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Abstract 

The physical excitations entering the effective Lagrangian for quantum black holes are related to a Goldstone boson 
which is present in the Rindler limit and is due to the spontaneous breaking of the translation symmetry of the underlying 
Minkowski space. This physical interpretation, which closely parallels similar well-known results for the effective stringlike 
description of flux tubes in QCD, gives a physical insight into the problem of describing the quantum degrees of freedom 
of black holes. It also suggests that the recently suggested concept of “black hole complementarity” emerges at the effective 
Lagrangian level rather than at the fundamental level. 

1. Introduction 

The attempts to give a description of black holes 

consistent with the laws of quantum mechanics face 
well known problems. A possible approach [ 1,2] as- 
sumes that at the quantum level, from the point of view 

of an external, static observer, the quantum degrees 
of freedom of a black hole are located on the horizon 
(see also [ 31) . In this approach, because of the blue- 
shift factor in quantities like the Hawking temperature, 
a static observer sufficiently close to the horizon is in 
a region of super-Planckian energies, where unknown 
physics comes into play. To describe quantitatively the 
horizon dynamics one can therefore resort to an ef- 
fective Lagrangian approach [ 4,5] . The most general 
effective action turns out to be of the form 
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Seff = -7 
s 

d3(a [1 + CoK + CIR + CIIK2 

+CnIKij K’j + . . .] . (1) 

The basic variables appearing in the action are the 

fields c”( 5)) 9 = (7, ~1, (~2) which define the posi- 
tion of the quantum, fluctuating horizon and describe 
a 2+1 dimensional timelike hypersurface (the world- 

volume) parametrized by (7, ~1, a~) and embedded 
in 3+1 dimensional spacetime with background met- 
ric gp,. From these one constructs the induced met- 
ric hij and the extrinsic curvature Kij which appear in 
Eq. (l), where h = det hij and K = Ki; R is the scalar 

curvature of the world-volume. The coefficients of the 
various operators, 7, CO, CI, etc., are phenomenologi- 
cal constants which can in principle be derived if one 
knows the underlying fundamental theory. 

In a semiclassical expansion, the nature of the de- 
grees of freedom entering Eq. ( 1) is more transparent. 
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In flat space one can write the generic fluctuation over 
a classical solution f” (5) as 

!?(5) - %V) = bi(S)&bP + @(SW(S) 9 (2) 

where ~9, = c?/c?~ and fip(& is the normal of the 

classical solution zpcL( 5) in the point of the world- 
volume labelled by 5. One observes [6] that the 
fields b’(t) represent fluctuations along the surface 

and are “pure gauge” since they can be reabsorbed 
with a reparametrization. The only physical quantum 
fluctuations are perpendicular to the surface, and are 

parametrized by a single scalar field 4(t) living in 
the world-volume. The definition can be generalized 

to curved space, where the physical fluctuations are 
written as 

l”(5) = &,W %9 fi) 9 (3) 

where, at each point 5 on the world-volume, &Lod gives 
the geodesic parametrized by an affine parameter 4, 
which at Q, = 0 goes through the point f”, with a 

tangent at C$ = 0 equal to A”. 
Expanding at quadratic order in 4, in generic curved 

space, the action becomes [7,5] 

-(K$J + ii,,AW)(b2] ) (4) 

where the overbar denotes the value at b, $1 = 
--I J d3<( -h) ‘12, indices are raised and lowered 

with h,, and $& is the Ricci tensor of the embedding 

space evaluated at %. 
For a planar membrane in Rindler space the term 

N +2 vanishes and we are left with a massless scalar 
field living in the 2fl dimensional world-volume. The 
appearance of a massless scalar particle in an effective 
Lagrangian leads naturally to suspect that we have to 
do with a Goldstone boson. Indeed, this turns out to 
be correct, and it is in fact well known in the context 
of the string description of chromoelectric flux tubes 
in QCD [S] . To our knowledge, however, this has not 
been properly appreciated in the studies on quantum 
fluctuations of domain walls or membranes, and since 
it gives interesting hints on the problem of quantiza- 
tion of black holes, we find useful to discuss it in the 
present context. 

2. Toy model 

To understand why a Goldstone boson appears, let 

us see in an explicit example how an effective mem- 
brane theory emerges from a fundamental theory. As 
the fundamental theory we take 

in flat space, gPV = (-,+,+,+). The theory has 
different sectors depending on the boundary condi- 
tions that we impose. In the sector defined by 4, (z --+ 

+cc) = m/&,@(z + -00) = -m/G we have a 
manifold of ground states given by the domain wall 
solutions, 

(DC1 = 2 tanhm(z - ZO) , (6) 

labelled by a parameter za, which is the collective 
coordinate corresponding to translation invariance in 
the direction transverse to the domain wall. If we se- 
lect a particular member of this manifold of ground 
states in order to perform a semiclassical expansion, 

we are breaking spontaneously the translation invari- 
ance along z and we expect to find a correspond- 
ing Goldstone boson. Expanding the field B(x) = 
@Cl(x) + v(x) , the action for the fluctuations is [ 81 

S = So - 4 J d4x~(x)A’~(x) , (7) 

A@ = -a,P + V(z) , (8) 

V(z) =4m2 - 
6m2 

cosh2 m(z - zo) . 
(9) 

Therefore the eigenfunctions have the form q(x) = 
ei(~rfklx+kzy) $( z ) where +( z ) satisfies a one- 
dimensional Schrodinger equation 

(-8; + V(z)) sll(z) = E@(Z) ( 10) 

and the eigenvalues are -kg + kf f kz + E. The 
Schrijdinger equation has two bound states [ 81 

m2 1 

“(‘) = z cosh2m(z - zo) ’ 
e=O, (11) 

172’ sinh mz 

‘1(Z)=J8cosh2m(z-za)’ 
c=3m2, (12) 
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and a continuum of modes r& which starts at 4m2, 
E = 4m2 + kz. The normalization of the modes has 
been chosen for later convenience. 

The crucial point is the existence of a mass gap 

separating the mode $0 from the rest of the spectrum. 
This means that, if we are interested in low energy 
physics, E2 < 3m2, we can integrate out all modes 
except the mode 90. Expanding 71 in normal modes 
and using the notation 5 = (t, x, y) 

rl(-c>.z) =co(cwoo(z> +c1(5>th(z) 

+ 
s 

dkCk(t)$kk(z) ; (13) 

the integration in dz in the action, IQ. (7), can be 
performed explicitly and the action S becomes a func- 

tional of the fields CO (0, cl (0, ck (5) living in the 
world-volume. The effective action for the mode co is 
obtained integrating over all massive modes, 

exp (i&r[co]) = N 
s Jx 

Del DCk eis , (14) 
k 

where N is a normalization factor. At quadratic order 

in 17 the normal modes decouple and 

7 
Sea = -- 

2 s 
d3t G’icod”co 3 (15) 

where 

co 

s 3 

I= dz&(z) =c. 

--oo 

Expanding at higher order in 7 we obtain a coupling 
between the various modes, which generate higher di- 
mension operators in the effective lagrangian for co. 
These terms, however, are irrelevant in the low energy 

limit. 
The fact that a mass term in Eq. ( 15) is absent can 

be understood noting that @e (z ) = d, (DC1 and then 

@‘cl(GX,Y,Z) +co(t,-GY)~o(z~ 

=@cl(t,X,Y,Z fco(t,x,y)) +w&. (17) 

Therefore infinitesimal rigid translations in the z di- 
rection are realized on the world-volume field CO as 
ca(& ---f CO (5) + const., and this symmetry of the 
embedding space forbids the presence of a mass term 
in the effective action for CO. We see that co(t) is a 

Goldstone boson which lives in the world-volume of 
the domain wall and is associated to the spontaneous 
breaking of translation symmetry. Note that this field 
propagates only along the membrane, since it has ks = 
0, and the associated mode @a (z ) is localized around 
the membrane, and it determines its thickness through 
the parameter m. 

To understand the relation between ce(& and the 
field 4(t) defined in Rq. (2) let us see how, in the 
same toy model defined by Eq. (5)) the effective la- 

grangian ( 1) can be explicitly derived. The technique 
was discussed in Ref. [9] and a systematic evalu- 
ation of higher order terms has been presented in 
Ref. [lo]. The idea is to separate explicitly the de- 
pendence on the transverse direction of the quantities 
which appear in the action (5), so that we can in- 
tegrate it out. The first step is to choose an appro- 
priate coordinate system suited to the domain wall 
that we are considering, which is taken to be a small 
fluctuation over a planar solution. Thus, in our flat 
space example, rather then using Cartesian coordinates 

(t,n,y,z) we use three coordinates e = (r,~rr,~2) 
which parametrize the world-volume and, as a coordi- 
nate in the transverse direction, we use the affine pa- 
rameter h which parametrizes the geodesic which pass 

through the point of the domain wall labelled by 5 and 
is orthogonal to the domain wall. At least in a neigh- 
bourhood of the domain wall this coordinate system is 
well defined, and this is all we need when considering 
small fluctuations around a planar wall. Next one in- 

troduces the tensors h PV = gPy - npnv and K,, = n,;, 
where the semicolon denotes the covariant derivative. 
As shown in Ref. [ lo], they satisfy the relations 

ah,, 
- = 2&k,,, , 

Jk,, 
- 

au du 
= ekppk;, (18) 

while the equation for the field is 

8% 
--2P(W2-l)+ck~+~2~iiD’Q =O. 
dU2 

(19) 

One has introduced the dimensionless quantities u = 
A/E, vi = e/L, q = (d/m) Q and k,, = LKpy where 
L is the typical lengthscale over which the world- 
volume bends and I= l/m is the thickness of the wall; 
Di is the covariant derivative on the world-volume, 
with respect to the resealed variables vi. Each of the 
quantities appearing in Eqs. ( 18), ( 19) can now be 
expandedin.s= Z/L,e.g.q =SO+&I+(E*/~)~/~+ 
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. . .) and the equations can be solved order by order in 
a. This allows to determine explicitly the dependence 
on u = A/l. Then, writing the original action in the 

form 

where fiis the Jacobian for the transformation from 

the Cartesian coordinates (t, X, y, z ) to (p, A), the in- 

tegral over A can be performed explicitly and the re- 
sult [ 101 is Eq. ( 1). Of course the computation gives 
also an explicit expression for the constants T, CO, Cr, 
etc., in Eq. ( 1). In particular, one finds CO = 0 because 
it is given by the integral of an odd function of u from 
--co to foe (note however that Cc # 0 if we work in 
a finite volume -Lt I z < L2), and Cnr can be set to 
zero since in flat space the operator K&j is not in- 

dependent of R and K2 because of the Gauss-Codacci 
identity. The other coefficients turn out to be 1 

p4m3 
3g ’ 
1 7T2-6 

c’=g24, 

+---J&$. 

(21) 

(22) 

(23) 

Eq. ( 1) can now be expanded around a classical so- 
lution 3” and, if we consider only the leading term 

N fl, the result [7,5] is given by Eq. (4). For 
a planar domain wall in flat space the mass term in 
Eq. (4) vanishes. 

3. Implications 

The conclusion from this exercise is as follows. In 
the toy model defined by Eq. (5) all computations 
can be performed explicitly. We can explicitly derive 
the effective Lagrangian, Eq. ( 1), including the nu- 
merical value of the phenomenological constants, we 
can introduce a field 4, Fq. (2)) parametrizing physi- 
cal quantum fluctuations, and we can derive the action 
which governs its dynamics, which is just the action 

’ We have found here a numerical discrepancy in 7, CII with the 

result quoted in Ref. [ 101. For comparison, the quantities A, ? in 
Ref. [ 101 are denoted here g/2 and m/& respectively. 

of a massless scalar field living in a world-volume 
with hij = (--, +, +). On the other hand, we can solve 
the spectrum of the fluctuations of Q’, Eqs. (8)) and 
we see explicitly what is the reason which allows to 
use an effective Lagrangian approach: it is the exis- 
tence of a Goldstone boson, separated by a mass gap 
from the rest of the spectrum. This allows to quan- 
tify explicitly what does it mean low energy in the 

effective Lagrangian approach: it means E2 < 3m2. 
In the range 3m2 < E2 < 4m2 we must take into ac- 
count also the mode cl (5) and above 4m2 we have the 
continuum. The comparison of Eqs. (4) (with %ij = 

(-,+,+), Z?{i$ = 0 and $&,, = 0) and (15) shows 

that $(5) = CO([) + O(ci), i.e. in the limit of small 
fluctuations 4( 5) is nothing but the Goldstone mode 
CO (5). The identification does not extend to finite fluc- 
tuations. This can be seen observing that for a planar 
membrane in flat space the translation symmetry z + 

z + a is implemented on 4 as 4 -+ Cp + a exactly, as 
we read from Eq. (2) setting rP = (0, 0, 0,l). Instead 

cc transforms as co ---) CO + a only for infinitesimal 
values of a, as we see from Eq. ( 17). To obtain a rep- 
resentation of a finite translation, all modes ck must 
be taken as a basis, and they transform non-linearly 
between themselves. 

Let us see what can we learn from the above discus- 
sion in the case of the effective Lagrangian for quan- 
tum black holes. Of course in this case we do not know 
the fundamental theory from which Eq. (1) should 
emerge. In the approach of Refs. [4,5] one therefore 
postulates that, for a static observer outside the hori- 
zon, the variables l”(t) which describe the position 
of the quantum, fluctuating horizon are the relevant de- 
grees of freedom at low energies; the action ( 1) then 
follows from symmetry considerations. In the follow- 
ing we limit ourselves to the leading term in Eq. ( I), 

S memb = -7 J d3sfi. 

Let us consider first the Rindler metric, which is the 
limit of the Schwarzschild metric for large black hole 
mass at a fixed distance from the horizon, and is the 
metric appropriate for an observer with constant accel- 
eration g in Minkowski space. We denote Minkowski 
coordinates by (T, x, y. Z) and we define Rindler co- 
ordinates t, z from T = z sinhgt , Z = z coshgt; this 
mapping only covers the wedge 1.Z 1 2 ITI, Z > 0 (see 
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Fig. 1. Rindler wedge. 

Fig. 1). The Minkowski metric becomes in Rindler 
coordinates gp, = (-2z*,l,l,l) andinthesecoor- 

dinates the equation of motion of the action (24) has 

a solution [4] of the form 

b”CS> = (T,m,a*, 
ZO 

-) * 
cash gr 

(25) 

while, using the Minkowski coordinates, it takes the 
form 

l”(C) = tzotanhg~,m,m,zo). (26) 

If we now expand the action around this solution we 
get Eq. (4) with the term N c$* equal to zero [ 51. 
In the variables 9 = (IT = zo tanh gr, ~1, ~22) we have 
h, = (-1, 1,l) and therefore the equation of mo- 
tion is the massless Klein-Gordon equation in a flat 
space with boundaries in the temporal direction, since 

I?i( 5 ZO. The action governing the field 4 is there- 
fore invariant under the field transformation 4(t) --+ 
4( 5) +a. From the previous discussion, we are lead to 
ask whether this transformation can be interpreted as 
a symmetry operation in the embedding space where 
the (unknown) fundamental theory lives. The inter- 
esting point is that, if we limit ourselves to the Rindler 
wedge defined above, there is no such a symmetry. 
In fact, an infinitesimal transformation C$ --+ #J + a 
generates a translation along the 2 axis in Minkowski 
space since, c@ (5) = %” + 4 r?fi and the normal 3‘ to 
the classical solution (26) points along the Z axis, but 
such transformation is not a symmetry for the Rindler 
wedge. 

However, if we consider the full Minkowski space, 
rather than the Rindler wedge, then the transformation 
4 -+ $+a is associated to the symmetry of translation 

along the Z axis in the embedding space. Thus, in 
analogy with the toy model, Eq. (5)) the field 4 can be 
related to a Goldstone boson if the underlying theory 
lives in the full Minkowski space, i.e. the maximum 
analytical extension of the Rindler wedge. 

This simple observation gives the following sugges- 
tion. In the spirit of black hole complementarity [2] 

one tries to describe a quantum black hole, from the 
point of view of an external, static observer, without 
making any reference to what happens inside the hori- 

zon. The degrees of freedom of the black hole are 
taken to live in a small region near the horizon, the so 
called “stretched horizon” [2,11]. The above discus- 

sion, however, suggests that if we look for a fimdamen- 
tal theory which in the low energy limit (i.e. at sub- 
Plan&an energies) reproduces the effective action for 
quantum black holes, we cannot limit ourselves to the 
region outside the horizon. The fundamental theory, 
in the Schwarzschild case, must live in the maximum 

analytic extension of the Schwarzschild space (or in 
Minkowski space if we work in the Rindler limit). 

Such a theory should be defined without reference 
to any particular observer. It is only when we try to 
derive an effective theory from this fundamental theory 
that a dependence on the observer appears. A static 

observer outside the horizon will obtain his effective 
action integrating over the fundamental variables in 
the region from where he cannot receive signals. A 
free falling observer, instead, can receive signals from 
any region and therefore he cannot define an effective 
action. 

It is this procedure which introduces an observer 
dependence in the low energy theory. It appears there- 
fore that the “tension” between the point of views of 

a static observer and a free falling observer, which 
has been termed “black hole complementarity” [ 21 is 
something which emerges at an effective, rather than 
at a fundamental level. 

As a final remark we observe that the identification 
of C/J with a Goldstone boson has been done in the 
Rindler limit; in the Schwarzschild case, instead, the 
field 4 is not massless, although the effective mass 
term vanishes in the limit of large black hole mass [ 51; 
therefore the idea that the fundamental theory should 
live in the maximal analytical extension and that black 
hole complementarity only emerges at an effective 
level is certainly based on an extrapolation from the 
Rindler limit to the general case. 
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