∣

∣

+
∣

∣

∣

∣

α +
1

2

∣

∣

∣

∣

−
∣

∣

∣

∣

γ − 1

2

∣

∣

∣

∣

−
∣

∣

∣

∣

α− 1

2

∣

∣

∣

∣

)]

. (4.21)

There are two important comments to be made on the above formulae. The first is

that B−(−γ,−κ,−α) differs from B−(γ, κ, α) by just a phase. Hence the spectrum (being

proportional to |B−|2) is identical for a given pump field or for its inverse. We stress that this

duality property holds independently of the number and characteristics of the intermediate

phases and thus, as argued in [16], is generally valid. The second observation is that duality

depends crucially on having imposed the continuity of the field and of its derivative on Ψk

and not on the canonical field vk. The difference in imposing continuity of Ψk or of vk arises

from the discontinuous nature of the background itself (actually of ϕ̇) and from the fact

that Ψk and vk obey equations containing first and second time-derivatives of the pump

field, respectively. This gives rise to δ-function contributions in the case of vk, making the

requirement of continuity suspicious for that variable.

One welcome consequence of “duality” is the fact that the antisymmetric tensor field and

the axion have identical spectra since their pump fields are the inverse of each other (see

below). This must be so since they are just different descriptions of the same physical degree

of freedom.

C. General form of the spectral slopes

The parameters ηs and η1 in the formulae for B− define two characteristic comoving

frequencies, ks = |ηs|−1, k1 = |η1|−1, which can be traded for two proper frequencies fs and

f1 by the standard relations

2πfs =

(

ks

a

)

, 2πf1 =

(

k1

a

)

. (4.22)

It is easy to see that the two scenarios for the background, intermediate dual dilaton

phase and intermediate string phase, lead to fs > f1 and fs < f1, respectively. In the

case f ≪ fs, f1 (fluctuations that exit in the dilaton phase and re-enter in the radiation

12



Exponents Bogoliubov coefficient Leading contribution Power of f (ǫΥ)

γ > 1/2, α > 1/2,∀κ C1, C2, C3, C4 6= 0 C1 1 − |γ| − |α|
γ > 1/2, α < 1/2, ∀κ C1, C2, C4 6= 0, C3 = 0 C1 −|γ − α|
γ < 1/2, α > 1/2, ∀κ C1, C3, C4 6= 0, C2 = 0 C1 −|γ − α|
γ < α, γ < 1/2, |α| < 1/2, ∀κ C1 = 0, C2, C3, C4 6= 0 C2 −|γ − α|
γ > α, α < 1/2, |γ| < 1/2, ∀κ C1 = 0, C2, C3, C4 6= 0 C3 −|γ − α|
γ < −1/2, α < −1/2, ∀κ C1 = 0, C2, C3, C4 6= 0 C4 1 − |γ| − |α|

TABLE I. Power of f in the Bogoliubov coefficient B− for f ≪ f1, fs

phase), which is common to both scenarios, we can approximate the exact result (4.16) for

the Bogoliubov coefficient B− in the following way2

B− = C1 + C2 + C3 + C4 + · · ·

where

C1 = N1

(

f

2fs

)−ν (
f

2f1

)−ρ [

C1
1

(

f1

fs

)µ

+ C2
1

(

fs

f1

)µ ]

, (4.23)

C2 = N2

(

f

2fs

)−ν (
f

2f1

)ρ [

C1
2

(

f1

fs

)µ

+ C2
2

(

fs

f1

)µ ]

, (4.24)

C3 = N2

(

f

2fs

)ν (
f

2f1

)−ρ [

C1
3

(

f1

fs

)µ

+ C2
3

(

fs

f1

)µ ]

, (4.25)

C4 = N4

(

f

2fs

)1−ν (
f

2f1

)1−ρ


C1
4

(

fs

f1

)µ−1

+ C2
4

(

f1

fs

)µ+1

+ C3
4

(

f1

fs

)µ−1

+ C4
4

(

fs

f1

)µ+1


 .

(4.26)

Since, by their definition (4.11), ν, ρ > 0, C1 gives the leading contribution unless the coef-

ficients appearing in front of it vanish. Table I shows which one of the Ci is dominant for

different choices of the background parameters.

2We have used the following relations for ν not integer: H
(1,2)
ν = (1± i cot νπ)Jν ∓ i

sin νπ J−ν , with

Jν =
( z

2

)ν ∑∞
k=0

(−1)k

kΓ(ν+k+1)

( z
2

)2k
, assuming ν 6= 0.

13



Exponents Bogoliubov coefficient Leading contribution Power of f (ǫΥ)

γ > 1/2, κ > 1/2 D1,D2,D3,D4 6= 0 D1 1 − |γ| − |κ|
γ > 1/2, κ < 1/2 D1,D2,D4 6= 0, D3 = 0 D1 −|γ − κ|
γ < 1/2, κ > 1/2 D1,D3,D4 6= 0,D2 = 0 D1 −|γ − κ|
γ < κ, γ < 1/2, |κ| < 1/2 D1 = 0, D2,D3,D4 6= 0 D2 −|γ − κ|
γ > κ, κ < 1/2, |γ| < 1/2 D1 = 0, D2,D3,D4 6= 0 D3 −|γ − κ|
γ < −1/2, κ < −1/2 D1 = 0, D2,D3,D4 6= 0 D4 1 − |γ| − |κ|

TABLE II. Power of f in the Bogoliubov coefficient B− for an intermediate dual-dilaton phase

and f1 ≪ f ≪ fs

In the case f1 ≪ f ≪ fs (fluctuations that exit in the dilaton phase and re-enter in the

dual-dilaton phase) we get instead:

B− = D1

(

f

2fs

)−µ−ν

+ D2

(

f

2fs

)µ−ν

+ D3

(

f

2fs

)−µ+ν

+ D4

(

f

2fs

)2−µ−ν

. (4.27)

Table II shows the leading contribution to B− in this case. The explicit form of the

coefficients Ni, Cj
i and Di for both cases is given in the appendix.

Tables (I and II) also show the leading power of f appearing in the Bogoliubov coefficient

B−, in the two above-mentioned cases, i.e. re-entry in the dual-dilaton or in the radiation

phase. We can summarize this behaviour as follows

|B−|2 ∼ f 2−2|γ|−2|α| γ > 1/2 , α > 1/2 or γ < −1/2 , α < −1/2 , (4.28)

|B−|2 ∼ f−2|γ−α| all other cases . (4.29)

In the case of an intermediate string phase the Bogoliubov coefficient for fs ≪ f ≪ f1

(fluctuations that exit in the string phase and re-enter in the radiation phase) is given by

Eq. (4.27) after the substitution γ → κ, κ→ α (hence ν → µ, µ→ ρ).

The spectrum of fluctuations for a generic field Υ is

ΩΥ =
1

ρc

dρΥ

d log f
= NΥ

8π2

ρc
f 4 |BΥ

− |2 , (4.30)

14



Particles (Υ) Pump field (ã) Spectral slope nΥ

re-entry dual phase re-entry radiation phase

Gravitons a e−ϕ/2 4 3

Axions a eϕ/2 4 − 4
∣

∣

∣

δ
1−δ − θ

1−θ

∣

∣

∣ 4 − 2
∣

∣

∣

3
2 − 2δ

1−δ

∣

∣

∣

Heterotic photons e−ϕ/2 4 − 2
∣

∣

∣

δ
1−δ − θ

1−θ

∣

∣

∣ 4 − 2
∣

∣

∣

1
2 − δ

1−δ

∣

∣

∣

Vµν e−ϕ/2+σ 4 − 2
∣

∣

∣

(δ−βa)
1−δ − (θ−ξa)

1−θ

∣

∣

∣ 4 − 2
∣

∣

∣

1
2 − (δ−βa)

1−δ

∣

∣

∣

Wµν e−ϕ/2−σ 4 − 2
∣

∣

∣

(δ+βa)
1−δ − (θ+ξa)

1−θ

∣

∣

∣ 4 − 2
∣

∣

∣

1
2 − (δ+βa)

1−δ

∣

∣

∣

Bab a e−ϕ/2−2σ 4 − 4
∣

∣

∣

βa

1−δ − ξa

1−θ

∣

∣

∣ 3 − 4βa

1−δ

TABLE III. Spectral slopes for an intermediate dual-dilaton phase in the range f ≪ f1 (re-entry

in radiation phase) and in the range f1 ≪ f ≪ fs (re-entry in dual-dilaton phase)

where NΥ is the number of polarization states. We have found it convenient to use a “spectral

slope” parameter nΥ defined by the relation

nΥ =
d log ΩΥ

d log f
= 4 + 2ǫΥ , (4.31)

where ǫΥ is the exponent appearing in the f -dependence of |BΥ
−| (see Tables I and II). The

spectral slope, which is simply related to the usual spectral index by slope = (index − 1), is

more convenient to describe the main property of the spectrum, since its sign tells us whether

the spectrum is increasing or decreasing with f . We will now apply the above general results

to various possible backgrounds and perturbations occurring in string theory.

V. APPLICATION TO OUR SPECIFIC SITUATIONS

We now discuss the explicit form of the Schrödinger-like equation (4.4) for the fields

occurring in the action (2.9). This amounts to finding, for each perturbation, the relevant

pump field and canonical variable. For gravitons and dilatons we refer to [11,12]. For Vµ

and Wµ the equations of motion are

∂µ

(√−g e−ϕ e2σa V µνa
)

= 0 , (5.1)

∂µ

(√−g e−ϕ e−2σa W µνa
)

= 0 . (5.2)
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Particles (Υ) Pump field (ã) Spectral slope nΥ

Exit in dilaton phase Exit in the string phase

Gravitons a e−ϕ/2 3











6 − 2ζ ζ > 3
2

2ζ ζ < 3
2

Axions a eϕ/2 4 − 2
∣

∣

∣

3
2 − 2δ

1−δ

∣

∣

∣ −2ζ

Heterotic photons e−ϕ/2 4 − 2
∣

∣

∣

1
2 − δ

1−δ

∣

∣

∣ 4 − 2ζ

Vµν e−ϕ/2+σ 4 − 2
∣

∣

∣

1
2 − (δ−βa)

1−δ

∣

∣

∣ 4 − 2ζ

Wµν e−ϕ/2−σ 4 − 2
∣

∣

∣

1
2 − (δ+βa)

1−δ

∣

∣

∣ 4 − 2ζ

Bab a e−ϕ/2−2σ 3 − 4βa

1−δ











6 − 2ζ ζ > 3
2

2ζ ζ < 3
2

TABLE IV. Spectral slopes for an intermediate string phase in the frequency ranges f ≪ fs

(exit in dilaton phase) and fs ≪ f ≪ f1 (exit during the string phase)

Using the gauge W0a = 0 = V0a eliminates one unphysical degree of freedom. However, since

the dilaton depends only on time, we can use the equations of motion to further require

∇· ~Va = 0,∇· ~Wa = 0. The equations for the vector fields then take the form (4.1) and their

canonical variables are simply:

ψj
V a = V j

a e
−ϕ/2+σa , (5.3)

ψj
Wa = W j

a e
−ϕ/2−σa . (5.4)

The same procedure has been applied for heterotic photons in [13]. For the axion field the

equation of perturbations around the zero field solution is [15]

A′′
k + 2

a′

a
A′

k + ϕ′A′
k + k2Ak = 0 , (5.5)

and the canonical variable therefore is vk = eϕ/2 aAk. It is straightforward to obtain the

equation of perturbations for the Bµν-field and its canonical variable, i.e. vk = e−ϕ/2 a−1Bk.

Note that, since the pump fields of the axion and the antisymmetric tensor are duality

related, the spectrum of their fluctuations will be the same. For the internal B-field we get

instead vk = a e−ϕ/2−2σ Bk. A list of all relevant “pump” fields can be found in Tables III
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FIG. 1. Spectral slopes for fluctuations that re-enter in the dual-dilaton phase when the latter

is characterized by θ = 1/
√

3 (i.e. by constant moduli).

and IV. In the first we give the spectral slope for various fluctuations in the case of an

intermediate dual-dilaton phase. The same is done in Table IV for an intermediate string

phase. We now turn to discussing perturbations in the two scenarios.

A. Intermediate dual-dilaton phase

In this scenario, the super-inflationary phase ends at time η = ηs. Since we assume such

a phase to have washed out any initial spatial curvature, the energy density must always

be critical. At η = ηs the dominant source of energy is the kinetic energy of the dilaton,

ρϕ(ηs) ∼M4
s e

−ϕs.

Consider now the energy stored in the amplified perturbations during the dual-dilaton

phase. Figs. 1, 2 and 3 give the spectral slopes in various cases for the two relevant frequency

ranges. Fig. 4 gives the normalization of the spectra in the whole frequency range for the

particular case θ = 1/
√

3, δ = −0.3. Since all perturbations are of the same order at the
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FIG. 2. Same as Fig. 1 where, instead of fixing θ, we fix δ = −0.26 in the intermediate phase.

maximal amplified frequency (here fs), perturbations with (the most) negative spectral slope

dominate over all others. From the above mentioned figures we see that the spectral slope of

axionic fluctuations re-entering during the dual dilaton phase is generally the most negative

one (at least if we consider isotropic compactifications): we thus ignore contributions to the

energy density from perturbations other than the axion’s. The basic idea is to assume that

the transition from the dual-dilaton phase to the radiation phase occurs precisely when the

energy density in the perturbations becomes critical and starts to dominate over the kinetic

energy of the coherent dilaton field.

Let us fix for simplicity θ = 1/
√

3 (i.e. frozen internal dimensions in the dual-dilaton

phase) and then impose criticality at the end of the dual-dilaton phase in the form:

M2
s H

2
1 ≃ eϕ1 ρA(η1) . (5.6)

Using the equations of motion and assuming |η1| ≫ |ηs|, we have

H1 ≃Ms

∣

∣

∣

∣

∣

ηs

η1

∣

∣

∣

∣

∣

(3+
√

3)/2

, eϕ1 ≃ eϕs

∣

∣

∣

∣

∣

ηs

η1

∣

∣

∣

∣

∣

−
√

3

. (5.7)
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FIG. 3. Spectral slopes for fluctuations that re-enter in the radiation phase. For comparison

we also show the experimental constraint from COBE [20]: n + 1 = 1.2 ± 0.3.

Taking into account the results of Sec. IV we get, apart from factors O(1),

ρA(η1)≃ f 4
s (ηs)

(

as

a1

)4
(

f1

fs

)nA

≃ f 4
s (ηs)

∣

∣

∣

∣

∣

ηs

η1

∣

∣

∣

∣

∣

4/(1−δ)

, nA < 0 , (5.8)

where we have restricted ourselves to the case nA < 0 for the reasons explained above.

The dependence of the value of the dilaton background at η = η1 on the parameter δ is

completely fixed by the criticality condition Eq. (5.6). Indeed, inserting Eqs. (5.7) and (5.8)

in Eq. (5.6), we obtain

eϕ1 ≃
∣

∣

∣

∣

∣

ηs

η1

∣

∣

∣

∣

∣

3+
√

3−4/(1−δ)

. (5.9)

If we define an effective temperature Teff at the beginning of the radiation era by

ρA(η1) ≃ T 4
eff , (5.10)

we get
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∣

∣

∣

∣

∣

ηs

η1

∣

∣

∣

∣

∣

≃
(

Teff

Ms

)1−δ

, (5.11)

where we have assumed fs(ηs) ∼Ms, and thus

eϕ1 ≃
(

Teff

Ms

)(1−δ)(3+
√

3)−4

. (5.12)

It is important to stress that this effective temperature may have nothing to do with the

actual temperature of a relativistic gas in thermal equilibrium at η = η1. In particular, if

the coupling is still very small, axions may not thermalize at all, in spite of dominating the

energy and of driving a radiation-dominated era. For the same reason, the fact that Teff can

be large in string units should not be a matter of concern.

Let us now estimate the value of the frequencies fs and f1 at present time. If we assume

that the CMB photons we observe today carry the (red-shifted) energy of the primordial

perturbations (in particular from axion decay), we have

2πf1 =
k1

a0

≃ a1

a0

H1 , (5.13)

Ωγ(t0) =
1

G(η1)M
2
Pl

H2
1

H2
0

(

a1

a0

)4

, (5.14)

f 4
1 ≃ G(η1)M

2
PlH

2
0 H

2
1 Ωγ(t0) ≃ eϕ1 H2

0 H
2
1 Ωγ(t0)M

2
Pl/M

2
s , (5.15)

where H0 and Ωγ(t0) (∼ 10−4) are respectively the Hubble parameter and the fraction of the

critical energy stored in radiation at the present time t0. Using Eq. (5.7) and Eq. (5.11) we

finally get

f1 ≃
√

H0MPl e
ϕ1/4 (Ωγ(t0))

1/4
(

Teff

Ms

)(1−δ)(3+
√

3)/4

, (5.16)

fs ≃ f1

(

Teff

Ms

)δ−1

. (5.17)

Note that, if we choose Teff = 1015 GeV, corresponding to a relatively short dual-dilaton

phase, and we fix δ = −0.3 in order to have an almost flat axion spectrum in the low-

frequency region (see Fig. 3), we get f1 ∼ 105 Hz, fs ∼ 109 Hz and ϕs ≃ −23, ϕ1 ≃ −11.

Therefore, the value of the dilaton at the beginning of the radiation era is still far from the

present value (ϕ0 ∼ −1).
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FIG. 4. Spectrum for all the fluctuations considered in the case of a dual-dilaton interme-

diate phase, with the following choice: δ = −0.3, θ = 1/
√

3, f1 ∼ 105 Hz, fs ∼ 109 Hz,

ϕs ∼ −23, ϕ1 ∼ −11, Teff = 1015 GeV.

Typical spectra for all the fields we have considered are shown in Fig 4. In particular,

for axionic fluctuations that re-enter in the dual-dilaton phase (f1 ≪ f ≪ fs), we get a

decreasing spectrum

ΩA ≃ G(η1)H
2
1 Ωγ(t0)

(

f

fs

)nA
(

fs

f1

)4

. (5.18)

On the contrary, for fluctuations that re-enter in the radiation phase (f ≪ f1 ≪ fs), we

get

ΩA ≃ G(η1)H
2
1 Ωγ(t0)

(

f

f1

)nA
(

fs

f1

)2(ν+µ)

, (5.19)

≃ Ωγ(t0)

(

f

f1

)nA

, (5.20)

which includes the possibility of a scale-invariant flat spectrum.
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As can be seen from Fig. 4, the Kaluza-Klein “photons” V a
µ , can give sufficiently large

seeds for galactic magnetic fields (Ω > 10−38 for fM ≈ 10−14 Hz [19]) in this case, provided of

course that the true electromagnetic field has a non-vanishing component along this direction

in group space. Amusingly enough, this can be achieved in a range of moduli where axionic

perturbations have a nearly flat spectrum.

B. Intermediate string phase

In this scenario the Bogoliubov coefficients are still expressed by Eqs. (4.13), (4.14),

(4.15) and (4.16), ηs is the time at which the string phase starts, and we again assume that

the radiation phase, dominated by the energy stored in the amplified vacuum fluctuations,

begins at η = η1. We recall that, in this case, f1 > fs and that we expect f1(η1) ∼Ms. Since

axions have the most negative spectral slope, we impose again that their energy density

becomes critical at the beginning of the radiation phase:

H2
1 = G(η1) ρA(η1) , (5.21)

Using then

ρA(η1) ≃ f 4
1 (η1)

(

fs

f1

)nA

(5.22)

and assuming again that the photons we observe today originate from the amplified vacuum

fluctuations, we can fix the present value of f1 to be

f1(t0) ≃
√

H0MPl e
ϕ1/4 (Ωγ(t0))

1/4 , (5.23)

and relate ϕ1 to the duration of the string phase zs = a1/as (a free parameter)

eϕ1 ≃ z−2ζ
s . (5.24)

If we define again

ρA(η1) ≃ T 4
eff , (5.25)

we obtain

zs ≃
(

Teff

Ms

)2/ζ

. (5.26)
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FIG. 5. Some fluctuation spectra in the case of a string intermediate phase. The following choice

of parameters was made: ζ = 0.08, δ = −1/3, f1 ∼ 1010 Hz, fs ∼ 8 · 10−1 Hz, ϕs ∼ −8, ϕ1 ∼ −5,

Teff = 2 × 1018 GeV.

With the choice Teff = 2 × 1018 GeV, ζ = 0.08, corresponding to a very long string phase,

and fixing δ = −1/3 in order to have a flat axion spectrum in the low-frequency region (see

Fig. 3), we obtain

f1 ∼ 1010 Hz, fs ∼ 8 · 10−1 Hz , ϕs ≃ −8, ϕ1 ≃ −5 .

As in the scenario with a dual-dilaton intermediate phase, we find the unpleasant result

that the dilaton is still far from its present value at the beginning of the radiation era. In

Fig. 5 we summarize the results of the spectra for some perturbations. The spectrum of

the fluctuations that exit in the dilaton phase is given in the limit f ≪ fs ≪ f1, using

the coefficients Ci, shown in Table I. For fluctuations that exit in the string phase we

consider instead the limit fs ≪ f ≪ f1, and the Bogoliubov coefficients are expressed by

the quantities Di (see Table II after substituting γ → κ and κ→ α).

Note that, for fluctuations of the axion field that exit in the string phase, we have
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ΩA ≃ G(η1)H
2
1 Ωγ(t0)

(

f

fs

)nA
(

f1

fs

)2(µ+ρ)−4

,

≃ Ωγ(t0)

(

f

fs

)nA

. (5.27)

Substituting the parameters of Table I we get a decreasing spectrum

ΩA ≃ G(η1)H
2
1 Ωγ(t0)

(

f

f1

)−2ζ

. (5.28)

In this example, a long string phase produces a gravitational spectrum of order ∼ 10−9 in

the range of detection of LIGO/VIRGO, but a very steep spectrum of Kaluza-Klein photons

V a
µ at high frequencies and consequently a value of perturbations at fM ∼ 10−14 Hz far below

the lower limit necessary to seed the dynamo mechanism for galactic magnetic fields [19].

VI. DISCUSSION

Our main results can be summarised as follows: Eqs. (4.28), (4.29), Tables III and IV,

Figs. 1, 2 and 3 give our main conclusions concerning the spectral slopes of the various

spectra in the two scenarios, while Figs. 4 and 5 illustrate the spectra of all perturbations for

certain typical choices of the background’s moduli. Rather than discussing the fine details,

we would like to draw some conclusions, which appear to be relatively robust with respect

to (slight?) variations of the moduli.

♦ Our calculations are based on the use of the low-energy effective action both for the back-

grounds and for the perturbations. Since in the pre-big bang scenario a high-curvature phase

is necessary before any exit to standard cosmology can be achieved, such a procedure is of-

ten criticized (see e.g. [21]) and requires some justification. We have seen in our explicit

computations that the spectrum of long-wavelength perturbations, which exit and re-enter

at small curvatures (in string units), does not depend on the details of the high curvature

phase. Also, the use of higher-derivative-corrected perturbation equations has recently been

shown [22] not to change the low-frequency spectra by more than a number O(1). Thus

predictions for the low-energy end of the spectra appear to be robust. Why? The physical

explanation almost certainly lies in the freezing-out of super-horizon-scale perturbations.

The occurrence of a constant mode at sufficiently large wavelengths can be shown without
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reference to the low-energy approximation [16] and, by a canonical transformation argument,

should also apply to the constant-momentum mode. By contrast, the high frequency spectra

are expected to depend quite crucially on the details of the strong curvature transition. We

expect our naive formulae to give “lower bounds” for those parts of the spectra.

♦ The main result of our investigation is the confirmation of the suggestion found in ref.

[15] that positive spectral slopes are by no means a must in pre-big bang cosmology. By

computing the spectra after re-entry, we have confirmed that axions do have, more often

than not, negative slopes (decreasing spectra). However, other fields, such as KK gauge

fields and scalars, can also exhibit negative slopes. A particularly promising case is the

one shown in Fig. 3, since, in a region around the one with nine-dimensional symmetry

(δ = ±βa = −1/3), the axion spectrum and that of a KK scalar field are nearly flat, while

the slope of the spectrum of some KK gauge field is positive but sufficiently small to produce

large enough seeds for the galactic magnetic fields.

♦ Unfortunately, the promising results of Fig. 3 are somewhat spoiled when a long dual-dilaton

or string phase is inserted in the background between the dilaton and radiation phases. In

this case, the spectral slopes grow somewhat wild in the negative direction (see e.g. Fig. 2

for the dual-dilaton case), making some of the spectra peak at very low frequency. The

generic consequence of this phenomenon is a huge increase in the total, integrated energy

density in the perturbations. If the string coupling (the dilaton) is not very small throughout

the intermediate phase, the energy in these perturbations soon becomes critical and the

intermediate phase stops. The only way to have a long intermediate phase is therefore to

force the dilaton to be very perturbative until the end of the intermediate phase, be it the

string or the dual-dilaton phase. In this case, however, at the beginning of the radiation

phase the dilaton is still very much displaced from its present value (where supposedly the

minimum of its non-perturbative potential is) and may have a hard time reaching it later.

In other words, the most appealing possible scenarios appear to be those with a sudden

transition between the dilaton and radiation phases occurring at “realistic” values for the

string coupling (roughly 1/N , if N is the number of effectively amplified distinct species).

Although this appears at present as some kind of fine tuning of the ratio of two moduli, it is

not excluded that a better understanding of the initial conditions leading to PBB behaviour

along the lines of Ref. [8] may tie together the initial values of the coupling and the curvature
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so that such conditions are naturally realised.

♦ If the latter picture is adopted, it is possible to have a nearly scale-invariant dilaton/moduli

spectrum. This could lead to an interesting mechanism to generate large-scale anisotropy

along the lines given in Ref. [14]. In the same region of moduli space one obtains reasonably

large fluctuations of the KK gauge fields to provide sizeable seeds for the galactic magnetic

fields. On the negative side, in this region of parameter space, the situation would be

quite discouraging for generating a large enough gravitational-wave signal in the interesting

frequency range.

NOTE ADDED

While completing this work we became aware of a paper by Brustein and Hadad [23] which

is also dealing with generic perturbations in string cosmology. Their method is somewhat

different from ours: instead of working within a specific parametrization of the high-curvature

phase, they have assumed the freezing of the fluctuation and of its conjugate momentum for

super-horizon scales. Also, they have not imposed our criticality condition and thus have

not obtained predictions on the value of the dilaton at the beginning of the radiation phase.

We have checked that our results agree with theirs wherever a comparison is possible.
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APPENDIX A:

Here we give the explicit form of the coefficients entering the Bogoliubov formulae of

Sec. IVC. In the case of the limit f ≪ f1 ≪ fs we get:
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N1 =
i

8π

Γ(µ) Γ(ν) Γ(ρ)

Γ(1 + µ)
,

C1
1 = (γ − κ + µ+ ν) (−α + κ + µ− ρ) ,

C2
1 = (γ − κ− µ+ ν) (α− κ+ µ+ ρ) ;

N2 = − i

8π

Γ(µ) Γ(ν) Γ(−ρ)
Γ(1 + µ)

[cos(π ρ) − i sin(π ρ)] ,

C1
2 = (γ − κ + µ+ ν) (α− κ− µ− ρ) ,

C2
2 = (γ − κ− µ+ ν) (−α + κ− µ+ ρ) ;

N3 = − i

8π

Γ(µ) Γ(−ν) Γ(ρ)

Γ(1 + µ)
[cos(π ν) − i sin(π ν)] ,

C1
3 = (γ − κ + µ− ν) (α− κ− µ+ ρ) ,

C2
3 = (−γ + κ+ µ+ ν) (α− κ + µ+ ρ) ;

N4 = − i

8π

Γ(µ) Γ(ν) Γ(ρ)

Γ(2 − µ) Γ(1 + µ) Γ(2 + µ) Γ(2 − ν) Γ(2 − ρ)
,

C1
4 = (α− κ + µ+ ρ) Γ(2 + µ) Γ(2 − ρ) [(−2 + γ − κ− µ+ ν)

Γ(2 − µ) Γ(1 − ν) + (2 + γ − κ− µ+ ν) Γ(1 − µ) Γ(2 − ν)] ,

C2
4 = (−α + κ + µ− ρ) Γ(2 − µ) Γ(2 − ρ) [(−2 + γ − κ + µ+ ν)

Γ(2 + µ) Γ(1 − ν) + (2 + γ − κ + µ+ ν) Γ(1 + µ) Γ(2 − ν)] ,

C3
4 = (γ − κ+ µ+ ν) Γ(2 + µ) Γ(2 − ν) [(2 − α + κ+ µ− ρ)

Γ(2 − µ) Γ(1 − ρ) + (−2 − α+ κ + µ− ρ) Γ(1 − µ) Γ(2 − ρ)] ,

C4
4 = (γ − κ− µ+ ν) Γ(2 − µ) Γ(2 − ν) [(−2 + α− κ+ µ+ ρ)

Γ(2 + µ) Γ(1 − ρ) + (2 + α− κ + µ+ ρ) Γ(1 + µ) Γ(2 − ρ)] ;

while for fluctuations in the frequency region f1 ≪ f ≪ fs we obtain:

D1 = − i

8
e−iπ/2 (−µ+ρ) (−γ + κ+ µ− ν) π−1 2Γ(µ) Γ(ν) ,

D2 = − i

8
e−iπ/2 (µ+ρ) (−γ + κ− µ− ν) π−1 2Γ(−µ) Γ(ν) ,

D3 = − i

8
e−iπ/2 (2ν−µ+ρ) (−γ + κ + µ+ ν) π−1 2Γ(µ) Γ(−ν) ,

D4 =
i

8
e−iπ/2 (−µ+ρ) π [(2 − γ + κ+ µ− ν) (1 − µ) +

(−2 − γ + κ + µ− ν) (1 − ν)]
2Γ(µ) Γ(ν)

(1 − µ) (1 − ν)
.
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