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Classical inhomogeneities in string cosmology
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We generalize previous work on inhomogeneous pre-big bang cosmology by including the effect of non-
trivial moduli and antisymmetric-tensor—axion fields. The general quasihomogeneous asymptotic solution—as
one approaches the big bang singularity from perturbative initial data—is given and its range of validity is
discussed, allowing us to give a general quantitative estimate of the amount of inflation obtained during the
perturbative pre-big bang era. The question of determining early-time “attractors” for generic pre-big bang
cosmologies is also addressed, and a motivated conjecture is advanced. We also discuss S-duality-related
features of the solutions, and speculate on the way an asymptotic T-duality symmetry may act on moduli space
as one approaches the big baf§0556-282(198)01104-1

PACS numbseps): 11.25-w, 04.50+h, 98.80.Cq

[. INTRODUCTION tions (a hot, dense and highly-curved stateill be the
outcome—rather than the starting point—of inflation. Sev-

After some pioneering worKl], string cosmology took a eral interesting phenomenological consequences of the
new turn with the realization that, as a result of its dualitywhole scenario have been worked out, particularly on the
symmetrieq2,3], it naturally provides, even in the absence Possibility of generating an interesting spectrum of gravita-
of potential energy, standaf@friedmann-Robertson-Walker tional waves[11] and of cosmic magnetic fieldsl2]. Of
(FRW)] as well as inflationary cosmologies. The crucial roleparticular relevance could be the recent observdti@hthat
of a dynamical dilaton in providing inflation then became Pre-big bang cosmology can lead to a scale-invariant spec-
clear. trum of axionic perturbations.

This observation led to the idea of the so-called pre-big The purpose of this work is to improve on the results of
bang(PBB) scenarid4,5] according to which the Universe [7]in various respects, as explained in the following outline:
started its evolution from a very perturbative initial state, i.e.in Sec. Il, we formulate the problem directly in the string
from very weak coupling and very small curvatures. It thenframe while adding extra dimensions as well as the
inflated towards largefspace-timg curvatures and coupling antisymmetric-tensor fiel@&,, . We thus recover the results
during the pre-big bang phase and, possibly after a string@f [7] and are able to extend them to the case of quasihomo-
epoch, eventually made a transiti¢exit) to the standard geneousB,,, g,, and ¢ fields. In Sec. Il we reexpress the
radiation-dominated era. four-dimensional case with torsion and a single internal-

While early work concentrated mostly on homogeneousspace modulus in terms of the axion field and construct the
Bianchi type-I cosmologies, and on small perturbationsgeneral asymptotic solution for a quasihomogeneous axion
around them, a number of extensions of the original scenariackground. We also look at the solutions in the Einstein
have been considered more recently, including spenéry- ~ frame in order to expose, as simply as possible, their S-
ing to incorporate the latest theoretical developments irfluality properties. In Sec. IV we discuss the limits of validity
string theory. Within a more traditional string theory frame- of our asymptotic solutions, from the point of view of both
work, a more general setting was recently consid¢rgdin the breakdown of the tree-level low-energy effective action
that approach, given some initial data deeply inside the perand of that of the gradient expansion. We are thus able to
turbative region, but otherwise arbitrary, their evolution is€stimate the duration of the PBB era and the number of e-
followed towards the big bang singularity in the future. It folds it generates, and to conjecture that the far-past “attrac-
turns out that the evolution of fairly homogeneous initial tor” of generic (negative-curvature and sufficiently isotro-
patches can be described analytically and that a large fractidpic) PBB cosmologies coincides with the Milne Universe
of those patches inflates, becoming increasingly flat, homoappearing in the explicit solution ¢8,9]. Section V contains
geneous and isotropic. In the special case of exactly homdome concluding remarks, while we discuss in the Appendix
geneous and isotropic—but non spatially flat—cosmologiesthe structure of the “momentum” constraints, as well as
explicit solutions can be founid,9]. Also, some scepticism their solutions, in the particular case of-2 dimensions.
on the naturalness of the PBB picture arp8p

If the above results are coupled to the assumption that a
“graceful exit” does indeed take pladesee[10] for recent
progress on this issliethe usuallyassumedig bang condi-

Il. PRE-BIG BANG COSMOLOGIES WITH
QUASIHOMOGENEOUS TORSION

In this and in the following section we discuss quasiho-
mogeneous solutions, i.e. solutions which are approximately

*Permanent address: Institute for Theoretical PhysicsaHs®; ~ valid when spatial gradients are small compared with time
00-689 Warsaw, Poland. derivatives. While in this section this is assumed to be the
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case for the antisymmetric tensor field, in Sec. Ill the same 1 A 10— 1 i R
assumption will be made for the duality-related axion field. Rj+ 3 xj+V'Vi¢—5xjd— 7H Hj+ 59" Bnidji

A. General lowest-order pre-big bang equations =0, (2.9

In this subsection we write down the classical equations
of motion of string gravity at lowest order both in thé and R+ 1 Tr(x2)+?—225_+ 2VVip—g' a0,
in the string-loop expansion. Such an approximation should 4 ' v
be valid at early enough times since, in the pre-big bang

scenario, the initial state of the Universe is taken to be _iHileikl+ lgikg”BijBH:O, (2.10
deeply inside the perturbative region. Unlike[i#], we work 12 4

directly in the string frame, where the physical interpretation _

of the solutions is most immediate, and we consider the ef- a(e”?g'*glB;) =0, (2.1
fect of internal dimensions as well as that of a nontrivial

antisymmetric-tensor field. 0o(e"/’gikgj'Bk|)—z9|(e’¢H'”)=O, (2.12

The low-energy effective string action b=d+ 1 space-
time dimensions s

11 P R
Eﬁk)(i_z(aigkl))( +dig—5xidj¢— 7 BHI"=0.

1
S ToN\D 2 f d®x\—ge | R+0""d,¢d, ¢ (213
S
Equation(2.13 represents the so-called “momentum” con-
—1—2H,pr“”p : (2.1)  straints which, as such, do not contain second-order time
derivatives. The remainin¢so-called “Hamiltonian’) con-
where straint is easily obtained by combining E¢2.8) and(2.10
and reads
H,,=3d,B,,+3d,B,,+3,B,,. (2.2

1 - y . 1 )
The equations of motion derived from the acti¢hl) are R-7 Tr(x*) + ¢*+29"'V,V,¢— 0" 9,3, p— 1—2Hik|H'k'
well known:
1 g ¢
—29°9 BijBii=0. (2.149

1
R+29*"D,D,p—09""d,¢d,¢—

T3HuH* =0,

(2.3 Both (2.13 and(2.14) need only be imposed at a given time:

1 the evolution equations then ensure their validity at all times.

R, +D,D,dp— ZHMaﬁHgB:O’ (2.9 Equation (2.8) is independent of spatial gradients and
gives the important general result

d,(N=ge ?H""#)=0. (2.5

Invariance under general coordinate transformations and
B,,—B,,+3d,A,—d,A, allows us to bring the components Following [7], our approach will consist in first solving Egs.

25_20.

9o, andBy,, to the form (2.8—(2.12 neglecting spatial derivatives. As a result, the
integration “constants” in the time-dependent solutions are
Joo=—1, goi=0, By=0. (2.6 actually functions of the spatial coordinates. The “momen-

) ) ) tum” constraints(2.13 imply d relations among those arbi-
In this (synchronousgauge we rewrite the above equations, yrary functions, reducing their actual number to the physi-
explicitly distinguishing time and space derivatives. To th'scally correct value. The “momentum” constraints are

end we introduce notoriously difficult to solve: in this paper, we will just as-
P ik — sume that they are somehow implemented. In the Appendix
Xj=9"0%j, ¢=¢—log(v—9), (2.7 we will discuss their explicit form in the cas,,=0 and

D=3, where solutions can be formally given in terms of

quadratures after a convenient choice of the spatial coordi-

1 1 nates has been made.

¢=ZTr(X2)+Zg'ng'BijBk,, (2.9 In the following two subsections we proceed to find
guasihomogeneous solutions, by neglecting gradients in the

equations. We first discuss the cag,=0, recovering, in

D=4, the results of 7], and then consider the general case.

and then rewrite Eqg2.3)—(2.5) in the form

Iwe will use the signaturé—,+,+, ... ,+) and the following con-
ventions R‘V‘p(T:F_‘;w_— ce ngzRng- We |nd_|cate V\_llthDM
the covariant derivative compatible with the mewig, , while V;, ) _ ) ] )
R stand for the covariant derivative and curvature obtained from the Neglecting spatial gradients and comparing E38) with

(spatia) metric g;; . Eq. (2.14 we obtain

B. Quasihomogeneous solutions witlB,,,,=0



57 CLASSICAL INHOMOGENEITIES IN STRING COSMOLOGY 2545

- L t a,— — a, for somea) can be implemented, since the “mo-
¢(t.X)=¢o(X)—|09( 1- t_)’ (219  mentum” constraint changes in a complicated way. Never-

0 theless, the case df=2 discussed in the Appendix suggests

while Eq. (2.9) gives that even the fuIIZ‘Zj duality group can be represented in the

asymptotic solutions. Understanding how that works in detail
is beyond the scope of this paper. Such an understanding

Tk K
Xi—Xi¢=0. (2.18 could shed new light on some still outstanding problé s
connected with the “non-Abelian” generalization of T-
Hence the solution fog;; reads duality [16].
R . R t | 22200 - C. Quasihomogeneous solutions in the presence Bf,,
. = a a - — =
9ij (t,X) Ea: € (x)ej(x)(l to) ' Ea: @(x)=1, In the homogeneous case it is possif#é¢ to recast the

(2.17  equations of motion in a form that is manifestly covariant
under the globaD(d,d) group. This certainly suggests that
some trace of this symmetry should also be present asymp-
totically in the inhomogeneous case.

We first write down the equations of motion in the form

where €7 are arbitrary “dreibein” matrices and the con-
straint ona, implements Eq(2.14). For the dilatong we get

. R . t - - 1 . .1 . .
d(1,X) = bo(X) — Y(X) Iog(l—g>, y(X)=1—§ ag(X). qs:—ZTr(G’lBG’lB)JrZTr(G’lGG’lG),
(2.18 (2.22

The solutions fog;; and ¢ are the most general ones; indeed 1 . 1 . .

they depend oml(d—1) arbitrary functions of spacfter >+ 2 Tr(G 1BG 1B)- 2 Tr(G GG 1G)
imposing the “momentum” constraints and after gauge-

fixing the spatial coordinatgsin d= 3 these solutions repro- 1 _

duce those found ifi7] by transforming to the string frame =—-2V%¢p+(Vp)*~R+ 1_2HikIH|k|: (2.23
the solutions found in the Einstein frame.

Using &igzo the “momentum” constraints, E¢2.13),

. 1 - _ _1/ B
can be written in the form [BG "B+ ¢G—Gdo(G "G)]j

1
_ 1 _ . :2R|J+2V|V]¢_§H|k|HTI, (224)
I xke ) — 5 Y T(G™14,G)(G™!G)]=0.
(2.19 [G 1B~ G 'B+G GG 1B+G 1BG 1G]]
Introducing the solution$2.15 and (2.17 in Eq. (2.19 we = —eg,gl(e—gH“k)gkj , (2.25
find
where G=g;; and B=B;; are matrix representations of the
ska i .y dXxd spatial part of the metric and of the antisymmetric ten-
; (e ezeiaa) —e ; aa(di€)e;=0, (220 sor. We then introduce the usuall® 2d matrices
where we recall that it is sufficient to impose such con- M = G, -G™'B _ 0 1 29
straints at any given time. Bt G-BeB)' 7|1 o) 2.26

We are now able to discuss whether the asymptotic solu-
tions show some remnant of T-duality, which, in the casejefine
B,,=0, reduces to scale-factor-dualit§FD) and to itstZj
generalization. It is quite obvious from the form of the solu- U=g,,gidy(e ?HMK), 2.27
tion that the transformation !

_— . — . 1
a——aa, el do(X)—do(x) (220 VE—e_g(ZRiﬁZVide)—EHile}d): (2.28

generates, from any given solution, a dual one. It is less
obvious to see how a more gene# transformation(i.e. ~ and a new X 2d matrix

_ -G WG, G WG iB-G U )

M= 2.2
UG '-BG VG, V-UG B+BG VG B-BG U (229
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The equations of motion(2.22—(2.29, then become

ale”*(MgM)]=M 4, (2.30

7,'5_+%Tr(|\'/| M 5)=0, (2.30)

-— 1 S i ij
¢*+ g TIM M 9) = —R=2V;V'p+ g6 9; ¢

1 ikl
If we neglect gradients we obtain
e Y(M7M)=C(x), (2.33
CT(x)=—-C(x), M7C(X)=—-C(x)gM, (2.34
=42 (2.39
Defining the “dilaton time” 7
t— — t
rzf e?dt’ = —tgye’o Iog(l— =, (2.36
0 to

the general solution of the equations of motion is

M (t,x) = exp — C(X) 7]Mq(X), (2.37
L t
d(t,X) = ¢o(X) — Iog( 1- 5) : (2.39
with
Tr(C7)2=8e2%0/t2, (2.39
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dde [(G16)k— (G BG 1B) ]}

1 — i — .
JrZe*QS T 7M pa;M]+2e %9,¢=0. (2.42

In both Eq.(2.11) and Eq.(2.42 spatial derivatives of upper

entries of the matrixe™*M »M are present. They point to
some remnants dD(d,d) symmetry also in the inhomoge-
neous case.

Hopefully, it is always possible to choose freely the ma-
trix C, provided it satisfie$2.34), (2.39, and then solve the

momentum constraints with respectmb(i). The example
of D=3 given in the Appendix supports this conjecture. In
this case the action o©(d,d) on the (modul)-space of
asymptotic solutions is in principle well defined even though
it is difficult, in practice, to give it in an explicit form.

[ll. SOLUTIONS WITH A QUASIHOMOGENEOUS AXION

In this section we limit our attention to the case in which
all fields are independent aof=D —4 internal compact co-
ordinates. In this case the components of the antisymmetric
tensorH#*? with w,v,p=0,1,2,3 can be written in terms of
the pseudoscalar axioh as

HHP=EFP7e%d A, (3.0

where E#"P? is the covariant, fully antisymmetric Levi-
Civita tensor, satisfying@> ,E#"??=0. We can then discuss,

as an alternative to what we considered in the previous sec-
tion, the case of a quasihomogeneous axion field. Because of
the duality relation betweeA andB,,, a quasihomoge-
neous axion doesot correspond to a quasihomogeneous
B-field. We shall carry out the analysis first in the string
frame and then, in order to expose better S-duality-related
features, in the Einstein frame.

A. String-frame description

These solutions represent an obvious generalization of the
homogeneous Bianchi type-I solutions given[B]. Disre- We consider the possibility of a varying siga ordinary
garding gradients, equations of motion and their solutionspace-timg of the internal space by introducing a single
given above are manifestly covariant un@(d,d) transfor- modulus field 3. The reduced action following from Eg.
mations. On the contrary, the “momentum” constraints, (2.1) becomes
which become trivial in the absence of gradients, cannot be

expressed just in terms of the matifikx and thus appear to SS 1

. = =—— R+9*"d,00,
“break” T-duality. More explicitly, they read eff 2>\§ 9 nedn®

[ axi=ge

1
—Eez‘Pg“VaMA&vA—ng“”auﬁay,B ., (8.2

— — 1 — .
I x‘e ) +2e %5,¢p— Eeﬂf’ T (G 14,G)(G1G)]

1. N where ¢ stands for the effective four-dimensional dilaton

p=¢—ng.

i.e. in terms ofM

— o — 1 = : The equations of motion become
(xke ) +2e %o+ 7€ ¢ Tr[ yM oM |

1
— . . v _ v a2 v
_e_¢gjlgnk((9lBin)Bkj:0- (24]) R+2g* D#DV(,D g“ aMQDquD‘f‘ 2e fgH ﬁMAﬂVA

Using Eq.(2.11) we get the final result -ng"’d,Bd,B=0, (3.3
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1 1
R+ D,D,o— =€°%9,Ad A+ ngez“’g’”ﬂpAagA

2
-nd,B3,8=0, (3.9
d,(N—gefg”*3,A)=0, (3.5
d,(N—ge ¢g#"3,8)=0. (3.6)
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where 7 is the “dilaton” time

dr

Gi=e% ¢=¢—logV=g), (3.19

andAo(i),Cl(i), Cz(i), ya()Z) andeia(i) are arbitrary con-
stants.
The above solutions, as well as the corresponding ones in

Using xi; = dogj; ,» We can rewrite these equations in the syn-the Einstein frame presented in the following subsection,

chronous gauge in the form

.1 1. 1 . .
-+ Z Tr(X2)+ E X+t Egljez¢(9iA(91A+ n,82=0,
3.7

1. 1 ) 1.
Rij+ 5 xij+ 7 (xxij = 2xixg) + Vivie— S xije

1 2¢ 1 2¢ A2 1 ki
_Ee ﬁiAajA_Ee g”A +§g”g &kA&|A

—n&iﬂo?jBIO, (38)
1 ) 1 oo . . .
R+ X +ZTr(X )+ —2¢—xo+x+29"VV;e

. 1 202 1 il -
_g”(?i(Paj(P_ z e“?A“+ ze "Dg”&iAé’jA‘F n,8

-ng'4,89,8=0, (3.9
1 i o1 i 1 0 .
> (Vixi—dix)+die— 5 xidj¢— 5€AGA—NLI S=0,
(3.10
... 1. . .
A+(,DA+ ExA=ng?i<pajA+gJViVjA, (31])
P i i
B=eB+5xB==9"diedif+g Vivig. (3.12

generalize to the quasi-homogeneous case the results of Ref.
[8]. For backgrounds with special symmetries similar solu-
tions have been found if17]. Since the time dependence is
implicit in the above solutionghrough Eq(3.18], and their
behavior is similar to the one in the Einstein-frame, we defer
the discussion of both to Sec. IV. We only note here that the
dilaton field has a singularity at both ends of the time evo-
lution, even for a very small axion field. However, before
jumping to the conclusion that we must face a strong-
coupling regime in the far past, we have to see what the
actual range of validity of our approximations is. This dis-
cussion too is postponed to Sec. IV.

In order to expose the existence of an S-duality symmetry
connecting pairs of different solutions, we first consider the
same equations and solutions in the Einstein frame.

B. Einstein-frame description

The Einstein-frame metric is obtained by the conformal
transformation

9,,=€9g,,. (3.19

The low-energy effective action with an axion and a modulus
field, Eq.(3.2), becomes

=~ 1_- 1. -
SE= f d*xy — g[ R=59"0,0d,0- Eez“’g’”&MAayA

- ng“”&,ﬁ&yﬂ} (3.20

Neglecting gradients, the general solution of these equations

IS

9i(r,X)=e* 2 ef(x)ef(x)exp27a(X)7),  (3.13

97X = Cl(f ) cosHK (X)(7— 7o)], (3.149
K(x)
. . K(X) R
A(7,X)=Ag(X) = — tanj K(x)(7—7)], (3.19
1(X
Cy(X)e?
LX) = , (3.19
B(7,X) NEr

2
5= \[2|| 3 7| =3 i -ncih)

with equations of motion

— 1. 1 1 ) 1 2
R,U,V_E g,u,VRZE(?,u,QDaV(P_Z gl“,((g@) +§e (9/.LA(9VA

_ 1~ 2¢ A 2+
Z g,uve ((7 ) na,ulgavlg

1~ 2
N5 Gul9B)? (321

9,(N—99"d,0)=\—0e?*°g""3,Ad,A, (3.22

d,(N—9e%**g"’3,A)=0, (3.23
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9,(N—=9g*"9,8)=0. (3.24
In the synchronous gauggy,= —1,9,=0 we obtain
2¢%+4np%+2e2A%+Tr(x?) — X2
=4ﬁ—2§ijﬁigo(?jcp—4n§”(?iﬁﬁj,B—2§ijez“r?iAr?jA,
(3.25
> 1-. 20702 _ Hij 20~ij
(,D+§)((,D_e A =g Vingo—e g &,A&JA,
(3.26

T - —

(X D+ 35 xxj=— 2R+ 0%dedjp+2ng" o898
(3.2
(3.28

+ &G A0 A,

Xi—Xhj=— @d@—2nBd;B—e**AGiA,

T U .
A+20A+ 5 YA=2810,00A+ TV VA, (3.29

A AU
,3+§X,3:9”Vivj,3- (3.30
Disregarding spatial gradients, E§3.27) can easily be
solved, and we get

- 2
X:~ ~1
t—1,

(3.31

while the general solution can be written in the form

20 4(X)
~ o~ ~ o~ o t -
gi(T0=2 e?(x)ef‘(x)(l—:) 2 Na0=1,

to
(3.32
. Do(X) ) ~\ a(x)
e?(tX)= F(x)| 1-—
to
~\ —a)
1 t
+—_)(1_~—) , (333)
F(x) to
A(T,X) = Ay(X) £ 28~ Po¥)
) i q(x)
F(X)| 1— =
to
x ) T a(x) 1 T —ax) |’
FOl1- =] +—|1-=—
to F(x) to
(3.39
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where ®4(x),F(x),D(X),Ay(X) are arbitrary functions of
space and

q(x)=v2 \/1— > A4(x)—nD?(x). (3.36

Some remarks on these solutions are in order. First of all, we
still have to impose the “momentum constraint&3.28 (at
any given timé on these solutions. The axion field, in the

limit T — ', goes to the arbitrary functiofy(x). Since the
dilaton field is increasing towards the singularity, terms like
e%¢V;AV'A in the equations of motion may become impor-
tant and can no longer be disregarded. However, as we will
see more accurately in Sec. IV, we are not allowed to ex-
trapolate the solution$3.32—(3.34) into the string phase,
when the coupling constant and/or the curvat(irestring
units) are of order 1. Imposing these limitations, it is possible
to estimate the following behavior for the terms involving
the axion field

e?*V,AV'A _ ( kgh) 332

¢? VHa
where Mg is the string mass scale ardq, is the proper
(physica) wavenumber.

Therefore, if we limit ourselves to energies much smaller
than the string scale, it seems to be well justified to neglect
spatial gradients in comparison with time derivatives.

Another important feature of the soluti¢8.33 is that it
hits a strong coupling singularity in the far past, as in the
string frame. As already mentioned, the discussion of this
point is postponed to Sec. IV.

C. S-duality
Let us introduce the matricdde SL(2,R):
e?, e’A
N= e%A, e ¢+e?A2)’ (3.39
andJ:

0 1 33

J= . .
1 0 (3.39

Neglecting the modulus field, the effective acti20 be-
comes

= 1.
55ﬁ=f d*x\— g[R— 7 g”“”Tr(Ja#NJaVN)};
(3.40

in particular, the “momentum” constraint, E43.28), trans-
forms to

-~ 1
Xi=xbj==5 Tr(J9NIIN). (341

We note that the “momentum” constraint is manifestly in-
variant under a generic transformatid® of the group
SL(2R)
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5y solutions with a constant axion to particular axion-dilaton
0= , (3.42 solutions with a time-dependent axion. Indeed, applying an
B « S-duality transformation to the dilaton-vacuum solutions
_ with zero axion
(6a— By=1) acting on the backgrounds as follows:
~ \ 2\4(X)
T _~ — —_~ e s t -
N—-6'Ne, B4 5 T0=3 e?(x)eﬁ(x)(l—:) 2 0=1
. . . t
as is easily checked using the prope@yJO®=J. The S- 0 (3.45
duality transformation(3.43 can be written equivalently as
~\ —ax
~ - - t - -
S=(Atie 95 = B (3.44 efTi—geod| 1- | ATX)=0, (346
vS+6 to

In the same way as ifiL3] and[14], we can relate, with an we get the particular axion-dilaton solutions, with time de-
S-duality transformation oé¥ and A, the dilaton-vacuum pendent axion

T q) T ~q(x)
eqa’(tyx): y2e¢0(x)( 1— :) + 52e¢o(x)( 1— :) , (347)
tO t0
=\ A
e7¢0(;) 1— ;
,~- B to
A'(t,x) 315 ) T\ 90 ] T\ 9] (349
20—0o)| 1_ 20000 1
to t0

Unlike in the general case, in these particular S-duality genproximation. The situation can be described qualitatively as
erated solutions the axion field approaches a constant valifellows.
as one goes towards the singularity and we do not face the As one moves forward in time from fairly homogeneous
problem of a possible failure of the small-gradient expan-nitial conditions towards the singularity, the approximation
sion. Also note that we can obtain E43.47), (3.48 directly  of neglecting spatial gradients becomes better and better. We
from the general solutions Eg8.33), (3.34 with the choice  should thus trust our asymptotic solutions near the singular-
i i ity as long as the other two general limitatiofm coupling
ePo®=2y5 F(x)= Ze, 20X Ay(X)= E and curvaturgare fulfilled. Unless we want to make assump-
g g tions about what happens at strong coupling and/or curva-
(3.49 ture, these considerations limit the duration of the PBB era
through an upper bound on iend However, in order to
IV. LIMITS OF VALIDITY OF THE APPROACH make a reliable estimate of the total duration and of the num-

The classical equations of motion considered in this papeP€r of e-folds, we also have to estimate the time, in the past,
and their solution in the quasi-homogeneous case are vali@t Which the small-gradient approximation breaks down, i.e.
only in a rather restricted domain for the fields and theirwe have to find the relevant constraint on theginningof
derivatives. Generally, there are two restrictions concernindg®BB inflation. These questions will be studied in Sec. IV A.
the use of the effective action coming from string theory. The other important issue concerns the very early-time
The first one is that the coupling constant should not be todehavior of our solutions, much before PBB inflation started.
large since otherwise the higher loop corrections and nonpeHere we enter a regime in which spatial and time derivatives
turbative effects(such as the dilaton potentiastart to be are of comparable importance. Singularities or other features
important. The second limitation concerns the energy densitgppearing in our asymptotic solutions in these regions cannot
(or if we prefer the curvatujewhich should be smaller than be trusteda priori. New techniques have to be used in order
the string scale. At higher energies and/or curvatures massivte find out what the early-time behavior of our solutions
modes of the string are excited and the whole picture basedctually is. A first attempt to answer this question was made
on the massless background fields breaks down. in Ref.[7]. In Sec. IV B we will present some more results

To these two very general restrictions we have to add, iron this topic and even motivate a conjecture on the nature of
our context, that of neglecting spatial derivatives. We have t@ generic early-time “attractor’{going backwards in time
check, a posteriori the range of validity of this third ap- in the case of PBB solutions with negative spatial curvature.
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we obtain a very natural condition to impose at the beginning

In order to estimate the duration and number of e-folds of’f the PBB inflationary phase.

the PBB phase, we will compute the next-to-leading-order
corrections to our asymptotic formulas in the string frame
and thus estimate the time at which the small-gradient a|
proximation breaks down. This instant will be taken as th

beginning of the PBB phase. Defining the variable

W(t,X)=e" ¢, (4.9)
Egs.(3.7—-(3.9 with A=0= can be rewritten as
W(t,x) =W(t,x)T(t,x), (4.2
(W(t,x)) = —2W(t,x)TT(t,X), (4.3
W(t’%))zzl Tr(x?) +T(t,X), (4.4)
w(t,x), 4
where
I'(t,x)=—R+(Ve)2—2g'V,V;e, (4.5
I(t,x)=R+VVie. (4.6)

Since in sufficiently isotropic regions the three-curvatRre
goes like (1 t/ty) 2M@@a towards the singularity, we are

allowed to consider, in those regions, an expansion in (1
—t/ty) for the solutions of the above equations. We obtain

W(t,X) =Wo(X)

t t v t” .
(1——)+f dt’f dt”(l——)F(t”,x)
to g Jto to

4.7
L 2Wo(x) 1
J = R aal
X,(t,X W(t,-») tO g aael ea
t t’ S
+ tdt'(l—t—>H{(t’X) , (4.9
0 0

géxpressed in terms of the ratio of the comoving Hubble

We are now able to estimate the number of e-folds avail-
able in the PBB cosmological model with axion field, de-
scribed in Sec. Il B. The amount of inflation is commonly

lengths at the beginning and at the end of the inflationary
phase

a(ty)H(ty)

S amH) 4.12

Since we have explicit solutions only in the Einstein frame,
we carry out the analysis using Eq8.32 and(3.33, with
B=0, and then apply the transformati¢8.19 in order to
getZ in the string frame. We obtain

a(t)+e(tHr

where a=(1/g)*. We suppose that inflation starts at the
time t; at which the small-gradient expansion is still valid,
Eq. (4.17), and the dilaton field is near its minimum, Eq.

(3.33, with ¢;>0, in order to have an expansion phase in
the string frame. We then get

(1—5)5F1’5.
to

Let us address the question of setting a bound on the end of
the perturbative PBB phase. Dilaton-driven inflation ends
when either the string coupling constant is of order 1 or the
(four-dimensionadl curvature reaches the string scalgz.
Imposing thate®<1, we obtain[neglecting numerical fac-

tors of O(1)]
2
Zs eXF{ - _~(D0) .
3q

(4.19

(4.19

where all the terms in the integrals must be evaluated on thg,om Ri=\ 2 we get, instead,

leading solution$2.17), (2.18). It is easy to conclude that the

small-gradients approximation breaks down at a tigiguch
that
t
-2 , 4.9
to

L 1/(1—Maxay)
N&ﬂ

wherelL is the typical wavelength associated with the inho-

mogeneities of the metric. We observe that Eq9) can also
be written in the form

) o) (4.10

x“(ty) ' '
and then choosing the initial timte>t, such that

—Z—R(ti) =0(1) (4.1

x“(t) ’ '

Z<(\ZR;)~23¥2-0), (4.16

Note that in Eqs(4.195 and (4.16 the dependence on the
arbitrary constanE drops out.
Combining the various results of this section and express-

ing q in terms of thea,, we finally estimate the upper limit
of the number of e-folds during the PBB era as

Z<Mi ( F{ ® (—1+1/35 ,ap)
= MiInjy expg — —_—
0 (—1+Z,a,)

x@RM%%*WM
(4.1

This result generalizes to the inhomogeneous case tha] of
and shows that, in order to solve the standard-cosmology
problems through dilaton-driven PBB inflation, the begin-
ning of the PBB era must indeed lie at very tiny coupling and
curvature(in string unitg, a point already made ifv].
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We may ask at this point whether such initial data repre-argument takes its simplest form in the E-frame where we

sent an unreasonable amount of fine-tuning or, in any case,refer to the case discussed in Sec. lll B. A linear combination

larger amount than what is needed in usual inflation. Suclef Egs.(3.25 to (3.27) gives

guestions are hard to formulate in precise physical terms. 1

Rgther than gnswering _semi—philosophical guestions, we ’;z — Z[Tr(X?) +20%+4nB2+2e2°A%].  (4.18

wish to underline a crucial difference between our frame- 2

work and the conventional one. At a regular fixed point the left-hand side @f.18 vanishes

Oér; dcc'i(r)wlieentilr?nt?]lelnr:cilaﬂ(-):urt\r/]aetuprree-lij;arﬂ(;:watr%ae\}/ri? '?es?n'?];}and thus, since there cannot be cancellations, each term on
P 9 q gravity TegiM&y e right-hand side has to vanish as well.

and one is thus facing the problem of whether and how suc At this point we use Eq(3.29 to argue that, modulo
a phase can prepare an .“initial.” state that is fit to inflegee surface termsg,A=0, and Eq.(3.30 to conclude ,that also
[18,19 for a recent discussion By contrast, our pre- 9,8=0. Equation(3.27) will finally give R/=0, which, in
inflationary Universe is very classical and described by th%ree dimensions i-mpIies flat space—timel ' k

tree-level low-energy string effective action. As a conse- We conclude that initial data that do not come from a

quence classical solutions mu;t contgéan least two free singularity in the past must originate from the trivial vacuum
parametgrs{modulb corre;qundlng to as .mf?my.transforma- of string theory. The next question is whether the set of such
tions, which alter the action just by a multiplicative constant.; . iia| data has finite measure.

These are:

a constanshift of the dilaton, 2. Heuristic criteria for a trivial early-time attractor
T e« ot n_ COMSEr QoI Il Gt subjct 0 e consrat
string coupling and of the curvatuf@ string unit at the  'Sfied, in particular, foR<0)
onset of the inflationary epockhere the transition from
qguasi-Milne to quasi-pre-big bang behayioBut these are
exactly the two parameters that have to be very small in
order to ensure a long PBB era. The obvious inequalityrecall Tr(y?)/x?=1/3]:

Thus the fine-tuning of string cosmology alluded td %
just consists in choosing these two moduli in a convenient .. , 1 ~ <y - 20 a2 1
region. Such a region has finite-infinite extension, depending (x = 2_;2[-”()( )+2¢7+4AnS7+2eAT]= 6’
on the measure one adopts, but its boundaries are certainly (4.20
only one-sided for both moduli.

Another point to be recalled is that the scenari@fis  holds at all times, while the inequality
exactly homogeneous and thus the same alleged fine-tuning 1 AL 1
has to happen everywhere in space. In our inhomogeneous (; =2 —E - (4.20)
Universe, like in the chaotic scenafi20], it is sufficient that 2 N2 2
a convenient patch develops initial conditions in the right _
range of parameters in order that it undergoes sufficient inbolds at least initially. The ratidg /x* tends to decrease as
flation. Other regions may not be as “lucky” and will not We move forward in time and to increase as we move back-
experience a long inflationary era. Unfortunately, we mayWards. It thus looks reasonable tg assume that, at least for a
not live long enough to check whether this was the casesufficiently isotropic situationAg/x? does not change sign
since those regions will end up being much beyond ougs we go towards the far past. At the same time, the general
present horizon. constraintAE/}}zs 1/3 is always validsee Eq(3.25].

Under these assumptions we get

Ag=—2R+V,pVip+2nV, BV B+e2°V,AVIA>0.
(4.19

B. Early- and late-time “attractors” of PBB cosmologies CJ(T )Z)
PR i 2 T
As explained at the end of the previous section, if we look Xi T 2<C;<6, A4<Tr(c)<36, t——c.
at earlier and earlier times, the approximation of neglecting 4.22
spatial gradients, rather than the effective action itself, ap- '

pears to become inadequate. While it looks impossible tqye are now able to estimate the asymptotic behavior of the
obtain analytic solutions in this regime, one can go a longnetric by first writing the formal solution
way towards understanding qualitatively how PBB-type so-
t ~ -~ ~ - ~ N
T exp(f dt’X(t’x)> 9k;(0x)
0 .
I
(4.23

lutions behave towards very early times. For simplicity we ~
shall restrict most of our analysis to the caselDot4 and 9ij(t.x)=
vanishing antisymmetric-tensor axion.
1. Early-time fixed points and by estimating the time-ordered integralg4m23 under
Generalizing the results ¢¥] we shall now claim that, at the restrictions given it4.22. This gives
least inD =4, the only non-singular early-time fixed point is ~ masi=as = CAG)
the trivial Minkowski vacuum with a constant dilaton. The gij~er(x)ej(x)(—t)= (4.24

k
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where c?(x) is defined by

cl(x)="e?(x)eL(x) c¥(x),
(4.25

Computing the asymptotic behavior Bffrom (4.24) we find
a contradiction, unless?=2 for all a. In all other generic
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wherep and 7 are the Minkowskian coordinates. Given the
basic triviality of Milne’s Universe it is not surprising that
the exact field equation fap in Einstein’s frame, Eq(3.26),

can be completely solved in such a background. The result
(see for instancg22]) reads

To —_
=@+t — ;ﬂ Yim(Q)Cim(r, 1),
t )

cases, i.e. barring special cancellations, it is impossible to Con(r ,t_):foc dpby exil—ip log(—T/Te) TPu(r)
m\l . plm p !

keep—R/x? (and a fortiori the ratiaA¢/x?) bounded from
above ast ——o. The only consistent solution is thus

. 26
J

xi== ¢o=pB=A=0, (4.26

which is the Milne Universd21]. Using previously given

(4.30
P i (V1+r?)

NG :

whereY,,(2) andP,, are the usual spherical harmonics and

bl (4.3)

arguments, this leads straight into the trivial vacuum asassociated Legendre functions respectively. The two classi-

T——o.

cal moduli discussed earlier show up in the general solutions

For the homogeneous, constant-curvature cosmologiedS ®o. @n arbitrary constant, andly, an arbitrary overall
considered iff8,9], the fixed point just discussed is actually Normalization parameter with the dimensions of tinecall

reached in the case of negative curvatdre. of positive
Ag), while, for positive curvature, the early-time “attractor”

that ¢ andr are dimensionlesgsin particular the “s-wave”
(I=0) contribution takes the forrfwith a slightly redefined

is singular. We have checked that, instead, the Kantowskieoefficientb_poo):

Sachs cosmologies discussed in Héf7], being very par-

ticular and highly anisotropic, are able to evade our general
result. The argument given above leads us to conjecture that o= ¢+

the Milne Universe is the Universal regular “attractor” for
sufficiently isotropic generic initial data havinje>0 ev-

erywhere. This conjecture will be further supported by per-

T0~ Jw dp b_p00 (e iPlIog =TT+ 2+ 0/T)]
t) = ip

r(—
_ e ipllog(—T( \/1+r2—r)/To)]}_

(4.32

forming a perturbative expansion of the general solution
around Milne space-time to show that it is a stable early-timerhe qualitative study of the general solution is greatly helped
fixed point. We will also use the expansion near the singuby recalling the large and smaillimit of the functionP,,

larity given in Sec. IV A in order to understand the flow of
the solutions near the singularity.

3. Perturbative expansion around the early-time fixed point

In this subsection we prove that the Milne metric with a
constant dilaton is indeed an early-time “attractor,” i.e. that

appearing in(4.30), i.e.

Pp|(r)~r' r—o,

1

eip log Zr H
Por)~ Re( )

it is stable against small perturbations as we go backwards in

time.
We recall that Milne’s Universg21] is actually isomor-

phic to a wedge of flat Minkowski space-time where =" " _
constant-Milne-time hypersurfaces are constant-3-curvaturdistribution of the Fourier

hyperboloids. In formulas the background

o~ dr?
A= —d T2+ 72 1+r2+r2d92>, (4.27
~ 28, - 26
g=const, xj=—, Rj=-—_, (4.28

T

t

can be brought to Minkowski’s form by the transformation:

=P 1=

Clearly, p— ¢, as t =—o, and the background goes, as
expected, to the trivial vacuum. Given a properly normalized
coefficientsb poo, (¢/x)?
<(To/1)? remains very small fort <—T,. The same is
true for the spatial derivatives @f and it is also expected to
be the case for the fluctuations of the metric itself, since they
are similarly behavei22]. This confirms that Milne’s Uni-
verse is an increasingly accurate solution to E25 as
Toooo,

However, the back-reaction from the fluctuations of the

dilaton and the metric becom&¥(1) at'f~—T0 andr=1.
As a result, we expect the Milne background to turn quickly
into a pre-big bang behavior at least in regions where the

spatial curvature is still negative. Far=—T, the approxi-
mate solutions will be those given in Sec. Ill up to a redefi-
nition of the time at which the singularity occurs. Typically,
a whole region of proper siz®(T,) (the Hubble horizon at
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T= —Ty) is expected to undergo inflationary behavior. We Y, «FLATNESS”
plan to investigate this phenomenon numerically in a future
publication.
Let us now study the perturbative expansion around — G =1 early time attractor
Milne's Universe. The perturbed Eq8.25-(3.27) read 1 D A Bl it
excluded regions
o 2~ L
(8@)+ —dx+(ox )+ Eﬁxli‘sz:O- (4.34
t
2
i 3 i 1 i o DI Nik
(6x i)+ = 0x;+ = 6;0x+ 2R+ 9" ¢pd;S¢=0, « ANISOTROPY *
t t 1 >
(4.39 . b)

2

. 1 . 3 . 1
(0¢)+ ~ox(8p)+ = (0¢)— —8(Ap)=0, (4.3
2 t t2 FIG. 1. Approximate flow diagram from the early-time attractor
to the singularity.
where A denotes the three-dimensional Laplacian built up

from the three-dimensional metric appearing(27. We 30,2 3TH(}2) 1 3A
will see below that it is consistent to disregard the secondEFNi, 225¢, 2353[__(7( 1| = —2E
term in Eq.(4.36 and the term that comes out from the X2 2x? 2 X
variation of the Laplacian. Therefore E¢..36) is decoupled (4.42
from the rest and can be easily solved. _ _
For simplicity, we will restrict ourselves to the “s-wave” and for any matrix we have defined
case and we séf,=1. Using Eq.(4.32 we get
. 1.
1 5 g (Sp)i=S,— §Sj Tr S. (4.43
dp=——-[G(= t(r+v1+r9))
r=1 This allows us to draw a “flow diagram” in the plane shown
= — in Fig. 1, where to simplify the presentation we constrain
G(= t(=r+ N1+l (4.37) to be in the region ¥ ¢<<3/2. The result for larger values of

o is similar. The individual contributions from the perturbed
solutions, Egs(4.38 and(4.39, are(we neglect terms with

power 1% higher than 2

where G is a priori an arbitrary function. However, for a
sufficiently well behaved distributions of Fourier coefficients
bpoo, the functiong is bounded by a constant at largéand
fixed r) and we can write, up to oscillatory factors,

0_2}'2
3= , (4.49
F(r) ~ boigtee
p=—"—, 0>1, t——x, (4.38
(=t)° ,
) Tr( A7)
Equations(4.34 and(4.35 are solved by the ansatz 3= o (4.49
~_ A B G
§Xj—,i,—2+m+,ifs+..., (4.39 2P Tr(A-Zr)

(4.46
and using Eq(4.36 we get

1 As can be seen from this result, there are two different be-
, TrC= > Tr(A?). (4.40  haviors of these contributions when——o: for o=1, 3,
3, and (1-33) are of the same order, while fordr<3/2,

We now come to a qualitative analysis of the phase space %2 and (1-X5) are dominant. In Fig. 1 the first case,

the trajectories in the range of validity of our solutions, either_ 1is represer_lted by trajectories that_ can have any angle
near the early-time “attractor” or towards the singularity. (less thanm/2) with respect to th& 5 axis, in the second case

a. Behavior near the early-time “attractor”In the Ein-  the trajectories are tangent to the straight line 0.

0_22

Tr B= -1

stein frame the “Hamiltonian’” constraint reads For o> 3/2 the behavior of the contributions is the same
as in the K o<<3/2 region, but there are higher-order terms
21+22+23: 1, (44]) to all of them.

b. Approaching the singularityn Sec. IV A we have de-
where rived in the string frame the next-to-leading solutions in the



2554

BUONANNO, MEISSNER, UNGARELLI, AND VENEZIANO

57

small-gradient expansion. These solutions must satisfy the Note that in a superinflationary cosmological model

“Hamiltonian” constraint (2.14), which can be put in the
form

Y +Y,+Ys=1, (4.47)
where
2 Tr(x2 r
Y]_E X__, YZE f y Y3E: (448)
12(102 4902 (PZ

To evaluate the slope of the trajectories in the “flow dia-
gram,” we will use Eqs(4.7) and(4.8). Hence we get

2
le%(E a, +§I, (4.49
1 2 2
Yzzl—g(E aa) —§I—F(t0—t)2, (4.50
Ygzr(to_t)z, (45])
where
- t 2
I(t,x>=f dt’(to—t’)H(E aa) —2 a,|(—R)
tO a a
2
|2 aa| +2 aa|(Ve)?
2 .
—2(2 aa) g'lvivj¢]. (4.52)
Using the relations
Xj =X~ 8,¢), (4.53

R=¢e?

. 1 .
R+29”ViV1<P_§9”f9i¢t9j¢}, (4.59

we can express the Einstein-frame quantiligs >, and> 5
in terms of the string frame'¥';, Y, andY ;. We get, in the
super-inflationary PBB case,

C3(1+4V3Y)? 3(1-3aal)?
Y (3+43Y,)2 (3-Zaa,)°

121-3 )

T (Faan) (3T, (4.55
.= 6Y, ~2(3_(Eaaa)2)
2 (3+3Y)?2 (3—Zaaa)”
12(1-2,a,) 6T (to—t)2
T B3-S0 L B 459
_+\2
6Y5 6T (to—t) sy

2= 3y aY ) (B Saan)’

(2 22,<0) with negative three-curvature, if we are in a suf-
ficiently isotropic region wher& ,a,< —1 we have globally

7<0 and then the behavior in time is

3(1-3,a,)? t t )2 2Meas
1”—‘(—aaa)2—52 Iogz<1——>(1——) :
(3—2,) to to
(4.58
23— (Za0d)® .,
RNCESTR R
t t 2—2Maxay
X Iogz( 1-— E) ( 1- G) , (4.59
t t 2—2MaXaa
34=02 |og2( 1— E) ( 1- G) (4.60

Hence, we can conclude thék ,, 5%, andX ; are all of
the same order in the limit—t,, and the trajectories of the
solutions in the flow diagrar(see Fig. 1 can have any slope
relative to the3,, axis, depending on the values Bfand ©.

V. SUMMARY AND DISCUSSION

We have been able to extend previous work by showing
that, even in the presence of an antisymmetric-tensor—axion
background, or of internal-dimension moduli, pre-big bang
type inflation emerges naturally in string theory from generic
initial perturbative data. Reasonably smooth initial patches
inflate and keep becoming increasingly homogeneous and
(spatially flat, at least as long as the low-energy tree-level
effective action description is valid.

We were able to estimate the duration of the perturbative
pre-big bang phase and to show that it depends on(aro
bitrary) classical moduli. A sufficient amount of inflation re-
quires these moduli to be both bounded from above, some-
thing we do not believe has much to do with the concept of
fine-tuning. The question remains open of whether higher-
order (o' or loop) corrections might deform the classical
moduli space and allow a prediction for the duration of per-
turbative pre-big bang inflation.

We have also analyzed the behavior of our solutions to-
wards the far past and argued in favor of the existence of a
rather large basin of attractidicontaining the case of nega-
tive curvature and sufficient isotropyowards a Milne-type
Universe with trivial dilaton, axion and moduli. Since
Milne’s Universe is equivalent t¢a wedge of Minkowski
space-time, such a state is nothing but a disguised form of
the exact perturbative vacuum of string theory. This result
(which should be established on more rigorous grounds
leads to a striking confirmation of the viability of the basic
pre-big bang postulate, stating that the Universe started its
evolution from the trivial vacuum of string theory.

As we have shown in Sec. IV, such a state, being an
early-time attractor, actually becomes a repulsor as we move
forward in time, i.e. is classically unstable with respect to
small fluctuations of the metric and of the dilaton-axion sys-
tem. The generic cosmologies that spring out of the trivial
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vacuum consist of a quasi-Milne era, followed by an infla-and for the “momentum” constraint, E¢3.27), we get(re-
tionary quasihomogeneous pre-big bang era. The value of thgefiningA =X\, for simplicity)
string coupling and of the spatial curvature at the transition

Ezltvrxfoe;ufihe two phases are the two above-mentioned classi- IN—(1—2N) 3, Bo=(3,00) N (A3)
Quite possibly, the most generic kind of string cosmology _
will be quite inhomogeneous in a global sense, siacpri- — N+ (1=2N)dyB1=(dypo) N (A4)

ori, the two moduli may take different values in different

regions of space. As in chaotic inflatip20], homogeneity is  Note that the two equations are decoupled and that they can

a local property valid up to some scale determined by théye solved forg; and B, by quadratures onck and ¢, are
size of the original patch, which gave rise to our observablegyjyen.

Universe, and by the amount of inflation it suffered.

‘We finally recall that, once pre-big bang behavior sets in, Momentum constraints for d=2: string frame
primordial vacuum fluctuations are parametrically amplified. ) o
Equivalently, in a particle-physics language, massless quanta W& now re-express the results of the previous section in
are copiously produced by the time-dependent backgroundg?e string frame in order to be able to dls_cuss T-duaht_y. The
By the time the string coupling has grown to about itssplutlons(2.17) and(2.18 for the two-metric and the shifted
present value, these quanta are able to dominate the energjaton are
and to lead the Universe straight into the hot big bang era

[23,24. 26 (0y) t | Zeitoy)
Many points are still unclear throughout the picture, and gij(tx,y)=e Vg, 1— t ,
much work is still needed, both on the topics discussed in
this paper and on the issue of the transition from the pre-big ai(x,y)ju ag(xyy)z 1, (A5)

bang to the FRW phaséhe exit problemn However, the
possibility that the hot big bang conditions—which we know ¢
to have prevailed some 15 billion years ago—simply RI,X,)’):;@(X,Y)_RJQ(]-_ _)_ (AB)
emerged from the basic instability of the triviéle. cold, to

empty, flat, fre¢ vacuum of string theory appears to be gain-

ing further credibility from the results reported here. In the "momentum” constraints, Eq(2.20, the leading

terms ag—t, automatically cancel and we get:
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APPENDIX A
Iyt~ a19x@o
We will restrict ourselves to the case without axion and OxBo=—" (A10)

. do— X
modulus fields. 2 M
i - Ej i dyao— and
M t t ts for d=2: Einst f y&2 20yPo
omentum constraints 1or Instein frrame é’yﬂlz p—— ) (All)

In the 2+1 dimensional case we can choose the spatial
coordinates in such a way as to make the “zweibeins” diagHence, also in the string frame, the “momentum” con-
onal. Equation¢3.32 and(3.33 then become straints are solved by quadratures provigggx,y) and, say,

a4 are used as inputs. Barring pathologies, we can always

~ 1\ 27\i(%Y) . ) .
—_~—~ 3 00y) “ change the inputy; by a duality transformatiorie.g. a;—
g(t,xy) =75 1— T_ , — a4) while keepingeo(x,y) unchanged, and solve again in
0 B1, B2, thus reconstructing the newgy(x,y). In this way
M (% Y) +FNa(X,y) =1, (A1) Wwe will arriye at a rather odd gerjerallization of T—duality
transformations in the asymptotic limit of the quasi-

¢o(X,y) rather thanpy(x,y) unchanged under duality, since
this is what happens for the time-dependent parts, but then it
(A2) is not clear how a solution can be explicitly constructed.

_ T
e(T,x,y)=@o(x,y)—vVZV1—A2=2\3 Iog( 1-—
t

) homogeneous case. It would be more natural to keep
0
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