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Classical inhomogeneities in string cosmology
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We generalize previous work on inhomogeneous pre-big bang cosmology by including the effect of non-
trivial moduli and antisymmetric-tensor–axion fields. The general quasihomogeneous asymptotic solution—as
one approaches the big bang singularity from perturbative initial data—is given and its range of validity is
discussed, allowing us to give a general quantitative estimate of the amount of inflation obtained during the
perturbative pre-big bang era. The question of determining early-time ‘‘attractors’’ for generic pre-big bang
cosmologies is also addressed, and a motivated conjecture is advanced. We also discuss S-duality-related
features of the solutions, and speculate on the way an asymptotic T-duality symmetry may act on moduli space
as one approaches the big bang.@S0556-2821~98!01104-7#

PACS number~s!: 11.25.2w, 04.50.1h, 98.80.Cq
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I. INTRODUCTION

After some pioneering work@1#, string cosmology took a
new turn with the realization that, as a result of its dual
symmetries@2,3#, it naturally provides, even in the absen
of potential energy, standard@Friedmann-Robertson-Walke
~FRW!# as well as inflationary cosmologies. The crucial ro
of a dynamical dilaton in providing inflation then becam
clear.

This observation led to the idea of the so-called pre-
bang~PBB! scenario@4,5# according to which the Univers
started its evolution from a very perturbative initial state, i
from very weak coupling and very small curvatures. It th
inflated towards larger~space-time! curvatures and coupling
during the pre-big bang phase and, possibly after a stri
epoch, eventually made a transition~exit! to the standard
radiation-dominated era.

While early work concentrated mostly on homogeneo
Bianchi type-I cosmologies, and on small perturbatio
around them, a number of extensions of the original scen
have been considered more recently, including some@6# try-
ing to incorporate the latest theoretical developments
string theory. Within a more traditional string theory fram
work, a more general setting was recently considered@7#. In
that approach, given some initial data deeply inside the p
turbative region, but otherwise arbitrary, their evolution
followed towards the big bang singularity in the future.
turns out that the evolution of fairly homogeneous init
patches can be described analytically and that a large frac
of those patches inflates, becoming increasingly flat, ho
geneous and isotropic. In the special case of exactly ho
geneous and isotropic—but non spatially flat—cosmolog
explicit solutions can be found@8,9#. Also, some scepticism
on the naturalness of the PBB picture arose@9#.

If the above results are coupled to the assumption th
‘‘graceful exit’’ does indeed take place~see@10# for recent
progress on this issue!, the usuallyassumedbig bang condi-
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tions ~a hot, dense and highly-curved state! will be the
outcome—rather than the starting point—of inflation. Se
eral interesting phenomenological consequences of
whole scenario have been worked out, particularly on
possibility of generating an interesting spectrum of gravi
tional waves@11# and of cosmic magnetic fields@12#. Of
particular relevance could be the recent observation@13# that
pre-big bang cosmology can lead to a scale-invariant sp
trum of axionic perturbations.

The purpose of this work is to improve on the results
@7# in various respects, as explained in the following outlin
in Sec. II, we formulate the problem directly in the strin
frame while adding extra dimensions as well as t
antisymmetric-tensor fieldBmn . We thus recover the result
of @7# and are able to extend them to the case of quasiho
geneousBmn , gmn andf fields. In Sec. III we reexpress th
four-dimensional case with torsion and a single intern
space modulus in terms of the axion field and construct
general asymptotic solution for a quasihomogeneous ax
background. We also look at the solutions in the Einst
frame in order to expose, as simply as possible, their
duality properties. In Sec. IV we discuss the limits of validi
of our asymptotic solutions, from the point of view of bo
the breakdown of the tree-level low-energy effective act
and of that of the gradient expansion. We are thus able
estimate the duration of the PBB era and the number o
folds it generates, and to conjecture that the far-past ‘‘attr
tor’’ of generic ~negative-curvature and sufficiently isotro
pic! PBB cosmologies coincides with the Milne Univers
appearing in the explicit solution of@8,9#. Section V contains
some concluding remarks, while we discuss in the Appen
the structure of the ‘‘momentum’’ constraints, as well
their solutions, in the particular case of 211 dimensions.

II. PRE-BIG BANG COSMOLOGIES WITH
QUASIHOMOGENEOUS TORSION

In this and in the following section we discuss quasih
mogeneous solutions, i.e. solutions which are approxima
valid when spatial gradients are small compared with ti
derivatives. While in this section this is assumed to be
2543 © 1998 The American Physical Society
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case for the antisymmetric tensor field, in Sec. III the sa
assumption will be made for the duality-related axion fiel

A. General lowest-order pre-big bang equations

In this subsection we write down the classical equatio
of motion of string gravity at lowest order both in thea8 and
in the string-loop expansion. Such an approximation sho
be valid at early enough times since, in the pre-big ba
scenario, the initial state of the Universe is taken to
deeply inside the perturbative region. Unlike in@7#, we work
directly in the string frame, where the physical interpretat
of the solutions is most immediate, and we consider the
fect of internal dimensions as well as that of a nontriv
antisymmetric-tensor field.

The low-energy effective string action inD5d11 space-
time dimensions is1

Seff
S 5

1

2ls
D22 E dDxA2ge2fFR1gmn]mf]nf

2
1

12
HmnrHmnrG , ~2.1!

where

Hmnr5]mBnr1]nBrm1]rBmn . ~2.2!

The equations of motion derived from the action~2.1! are
well known:

R12gmnDmDnf2gmn]mf]nf2
1

12
HmnrHmnr50,

~2.3!

Rmn1DmDnf2
1

4
HmabHn

ab50, ~2.4!

]n~A2ge2fHnrm!50. ~2.5!

Invariance under general coordinate transformations
Bmn→Bmn1]mLn2]nLm allows us to bring the componen
g0m andB0m to the form

g00521, g0i50, B0i50. ~2.6!

In this ~synchronous! gauge we rewrite the above equation
explicitly distinguishing time and space derivatives. To th
end we introduce

x j
i 5gik]0gk j , f̄5f2 log~A2g!, ~2.7!

and then rewrite Eqs.~2.3!–~2.5! in the form

f̈̄5
1

4
Tr~x2!1

1

4
gikgjl Ḃi j Ḃkl , ~2.8!

1We will use the signature~2,1,1, . . . ,1! and the following con-
ventionsRnrs

m 5Gns,r
m 2 . . . , Rmn5Rmrn

r . We indicate withDm

the covariant derivative compatible with the metricgmn , while ¹ i ,
R stand for the covariant derivative and curvature obtained from
~spatial! metric gi j .
e

s

ld
g
e

n
f-
l

d

,

Rj
i 1

1

2
ẋ j

i 1¹ i¹ jf2
1

2
x j

i ḟ̄2
1

4
HiklH jkl1

1

2
gimgklḂmkḂj l

50, ~2.9!

R1
1

4
Tr~x2!1 ḟ̄222f̈̄12¹ i¹ if2gi j ] if] jf

2
1

12
HiklH

ikl1
1

4
gikgjl Ḃi j Ḃkl50, ~2.10!

] l~e2f̄glkgi j Ḃ jk!50, ~2.11!

]0~e2f̄gikgjl Ḃkl!2] l~e2f̄Hli j !50, ~2.12!

1

2
]kx i

k2
1

4
~] igkl!x

kl1] i ḟ̄2
1

2
x i

j] j f̄2
1

4
ḂjkHi

jk50.

~2.13!

Equation~2.13! represents the so-called ‘‘momentum’’ con
straints which, as such, do not contain second-order t
derivatives. The remaining~so-called ‘‘Hamiltonian’’! con-
straint is easily obtained by combining Eqs.~2.8! and~2.10!
and reads

R2
1

4
Tr~x2!1 ḟ̄212gi j ¹ i¹ jf2gi j ] if] jf2

1

12
HiklH

ikl

2
1

4
gikgjl Ḃi j Ḃkl50. ~2.14!

Both ~2.13! and~2.14! need only be imposed at a given tim
the evolution equations then ensure their validity at all tim

Equation ~2.8! is independent of spatial gradients an
gives the important general result

f̈̄>0.

Following @7#, our approach will consist in first solving Eqs
~2.8!–~2.12! neglecting spatial derivatives. As a result, t
integration ‘‘constants’’ in the time-dependent solutions a
actually functions of the spatial coordinates. The ‘‘mome
tum’’ constraints~2.13! imply d relations among those arb
trary functions, reducing their actual number to the phy
cally correct value. The ‘‘momentum’’ constraints a
notoriously difficult to solve: in this paper, we will just as
sume that they are somehow implemented. In the Appen
we will discuss their explicit form in the caseBmn50 and
D53, where solutions can be formally given in terms
quadratures after a convenient choice of the spatial coo
nates has been made.

In the following two subsections we proceed to fin
quasihomogeneous solutions, by neglecting gradients in
equations. We first discuss the caseBmn50, recovering, in
D54, the results of@7#, and then consider the general cas

B. Quasihomogeneous solutions withBµn50

Neglecting spatial gradients and comparing Eq.~2.8! with
Eq. ~2.14! we obtain
e
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57 2545CLASSICAL INHOMOGENEITIES IN STRING COSMOLOGY
f̄~ t,xW !5f̄0~xW !2 logS 12
t

t0
D , ~2.15!

while Eq. ~2.9! gives

ẋ i
k2x i

kḟ̄50. ~2.16!

Hence the solution forgi j reads

gi j ~ t,xW !5(
a

ei
a~xW !ej

a~xW !S 12
t

t0
D 2aa~xW !

, (
a

aa
2~xW !51,

~2.17!

where ei
a are arbitrary ‘‘dreibein’’ matrices and the con

straint onaa implements Eq.~2.14!. For the dilatonf we get

f~ t,xW !5f0~xW !2g~xW ! logS 12
t

t0
D , g~xW !512(

a
aa~xW !.

~2.18!

The solutions forgi j andf are the most general ones; inde
they depend ond(d21) arbitrary functions of space~after
imposing the ‘‘momentum’’ constraints and after gaug
fixing the spatial coordinates!. In d53 these solutions repro
duce those found in@7# by transforming to the string fram
the solutions found in the Einstein frame.

Using ] i ḟ̄50 the ‘‘momentum’’ constraints, Eq.~2.13!,
can be written in the form

]k~x i
ke2f̄!2

1

2
e2f̄ Tr@~G21] iG!~G21Ġ!#50.

~2.19!

Introducing the solutions~2.15! and ~2.17! in Eq. ~2.19! we
find

(
a

]k~e2f̄ea
kei

aaa!2e2f̄(
a

aa~] iek
a!ea

k50, ~2.20!

where we recall that it is sufficient to impose such co
straints at any given time.

We are now able to discuss whether the asymptotic s
tions show some remnant of T-duality, which, in the ca
Bmn50, reduces to scale-factor-duality~SFD! and to itsZ2

d

generalization. It is quite obvious from the form of the so
tion that the transformation

aa→2aa , ei
a→ei

a , f̄0~xW !→f̄0~xW ! ~2.21!

generates, from any given solution, a dual one. It is l
obvious to see how a more generalZ2

d transformation~i.e.
-

-

u-
e

-

s

aa→2aa for somea! can be implemented, since the ‘‘mo
mentum’’ constraint changes in a complicated way. Nev
theless, the case ofd52 discussed in the Appendix sugges
that even the fullZ2

d duality group can be represented in th
asymptotic solutions. Understanding how that works in de
is beyond the scope of this paper. Such an understan
could shed new light on some still outstanding problems@15#
connected with the ‘‘non-Abelian’’ generalization of T
duality @16#.

C. Quasihomogeneous solutions in the presence ofBµn

In the homogeneous case it is possible@3# to recast the
equations of motion in a form that is manifestly covaria
under the globalO(d,d) group. This certainly suggests tha
some trace of this symmetry should also be present asy
totically in the inhomogeneous case.

We first write down the equations of motion in the form

f̈̄52
1

4
Tr~G21ḂG21Ḃ!1

1

4
Tr~G21ĠG21Ġ!,

~2.22!

ḟ̄21
1

4
Tr~G21ḂG21Ḃ!2

1

4
Tr~G21ĠG21Ġ!

522¹2f1~¹f!22R1
1

12
HiklH

ikl , ~2.23!

@ḂG21Ḃ1 ḟ̄Ġ2G]0~G21Ġ!# i j

52Ri j 12¹ i¹ jf2
1

2
HiklH j

kl , ~2.24!

@G21ḟ̄Ḃ2G21B̈1G21ĠG21Ḃ1G21ḂG21Ġ# j
i

52ef̄] l~e2f̄Hlik !gk j , ~2.25!

whereG[gi j and B[Bi j are matrix representations of th
d3d spatial part of the metric and of the antisymmetric te
sor. We then introduce the usual 2d32d matrices

M5S G21, 2G21B

BG21, G2BG21BD , h5S 0 1

1 0D , ~2.26!

define

U[gingjk] l~e2f̄Hlnk!, ~2.27!

V[2e2f̄S 2Ri j 12¹ i¹ jf2
1

2
HiklH j

klD , ~2.28!

and a new 2d32d matrix
M̃5S 2G21VG21, G21VG21B2G21U

UG212BG21VG21, V2UG21B1BG21VG21B2BG21U D . ~2.29!
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The equations of motion,~2.22!–~2.25!, then become

] t@e2f̄~MhṀ !#5MhM̃ , ~2.30!

f̈̄1
1

8
Tr~ṀhṀh!50, ~2.31!

ḟ̄21
1

8
Tr~ṀhṀh!52R22¹ i¹

if1gi j ] if] jf

1
1

12
HiklH

ikl . ~2.32!

If we neglect gradients we obtain

e2f̄~MhṀ !5C~xW !, ~2.33!

CT~xW !52C~xW !, MhC~xW !52C~xW !hM , ~2.34!

f̈̄5 ḟ̄2. ~2.35!

Defining the ‘‘dilaton time’’ t

t5E
0

t

ef̄dt852t0ef̄0 logS 12
t

t0
D , ~2.36!

the general solution of the equations of motion is

M ~ t,xW !5exp@2C~xW !ht#M0~xW !, ~2.37!

f̄~ t,xW !5f̄0~xW !2 logS 12
t

t0
D , ~2.38!

with

Tr~Ch!258e22f̄0/t0
2. ~2.39!

These solutions represent an obvious generalization of
homogeneous Bianchi type-I solutions given in@3#. Disre-
garding gradients, equations of motion and their solutio
given above are manifestly covariant underO(d,d) transfor-
mations. On the contrary, the ‘‘momentum’’ constrain
which become trivial in the absence of gradients, canno
expressed just in terms of the matrixM and thus appear to
‘‘break’’ T-duality. More explicitly, they read

]k~x i
ke2f̄!12e2f̄] i ḟ̄2

1

2
e2f̄ Tr@~G21] iG!~G21Ġ!#

2
1

2
ḂjkHi

jke2f̄50, ~2.40!

i.e. in terms ofM

]k~x i
ke2f̄!12e2f̄] i ḟ̄1

1

4
e2f̄ Tr@hṀh] iM #

2e2f̄gjl gnk~] lBin!Ḃk j50. ~2.41!

Using Eq.~2.11! we get the final result
he

s

,
e

]k$e
2f̄@~G21Ġ! i

k2~G21ḂG21B! i
k#%

1
1

4
e2f̄ Tr@hṀh] iM #12e2f̄] i ḟ̄50. ~2.42!

In both Eq.~2.11! and Eq.~2.42! spatial derivatives of uppe
entries of the matrixe2f̄MhṀ are present. They point to
some remnants ofO(d,d) symmetry also in the inhomoge
neous case.

Hopefully, it is always possible to choose freely the m
trix C, provided it satisfies~2.34!, ~2.39!, and then solve the
momentum constraints with respect toM0(xW ). The example
of D53 given in the Appendix supports this conjecture.
this case the action ofO(d,d) on the ~moduli!-space of
asymptotic solutions is in principle well defined even thou
it is difficult, in practice, to give it in an explicit form.

III. SOLUTIONS WITH A QUASIHOMOGENEOUS AXION

In this section we limit our attention to the case in whi
all fields are independent ofn5D24 internal compact co-
ordinates. In this case the components of the antisymme
tensorHmnr with m,n,r50,1,2,3 can be written in terms o
the pseudoscalar axionA as

Hmnr[Emnrsew]sA, ~3.1!

where Emnrs is the covariant, fully antisymmetric Levi
Civita tensor, satisfyingDaEmnrs50. We can then discuss
as an alternative to what we considered in the previous
tion, the case of a quasihomogeneous axion field. Becaus
the duality relation betweenA and Bmn , a quasihomoge-
neous axion doesnot correspond to a quasihomogeneo
B-field. We shall carry out the analysis first in the strin
frame and then, in order to expose better S-duality-rela
features, in the Einstein frame.

A. String-frame description

We consider the possibility of a varying size~in ordinary
space-time! of the internal space by introducing a sing
modulus fieldb. The reduced action following from Eq
~2.1! becomes

Seff
S 5

1

2ls
2 E d4xA2ge2wFR1gmn]mw]nw

2
1

2
e2wgmn]mA]nA2ngmn]mb]nb G , ~3.2!

where w stands for the effective four-dimensional dilato
field

w5f2nb.

The equations of motion become

R12gmnDmDnw2gmn]mw]nw1
1

2
e2wgmn]mA]nA

2ngmn]mb]nb50, ~3.3!
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Rmn1DmDnw2
1

2
e2w]mA]nA1

1

2
gmne2wgrs]rA]sA

2n]mb]nb50, ~3.4!

]m~A2gewgmn]nA!50, ~3.5!

]m~A2ge2wgmn]nb!50. ~3.6!

Usingx i j 5]0gi j , we can rewrite these equations in the sy
chronous gauge in the form

2ẅ1
1

4
Tr~x2!1

1

2
ẋ1

1

2
gi j e2w] iA] jA1nḃ250,

~3.7!

Ri j 1
1

2
ẋ i j 1

1

4
~xx i j 22x i

kxk j!1¹ i¹ jw2
1

2
x i j ẇ

2
1

2
e2w] iA] jA2

1

2
e2wgi j Ȧ

21
1

2
gi j g

kl]kA] lA

2n] ib] jb50, ~3.8!

R1
1

4
x21

1

4
Tr~x2!1ẇ222ẅ2xẇ1ẋ12gi j ¹ i¹ jw

2gi j ] iw] jw2
1

2
e2wȦ21

1

2
e2wgi j ] iA] jA1nḃ2

2ngi j ] ib] jb50, ~3.9!

1

2
~¹ jx i

j2] ix!1] i ẇ2
1

2
x i

j] jw2
1

2
e2wȦ] iA2nḃ] ib50,

~3.10!

Ä1ẇȦ1
1

2
xȦ5gi j ] iw] jA1gi j ¹ i¹ jA, ~3.11!

b̈2ẇḃ1
1

2
xḃ52gi j ] iw] jb1gi j ¹ i¹ jb. ~3.12!

Neglecting gradients, the general solution of these equat
is

gi j ~t,xW !5ew(
a

ei
a~xW !ej

a~xW !exp~2ga~xW !t!, ~3.13!

ew~t,xW !5
C1~xW !

K~xW !
cosh@K~xW !~t2t0!#, ~3.14!

A~t,xW !5A0~xW !6
K~xW !

C1~xW !
tanh@K~xW !~t2t0!#, ~3.15!

ḃ~t,xW !5
C2~xW !ew

A2g
, ~3.16!

K~xW !5A2F S (
a

ga~xW ! D 2

2(
a

ga
2~xW !2nC2

2~xW !G ,
~3.17!
-

ns

wheret is the ‘‘dilaton’’ time

dt

dt
5ew̄, w̄5w2 log~A2g!, ~3.18!

andA0(xW ),C1(xW ), C2(xW ), ga(xW ) andea
i (xW ) are arbitrary con-

stants.
The above solutions, as well as the corresponding one

the Einstein frame presented in the following subsecti
generalize to the quasi-homogeneous case the results of
@8#. For backgrounds with special symmetries similar so
tions have been found in@17#. Since the time dependence
implicit in the above solutions@through Eq.~3.18!#, and their
behavior is similar to the one in the Einstein-frame, we de
the discussion of both to Sec. IV. We only note here that
dilaton field has a singularity at both ends of the time ev
lution, even for a very small axion field. However, befo
jumping to the conclusion that we must face a stron
coupling regime in the far past, we have to see what
actual range of validity of our approximations is. This di
cussion too is postponed to Sec. IV.

In order to expose the existence of an S-duality symme
connecting pairs of different solutions, we first consider t
same equations and solutions in the Einstein frame.

B. Einstein-frame description

The Einstein-frame metric is obtained by the conform
transformation

g̃mn5e2wgmn . ~3.19!

The low-energy effective action with an axion and a modu
field, Eq. ~3.2!, becomes

Seff
E 5E d4xA2 g̃F R̃2

1

2
g̃mn]mw]nw2

1

2
e2w g̃mn]mA]nA

2ngmn]mb]nb G , ~3.20!

with equations of motion

R̃mn2
1

2
g̃mnR̃5

1

2
]mw]nw2

1

4
g̃mn~]w!21

1

2
e2w]mA]nA

2
1

4
g̃mne2w~]A!21n]mb]nb

2n
1

2
g̃mn~]b!2, ~3.21!

]m~A2 g̃ g̃mn]nw!5A2 g̃e2w g̃mn]mA]nA, ~3.22!

]m~A2 g̃e2w g̃mn]nA!50, ~3.23!
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]m~A2 g̃ g̃mn]nb!50. ~3.24!

In the synchronous gaugeg̃00521,g̃0i50 we obtain

2ẇ214nḃ212e2wȦ21Tr~ x̃2!2 x̃2

54R̃22 g̃ i j ] iw] jw24n g̃i j ] ib] jb22 g̃ i j e2w] iA] jA,

~3.25!

ẅ1
1

2
x̃ ẇ2e2wȦ25 g̃ i j ¹ i¹ jw2e2w g̃ i j ] iA] jA,

~3.26!

~ x̃
•

j
i !1

1

2
x̃ x̃ j

i 522R̃j
i 1 g̃ ik]kw] jw12n g̃ik]kb] jb

1e2w g̃ ik]kA] jA, ~3.27!

x̃ ,i2 x̃ i ; j
j 52ẇ] iw22nḃ] ib2e2wȦ] iA, ~3.28!

Ä12ẇȦ1
1

2
x̃ Ȧ52 g̃ i j ] iw] jA1 g̃ i j ¹ i¹ jA, ~3.29!

b̈1
1

2
x̃ ḃ5 g̃ i j ¹ i¹ jb. ~3.30!

Disregarding spatial gradients, Eq.~3.27! can easily be
solved, and we get

x̃5
2

t̃ 2 t̃ 0

, ~3.31!

while the general solution can be written in the form

g̃ i j ~ t̃ ,xW !5(
a

ẽi
a~xW ! ẽ j

a~xW !S 12
t̃

t̃ 0

D 2la~xW !

, (
a

la~xW !51,

~3.32!

ew~ t̃ ,xW !5
eF0~xW !

2
FF~xW !S 12

t̃

t̃ 0

D q̃~xW !

1
1

F~xW !
S 12

t̃

t̃ 0

D 2 q̃~xW !G , ~3.33!

A~ t̃ ,xW !5A0~xW !62e2F0~xW !

3

F~xW !S 12
t̃

t̃ 0
D q̃~xW !

FF~xW !S 12
t̃

t̃ 0
D q̃~xW !

1
1

F~xW !
S 12

t̃

t̃ 0
D 2 q̃~xW !G ,

~3.34!

b~ t̃ ,xW !5b0~xW !2D~xW !logS 12
t̃

t̃ 0
D , ~3.35!
where F0(xW ),F(xW ),D(xW ),A0(xW ) are arbitrary functions of
space and

q̃~xW !5&A12(
a

la
2~xW !2nD2~xW !. ~3.36!

Some remarks on these solutions are in order. First of all,
still have to impose the ‘‘momentum constraints’’~3.28! ~at
any given time! on these solutions. The axion field, in th
limit t̃→ t̃ 0 , goes to the arbitrary functionA0(xW ). Since the
dilaton field is increasing towards the singularity, terms li
e2w¹ iA¹ iA in the equations of motion may become impo
tant and can no longer be disregarded. However, as we
see more accurately in Sec. IV, we are not allowed to
trapolate the solutions~3.32!–~3.34! into the string phase
when the coupling constant and/or the curvature~in string
units! are of order 1. Imposing these limitations, it is possib
to estimate the following behavior for the terms involvin
the axion field

e2w¹ iA¹ iA

ẇ2
&OS kph

2

Ms
2D , ~3.37!

where Ms is the string mass scale andkph is the proper
~physical! wavenumber.

Therefore, if we limit ourselves to energies much smal
than the string scale, it seems to be well justified to neg
spatial gradients in comparison with time derivatives.

Another important feature of the solution~3.33! is that it
hits a strong coupling singularity in the far past, as in t
string frame. As already mentioned, the discussion of t
point is postponed to Sec. IV.

C. S-duality

Let us introduce the matricesNPSL(2,R):

N5S ew, ewA

ewA, e2w1ewA2D , ~3.38!

andJ:

J5S 0 1

21 0D . ~3.39!

Neglecting the modulus field, the effective action~3.20! be-
comes

Seff
E 5E d4xA2 g̃F R̃2

1

4
g̃mnTr~J]mNJ]nN!G ;

~3.40!

in particular, the ‘‘momentum’’ constraint, Eq.~3.28!, trans-
forms to

x̃ ,i2 x̃ i ; j
j 52

1

2
Tr~J]0NJ] iN!. ~3.41!

We note that the ‘‘momentum’’ constraint is manifestly in
variant under a generic transformationQ of the group
SL(2,R)
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Q5S d g

b a
D , ~3.42!

(da2bg51) acting on the backgrounds as follows:

N→QTNQ, ~3.43!

as is easily checked using the propertyQTJQ5J. The S-
duality transformation~3.43! can be written equivalently as

S5~A1 ie2w!→S85
aS1b

gS1d
. ~3.44!

In the same way as in@13# and @14#, we can relate, with an
S-duality transformation ofew and A, the dilaton-vacuum
en
a
t
n

p
a
ei
in
ry
to
pe

si
n
s
s

,

-

solutions with a constant axion to particular axion-dilat
solutions with a time-dependent axion. Indeed, applying
S-duality transformation to the dilaton-vacuum solutio
with zero axion

g̃ i j ~ t̃ ,xW !5(
a

ẽi
a~xW ! ẽ j

a~xW !S 12
t̃

t̃ 0

D 2la~xW !

, (
a

la~xW !51,

~3.45!

ew~ t̃ ,xW !5ew0~xW !S 12
t̃

t̃ 0

D 2 q̃~xW !

, A~ t̃ ,xW !50, ~3.46!

we get the particular axion-dilaton solutions, with time d
pendent axion
ew8~ t̃ ,xW !5g2e2w0~xW !S 12
t̃

t̃ 0

D q̃~xW !

1d2ew0~xW !S 12
t̃

t̃ 0

D 2 q̃~xW !

, ~3.47!

A8~ t̃ ,xW !5
b

d
1

g

d

e2w0~xW !S 12
t̃

t̃ 0
D q̃~xW !

Fg2e2w0~xW !S 12
t̃

t̃ 0
D q̃~xW !

1d2ew0~xW !S 12
t̃

t̃ 0
D 2 q̃~xW !G . ~3.48!
as
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n
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Unlike in the general case, in these particular S-duality g
erated solutions the axion field approaches a constant v
as one goes towards the singularity and we do not face
problem of a possible failure of the small-gradient expa
sion. Also note that we can obtain Eqs.~3.47!, ~3.48! directly
from the general solutions Eqs.~3.33!, ~3.34! with the choice

eF0~xW !52gd, F~xW !5
g

d
e2w0~xW !, A0~xW !5

b

d
.

~3.49!

IV. LIMITS OF VALIDITY OF THE APPROACH

The classical equations of motion considered in this pa
and their solution in the quasi-homogeneous case are v
only in a rather restricted domain for the fields and th
derivatives. Generally, there are two restrictions concern
the use of the effective action coming from string theo
The first one is that the coupling constant should not be
large since otherwise the higher loop corrections and non
turbative effects~such as the dilaton potential! start to be
important. The second limitation concerns the energy den
~or if we prefer the curvature! which should be smaller tha
the string scale. At higher energies and/or curvatures mas
modes of the string are excited and the whole picture ba
on the massless background fields breaks down.

To these two very general restrictions we have to add
our context, that of neglecting spatial derivatives. We have
check, a posteriori, the range of validity of this third ap
-
lue
he
-

er
lid
r
g
.
o
r-

ty

ive
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in
to

proximation. The situation can be described qualitatively
follows.

As one moves forward in time from fairly homogeneo
initial conditions towards the singularity, the approximatio
of neglecting spatial gradients becomes better and better.
should thus trust our asymptotic solutions near the singu
ity as long as the other two general limitations~on coupling
and curvature! are fulfilled. Unless we want to make assum
tions about what happens at strong coupling and/or cu
ture, these considerations limit the duration of the PBB
through an upper bound on itsend. However, in order to
make a reliable estimate of the total duration and of the nu
ber of e-folds, we also have to estimate the time, in the p
at which the small-gradient approximation breaks down,
we have to find the relevant constraint on thebeginningof
PBB inflation. These questions will be studied in Sec. IV

The other important issue concerns the very early-ti
behavior of our solutions, much before PBB inflation start
Here we enter a regime in which spatial and time derivati
are of comparable importance. Singularities or other featu
appearing in our asymptotic solutions in these regions can
be trusteda priori. New techniques have to be used in ord
to find out what the early-time behavior of our solutio
actually is. A first attempt to answer this question was ma
in Ref. @7#. In Sec. IV B we will present some more resul
on this topic and even motivate a conjecture on the natur
a generic early-time ‘‘attractor’’~going backwards in time!
in the case of PBB solutions with negative spatial curvatu
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A. Limits on perturbative PBB inflation

In order to estimate the duration and number of e-folds
the PBB phase, we will compute the next-to-leading-or
corrections to our asymptotic formulas in the string fram
and thus estimate the time at which the small-gradient
proximation breaks down. This instant will be taken as
beginning of the PBB phase. Defining the variable

W~ t,xW !5e2 w̄ ~ t,xW !, ~4.1!

Eqs.~3.7!–~3.9! with A505b can be rewritten as

Ẅ~ t,xW !5W~ t,xW !G~ t,xW !, ~4.2!

~x i
jW~ t,xW !! .522W~ t,xW !P i

j~ t,xW !, ~4.3!

S Ẇ~ t,xW !

W~ t,xW !
D 2

5
1

4
Tr~x2!1G~ t,xW !, ~4.4!

where

G~ t,xW !52R1~¹w!222gi j ¹ i¹ jw, ~4.5!

P i
j~ t,xW !5Ri

j1¹ i¹
jw. ~4.6!

Since in sufficiently isotropic regions the three-curvatureR
goes like (12t/t0)22Maxaa towards the singularity, we ar
allowed to consider, in those regions, an expansion in
2t/t0) for the solutions of the above equations. We obta

W~ t,xW !5W0~xW !F S 12
t

t0
D1E

t0

t

dt8E
t0

t8
dt9S 12

t9

t0
DG~ t9,xW !G ,

~4.7!

x i
j~ t,xW !5

2W0~xW !

W~ t,xW !
F2

1

t0
(

a
aaei

aea
j

1E
t0

t

dt8S 12
t8

t0
DP i

j~ t8xW !G , ~4.8!

where all the terms in the integrals must be evaluated on
leading solutions~2.17!, ~2.18!. It is easy to conclude that th
small-gradients approximation breaks down at a timetb such
that

U12
tb

t0
U;S L

t0
D 1/~12Maxaa!

, ~4.9!

whereL is the typical wavelength associated with the inh
mogeneities of the metric. We observe that Eq.~4.9! can also
be written in the form

R~ tb!

x2~ tb!
;O~1!, ~4.10!

and then choosing the initial timet i.tb such that

R~ t i !

x2~ t i !
&O~1!, ~4.11!
f
r

p-
e

1

he

-

we obtain a very natural condition to impose at the beginn
of the PBB inflationary phase.

We are now able to estimate the number of e-folds av
able in the PBB cosmological model with axion field, d
scribed in Sec. III B. The amount of inflation is common
expressed in terms of the ratio of the comoving Hub
lengths at the beginning and at the end of the inflation
phase

Z5
a~ t f !H~ t f !

a~ t i !H~ t i !
. ~4.12!

Since we have explicit solutions only in the Einstein fram
we carry out the analysis using Eqs.~3.32! and ~3.33!, with
b50, and then apply the transformation~3.19! in order to
get Z in the string frame. We obtain

Z5
ȧ̃~ t̃ f !1ẇ~ t̃ f !/2

ȧ̃~ t̃ i !1ẇ~ t̃ i !/2

, ~4.13!

where ã5(Ag̃)1/3. We suppose that inflation starts at th
time t̃ i at which the small-gradient expansion is still vali
Eq. ~4.11!, and the dilaton field is near its minimum, Eq
~3.33!, with ẇ i.0, in order to have an expansion phase
the string frame. We then get

S 12
t ĩ

t 0̃

D &F21/q̃. ~4.14!

Let us address the question of setting a bound on the en
the perturbative PBB phase. Dilaton-driven inflation en
when either the string coupling constant is of order 1 or
~four-dimensional! curvature reaches the string scalels

22 .
Imposing thatew f&1, we obtain@neglecting numerical fac-
tors of O(1)#

Z& expS 2
2

3 q̃
F0D . ~4.15!

FromRf&ls
22 we get, instead,

Z&~ls
2Ri !

22/3~22 q̃ !. ~4.16!

Note that in Eqs.~4.15! and ~4.16! the dependence on th
arbitrary constantF drops out.

Combining the various results of this section and expre
ing q̃ in terms of theaa , we finally estimate the upper limi
of the number of e-folds during the PBB era as

Z&MinH expF2F0

~2111/3(aaa!

~211(aaa! G ,~ls
2Ri !

~(aaa23!/6J .

~4.17!

This result generalizes to the inhomogeneous case that o@9#
and shows that, in order to solve the standard-cosmol
problems through dilaton-driven PBB inflation, the begi
ning of the PBB era must indeed lie at very tiny coupling a
curvature~in string units!, a point already made in@7#.
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We may ask at this point whether such initial data rep
sent an unreasonable amount of fine-tuning or, in any cas
larger amount than what is needed in usual inflation. S
questions are hard to formulate in precise physical ter
Rather than answering semi-philosophical questions,
wish to underline a crucial difference between our fram
work and the conventional one.

In conventional inflation the pre-inflationary era is su
posed to lie in the high-curvature quantum-gravity regi
and one is thus facing the problem of whether and how s
a phase can prepare an ‘‘initial’’ state that is fit to inflate~see
@18,19# for a recent discussion!. By contrast, our pre-
inflationary Universe is very classical and described by
tree-level low-energy string effective action. As a cons
quence classical solutions must contain~at least! two free
parameters~moduli! corresponding to as many transform
tions, which alter the action just by a multiplicative consta
These are:

a constantshift of the dilaton,
a constantrescalingof the space-time coordinates.

The two moduli can be given the meaning of the value of
string coupling and of the curvature~in string units! at the
onset of the inflationary epoch~here the transition from
quasi-Milne to quasi-pre-big bang behavior!. But these are
exactly the two parameters that have to be very smal
order to ensure a long PBB era.

Thus the fine-tuning of string cosmology alluded to in@9#
just consists in choosing these two moduli in a conveni
region. Such a region has finite-infinite extension, depend
on the measure one adopts, but its boundaries are cert
only one-sided for both moduli.

Another point to be recalled is that the scenario of@9# is
exactly homogeneous and thus the same alleged fine-tu
has to happen everywhere in space. In our inhomogene
Universe, like in the chaotic scenario@20#, it is sufficient that
a convenient patch develops initial conditions in the rig
range of parameters in order that it undergoes sufficient
flation. Other regions may not be as ‘‘lucky’’ and will no
experience a long inflationary era. Unfortunately, we m
not live long enough to check whether this was the ca
since those regions will end up being much beyond
present horizon.

B. Early- and late-time ‘‘attractors’’ of PBB cosmologies

As explained at the end of the previous section, if we lo
at earlier and earlier times, the approximation of neglect
spatial gradients, rather than the effective action itself,
pears to become inadequate. While it looks impossible
obtain analytic solutions in this regime, one can go a lo
way towards understanding qualitatively how PBB-type
lutions behave towards very early times. For simplicity w
shall restrict most of our analysis to the case ofD54 and
vanishing antisymmetric-tensor axion.

1. Early-time fixed points

Generalizing the results of@7# we shall now claim that, a
least inD54, the only non-singular early-time fixed point
the trivial Minkowski vacuum with a constant dilaton. Th
-
, a
h
s.
e
-

e
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argument takes its simplest form in the E-frame where
refer to the case discussed in Sec. III B. A linear combinat
of Eqs.~3.25! to ~3.27! gives

ẋ̃52
1

2
@Tr~ x̃2!12ẇ214nḃ212e2wȦ2#. ~4.18!

At a regular fixed point the left-hand side of~4.18! vanishes
and thus, since there cannot be cancellations, each term
the right-hand side has to vanish as well.

At this point we use Eq.~3.29! to argue that, modulo
surface terms,] iA50, and Eq.~3.30! to conclude that also
] ib50. Equation~3.27! will finally give R̃i

j50, which, in
three dimensions, implies flat space-time.

We conclude that initial data that do not come from
singularity in the past must originate from the trivial vacuu
of string theory. The next question is whether the set of s
initial data has finite measure.

2. Heuristic criteria for a trivial early-time attractor

Consider generic initial data subject to the constraint~sat-
isfied, in particular, forR̃,0!

DE[22R̃1¹ iw¹ iw12n¹ ib¹ ib1e2w¹ iA¹ iA.0.
~4.19!

The obvious inequality@recall Tr(x̃2)/ x̃2>1/3#:

~ x̃
• 21!5

1

2x̃2
@Tr~ x̃2!12ẇ214nḃ212e2wȦ2#>

1

6
,

~4.20!

holds at all times, while the inequality

~ x̃
• 21!5

1

2
2

DE

x̃2
<

1

2
~4.21!

holds at least initially. The ratioDE / x̃2 tends to decrease a
we move forward in time and to increase as we move ba
wards. It thus looks reasonable to assume that, at least
sufficiently isotropic situation,DE / x̃2 does not change sign
as we go towards the far past. At the same time, the gen
constraintDE / x̃2<1/3 is always valid@see Eq.~3.25!#.

Under these assumptions we get

x̃ i
j;

ci
j~ t̃ ,xW !

t̃
, 2<ci

i<6, 4<Tr~c2!<36, t̃→2`.

~4.22!

We are now able to estimate the asymptotic behavior of
metric by first writing the formal solution

g̃ i j ~ t̃ ,xW !5FT expS E
0

t̃
d t̃ 8 x̃ ~ t̃ 8xW ! D G

i

k

g̃k j~0,xW !

~4.23!

and by estimating the time-ordered integrals in~4.23! under
the restrictions given in~4.22!. This gives

g̃ i j ; ẽi
a~xW ! ẽ j

a~xW !~2 t̃ ! c̄ a~xW !, ~4.24!
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where c̄ a(xW ) is defined by

c̄ i
j~xW !5 ẽi

a~xW ! ẽa
j ~xW ! c̄ a~xW !,

c̄ i
j~xW !5 lim

t̃→2`

1

t̃
E

0

t̃
d t̃ 8 t̃ 8 x̃ i

j~ t̃ 8,xW !. ~4.25!

Computing the asymptotic behavior ofR̃ from ~4.24! we find
a contradiction, unlessc̄ a52 for all a. In all other generic
cases, i.e. barring special cancellations, it is impossible
keep2R̃/ x̃2 ~and a fortiori the ratioDE / x̃2! bounded from
above ast̃→2`. The only consistent solution is thus

x̃ i
j5

2d i
j

t̃
, ẇ5ḃ5Ȧ50, ~4.26!

which is the Milne Universe@21#. Using previously given
arguments, this leads straight into the trivial vacuum
t̃→2`.

For the homogeneous, constant-curvature cosmolo
considered in@8,9#, the fixed point just discussed is actual
reached in the case of negative curvature~i.e. of positive
DE!, while, for positive curvature, the early-time ‘‘attractor
is singular. We have checked that, instead, the Kantow
Sachs cosmologies discussed in Ref.@17#, being very par-
ticular and highly anisotropic, are able to evade our gen
result. The argument given above leads us to conjecture
the Milne Universe is the Universal regular ‘‘attractor’’ fo
sufficiently isotropic generic initial data havingDE.0 ev-
erywhere. This conjecture will be further supported by p
forming a perturbative expansion of the general solut
around Milne space-time to show that it is a stable early-ti
fixed point. We will also use the expansion near the sin
larity given in Sec. IV A in order to understand the flow
the solutions near the singularity.

3. Perturbative expansion around the early-time fixed point

In this subsection we prove that the Milne metric with
constant dilaton is indeed an early-time ‘‘attractor,’’ i.e. th
it is stable against small perturbations as we go backward
time.

We recall that Milne’s Universe@21# is actually isomor-
phic to a wedge of flat Minkowski space-time whe
constant-Milne-time hypersurfaces are constant-3-curva
hyperboloids. In formulas the background

ds252d t̃ 21 t̃ 2S dr2

11r 2 1r 2dV2D , ~4.27!

w5const, x̃ j
i 5

2d j
i

t̃
, R̃j

i 52
2d j

i

t̃ 2
, ~4.28!

can be brought to Minkowski’s form by the transformatio

2 t̃ 5At22r2, r 5
r

At22r2
, t<0, r2<t2,

~4.29!
to
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re

wherer and t are the Minkowskian coordinates. Given th
basic triviality of Milne’s Universe it is not surprising tha
the exact field equation forw in Einstein’s frame, Eq.~3.26!,
can be completely solved in such a background. The re
~see for instance@22#! reads

w5w01
T0

t̃
(
l ,m

Ylm~V!Clm~r , t̃ !,

Clm~r , t̃ !5E
2`

`

dpbplm exp@2 ip log~2 t̃ /T0!#Ppl~r !,

~4.30!

Ppl5
Pip21/2

21/22 l~A11r 2!

Ar
, ~4.31!

whereYlm(V) andPm
n are the usual spherical harmonics a

associated Legendre functions respectively. The two cla
cal moduli discussed earlier show up in the general soluti
as w0 , an arbitrary constant, andT0 , an arbitrary overall
normalization parameter with the dimensions of time~recall
that w and r are dimensionless!. In particular the ‘‘s-wave’’
( l 50) contribution takes the form~with a slightly redefined
coefficient b̄ p00!:

w5w01
T0

r ~2 t̃ !
E

2`

`

dp
b̄ p00

ip
$e2 ip@ log~2 t̃ ~A11r 21r !/T0!#

2e2 ip@ log~2 t̃ ~A11r 22r !/T0!#%. ~4.32!

The qualitative study of the general solution is greatly help
by recalling the large and smallr limit of the functionPpl
appearing in~4.30!, i.e.

Ppl~r !;r l r→0,

Ppl~r !;
1

r
ReS eip log 2rG~ ip !

G~11 l 1 ip ! D r→`. ~4.33!

Clearly, w→w0 as t̃ 52`, and the background goes, a
expected, to the trivial vacuum. Given a properly normaliz
distribution of the Fourier coefficientsb̄ p00, (ẇ/x)2

&(T0 / t̃ )2 remains very small fort̃ !2T0 . The same is
true for the spatial derivatives ofw and it is also expected to
be the case for the fluctuations of the metric itself, since th
are similarly behaved@22#. This confirms that Milne’s Uni-
verse is an increasingly accurate solution to Eq.~3.25! as
t̃→2`.

However, the back-reaction from the fluctuations of t
dilaton and the metric becomesO(1) at t̃ ;2T0 and r &1.
As a result, we expect the Milne background to turn quick
into a pre-big bang behavior at least in regions where
spatial curvature is still negative. Fort̃ *2T0 the approxi-
mate solutions will be those given in Sec. III up to a rede
nition of the time at which the singularity occurs. Typicall
a whole region of proper sizeO(T0) ~the Hubble horizon at
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t̃ 52T0! is expected to undergo inflationary behavior. W
plan to investigate this phenomenon numerically in a fut
publication.

Let us now study the perturbative expansion arou
Milne’s Universe. The perturbed Eqs.~3.25!–~3.27! read

~d
•

w!21
2

t̃
dx̃1~d

•

x̃ !1
1

2
dx̃ i

j dx̃ j
i 50, ~4.34!

~d
•

x̃ j
i !1

3

t̃
dx̃ j

i 1
1

t̃
d j

i dx̃12dR̃j
i 1 g̃ ik]kdw] jdw50,

~4.35!

~ d̈w!1
1

2
dx̃~ ḋw!1

3

t̃
~d
•

w!2
1

t̃ 2
d~Dw!50, ~4.36!

where D denotes the three-dimensional Laplacian built
from the three-dimensional metric appearing in~4.27!. We
will see below that it is consistent to disregard the seco
term in Eq. ~4.36! and the term that comes out from th
variation of the Laplacian. Therefore Eq.~4.36! is decoupled
from the rest and can be easily solved.

For simplicity, we will restrict ourselves to the ‘‘s-wave
case and we setT051. Using Eq.~4.32! we get

dw5
1

r ~2 t̃ !
@G„2 t̃ ~r 1A11r 2!…

2G„2 t̃ ~2r 1A11r 2!…#, ~4.37!

whereG is a priori an arbitrary function. However, for a
sufficiently well behaved distributions of Fourier coefficien
b̄ p00, the functionG is bounded by a constant at larget ~and
fixed r ! and we can write, up to oscillatory factors,

dw5
F~r !

~2 t̃ !s
, s.1, t̃→2`. ~4.38!

Equations~4.34! and ~4.35! are solved by the ansatz

dx̃ j
i 5
Aj

i

t̃ 2
1

Bj
i

~2 t̃ !112s
1
Cj

i

t̃ 3
1..., ~4.39!

and using Eq.~4.36! we get

Tr B5
s2F2

2s21
, Tr C5

1

2
Tr~A2!. ~4.40!

We now come to a qualitative analysis of the phase spac
the trajectories in the range of validity of our solutions, eith
near the early-time ‘‘attractor’’ or towards the singularity.

a. Behavior near the early-time ‘‘attractor’’.In the Ein-
stein frame the ‘‘Hamiltonian’’ constraint reads

S11S21S351, ~4.41!

where
e

d

d

of
r

S1[
3ẇ2

x̃2
, S2[

3 Tr~ x̃T
2!

2x̃2
, S3[3F1

2
2~ x̃

• 21!G5
3DE

x2 ,

~4.42!

and for any matrix we have defined

~ST! j
i 5Sj

i 2
1

3
d j

i Tr S. ~4.43!

This allows us to draw a ‘‘flow diagram’’ in the plane show
in Fig. 1, where to simplify the presentation we constrains
to be in the region 1,s,3/2. The result for larger values o
s is similar. The individual contributions from the perturbe
solutions, Eqs.~4.38! and~4.39!, are~we neglect terms with
power 1/t̃ higher than 2!:

S1.
s2F2

12 t̃ 2s
, ~4.44!

S2.
Tr~AT

2!

24 t̃ 2
, ~4.45!

S3.12
s2F2

12 t̃ 2s
2

Tr~AT
2!

24 t̃ 2
. ~4.46!

As can be seen from this result, there are two different
haviors of these contributions whent̃→2`: for s51, S1 ,
S2 and (12S3) are of the same order, while for 1,s,3/2,
S2 and (12S3) are dominant. In Fig. 1 the first case,s
51, is represented by trajectories that can have any a
~less thanp/2! with respect to theS3 axis, in the second cas
the trajectories are tangent to the straight lineẇ50.

For s.3/2 the behavior of the contributions is the sam
as in the 1,s,3/2 region, but there are higher-order term
to all of them.

b. Approaching the singularity.In Sec. IV A we have de-
rived in the string frame the next-to-leading solutions in t

FIG. 1. Approximate flow diagram from the early-time attract
to the singularity.
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small-gradient expansion. These solutions must satisfy
‘‘Hamiltonian’’ constraint ~2.14!, which can be put in the
form

Y11Y21Y351, ~4.47!

where

Y1[
x2

12ẇ̄2
, Y2[

Tr~xT
2!

4ẇ̄2
, Y3[

G

ẇ̄2
. ~4.48!

To evaluate the slope of the trajectories in the ‘‘flow d
gram,’’ we will use Eqs.~4.7! and ~4.8!. Hence we get

Y1.
1

3 S (
a

aaD 2

1
2

3
I, ~4.49!

Y2.12
1

3 S (
a

aaD 2

2
2

3
I2G~ t02t !2, ~4.50!

Y3.G~ t02t !2, ~4.51!

where

I~ t,xW !5E
t0

t

dt8~ t02t8!H F S (
a

aaD 2

2(
a

aaG~2R!

1F S (
a

aaD 2

1(
a

aaG~¹w!2

22S (
a

aaD 2

gi j ¹ i¹ jwJ . ~4.52!

Using the relations

x̃ j
i 5ew/2~x j

i 2d j
i ẇ !, ~4.53!

R̃5ewFR12gi j ¹ i¹ jw2
1

2
gi j ] iw] jw G , ~4.54!

we can express the Einstein-frame quantitiesS1 , S2 andS3
in terms of the string frame’sY1 , Y2 andY3 . We get, in the
super-inflationary PBB case,

S15
3~11A3Y1!2

~31A3Y1!2
.

3~12(aaa!2

~32(aaa!2

2
12~12(aaa!

~(aaa!~32(aaa!3 I, ~4.55!

S25
6Y2

~31A3Y1!2
.

2~32~(aaa!2!

~32(aaa!2

1
12~12(aaa!

~(aaa!~32(aaa!3 I2
6G~ t02t !2

~32(aaa!2 , ~4.56!

S35
6Y3

~31A3Y1!2
.

6G~ t02t !2

~32(aaa!2 . ~4.57!
e Note that in a superinflationary cosmological mod
((aaa,0) with negative three-curvature, if we are in a su
ficiently isotropic region where(aaa,21 we have globally
I,0 and then the behavior in time is

S1.
3~12(aaa!2

~32(aaa!2 2J2 log2S 12
t

t0
D S 12

t

t0
D 222Maxaa

,

~4.58!

S2.
2~32~(aaa!2!

~32(aaa!2 1~J22Q2!

3 log2S 12
t

t0
D S 12

t

t0
D 222Maxaa

, ~4.59!

S3.Q2 log2S 12
t

t0
D S 12

t

t0
D 222Maxaa

. ~4.60!

Hence, we can conclude thatdS1 , dS2 andS3 are all of
the same order in the limitt→t0 , and the trajectories of the
solutions in the flow diagram~see Fig. 1! can have any slope
relative to theS2 axis, depending on the values ofJ andQ.

V. SUMMARY AND DISCUSSION

We have been able to extend previous work by show
that, even in the presence of an antisymmetric-tensor–a
background, or of internal-dimension moduli, pre-big ba
type inflation emerges naturally in string theory from gene
initial perturbative data. Reasonably smooth initial patch
inflate and keep becoming increasingly homogeneous
~spatially! flat, at least as long as the low-energy tree-le
effective action description is valid.

We were able to estimate the duration of the perturba
pre-big bang phase and to show that it depends on two~ar-
bitrary! classical moduli. A sufficient amount of inflation re
quires these moduli to be both bounded from above, so
thing we do not believe has much to do with the concept
fine-tuning. The question remains open of whether high
order ~a8 or loop! corrections might deform the classic
moduli space and allow a prediction for the duration of p
turbative pre-big bang inflation.

We have also analyzed the behavior of our solutions
wards the far past and argued in favor of the existence
rather large basin of attraction~containing the case of nega
tive curvature and sufficient isotropy! towards a Milne-type
Universe with trivial dilaton, axion and moduli. Sinc
Milne’s Universe is equivalent to~a wedge of! Minkowski
space-time, such a state is nothing but a disguised form
the exact perturbative vacuum of string theory. This res
~which should be established on more rigorous groun!
leads to a striking confirmation of the viability of the bas
pre-big bang postulate, stating that the Universe started
evolution from the trivial vacuum of string theory.

As we have shown in Sec. IV, such a state, being
early-time attractor, actually becomes a repulsor as we m
forward in time, i.e. is classically unstable with respect
small fluctuations of the metric and of the dilaton-axion sy
tem. The generic cosmologies that spring out of the triv
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vacuum consist of a quasi-Milne era, followed by an infl
tionary quasihomogeneous pre-big bang era. The value o
string coupling and of the spatial curvature at the transit
between the two phases are the two above-mentioned cl
cal moduli.

Quite possibly, the most generic kind of string cosmolo
will be quite inhomogeneous in a global sense, since,a pri-
ori, the two moduli may take different values in differe
regions of space. As in chaotic inflation@20#, homogeneity is
a local property valid up to some scale determined by
size of the original patch, which gave rise to our observa
Universe, and by the amount of inflation it suffered.

We finally recall that, once pre-big bang behavior sets
primordial vacuum fluctuations are parametrically amplifie
Equivalently, in a particle-physics language, massless qu
are copiously produced by the time-dependent backgrou
By the time the string coupling has grown to about
present value, these quanta are able to dominate the en
and to lead the Universe straight into the hot big bang
@23,24#.

Many points are still unclear throughout the picture, a
much work is still needed, both on the topics discussed
this paper and on the issue of the transition from the pre
bang to the FRW phase~the exit problem!. However, the
possibility that the hot big bang conditions—which we kno
to have prevailed some 15 billion years ago—simp
emerged from the basic instability of the trivial~i.e. cold,
empty, flat, free! vacuum of string theory appears to be ga
ing further credibility from the results reported here.
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APPENDIX A

We will restrict ourselves to the case without axion a
modulus fields.

Momentum constraints for d52: Einstein frame

In the 211 dimensional case we can choose the spa
coordinates in such a way as to make the ‘‘zweibeins’’ dia
onal. Equations~3.32! and ~3.33! then become

g̃~ t̃ ,x,y!5eb̃ i ~x,y!d i j S 12
t̃

t̃ 0

D 2l i ~x,y!

,

l1~x,y!1l2~x,y!51, ~A1!

w~ t̃ ,x,y!5w0~x,y!2&A12l1
22l2

2 logS 12
t̃

t̃ 0

D ,

~A2!
-
he
n
si-

y

e
le

,
.
ta
s.

rgy
a

d
in
ig

-

-
.

l
C
-

al
-

and for the ‘‘momentum’’ constraint, Eq.~3.27!, we get~re-
definingl[l1 for simplicity!

]xl2~122l!]xb̃25~]xw0!Al2l2, ~A3!

2]yl1~122l!]yb̃15~]yw0!Al2l2. ~A4!

Note that the two equations are decoupled and that they
be solved forb1 and b2 by quadratures oncel andw0 are
given.

Momentum constraints for d52: string frame

We now re-express the results of the previous section
the string frame in order to be able to discuss T-duality. T
solutions~2.17! and~2.18! for the two-metric and the shifted
dilaton are

gi j ~ t,x,y!5e2b i ~x,y!d i j S 12
t

t0
D 2a i ~x,y!

,

a1
2~x,y!1a2

2~x,y!51, ~A5!

w̄~ t,x,y!5 w̄0~x,y!2 logS 12
t

t0
D . ~A6!

In the ‘‘momentum’’ constraints, Eq.~2.20!, the leading
terms ast→t0 automatically cancel and we get:

]x~a1 e2 w̄0!2e2 w̄0~a1]xb11a2]xb2!50, ~A7!

]y~a2e2 w̄0!2e2 w̄0~a1]yb11a2]yb2!50. ~A8!

Introducing the function

w0~x,y!5 w̄0~x,y!1b1~x,y!1b2~x,y! ~A9!

Eqs.~A7! and ~A8! become

]xb25
]xa12a1]xw0

a22a1
, ~A10!

]yb15
]ya22a2]yw0

a12a2
. ~A11!

Hence, also in the string frame, the ‘‘momentum’’ co
straints are solved by quadratures providedw0(x,y) and, say,
a1 are used as inputs. Barring pathologies, we can alw
change the inputa1 by a duality transformation~e.g. a1→
2a1! while keepingw0(x,y) unchanged, and solve again
b1 , b2 , thus reconstructing the neww̄0(x,y). In this way
we will arrive at a rather odd generalization of T-duali
transformations in the asymptotic limit of the quas
homogeneous case. It would be more natural to k
w̄0(x,y) rather thanw0(x,y) unchanged under duality, sinc
this is what happens for the time-dependent parts, but the
is not clear how a solution can be explicitly constructe
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