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Abstract 

We discuss the most general effective Lagrangian obtained from the assumption that the degrees 
of freedom to be quantized, in a black hole, are on the horizon. The effective Lagrangian depends 
only on the induced metric and the extrinsic curvature of the (fluctuating) horizon, and the 
possible operators can be arranged in an expansion in powers of MpI/M, where Mpl is the Planck 
mass and M the black hole mass. We perform a semiclassical expansion of the action with a 
formalism which preserves general covariance explicitly. Quantum fluctuations over the classical 
solutions are described by a single scalar field living in the (2 + 1)-dimensional world-volume 
swept by the horizon, with a given coupling to the background geometry. We discuss the resulting 
field theory and we compute the black hole entropy with our formalism. 

1. Introduction 

Effective Lagrangians are one of  the most powerful tools of  theoretical physics. 

They allow us to investigate physics at large distances or low energies when either the 

fundamental microscopic theory is unknown, as is the case in quantum gravity, or when 

an explicit derivation o f  large distance physics from the underlying fundamental theory is 

technically very difficult, as, for instance, in QCD. The only ingredients that are needed 

in an effective Lagrangian approach are: (1) to know the symmetries of  the underlying 
theory, and to know how they are realized in the vacuum, and (2) to understand what 
are the relevant degrees o f  freedom at low energies. These, in a non-perturbative regime, 

are very different from the fields that appear in the underlying Lagrangian, and are in 
fact collective excitations o f  the fundamental variables. 

An example that immediately comes to mind is the chiral Lagrangian for pions. 
In this case one knows that the relevant degrees of  freedom at low energies are not 
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the fundamental fields, quarks and gluons, but rather the pion fields. Then, in order 
to write down the most general effective Lagrangian, we do not need to know that 

the fundamental theory is QCD, but we only need to know how chiral symmetry is 
realized. Where we pay for our ignorance of short distance physics is in the fact that we 

must introduce phenomenological couplings, like f~.  Then, if the microscopic theory is 

known, we can in principle derive these couplings from it, although this is in general a 

difficult non-perturbative problem. 

The purpose of this paper is to set up a similar formalism for black holes in quantum 

gravity. The first question to be answered is: what are the relevant degrees of freedom 

in terms of which we should write our effective Lagrangian? We answer this question 

with the following 

Basic Postulate: From the point of view of a static observer, in a black hole the 

degrees of  freedom to be quantized are on the horizon. The effective Lagrangian 
is written in terms of the variables (~(~',O-l,O-2) which define the position of the 

quantum, fluctuating, horizon. 

The variables T, o-1,0"2 parametrize the world-volume swept by the horizon. For the 

Schwarzschild black hole, we will usually fix the gauge • = t, o'1 = 0, 0-2 = q~, where t 

is Schwarzschild time and 0, q~ are the polar angles. 

The symmetries to be respected by the effective Lagrangian are: general covariance 

in the embedding spacetime and reparametrization invariance in the world-volume. 

The above postulate, in our opinion, is in the spirit of ideas of 't  Hooft [ 1 ] and of 
Susskind and coworkers [2]. In the framework of classical black holes, a "membrane 
paradigm" was discussed in Ref. [3]. Further investigations along similar lines have 

recently been presented in Refs. [4-8] .  
In order to have a useful effective Lagrangian we need, of course, a small parameter, 

so that it will be possible to limit ourselves to the first few terms in the effective theory. 

Our small parameter, in the case of Schwarzschild black holes, is Mp1/M, where M is 

the black hole mass and Mpl is the Planck mass. We will show that higher dimension 

operators in the effective Lagrangian correspond to higher order terms in an expansion 

in powers of  Mp1/M. 

The paper is organized as follows. In Section 2 we show how to construct the 

most general effective Lagrangian compatible with the basic postulate and with the 
symmetries of  the problem and we write down explicitly the lowest dimension operators. 
In Section 3, using a generally covariant background field method, we expand the 
action around the classical solutions and we write it in terms of a single scalar field 
~b(~',0-1,0-2) living in the word-volume. In Section 4 we compute the black hole 
entropy with this formalism, and we find corrections to the relation S = A/4 .  Section 5 
contains the conclusions. Some technical issues are discussed in Appendix A, while in 
Appendix B we repeat our considerations in the case of the (2 + 1)-dimensional black 

hole. 
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2. The effective Lagrangian 

679 

The fields (~(~:),  sci= (r,0"1,0"2), describe a (2 + 1)-dimensional timelike hyper- 

surface (the world-volume) embedded in (3 + 1)-dimensional spacetime. I f  gu~ is the 

spacetime metric I (to be specified below), the intrinsic properties of  the surface are 

completely characterized by the induced metric hi j, 

hij = glz.c~i(IXoj( ~' , ( 1 ) 

where ai = 0/0s  ci, and world-volume indices take values i = O, 1,2. The extrinsic proper- 

ties of  the surface, instead, are completely characterized by the extrinsic curvature tensor 

Kij, defined by 

Kij = nt~;z, Oi(l~c~jff u . (2) 

Here n a is the outer normal of  the surface x a = ~'a(sc), and the semicolon denotes as 

usual the covariant derivative in the embedding space. The equations defining the normal 

n u are 

gg~n~ Oi~ ~ = O, i = O, 1 ,2  (3 )  

together with the normalization condition gg~ngn ~ = 1. The trace of  the extrinsic cur- 
vature is K = hiJKij = K[ (in the following, world-volume indices are raised or lowered 

with the induced metric.) We recall that Kij is a symmetric tensor (see e.g. Ref. [ 10] ). 

Since hij determines completely the intrinsic properties of  the surface while Kij de- 

termines completely how the surface is embedded in (3 + 1)-dimensional space, the 

effective action can depend only on these quantities, and must respect general covari- 

ance in the embedding spacetime and reparametrization invariance in the world-volume. 

Under parity transformations in the world-volume (e.g. r ~ 7-, oq --* 0-1,0"2 ~ -0"2) 

the outer normal remains unchanged, and therefore K is a real scalar under these 

transformations. In some special case, there is a symmetry transformation under which 

K transform as a pseudoscalar. This happens, for instance, if we consider a planar 

membrane located at z = 0, in 11{ 4. In this case the reflection z ~ - z  is a symmetry, 

and this symmetry forbids the presence of  odd powers of  K in the effective action. 

However, in the general case, these terms will be present. 

Let us group the possible terms that we can write down on the basis of  their dimen- 

sions. For the purpose of  power counting, it is convenient to assign dimensions of  length 

to each of  the ~i .  Then hij is dimensionless and Kij has dimensions of  mass ( if  we use 
units h = c = 1 and we keep G explicit). The most general effective action compatible 

with our symmetries can be written as 

J [ ~''~c(1)0(1)~'~c(2)0(2) ] Serf  = - ' / -  d3~ :v/-~ I - t -Z . . ._¢  a a - ' } - L . ~  a a q- . . . .  ( 4 )  
a a 

1 We use the sign conventions of Misner, Thorne and Wheeler [9]. 
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Here 7- is the membrane tension and has dimensions of  (mass)  3. The first term in 

this expansion is jus t  the standard Dirac membrane action [ 11 ], i.e. the generalization 

to membranes o f  the Nambu-Goto  action for strings and of  the action S = - m  f ds 
for point l ike particles. The operators O~ 1), enumerated by the index a, are all possible 

operators with dimensions of  mass, the operators O12) have dimensions of  (mass)2,  etc. 

Correspondingly,  the phenomenological  parameters C~a n) have dimensions of  ( m a s s ) - n .  

These operators must be constructed with Kij, hij and their derivatives. Because of  

reparametrization invariance the derivatives of  hij will only enter through its Riemann 

tensor Rijkl, which in the (2 + 1)-dimensional  world-volume is fixed by the Ricci 

tensor R O, and through the covariant derivatives of  the Riemann tensor. In the following 

Rijkt, Rii, R will always refer to the Riemann tensor, Ricci tensor and scalar curvature 

of  the world-volume, while script letters R~,~p,,, ~ ,  ~ refer to the embedding space. 

Since Kij has dimensions of  mass while Rij has dimensions of  (mass)  2, at level n = 1 the 

only possible  operator is 0 (1) = K. At  the level n = 2 we have three different operators, 

(2) = R, O/22) = K 2, n(2) = Ki jg  ij . (5)  1 v 3  

However in the vacuum, where 7~,~ = 0, they are not independent because of  the 

Gauss-Codazz i  relation, R = K 2 - KijK ij. At order n = 3 we have 

(3) ---- Rijg i j ,  0 2  (3) -- g 3, O~ 3) lt'ilt'Jk'l 04 (3) = Ki jKqK,  (6)  
1 = .x j .~ l  "~i ' 

where we have el iminated terms related by the Gauss-Codazzi  relation and total deriva- 

tives. At  order n = 4, even i f  we make use of  the Gauss-Codazzi  relation, we have many 

independent terms: 

K 4, K2R, R 2, RoRiJ, RijK~KIJ, RijKiJK, k"Jl,,'ll,,'mlEi j l i " ' i '~ j '~ l  "~m, KK; K)K;, 

DiKjlDiK jl, DiKjlDJK il, DiKDiK, DiKijDJK, DiKijDIK jl , (7)  

where Di is the covariant derivative in the world-volume. Limiting ourselves to order 

n = 2, and considering for the moment a metric g ~  generic, we therefore write 

= --7- f d 3 ~ : V ~  [1 + CoK + CIR + CItK 2 Self 

+CIIIK(]K ij "4- (operators withn/> 3)] . (8) 

This effective action has already been found by Carter and Gregory [ 12] in the context 
of domain walls in flat space. In this case one has the "microscopic" theory, which is 
the theory of a scalar field in a double well potential, and one can compute explicitly 
the effective action for a thin domain wall. The result of the explicit calculation turns 
out to be of the form (8),  in agreement with the general arguments presented above. 2 

2 In the case of Ref. [ 12], however, Co vanishes because the membrane divides the embedding spacetime (in 
this case R 4) into two identical part. Then the reflection about the membrane is a symmetry of the problem. 
Under this transformation K ~ - K  and therefore odd terms are forbidden. This is not anymore the case if 
we consider, for instance, a domain wall located at z = 0 in a finite volume, -L1 ~< z ~< L2 with L1 ~ L2. 
In this case a repetition of the computation of Ref. [ 12] shows that Co # 0. 
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Dimensionally, we have Co = (length), CI, Cn, Cln = (length) 2. As in any effective 

theory, the scale for these coefficients is fixed by the intrinsic cutoff of  the effective 

Lagrangian, i.e. by the length scale over which we have performed a coarse graining. 

For domain walls, in fact, CI, CII, Ciu turn out to be proportional to the square of  the 

thickness of  the wall [ 12]. In our case, as we will discuss in Section 3, the membrane 

is a coarse graining over a region of  thickness O(L2pi/Rs) or at most O(Lp0,  where Lp1 

is the Pla.ack length and Rs = 2M is the Schwarzschild radius. If  superstrings are the 

fundamental theory we should consider the string length rather then Lpl. The two scales 

differ by a numerical factor which is not very relevant for us at the moment. Thus, Co is 

expected to be O(L~,l/Rs) or at most O(Lp1), CI, Cu, Cni are expected to be O(L41/R2 s) 
or at most O(L~I), etc. 

The length scale characterizing Kij, Rij is instead the curvature radius of  the embed- 

ding spacetime. Thus, for dimensional reasons, in the Schwarzschild metric 

Kij=O(R--~) , Rij=O(-~s ) . (9) 

Therefore the expansion in higher dimension operators in the effective Lagrangian is an 

expansion in powers o f  (Lpl/Rs) n, with n = 2 or at least n = 1. This is nothing but the 

thin wall approximation used for domain walls. 

A final ingredient for setting up our formalism is the choice of  the background metric 

g~,,. In the limit of  infinite black hole mass any backreaction on the classical metric 

due to the motion of  the membrane is clearly negligible, and we can simply use the 

Schwarzschild metric (or the Rindler metric, depending on the case in which we are 

interested.) Note that, since the basic postulate makes explicit reference to a static 

observer outside the horizon, the Schwarzschild metric must necessarily be expressed 

in Schwarzschild coordinates. More in general, the metric g~,, should also include the 

backreaction of  the membrane, and this will be a source of  finite mass corrections. 

Note that on the Schwarzschild and on the Rindler metric the three operators appearing 

at order n = 2 are not independent, because of  the Gauss-Codazzi relation, and therefore 

we can limit ourselves to two of  them. 

3. The semiclassicai expansion 

The structure of  the effective action can be greatly clarified by expanding it around 

the classical solution of  the equations of  motion. In this section and in Section 4 we 

limit ourselves to the leading term, i.e. to the Dirac membrane action. 

The equations of  motion obtained by variation of  the Dirac membrane action can be 

written in terms of  the trace of  the extrinsic curvature as K = 0. In Rindler space we 

use coordinates x ~ = (t,x,y,z) and we fix the gauge ~" = t, oq = x,o-2 = y. From 
now on we use Planck units, setting G = 1. The metric is gz~ -- d i a g ( - g 2 z  2, 1, 1, 1). 

The Rindler metric is the limit of  the Schwarzschild metric if we send M -~ c~, while 
remaining at a fixed, limited, distance from the horizon, if g is identified with l / ( 4 M ) .  
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I f  we look for planar solutions of  the form z = z ( r ) ,  the equation of motion K = 0 
takes the form [ 5 ] 

ZZ" -- 2Z 2 + g2z2 = 0 ,  (10) 

and has the solution 

z0 
zd ( r )  = cosh gr  " ( 11 ) 

For Schwarzschild black holes, we use coordinates x ~' = (t,  r, 0, ~b) and 

guy = diag( - a ,  a -1 , r 2, r 2 sin 2 0) ,  

with a = 1 - ( 2 M ) / r .  In order to facilitate the comparison with the Rindler limit, we 

use the notation g = 1 / ( 4 M )  and we define z = otl/2/g. The  equation of motion of  a 

spherical membrane, written in terms of  z ( r ) ,  is 

ZZ" -- 2~ 2 + g2z2( 1 -4- 3g2z 2) ( 1 -- gZz2)3 = 0.  (12) 

This equation can be integrated exactly in terms of  the elliptic function of  the third 

kind and the explicit expression is quite complicated. However, one can observe that, if 
- - '  the solution approaches the horizon and therefore gz  ( r )  is small. Then the 

equation can be solved perturbatively; the non-linear terms in Eq. (12) can be neglected 

and the solution reduces to Eq. (11) .  

Now we can expand the action considering fluctuations around a classical solution 
of the equations of  motion. The expansion can be performed in a way which preserves 

general covariance explicitly. The technique is basically the same which was used in the 

classical works on the background field method for the non-linear o--model [ 13], and 

in the case of  domain walls it has been discussed in Refs. [ 14,15]. 

One starts with the observation [14] that fluctuations along the surface are "pure 
gauge" and can be reabsorbed with a reparametrization. The only physical quantum 
fluctuations are the ones perpendicular to the surface, and can be parametrized by a 
single scalar field ~b(s c) living in the world-volume. Let us denote by h~'(~ :) the normal 
to the classical solution ~u(sc). In a generic coordinate system, for any given value of 

we consider the (spacelike) geodesic j' ~'geod(~ b, 2, h) parametrized by an affine parameter 

~b, which at ~b = 0 goes through the point (~', with a tangent at ~b = 0 equal to h u. Then 
one writes [ 13] 

( u ( ( ) = ( u  (~b(~ ¢) ( ( ( ) , h ( ( ) )  (13) geod ' 

Expanding the geodesic equation in powers of  q~ one gets 

2 
(~, ~ + 4m~, 4 '~ - i ,  - p - ~  4 ~3 ~a--~f' -~  -~, ~ ~ - ,  . . . .  = -- -- F~pFao. F~,rFap)n n n 2 F~'°n n . . . .  ~ ' - (  ~ d r  p o -  - -  - -  -4- 

(14) 

where the overbar denotes the value at 2. In order to expand the action in powers of  
~b it is extremely convenient to use Riemann normal coordinates. In these coordinates 
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the geodesics are straight lines, which means that in these coordinates Pp#~ -- 0 and all 
the derivatives 0~ . . .  O~,F~a vanish when evaluated at ( and fully symmetrized in the 
indices (~'1 . . . . .  ~',,p,o-). Then Eq. (14) becomes 

(~z(~:) = ~ ( ~ )  -k ~b(~:)h~(~:) • (15) 

The expansion for O~i(/z can be evaluated by taking the first derivative of Eq. (14), and 
using the fact that in Riemann normal coordinates 

O~Fp~= -~(Tzl -upo.,, + 7 ~ )  , (16) 

with similar relations for higher order derivatives [ 16]. Then at quadratic order one has 

(b 2 _ 
~i~l -t - Oi~l z .qt_ tgi( q~hl -~ ) q_ T T'~l~po.ojlph°'~i~a + O ( t ~ 3 )  . ( 1 7 )  

At the same time, in Riemann normal coordinates the metric g ~  has an expansion in 
terms of the Riemann tensor and its covariant derivatives which at quadratic order reads 

(see e.g. Ref. [ 16]), 

guy( f )  = guu - 7~izpv,~hPh ~r Jr" O ( t ~ 3 )  . (18) 

Using Eqs. (17) and (18) we can compute the expansion of the induced metric h 0 = 
gu, ( ( )a i fuOj("  and therefore of v/-Zh. The term linear in ~b is simply ~bR and vanishes 
because of the equation of motion h" = 0, and at quadratic order one gets (after 
reabsorbing a factor 7 "-1/2 into the definition of 4)) 

Se f f=Sc , -½ f d3~x/~[Oickoidp-(R{gi j+7~u~huh")dp2],  (19) 

where Scl = - 7 -  f d3sC(-tt) 1/2, and the indices are raised and lowered with h 0. Eq. (19) 
agrees with the result found by Carter with more geometrical methods [ 17]. 

Eq. (19) is the action of a scalar field in curved space in 2+1 dimensions. For a 

planar membrane in Rindler space, ~u = (z, x, y, ze] ( r ) )  with Zcl given in Eq. (11). 
Then 

• 2 1, 1) = diag( g2z~ 1 1) (20) h/j = diag( -g2z2 + zd, cosh 4 g--------~, , 

and R{Rj = 0, Ru~ = 0. Thus Eq. (19) describes a massless scalar field living in a 
(2 + 1 )-dimensional space with 

ds 2= g2z~ dr z + d x  2 + d y  2. (21) 
cosh 4 g~- 

Introducing ~ = zo tanh gT-, it becomes a fiat metric with boundaries in the time direction, 
since -z0  < ~ < zo. The propagator of the 4) field in this background is discussed in 
Appendix A. 
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Let us consider now the Schwarzschild background. The membrane represents a coarse 

graining over the region of  space where the local Hawking temperature reaches the scale 

where unknown physics sets in. This certainly happens at least at the Planck mass, or 

at T = O(1)  in Planck units. From the expression of  the local temperature near the 

horizon, 

r ~ a  

r = 8 Mv/Z (22) 

we see that T ~> O(1)  when r -  2M < O ( l / M ) .  Thus, this is the region over which we 

have to perform a coarse graining, if we do not want to be faced with physics beyond the 

Planck mass. This corresponds to considering membranes whose area is A = 4~rR2s + 6A, 

with 6A ~ 47rL~l. Note that, instead, when r - 2M is of  the order of  a few Planck 

lengths, the local Hawking temperature is ,-~ M -1/2 and it is still small for black holes 

with large M. 

Then, let us study the theory obtained by expanding around a spherical solution of  

the equations of  motion with initial conditions r (0)  = 2M + 8r, ?(0)  = 0. The minimum 

value of  t3r in which we are interested is t3r = O ( 1 / M ) ,  since at this scale we enter 

the super-Planckian region. The largest value of  interest are instead t~r = O(1) ,  since 

this is the scale where quantum effects on the horizon start to become important [ 18]. 

In terms of  the variable z = al/2/g,  using the notation z0 = z (z  = 0), this gives z0 
between O( 1 ) and O ( M  1/2) and therefore gzo between O ( I / M )  and O(l/M1~2).  Since 

g z ( r )  <<. gzo << 1, the equation of  motion for a spherical membrane, Eq. (12),  can be 

solved perturbatively in gzo and to lowest order it reduces to the Rindler equation of  

motion. Then, to lowest order in gz0, the interval in the (2 + 1)-dimensional world- 

volume can be written as 

g2z  
ds 2 ~ dr  2 + R2s(dO 2 + sin 2 0 d~b 2) . (23) 

- cosh 4 gT 

As r ~ c~ any deviation of  a classical solution from spherical symmetry is washed 

out exponentially [5] ,  so the result obtained by expanding around a non-spherical 

background are qualitatively similar. 

The main difference with the Rindler case is that now the mass term in the Lagrangian, 

Eq. (19),  is non-zero. Strictly speaking, the quadratic term is not exactly a mass term, 
since it depends on ~-. However, it has a finite limit for ~- ~ ±c~  (which is independent 

of  whether we take an exactly spherical configuration or not) which, to lowest order in 
olo = (gZO) 2, is 

- j  -i 6aO 
R~ " (24) 

On the Schwarzschild metric ~ , ,  = 0 and therefore it does not contribute to the mass 
term. Thus, similarly to what happens for domain walls in flat space [ 14], the mass term 
has a tachyonic sign. Let us consider the evolution of  a generic perturbation ~b(~-, 0, ~b). 
We expand the perturbation in spherical harmonics, 



A. Buonanno et al./Nuclear Physics B 451 (1995) 677-695 685 

cb(r, O, ~b) = ~ ~bt(r)Ytm(O, ~ )  (25) 
lm 

and we define 

m2 = 6a0 
R2 s . (26) 

In the range of values of r (0)  which is relevant for us, m 2 varies between O ( 1 / M  4) 

and O( l /M3) .  The equation of motion of the perturbation in the background given by 
Eq. (23) is 

[32  1 ( /+  1)] 
~ r  2 - m 2 + R2 (b t (r )  = 0,  (27) 

with ~ = zo tanh gr.  In the large M limit only the mode with 1 = 0 is unstable, and 
solving the equation of motion for the fluctuations at quadratic order, we get 

~bo ( r ) = (bo (0 )  e ±m~ = 4~o (0) exp{+mz0 tanh g r  } . (28) 

As r --+ oo the unstable mode grows, but only increases up to the finite value 
4~o(0) exp{mz0}. In the range of values of z0 which is more interesting for us, mz0 
varies between O( 1/M 2) and O(1/M)  and therefore the fluctuations only increase up 
to a small value. 

We have computed higher order terms in the potential part of the Lagrangian, i.e. in 
the part which does not involve derivatives of ~b. Writing 

V(~b) = --lm2~b2 + V3~ 3 + V4~ 4 + . . .  (29) 

we find, for a generic background, 

l ~ p ~ , ~  ~/,,, ! rci P j  fct ~hW, o'hr~?o..,. , (30) 
V 3  = 3 . . . . . .  t z P  vtr== "~- 3 * ~ j = ~ l  *~ i  - -  

1 ~p~cr~rK.v~Jz lhahBh~,~aT=~p,~raT=~rp r 
V 4  = - f~  . . . . . . . .  I x "  ~ p v e r ; r  - -  

:2~lxhv~tPho'7~tzv;po " + 1 -Iz-v - 2 1 ~,l.~,v.'l~ ~ i  ~ j  -~(n n Tgf,v) + ~ . . . . . .  ~,v,U,~i,  

where K ~  = (a~ + n~,n~')n~;,, is the extrinsic curvature in four-dimensional notation. 
Evaluating these quantities on the Schwarzschild metric, taking the limit r ---+ 4-0o and 
limiting ourselves to the leading term in ~0 we get 

all2 
o (32) 

v3 --~ R3 s , 

1 
v4--+ 8R~s. (33) 

Thus, also the cubic and quartic term give a negative contribution to the potential, which 
(without reabsorbing T into $)  can be written as 
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V(dp) = -a~7" [3~o 2 + ~o 3 + 1~04 + . . . ]  , (34) 

def ¢~ 
~P - I /2D " (35) 

et 0 a S  

The fact that the quadratic term in the potential have a negative sign shows that, at the 
quantum level, ~b = 0 is not the true ground state of  the theory. The problem is due to 

the spherical mode, l = 0, since for all higher modes the term l ( l  + 1)/R2s dominates 
over m 2, if  M is large. 

The spherical mode, however, has been treated exactly, i.e. without performing a 

semiclassical expansion, in Ref. [5] ,  where it has been obtained the Schr6dinger equa- 

tion and therefore the wave function of  a spherical membrane. The resulting distribution 

probability of  the radial mode is peaked at a non-zero value of  r - Rs, which depends 

also on the membrane tension. 

The fact that in the semiclassical expansion the spherical mode is unstable there- 

fore reflects an intrinsic limitation of  the semiclassical approximation. Another, related, 

limitation is due to the fact that the solution (c~ of  the classical equation of  motion 

approaches asymptotically the horizon. However, the variables ( u  emerge only after 

performing a coarse graining over the appropriate scale of  distances, and therefore in 

their definition is implicit an uncertainty of  the order of  this length scale. Therefore, it 

is not legitimate to extrapolate the solution of  the equation of  motion down to distances 

very close to the horizon. When the classical solution (c~ formally reaches a value of  

r = Rs + O(L~,j/Rs), it would be physically more sensible to use, instead of  rcl(r) ,  
a membrane essentially static at an average value of  r = Rs + aL21/Rs, with a some 

numerical constant. This approach was recently discussed by Lousto and one of  the 

authors [ 19]. In this case one gets again a Klein-Gordon equation for the fluctuations, 
1/2 

in terms of  a variable ~ which now is defined as a M 7", where aM is the value of  ot 

at the average membrane location. Therefore ~ is just the local time, and the energy 

conjugate to it is the local energy. 

4. Black hole entropy 

4.1. The entropy of the fb field 

In our approach, the horizon is described by a scalar field living in the horizon world- 
volume, and the microscopic degrees of  freedom of the black hole (or its "quantum 

hair") are the modes of  this field. Their contribution to the entropy can be estimated as 

follows. 
Let us consider first the Rindler metric. In this case the field ~b is massless, and 

therefore we have to compute the entropy of  a massless boson gas in 2+1 dimensions. 
Let us call A = L 2 the area of  the horizon. For Rindler space this should be eventually 

sent to infinity, so what matters is the entropy per unit area. The modes of  the field ~b 
are labeled by k = (kx, ky)  and the free energy F of  a (2 + 1)-dimensional massless 
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boson gas taken at the inverse temperature [3 is 

/3F = Z l o g (  1 - e -ae)  , (36) 
k 

with E = [kl. For large L the summation over modes can be replaced by an integration, 
using 

Z = d2k" (37) 
k 

The integral over k converges both at small and at large values of  k. However, physically 

it does not make much sense to include in the integral over d2k modes of  the $ field 
with arbitrarily high energy. Then we get for the free energy and the entropy 

c(a) 
F -  - - A ,  

2~/33 

OF) _ 3c(A)  
S=--  --~ a 2 - - ~  a ,  

(38) 

(39) 

where 

A 

c(A)  = - / dx x log( 1 - e -x)  ( 4 0 )  

0 

and A =/3Emax. I f  A --* cx~ then c(A)  ~ ( ( 3 )  ~ 1.2, where ( ( x )  is the Riemann zeta 
function. With a finite cutoff we get a smaller value. For instance, c( 1 ) ~ 0.4. 

The same result is obtained for a Schwarzschild black hole in the large mass limit, In 

fact, for Schwarzschild black holes in the large M limit we still have massless bosons, 

since the (tachyonic) mass term is ~ M -2. The modes are labelled by the angular 
momentum quantum numbers (l ,  m) ,  and 

(2O 

/3F = Z ( 2 1  + 1) log (1 - e -pe ' )  , (41) 
l=0 

x/l(l  + 1) 
El = (42) 

Rs 

For large Rs the spacing between the levels is small and we can approximate the sum 

over 1 with an integral. After an integration by parts we get 

F = -1--~---fdl ( 2 / +  1 ) ~ 1 )  (43) 
J ( ~ ' ~  - 1 2Rs o exp \ R,~ ] 

The integral is dominated by l N Rs//3; in our case 13 ,-~ 1 (see below) and therefore 
Rs//3 >> 1. Then we can approximate l(l  + 1) ~- l 2 and we find that the sum over 
modes is the same as in the Rindler case, with now A = 4zrR]. 
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The value of fl which enters in the above expressions is the value of the local inverse 
temperature, since this is the temperature felt by the membrane. By definition, the 

membrane is a coarse graining over the region where new physics sets in. As discussed 
in Section 3, the distances where the local Hawking temperature becomes of order one 
are r = Rs + O(L~I/Rs). Then, let us consider a membrane which represents a coarse 

graining over the region 

L 2 
r <<. Rs + a ~P1 , (44) 

Rs 

with a a numerical constant to be discussed below. The corresponding local inverse 

temperature is fl ~ 4~-x/~. Then, for the entropy we get 

A [3c(A)'~ 1 
(45) 

This result is very similar to the result obtained by 't Hooft [ 1 ] and by Frolov and 

Novikov [20], with approaches that, at first sight, are very different from ours. The 

relation with their result and with the total black hole entropy is discussed in the next 

subsection. 

4.2. The total entropy 

While the computation of the entropy of the ~b field is technically straightforward, its 
interpretation and its relation to the total black hole entropy is not immediate. A number 

of authors, see e.g. [1,20,21], have presented computations in which some form of 
mode counting is performed. In all these computations the resulting entropy diverges 

unless one introduces a cutoff near the horizon, like our constant a introduced in the 
previous subsection, and the divergence is ,~ 1/a. One can fix the cutoff by requiting 

that it gives just the standard value for the proportionality constant, S = A/4. 
From the point of view of the effective Lagrangian approach, however, a different 

interpretation seems more natural. In the membrane approach, the result S = A/4 can 

be obtained from a "zeroth order" term [22], and the contribution of the ~b field is 

more naturally interpreted as a correction to it. The reasoning presented in Ref. [22] 

is as follows. We want to define a path integral over the quantum field g ~  in the 
presence of a black hole (or, more generally, of a horizon), from the point of view 
of an external, static observer. In intuitive terms, we would like to limit ourselves 
to integration variables which live outside the horizon. However, very close to the 
horizon we have to face the problem that we are entering the region of super-Planckian 
temperatures. To cope with this difficulty we divide the space outside the black hole 
into the region r < Rs + a(L~l/Rs), and the region/2 defined by r >~ Rs + a(L2pl/Rs). 
The partition function in the region /2 is simply 

Zgra v = / 79g~ e iSg~v , (46) 

/2 
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where Sgrav is the standard Einstein-Hilbert action supplemented by the boundary term 

on a/2. However, at leading order in the large M expansion we can neglect the quan- 

tum fluctuations of the metric g ~  in the region /2, and we simply use the classical 
Schwarzschild metric. This also implies that, at this order, we do not have to worry 

about the measure of integration over g ~ ,  and we write the Euclidean partition function 
of the region 12 as 

Z g r a  v ~'~ e -sg~a" [g~,=gd. (47) 

On the classical metric g ~ ,  the volume term in Sgrav is zero and only the boundary term 

survives. In the region r < Rs + aL~l/Rs we use instead our effective action. If  we call 
Zeff the partition function of the ~b field, the total partition function is 

Z = ZgravZeff. (48) 

If  now we fix the local inverse temperature/3 at the standard value, we can compute 
the free energy F from Z = e -flF, and therefore the entropy S. As shown in Ref. [22], 

the boundary term in the gravitational action gives just the result S = A/4.  The com- 

putation is formally the same as the well-known computation of Gibbons and Hawking 

in Euclidean quantum gravity [23]. The only difference is that we are evaluating the 
boundary term on the surface r = Rs + aL21/Rs while in Ref. [23] it is computed on 

a surface at infinity. However, as shown by York [24], if one computes the derivatives 
of the thermodynamic potentials with respect to the local inverse temperature/3, rather 
than with respect to the inverse of the temperature at infinity, the result for the entropy 

is independent of  the position of the surface used. This explains why we obtain the 

same result as the one in Ref. [23]. 

The contribution to the entropy which comes from Zeff is instead what we have 
computed in the previous subsection. Therefore we find, for the black hole entropy Sbh 

Sbh = ¼(1 + y )  A. (49) 

It remains to estimate the order of magnitude of a and therefore of 9/. In our approach a 

is not a cutoff put in by hand, and to be removed with a renormalization procedure, but 
it is a number fixed by physics, and it depends on the scale at which new physics sets 

in. If  new physics sets in at the Planck scale, the constant a is, parametrically, of order 
one. Thus ~ is not parametrically small compared to one, even if, for typical values of  

a and A, it might be numerically small. 

If  however superstrings are the fundamental theory, new physics sets in at the string 

scale. If  we denote by As the string length, we start to perform the coarse graining when 
the local temperature T reaches a value ,-~ l /As, or/3 ,-~ As. Since/3 is related to a by 
/3 "~ 4¢rx/-d, this gives (writing explicitly also the Planck length Lpl), 

a = 0 \L~, I j  . (50) 

(Note that in heterotic string theory this means a -,~ aG~ T, since LpI/As = aGUT/4.) 
Thus ~ ,,~ 1/a is a parametrically small quantity, and we get 
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S =  1 + O ( - ~ 2 )  . (51) 

The interpretation of  the contribution of the ~ field as a parametrically small correction 

to the entropy also allow us to see in a different light the results of  Refs. [ 1,20], where 
it is computed the contribution of  external matter fields to the entropy. I f  matter fields 

are present, we would write for the Euclidean partition function Z = ZgravZeffZ¢, 
where Zo is the partition function of  the matter fields restricted to the region ~.  Their 

contribution to the entropy has been computed by 't Hooft  using a brick wall regulator, 

and the horizon contribution is ¼A(Z/(360"rra)), where we have written the 't Hooft  

regulator h as h = a/Rs ,  Z is the number of  fields, and we have used the standard 

value of  the temperature. Note that this is identical, even in the numerical constant, to 

the result found by Frolov and Novikov [20] with a different method. If, instead of 

choosing a = 1 / (360rr )  in order to reproduce the black hole entropy, we rather say that 
a is fixed by the scale where new physics sets in, and we identify this scale with ,~s, 
then this contribution is just another parametrically small correction to the black hole 

entropy. 
This interpretation allows us to get rid of  some inconsistencies which are inherent in 

the attempt to identify the contribution of  matter fields with the total black hole entropy. 

In particular the horizon contribution to the internal energy becomes parametrically 

smaller than M, while if one chooses a = 1/(3607r) one gets [1] U = ( 3 / 8 ) M ,  which 
is a sizable fraction of  the total black hole mass. The same happens of the specific 

heat, which with the choice a = 1/(3607r) is positive and even larger, in module, 

than the black hole value -87 rM 2 [25].  Another hint in favor of  this interpretation 

comes from the study of the brick wall model for a black hole with charge Q 4: 0. 
With a straightforward repetition of  ' t  Hooft  computation for the case Q v~ 0 we have 
found for the entropy of  near-extremal black holes S ~ ( A / a ) (  1 - (Q2/M2))1/2.  I f  we 

want to fix h = a i R s  in such a way as to obtain the result S = A / 4  we must chose 
h ~ (1 - (Q2/M2))1 /2 /Rs ,  which is quite inconsistent, since for near-extremal black 

hole it is well within the region of  super-Planckian temperatures. If, on the contrary, we 

chose h as the scale at which string physics comes in, we simply obtain a correction to 
the A / 4  result which is suppressed both by the small parameter (Lp1/as) 2 and by the 
factor ( 1 - (Q2/M2))1/2.  

5. Conclusions 

Following the pioneering work of  ' t  Hooft  [ 1 ], a number of  authors have recently 
considered the possibility that, in spite of  the fact that in classical general relativity the 
horizon merely represents a coordinate singularity, at the quantum level it is the place 
where the quantum degrees of  freedom of black holes should be found, at least from 

the point of  view of  a static observer. 
In this approach, when we are sufficiently close to the horizon we are entering a region 

of  very high temperatures (because of  the blue-shift factor in the Hawking temperature),  
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and unknown physics sets in. Thus, to describe properly the region close to the horizon 

is a very difficult and essentially non-perturbative problem. On the other hand, it is a 
very important problem, which might be the key to understanding the statistical origin 
of black hole entropy and the information loss paradox. 

In order to cope with our ignorance of short distance physics we have proposed an 

effective Lagrangian approach. In this paper we have investigated the general formalism 

which follows from the 'Basic Postulate' given in the Introduction. We have shown how 
to construct the most general effective action, and we have found that the various terms 

are organized as an expansion in powers of M m / M .  We have discussed a semiclassical 

expansion of the action which is in a sense complementary to the treatment given in 
Ref. [5]. In Ref. [5] the field theory resulting from the membrane action was truncated 

to the radial mode, and the resulting quantum mechanical problem was discussed exactly, 

i.e. without performing a semiclassical expansion. In this paper, instead, we have retained 
all modes of the membrane, but we have used a semiclassical approximation. 

Probably the main message of this paper is that at this effective Lagrangian level 

the region very close to the horizon can be studied by rather standard field theoretical 

methods. The fluctuations of the horizon are described by a single scalar field living 
in a (2 + 1)-dimensional curved space, governed by an action which is completely 

fixed, apart from a number of phenomenological constants, like the membrane tension, 

in which it is summarized all our ignorance of short distance physics. 
With this approach it is possible to compute the black hole entropy, and we find the 

result S = A / 4  plus corrections which depend on the scale at which new physics sets in. 
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Appendix A. The propagator in Rindler space 

Let us compute the propagator D(sC, s ¢') of the field ~b(() in the background given 

by Eq. (21). In terms of the variable ~ = z0tanhgr, Eq. (21) becomes simply ds 2 = 

- d ~  "2 + dx 2 + dy 2. Since ~ = ±z0 corresponds to ~- = q-cx~, we impose the boundary 

conditions D(~ = +z0, f ' ; x  - x ' )  = D(~,~ '  = +zo;x  - x ' )  = 0, where we have used 
the notation x = ( x , y ) .  Thus we are dealing with a massless propagator with time 
boundary conditions, in flat space. We compute it following Ref. [26], with some 
simple modifications due to the fact that in our case the boundaries are in Minkowski, 
rather than in Euclidean space. It is convenient to consider the Green function D(~-, 7"; k) 
obtained by performing the Fourier transform only with respect to the spatial coordinates 
x. A Green function with the e prescription appropriate for the Feynman propagator, 
but which does not obey the boundary conditions, is 
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1 ~-~ e-i~°"(e-e') -----ie ( 7 r n )  
O~°)(e,~/; k) = ~-~z0 n=_o~ to~--_ k-- 7 (.On = . (m.l) 

The Green function which vanishes at the time boundaries is then 

De(e ,  e') = D~°) ( e, e') - O~°) ( e' z°)D~F°) ( z°' ~') (A.2) 
D~F °) (Z0, Z0) 

Using D~ °) (e, zo) = D~ °) (~, -z0) we see that D F ( e ,  ± z o )  = DF(+ZO,  e') = 0. The sum 
in Eq. (A.1) can be performed explicitly and, expressing the result in terms of r,~ J, we 
get 

1 
De(z, rl; k) = 

Ikl sin(2zolkl) 

× [O(z  - r ' )  sin (zolkl tanh(g~-) - zolkl) sin (z01kl tanh(gr') + z01kl) 
+ ( r  ~ r ' ) ]  . (A.3) 

Here Ikl actually is Ikt + ie.  This result can also be directly obtained from Eq. (B.2) 
of Ref. [26], where the boundary conditions are in Euclidean space, with the formal 
replacement k --~ ik .  

The field theory obtained by expanding around a generic, non-planar, solution of the 
equations of motion is qualitatively similar to that obtained by expanding about a planar 
solution; in fact, it is easy to check from the equations of motion that, for an arbi- 
trary solution, any "bump" is smoothed out exponentially with r. Thus, asymptotically 
zcl --~ z o / c o s h ( g r ) ,  independently of the initial conditions, and therefore the background 
metric is still given, asymptotically, by Eq. (21). 

Appendix B. The black hole in 2+1 dimensions 

It might be interesting to examine our formalism also for the (2+1)-dimensional black 
hole solution discovered by Ba~ados, Teitelboim and Zanelli (BTZ) [27]. In spite of 
the many differences between three-dimensional and four-dimensional gravity, the BTZ 
black hole has remarkable similarities with its four-dimensional analog, and a number of 
investigations of its geometrical and thermodynamical properties have appeared recently, 
see e.g. [27-29,6] and references therein. Consider the theory defined by the action 

~gr~v- 16,~C d3xv~[ra+21-2] +8, (a.1) 

where l is related to the cosmological constant A by A = -1-2 < 0 and B is the 
boundary term. Writing the metric in the ADM form (and setting to zero the shift 
functions N i ) ,  ds  2 = N 2 d t  2 - g i j d x i d x  j ,  the boundary term is given by 

B - 87rG 
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where (2)g = detgij. Hereafter, following Ref. [27], we will use units G = 1/8. As 

before, the embedding spacetime curvature is denoted by R while R will be used 

for the world-sheet curvature. The BTZ black hole, limiting ourselves to zero angular 
momentum, is given by 

r 2 _ r 2 
ds 2 = -o td t  2 + ot-l dr  2 + rZdO 2 , a = i------T---, (B.3) 

where r+ = lx/-M. In this case the collective coordinates (~  depend on two variables 

~ i  = ( 7 " , 0 " ) .  Instead of a membrane, the horizon is now described by a string, with 

induced metric h 0 and extrinsic curvature Kij. Embedding space indices now take 
values/z = 0, I, 2 and world-sheet indices take values i = 0, 1. The effective action can 
be written using the same arguments as in Section 2. However, now we have some 

simplifications; at order n = 2 the term proportional to the world-sheet curvature does 
not contributes since ( - h ) I / 2 R  is a total derivative. At this order, therefore, the most 

general effective action is 

S= - T  i d'~vi'L--h [1 + CoK + CIK2 + CHKIKj] . (B.4) 

On ~ e  BTZ metric the terms K 2 and KiKj  are not independent and we can restrict 

ou(s~ves to one of them. When Co = 0 this is the action for the rigid string discussed 
by Polyakov [30]. The equation of motion at order n = 0 is again K = 0. Defining 
y = ai/21g and g = r+/ l  2 = x /Ml l ,  the equation of motion K = 0 for a circular string 

reads 

2g 2 4 y2)2 
y y  _ 2~2 + g2y2 + __vy _ 2/2___~y 2 = 0. (B.5) 

This equation can be integrated exactly. With the initial conditions y(0)  = al, ~ (0)  = O, 
where a is a dimensionless parameter, the exact solution is 

1 /l+a 2 ( l + a  2, ~ ' ~  
g T " = a V l + 2 a  2 / /  ~ k , ~  W l ~ a  2 )  " (B.6) 

Here/ /(~b,  cr 2, k) is the elliptic integral of the third kind, and 

a 2 _ ( y / l )  2 
sin2 ~ - a 2 + 1 

However, as in the (3 + 1)-dimensional case, it is more convenient to consider the 

Rindler limit rather than working with the exact solution. Let us examine the Rindler 
limit for the BTZ black hole. In terms of y = al/2/g,  and of x defined by x = r+O, the 

BTZ metric can be written as 

( y2"~ -1 ( y 2 )  
ds 2 = - g 2 y z d t 2  + 1 +  le } dy  2 + 1 + - ~  dx  2. (B.7) 

If  we are sufficiently close to the horizon, y << l, we get a (2 + 1 )-dimensional Rindler 
metric, ds 2 = -g2yZd t2+ dx2+ dy 2. It is interesting to observe that, since l = vl-MIg, the 
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large l l imit  can be obtained by taking the black hole mass M large, with g held fixed 

and arbitrary, while in 3 + 1 dimensions the Rindler l imit  necessarily implies g ~ 0. In 

the 2 ÷ 1 Rindler  metric the equation of  motion of  the string reads yy  - 292 + g2y2 = O, 

which is the same as in the (3 + 1)-dimensional  case. 

The semiclassical expansion can be performed in analogy with the ( 3 +  1 )-dimensional  

case, and the effective action, at quadratic order, is formally identical to Eq. (19) ,  with 

d3~ c ~ d2~. The computation of  the entropy of  the ~b field proceeds along the lines of  

Section 4 and gives a result proport ional  to the perimeter of  the horizon. The zeroth 

order term, instead, has already been computed in Ref. [ 31 ] : we define the local inverse 

temperature 13 = f l ~ a  1/2 and we compute the boundary term on a spherical surface 

with a generic radius r. Considering M as a function o f / 3  and r defined implici t ly by 

fl = f l ~ a  1/2, we find B = B ( f l ,  r ) ,  and the entropy is given by 

r 

A simple computation gives 

r 2 [ ( / ~ ) 2 ]  1/2 

B = - 2 f l o o ~  --- --4~-r 1 ÷ ~ -~  , (B.9)  

and therefore 

S = 4err+ = 2 x per imeter ,  (B.10) 

in agreement with Ref. [27] .  
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