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Abstract 

By using the results of a high-statistics (O(107) measurements) Monte Carlo simulation we 
test several predictions of perturbation theory on the O(n) non-linear o'-model in 2 dimensions. 
We study the 0 (3 )  and 0 (8 )  models on large enough lattices to have a good control on finite-size 
effects. The magnetic susceptibility and three different definitions of the correlation length are 
measured. We check our results with large-n expansions as well as with standard formulae for 
asymptotic freedom up to 4 loops in the standard and effective schemes. For this purpose the 
weak coupling expansions of the energy up to 4 loops for the standard action and up to 3 loops 
for the Symanzik action are calculated. For the 0 (3 )  model we have used two different effective 
schemes and checked that they lead to compatible results. A great improvement in the results is 
obtained by using the effective scheme based on the energy at 3 and 4 loops. We find that the 
0 (8 )  model follows very nicely (within few per mille) the perturbative predictions. For the 0 (3 )  
model an acceptable agreement (within few per cent) is found. (~) 1997 Elsevier Science B.V. 

PACS: 05.50.+q; 12,38.Bx; 11.15.Pg 
Keywords: Monte Carlo; Symanzik action; Cluster algorithm; Higher order in perturbation theory; 
Perturbation and 1/n expansion 

1. Introduction 

According to perturbation theory (PT) ,  the O ( n )  non-linear o--model in 2 dimensions 

for n >t 3 resembles Yang-Mil l s  theories in 4 dimensions. Both are asymptotical ly free 

[ 1,2] and present a spontaneous generation of  mass. Moreover for n = 3 the model  has 

a non-trivial  topological  content [ 3] .  Consequently these models  are considered as good 

toy models  for testing methods and solutions in 4-dimensional Yang-Mil l s  theories. In 

condensed matter physics these models  have applications in the study of  ferromagnetic 

systems. 

0550-3213/97/$17.00 (~) 1997 Elsevier Science B.V. All rights reserved. 
PH S0550-3213 (97) 00350-7 
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There is an extensive literature devoted to investigate the validity of PT in these 

models on the lattice and in particular the onset of scaling (see, e.g., Refs. [4-8] ). In 

[4,5] the 0 ( 3 )  model was analyzed by using improved actions. The obtained results 
still differ from the exact calculated mass gap [9,10] by ,-~ 15%. In [5] the authors 

made use of  the perturbative fl function up to 3 loops [ 11]. In [6,7] faster updating 

algorithms were used. The mass gap for the 0 ( 3 )  model was calculated in [6] by using 

the standard action and an overrelaxed algorithm. Up to a correlation length ,-, 300 
(in units of  lattice spacings) it showed a deviation from the exact result [9] of about 

20%. The 0 ( 4 )  and 0 ( 8 )  models with standard action were studied in [7] by using 
the cluster algorithm [ 12]. The deviation from the exact result for the 0 ( 8 )  model at 

correlation lengths ,-~ 30 was a few per cent. In [8] an analysis of the performance of 
different lattice geometries for the standard action of the 0 ( 3 )  model was presented. 

There was no clear signal of an earlier onset of asymptotic scaling. 
The use of PT for such models is not guaranteed. The Mermin-Wagner theorem [ 13] 

states that continuous symmetries in 2-dimensional theories cannot be spontaneously 

broken. Therefore PT, which is an expansion around a trivial vacuum, is not a priori 
well founded. Motivated by this observation and by the lack of clear asymptotic scaling 

in the previous literature, it has been argued [ 14] that all O ( n  >>, 2) models undergo a 

Kosterlitz-Thouless (KT) [ 15,16] phase transition at some finite beta flKT. 
In the present work we have performed a high-statistics simulation ((_9( 107) mea- 

surements) for the 0 ( 3 )  and 0 ( 8 )  models on the lattice up to correlations ~ 130 for 
the 0 ( 3 )  model and ,~, 70 for the 0 ( 8 )  model. For the 0 (3 )  model we have used the 

tree-level improved Symanzik action [ 17] and for the 0 ( 8 )  model the standard action. 
We have measured the magnetic susceptibility and three different definitions of the cor- 

relation length and compared the results with both the PT and KT set of predictions. 
We have computed also some scaling ratios which are particularly sensitive to the PT 

versus KT scenarios. We have made use of the corrections to asymptotic scaling in PT 
up to 4 loops in both the standard and effective schemes [18] for the 0 (8 )  model 

and up to 3 loops for the 0 ( 3 )  model. An effective scheme can be defined by using 
any short distance dominated operator; we have used the density of energy operator 
[ 18]. Hereafter we will call it indistinctly effective or energy scheme. To include the 
analysis in this energy scheme, new analytic results are reported in this paper: the 4-loop 

coefficient in the weak coupling expansion of the energy for the standard action and the 
complete calculation of all coefficients up to 3 loops for the Symanzik action. 

We have used two different definitions of energy operators for the Symanzik action and 
checked that the corresponding effective schemes agree. Lacking a rigorous treatment 
for these schemes, this check becomes an important test. 

We have avoided strong coupling effects by starting the simulations at large enough 
correlation lengths. The minimal correlation was ~ 10 for the standard action and ,-~ 16 
for the tree-level Symanzik action. 

We have not made use of finite-size scaling (questioned due to the validity of PT 
whenever the limit p - L / (  --~ 0 holds, where L is the lattice size and ~ any charac- 
teristic correlation length) and we have used rather large lattices (p  ~ 7-10) in order 
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to control the finite-size effects. We have checked that the finite-size effects at these p 

values are negligible. 
We are able also to compare the large-n predictions with our data. In particular, we 

have checked the relationship between the two correlation lengths ~exp and s c~2) (see 

Eq. (2.7) below) known up to O ( l / n )  and the prediction for the magnetic susceptibility, 
known up to ©(1/n2). 

In Section 2 we will show the predictions of both PT and KT for the model as 

well as some necessary l/n expansions. In Section 3 we will describe our simulations 
and give the results while in Section 4 we will compare them with the two different 
scenarios described in Section 2. In this section we will also use the Monte Carlo data of 
Ref. [6] for the 0 ( 3 )  model with standard action to check the presently known 4-loop 
perturbative computations. Our conclusions are given in Section 5. In Appendix A we 
will show some technical details concerning the perturbative computation of the energy 
up to 4 loops for the standard action and up to 3 loops for the Symanzik action. 

2. Predicted scenarios for the or-models 

The O(n) non-linear o--model in 2 dimensions is defined formally in the continuum 
by the action 

S = -~ d2x (0~b)  2, (2.1) 

where $ ( x )  is an n-component real scalar field, together with the constraint ~b(x) 2 = 1 
for all x. fl is the inverse of the bare coupling constant. On the lattice one can regularize 
this theory by making use of different actions. For our simulation we chose the standard 
action 

sstandard - /3  ~ ~b(x) - ~b(x + /2)  (2.2) 
X,/-* 

and the tree-level improved Symanzik action [ 17] 

, ) sSymanzik = - - / 3 E  I#(X) '~b(X +/2)  -- ~ b ( x ) .  ~b(x+2/2)  . (2.3) 
X,/Z 

We have measured the magnetic susceptibility X defined as the zero 2-momentum 
correlation function, 

X =- Z G(Xl ,X2) ,  G(Xl,X2) = ( • ( 0 , 0 )  - ( ] l (Xl ,X2)) ,  (2.4) 
Xl ,X2 

where we have assumed a symmetric lattice of size L with periodic boundary conditions 
in both directions and called Xl and x2 the two coordinates of the point x, We will need 
also ~- defined as the correlation function at the smallest lattice non-zero momentum 
2~/L, 
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.T ~ e2~rix'/LG(xl,x2) + ~ e21rix2/LG(xl,x2) . (2.5) 

Xl ,X2 Xl ,X2 

We have made use also of the wall-wall (sometimes called zero spatial momentum) 
correlation function defined as 

1 
~-~ G(Xl x2). (2.6) O (  xl ) =- --£ 

X2 

We have considered three definitions of correlation lengths, the exponential one (cxp 

and the second momenta of the correlation function ((2) and (¢(2). They are defined as 

( Ix l  = + 

Cxp _ lim -Ixl  
Ix l -~  lnG(xl ,x2)  ' 

(~2~ _ r e x - ~ 7  - 1 

2 sin 7r/L ' 

1 ~ Ixl G(xl ,x2)  
Ca _ a ' (2.7) 

where ~ '  indicates that the sum runs over - L / 2  + 1 <~ Xl,X2 <~ L/2. The operative 
definition of (exp on a finite lattice was the solution of the equation 

for big enough tl and t2 where G(t)  is the wall-wall correlation and t2 - tl = At with 
At = 1, 2. As a function of tl, the solution of the previous equation displays a long 
stable plateau for (exp < tl < 3(  exp. Anyhow, we chose the value and error for (exp 

self-consistently at tl ~ 2 (  exp. The result is independent of At (both for the Symanzik 
action and the standard one) and we selected the value A t = 1. In Fig. 1 we show an 
example of solution of Eq. (2.8) as a function of tl; the plateau is apparent. 

On the other hand, the value for the definition (,(2) was extracted from the wall-wall 
correlation function 

1 ~-]/t2(~(t) 
(,(2) = 2 ~ ¢ ~ ( t )  (2.9) 

In the large-L limit ((2) and (~(2) coincide. For finite L the three definitions show rather 
different finite-size behaviours [ 19,20]. 

The scaling of these quantities as predicted in perturbation theory in the large-L limit 
is 
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Fig. 1. Solution of Eq. (2.8) as a function of tl for At = 1 for the 0(8) model at/3 = 4.8 and L = 120. 
The parameter tl is given in units of lattice spacings (external labels of the horizontal axis) and units of 
correlation length (internal labels). 

X=Cx - ~  exp \~ - -~_2  ] I + Z ~ -  ~ . (2.10) 
k=l 

The form of  the expression for ~: is valid for all three definitions. The coefficients of 
non-universal scaling ak and bk are action-dependent. They are known up to 3 loops 
for the Symanzik action [ 11 ] and up to 4 loops for the standard action [21].  The 
constant C~ is definition- and action-dependent (its dependence on the action is exactly 
calculable in perturbation theory up to an universal constant). C~, is known exactly for 
the exponential definition. With the standard action it is [9,10] 

n - 2  2 ( n - -  2) ' (2.11) 

The corresponding constant in the tree-level Symanzik action is easily obtained from 
(2.11) by using the exact perturbative result [ 17,22] 

Asymanzik = exp ( 0 " 2 9 6 4 n  --~20"0920) ' Astandard _ (2.12) 

The other constants are not exactly known. For the correlation lengths in the large-n 
limit we have [21] 

CU2~ =C~(2' =Cc"P ( 1 0 " 0 0 3 2 + O ( n ~ ) ) ' - - n  (2.13) 

In the same limit the value of  C x with the standard action is [23] 
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Cx = 0"196 ( 1 - --4"267 + ('9 ( ~ 2 ) )  " n  (2.14, 

In Ref. [24] there are numerical results for C x up to (_9(l/n2), 

0 ( 3 )  (standard action) ~ C x = 0.0127 

0 ( 8 )  (standard action) , C x = 0.103 (2.15) 

By using Eq. (2.12) the value of C x for the Symanzik action can be obtained; for n = 3 

it is C x = 0.0625. From Eq. (2.10) we conclude that the ratio 

n - -  I 

RpT ~ ~-5 \ n  -- 2 /  1 + (.9 (2.16) 

tends to the constant C x / C  ~ as the continuum limit/3 ~ oo is approached. The paren- 

theses contain the corrections which are known up to 4 loops for the standard action 
and 3 loops for the Symanzik action. Hereafter we will call this ratio the PT ratio. 

The perturbative expansions of the energy for both the standard action and the 
Symanzik action are calculated in Appendix A. 

The correlation length for the 0 ( 2 )  model, when r =/3KT --/3 is positive and small, 

scales as [ 15,16] 

( =  A exp (rl---~) , (2.17) 

with A and B positive constants. On the other hand, the ratio 

X 7"r 
R~T ~ (2-~ (2.18) 

should be constant as we approach /3KT from below. Here r/ = 1/4 is the critical 
exponent. Following the renormalization group considerations of Refs. [ 15,16] one can 
show that r = 1/16 [25]. Recent numerical analyses for the 0 ( 2 )  model [26-30] 
have yielded several values for r which are all consistent with the bound [r[ ~< 0.1. 

Eqs. (2.17), (2.18) are the expected behaviour (and consistent with Monte Carlo 
simulations) for the 0 ( 2 )  model. From now on we will call the ratio in Eq. (2.18) the 

KT ratio. The KT scenario for the O ( n )  model is the extension of this behaviour for 

n~>3. 
In Ref. [28] a fit of Monte Carlo data for X and s c for the 0 ( 3 )  model with standard 

action was performed. Within errors it gave a constant for the KT ratio and a strong 
decrease far from constant for the PT ratio. We have simulated the 0 ( 3 )  model with 
the tree-level Symanzik action [ 17] in order to check the results of Ref. [28] with an 
action classically closer to the continuum limit. 
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Table 1 
Raw Monte Carlo data for 0 (3 )  with Symanzik action. The second row for L = 300 was used only for checks 
of finite-size dependence 

/3 L 10 -6 • stat X ~xp s¢(2) (t(2) 

1.40 150 8.1 361.41(26) 16.216(23) 16.195(17) 15,441(17) 
1.40 300 8.08 360.99(27) 16.168(27) 16.161(71) 16,050(52) 
1.45 200 8 587.18(44) 21.519(30) 21.443(23) 20,462(22) 
1.50 260 6.24 972.78(83) 28,793(50) 28.730(35) 27,273(34) 
1.55 340 18 1634.41(83) 38.668(61) 38.636(36) 36,410(41) 
1.60 450 2.88 2777.3(3.6) 52.72(38) 52.42(10) 49.18(25) 
1.65 600 4 4743.1(5.2) 71.08(34) 70.93(13) 66.27(20) 
1.70 800 7.25 8125.7(6.7) 96.67(37) 96.28(13) 89.64(19) 
1.75 1050 1 . 2 4  13852.7(27.7) 130.25(36) 

Table 2 
Raw Monte Carlo data for 0 (8 )  with standard action. The first and third rows (L = 
respectively) were used only for checks of finite-size dependence 

50 and L = 200 

fl L 10 -6 • stat X ~exp ~2) ~¢,~2) 

4.6 50 16 145.501(77) 9.7787(75) 9.7541(40) 7.5678(69) 
4.6 100 3.76 149.00(17) 9.881(14) 9.864(13) 9.533(20) 
4.6 200 16 149.029(83) 9.8624(74) 9.860(35) 9,842(14) 
4.7 110 16 177.86(10) 10.9156(80) 10.913(12) 10.543(13) 
4.8 120 16 212.13(12) 12.0745(88) 12.071(13) 11,635(15) 
4.9 140 16 253.11(14) 13.370(10) 13,358(17) 13.005(17) 
5.0 160 40 302.600(85) 14,806(10) 14.788(11) 14.431(10) 
5.4 220 40 620.78(18) 22.193(28) 22.199(15) 21.381(15) 
5.8 340 65 1289.32(30) 33.526(47) 33.411(16) 32.357(21) 
6.0 290 3.2 1854.6(2.5) 40,933(81) 40,879(78) 36.530(87) 
6.1 320 3.2 2236.6(3.0) 45,52(10) 45.425(87) 40.49(11) 
6.2 360 3.2 2689.7(3.7) 50.21(11) 50.26(10) 44.99(12) 
6.3 390 3.2 3239.7(4.5) 55,77(12) 55.60(11) 49.35(14) 
6.4 440 3.2 3909.8(5.4) 61.94(15) 61.75(12) 55.06(15) 
6.5 480 3.2 4686.9(6.5) 68.36(17) 68.16(14) 60,64(16) 

3. The Monte Carlo simulation 

We have performed an extensive Monte Carlo simulation of the 0 ( 3 )  model with 
Symanzik action and the 0 ( 8 )  model with standard action. In Tables 1 and 2 we show 
the corresponding sets of raw data. The statistical error of the three entries for ~:~2), 
~:~2) in Table 2 for L = 50, 100,200 and the two entries for L = 150,300 in Table 1 
display a strong dependence on the lattice size. This can be explained by taking into 
account that the definition of, for example ~:~2), involves the quantity ~ Ixl2G(x). For 
a big enough lattice the "signal" is independent on size, while the "noise" grows as the 
volume. A similar argument can be used for ~:~2). 

We have updated the configurations with the Wolff algorithm [ 12]. We verified the 
absence of autocorrelations in the data for the standard action. For the Symanzik ac- 
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Table 3 
int for the energies E s and size (C#} of the average Fortuin-Kasteleyn Integrated autocorrelation times 7,L2 1,2 

cluster for a Symanzik-improved action simulated on a lattice size L = 100 

i,t (c,) int E S 7, 2 

2. 0.98252(5) 23.6(1.6) 0.7788(2) 26.4(1.8) 3464.9 
5. 1.14782(2) 29.4(2.2) 0.91534(4) 31.4(2.4) 6148.7 

10. 1.19949(2) 40.4(3.5) 0.95812(4) 42.7(3.8) 7321.1 

tion we have used a generalization of this algorithm [31] which does not completely 
eliminate the critical slowing down. According to the measured integrated autocorrela- 

tion time [31], we have performed 4 decorrelating updatings for this action between 

successive measurements. Once these decorrelating updatings were done, we explicitly 

checked the absence of autocorrelations in the data for the Symanzik action. We have 

measured av and the three definitions of s c shown in the previous section. The necessary 

2-point correlation functions were evaluated by using an improved estimator [32]. 
We have also done a few runs at small physical volumes, p = L/~ << 1, to calculate 

the energy for the Symanzik-improved action at large/3, (see Appendix A).  We have re- 
alized that the performance of the extension of the Wolff algorithm for Symanzik actions 

[31] is less effective in this regime. In Table 3 we give the integrated autocorrelation 
times ~nt for the calculation of the energies E s and E s respectively on a lattice of size 1,2 
L = 100 after 7 x 105 measurements for several/3. The integrated autocorrelation times 
must be compared with the values rint ,-., 4 found when p >> 1 [31]. In Table 3 we 

also give the size (C#) of the average Fortuin-Kasteleyn cluster [33,34]. At very small 

physical volumes the result of a single Wolff updating is an almost global flip of the 

entire lattice, thus becoming an approximate reflection symmetry of the whole system. 
From Table 3 we see that the average cluster size becomes larger as /3 increases (the 
total number of sites in our lattice is 10000). The worsening of the performance of the 
algorithm in the p << 1 regime can be traced back to this fact. Such behaviour is also 
visible if the standard action Wolff algorithm is used. 

We have run our simulations at very high statistics obtaining rather small statistical 
errors. Therefore the systematic errors can become relevant and they require a careful 
analysis. We consider three sources of such errors: the finite-size effects, the differ- 

ent constants in front of the scaling for the correlation length and the non-universal 
corrections to asymptotic scaling. 

All observables (other than the energy at very high/3) have been measured at values 
of the ratio p >~ 7. For the 0 ( 8 )  model and /3 < 6.0 this ratio was p > 10. With 
these p values the finite-size effects are few parts per mille and we will not consider 
them. We have checked this assertion by performing a few runs at different values of 
the previous ratio. For the 0 ( 3 )  model with Symanzik action at /3 = 1.40 we have 
used the lattice size L = 150, 300 (p  = 9, 18 respectively) as shown in Table 1. The 
values obtained for X, s cexp and s c(2) are compatible for both sizes. Only s c'(2) shows 

a clear size dependence. We have imposed the predicted L dependence [20] obtaining 
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sc~2)(L) = ~x2)(oo) + 3 .9(10 .6) /p  2 and ~:'~2)(L) = sc'~z)(cx~) - 6.2(7) p e x p ( - p / 2 ) .  

We see that although the size dependence of ~:,~2) has an exponential fall-off [20], the 

presence of the multiplicative p and the large coefficient in front of the exponential 
makes our data for ~,~2) at p > 7 not reliable enough. Instead the data for s c~2) are good 
in spite of the presence of the power-law l i p  2. The size dependence of the data for (exp 
is as gentle as for the ~x2) data. 

On the other hand, for the 0 ( 8 )  model with standard action we have simulated the 
value/3 = 4.6 at three lattice sizes: 50, 100 and 200 (p = 5, 10 and 20). Again only 
(,~z) displays clearly a size dependence. Fitting the data to an exponential for ~:,~2) 
and a power law for ~:(2) [20] we obtain ~:(2)(L) = ( ( 2 ) ( o G )  - -  3.0(10.0) /p  2 and 

~:'(2)(L) = sc'(2)(oo) - 5.7(5) p e x p ( - p / 2 ) .  As before, the L-dependence is sizeable 
only for s c'(2) due to the large coefficient in front of the p-function. The data for ~:exp 
display a size dependence as mild as that for s c(2). 

As for the unknown non-perturbative constant C~2}, when n = 3 Eq. (2.13) gives 
C¢,:,/C¢~xp = 0.9989. The value for this ratio provided by the data in Table 1 is 
0.9979(9). In Ref. [35] the values 0.9994(8) and 0.9991(9) are quoted for/3 = 1.7 
and /3 = 1.8 respectively. This ratio for n = 8 from Eq. (2.13) is 0.9996 and from 
the data of Table 2 is 0.9989(4). We conclude that Eq. (2.13) is reliable although the 
O( 1/n 2) term would be welcome. 

In our subsequent analysis we will make use of the data for ~:(2) in both 0 ( 3 )  and 
0 ( 8 )  because this definition for the correlation is less size dependent than ~:1(2) and on 
the other hand allows a better error determination than for the exponential definition, 
(to evaluate the error of s c(2) we also measured the cross correlation between X and .T'). 
We will correct the non-perturbative constant C~x~, Eq. (2.11), by dividing all data by 
0.9979(9) and 0.9989(4) for 0 (3 )  and 0 (8 )  respectively. 

The corrections to universal scaling are the largest source of errors and will be 
discussed in the next section. 

4. Discussion of  results 

In Tables 1 and 2 we show the raw data for X and the three definitions of s c. In the 
following analysis we will use the values for s c~2) and we will write C~ instead of C~2~. 
As we said in the previous section we shall neglect the finite-size effects and introduce 
a corrective factor to the prediction (2.11 ) for C~. 

4.1. The 0 ( 3 )  model with Symanzik action 

From the data for ~2) and Eq. (2.10) we can compute the constant C(. We shall call 
C~ c such constant obtained from the Monte Carlo data. If PT is correct and asymptotic 
scaling holds, this number should be independent o f /3  and equal to the prediction of 
Eq. (2.11) for n = 3. Therefore the ratio c ~ C / c f  should be 1. In Fig. 2 we show such 
ratio as a function of /3  by using Eq. (2.10) at 2 loops and 3 loops [11] for both the 
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Table 4 
Measured values of the two operators (A.17) and (A.18) for the 0(3) model with Symanzik action 

/3 L 10 -5 .  stat E s E s 

1.40 300 4 0.840997(3) 0.661762(2) 
1.55 340 4 0.890991(2) 0.703158(1) 
1.60 450 4 0.904603(1) 0.714419(1) 
1.65 600 4 0.917106(1) 0.724757(1) 
1.70 800 4 0.928573(1) 0.734231(1) 
1.75 1050 0.36 0.93917(2) 0.74299(1) 
5.0 lOO 7 1.14782(2) 0.91534(4) 

10.0 100 7 1.19949(2) 0.95812(4) 
15.0 100 4 1.21650(3) 0.97222(2) 

standard and energy schemes.  We used two different  energy schemes defined by the 

operators  E s and E s, (Eqs.  (A .17 ) ,  (A .18)  o f  Appendix  A ) .  The  r e spec t ive /3e  are 

/3El = 1 5 / 1 2 - -  E s '  /3e2 = 1 - E s '  (4 .1)  

The  per turbat ive expansions  o f  E s and E s are g iven in Append ix  A and the Mon te  Car lo  

values for both operators  are l isted in Table 4. 

Fig.  2 displays  an asymptot ic  approach to unity for increasing /3. The  data in the 

standard scheme (c i rc les)  differ  f rom unity by ,-~ 15%. This  is in accordance with 
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horizontally to render the figure clearer. 

previous numerical calculations of C¢ with the tree-level Symanzik action [ 5 ]. However, 

the lack of asymptotic scaling in the energy schemes (squares and triangles) amounts 

only to 2-3% at 3 loops. Notice also that the two energy schemes agree fairly well; this 
fact supports the reliability of these schemes. This agreement improves as/3 increases. In 
the previous section we saw that the systematic error in the corrective factor C~(2~/C~xr 

was of the order of 1 per mille which is negligible in Fig. 2. 

In Fig. 3 we show the constant C x computed from our Monte Carlo data at 2 
and 3 loops in the standard and energy schemes. At present there are no available exact 
predictions for this constant. The 1/n 2 calculation [ 24] provides 0.0625 for the tree-level 

Symanzik action. After rescaling with (2.12) this number becomes 0.0127. From the 
3-loop data in the energy scheme of Fig. 3 one can infer the estimate Cx~C = 0.0138(2) 
which differs by ~ 8% from the large-n calculation. This result can be compared with 
the estimate of Ref. [36] which is 0.0146(11); we see that both agree within errors 

(notice that at 2 loops our result would be 0.0145 (3);  this error includes the imprecision 
among the E s and E s data). The estimate of Ref. [36] has been obtained by using 

finite-size scaling techniques [37,38]. 
We observe that the 1/n-expansion up to order O ( 1 / n  2) converges well, hence we 

expect a better agreement if further corrections were added. Finally, notice that the two 
energy schemes agree much better at 3 loops than at 2 loops. 

The results for the PT ratio are reported in Fig. 4 up to 3 loops. The data in the 

standard scheme are far from constant although, as is known for the Symanzik-improved 
actions [4],  the slope is less steep than for the standard action case [28]. The data for 
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the two energy schemes at 2 and 3 loops agree completely. Moreover these data are 

flatter indicating that scaling has possibly set in. Assuming this onset of  scaling, we 

derive from the data at 2 and 3 loops in these effective schemes l n ( C x / C ~ )  = 4.54(2) .  

Using the prediction (2.11 ) C¢ -- 0.01249, we obtain C x = 0.0146(2) in good agreement 

with the value inferred from Fig. 3. To show the result at 3 loops, the corresponding 

coefficient of  the gamma function for the tree-level Symanzik action has been used. This 

coefficient can be obtained from [ 11 ] after correcting a misprint in their Eq. (25) :  the 
(27r) 4 dividing the last term in ZI must be instead (2~)  2. l The 3-loop coefficient is 

thus 

),Symanzik 1 (--2.01 + 1.65 n + 0.362 n 2) (4.2) 
2 - (27r) 3 

Now we want to test the KT formulae (2.17) and (2.18). A best fit of  the data for 

s c to Eq. (2.17) is rather unstable. This can be understood as follows: assuming that 

the KT transition point flKT does exist and it is far away, we can expand Eq. (2.17) in 

powers o f  fl/fl•T obtaining 

=- A'  exp (B' /?) .  (4.3) g: ~ A exp B exp 2BK-----~ 

l We thank M. Falcioni for correspondence about this point [39]. 



B. Allgs et al./Nuclear Physics B 500 [FS1 (1997) 513-543 

1 . 0 2  , , 

525 

_= 

1 .01  

1 . 0 0  

t 

i 0 . 9 9  ' ' ' 

2 . 5  3 . 5  4 . 5  

In~ 

t 

Fig. 5. The KT ratio (2.18) for the 0(3) model with Symanzik action. 

3/2 
This equation shows that actually we are fitting the combination B t -- B / ( 2 f l K T ) ,  

therefore the best fit cannot yield reliable information about the precise value of/3KT. 

However, the fact that the previous analysis within PT gave rather acceptable results 

indicates that the linear approximation in Eq. (4.3) is good and indeed /3KT is much 

larger than our working fl's. 
In Fig. 5 the results for the KT ratio (2.18) are shown. By using the previous 

conclusion about the large value of flKT, we have assumed that inside the narrow 
interval 1.4 < fl < 1.75 the factor r r in (2.18) is almost constant. As a consequence 
we did not consider it. In Ref. [28] this ratio, calculated for the standard action, looked 

almost constant with the critical exponent r/ = 1/4. We emphasize that our data have 
smaller error-bars and so the interval in the vertical axis is almost 7 times finer for our 
data. This fact allows us to see that our result is clearly not constant. We have estimated 
the probability Q that the data in Fig. 5 follow a straight line. Q is obtained from the 

tail of the X 2 probability distribution, (we have assumed a gaussian distribution for the 
point ordinates). We have obtained less than Q = 0.01 which means that with probability 

,-~ 99% the data do not follow a straight line. We have repeated the same analysis after 
removing the first two points (one can argue that they are still far from the scaling 
region of the KT transition). In this case Q = 0.09 which still indicates that the data do 
not lie on a straight line with probability 91%. If  the constancy of this ratio was to be 
a true physical effect then our data for the Symanzik-improved action should stay also 
constant. 

A similar probability calculation shows that also the 2- and 3-loop data in the energy 
scheme of Fig. 4 do not follow a straight line (although the l-loop data in this scheme is 
essentially flat). We remark, however, that the effective schemes and the loop corrections 
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Table 5 
Data for the 0 (3 )  model with standard action. The g and (exp data has been taken from Ref. 16l; the energy 
data from Ref. [401 

/3 L (for X, ~xp) X U xp L (for E) E 

1.50 256 176.4(2) 11.05(1) 128 0.601597(16) 
1.60 256 448.4(7) 19.00(2) 128 0.635722(10) 
1.70 512 1263.7(3.3) 34.44(6) 256 0.664240(5) 
1.75 768 2197.(15.) 47.2(2) 256 0.676629(4) 
1.80 768 3823.(21.) 64.5(5) 256 0.687953(3) 
1.85 768 6732.(25.) 88.7(5) 256 0.698351(3) 
1.90 1024 11867.(62.) 122.7(1.1) 256 0.707952(3) 
1.95 1024 20640.(310.) 164.8(5.3) 128 0.716928(9) 

have flattened out the data in the PT ratio. In contrast, the increase of the resolution in 

the statistics has revealed that the KT ratio is not as flat as claimed in Ref. [28]. 
Our results for the 0 ( 3 )  model in the standard scheme do not confirm either of 

the two scenarios. The lack of asymptotic scaling agrees with previous works using 
the same Symanzik improved action, [5]. However, in the energy schemes these data 

present asymptotic scaling at 3 loops within 2-3% for the correlation length as well as 

an estimate for the magnetic susceptibility that is in reasonable accordance with previous 
numerical simulations [36] and the 1/n expansion. The PT ratio in the energy scheme 
shows a much flatter behaviour than in the standard scheme. Moreover the agreement 

between the two energy schemes is a reassuring result. 
On the other hand, in the KT scenario, we have seen that the scaling law (2.18) is 

badly satisfied. This is in contrast with the data of [28] for the standard action. 

4.2. The 0 ( 3 )  model with standard action 

In Table 5 we show the Monte Carlo results for the 0 (3 )  model with standard action 

taken from Ref. [6] and the Monte Carlo energy, (see Eq. (A.1) of Appendix A), 
from Ref. [40]. The correlation length data corresponds to the exponential definition in 

Eq. (2.7), so there is no correction factor in this case. 
The asymptotic scaling analysis for these data was done up to 3 loops in [6] while 

the test for the KT scenario was done in [28]. Here we want to make use of our new 
perturbative results for the energy up to 4 loops (Eq. (A.15) of Appendix A),  and 
the results of [21] to test asymptotic scaling in the energy scheme for the magnetic 
susceptibility, the correlation length and the PT ratio. The energy scheme is defined as 

w1 
/3E ~ 1 -- E" (4.4) 

In Fig. 6 we show the ratio c~C/c( .  The lack of asymptotic scaling in the standard 
schemes is apparent and the energy scheme does not improve it as dramatically as for 
the Symanzik action. We see that the 4-loop correction in the energy scheme is almost 
negligible and as a result the departure from asymptotic scaling at 3 loops observed in 
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Fig. 6. The ratio between non-perturbative constants c~C/c¢ for the 0(3) model with standard action. Monte 
Carlo data from Ref. [6]. Open circles (full circles, open diamonds) correspond to 2 loops (3 loops, 4 loops) 
in the standard scheme; open squares (full squares, open triangles) correspond to 2 loops (3 loops, 4 loops) 
in the energy scheme. Some data have been slightly shifted horizontally to render the figure clearer. 

[6] is still present at 4 loops. The lack of asymptotic scaling in this figure is ~ 10% 

for the energy scheme and 15-20% for the standard one. 

Fig. 7 displays the non-perturbative constant C x as computed from the Monte Carlo 

data. The data in the energy scheme converge around C x = 0,0130(5) while the 1/n 2 

prediction [24] is 0.0127 and the result of [36] was 0.0146(11). The result with 

our data for the Symanzik action was 0.0138(2). The several Monte Carlo results are 

compatible with each other suggesting that the truncation error of the series at order 
I / n  2 amounts to ,-~ 8% when n = 3. 

Finally we show the PT ratio up to 4 loops for the standard and energy schemes 

in Fig. 8. The data for the standard scheme is clearly not constant as already seen in 

[28]. However, again the data in the energy scheme is particularly good and stable 
and allows the determination l n ( C x / C ~ )  = 4.57(2) in excellent agreement with the 

previous determination by using our data for the Symanzik action (as it should this 

ratio is independent of the regularization used). 

Our results for the PT ratio and the magnetic susceptibility are 4.57(2) and 0.0130(5) 

respectively. These results, obtained by using the standard action, agree with the previous 
ones extracted with the Symanzik action. Besides, the (9( 1/n 2) estimate of C x [24] 

is in good accordance with our data. The deviation from C¢ and the exact result [9] 

is still of the order 10% even after the inclusion of the 4-loop correction in the energy 
scheme. 
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Table 6 
Energy data for the 0(8) model (from Ref. [40]) 

529 

/3 L E 

4.6 128 
4.8 64 
4.9 128 
5.0 64 
5.4 64 
5.8 256 
6.1 256 
6.4 256 

0.603836(9) 
0.620987(10) 
0.629018(9) 
0.636812(10) 
0.664983(9) 
0.688885(3) 
0.704805(3) 
0.719168(2) 
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Fig. 9. The ratio c~4c/c~ for the 0(8) model with standard action. Open circles (full circles, open diamonds) 
stand for the 2-loop (3-loop, 4-loop) approximation in the standard scheme. Open squares (full squares, open 
triangles) stand for the 2-loop (3-loop, 4-loop) approximation in the energy scheme. 

4.3. The 0 ( 8 )  model with standard action 

Our Monte Carlo data for the 0 ( 8 )  model is shown in Table 2. Our data agree with 

Ref. [7] for the two values o f / 3  that we have in common. In Table 6 we give the 

energy data taken from [40] .  The perturbative expansion for the energy is reported in 

Eq. (A.16) of  Appendix A. 

In Fig. 9 we show for the 0 ( 8 )  model the equivalent of  Fig. 2. The data converge 
towards 1 in both the standard and energy schemes. The 4-loop energy scheme for the 

ratio c ~ C / c (  yields 1 up to ,-~ 0.5%. 

The figure clearly displays that the data approach 1 monotonically as the number 

of  loops increases. An important issue then is to understand how big the successive 
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Fig. 10. The non-perturbative constant C x as extracted from the Monte Carlo data for the 0(8) model with 
standard action. Open circles ( full circles, open diamonds) stand for the 2-1oop (3-loop, 4-loop) approximation 
in the standard scheme. Full squares (open triangles) stand for the 3-loop (4-loop) approximation in the energy 
scheme. 

corrections are. At leading order in 1/n the coefficients ak in Eq. (2.10) have been 

computed up to k = 8 [21].  Comparing with the exactly known coefficients al and 

a2 we see that the large-n approximations al,2(n = 8) are correct up to 90% and 60% 

respectively [21,36].  Assuming a corrective factor fk = 1-2 such that a~ = f k . a k ( n  = 8) 
for all k, then one can see that the next corrections are small and that the convergence 

towards 1 in Fig. 9 is meaningful. 

Fig. 10 displays the magnetic susceptibility constant as extracted from the Monte 
Carlo data, C ~  c. We do not show the data in the energy scheme at 2 loops as they 

are very big (,~ 0.108) and would expand too much the vertical scale of  the figure. 

Data tend to converge around the value C x ~ 0.102. Taking the results at 4 loops in 

the energy schemes we obtain C x = 0.1028(2).  The large-n prediction is 0.0915 (up to 
( .9 ( I /n) ,  [23] ) and 0.103 (up to (.9( 1In 2) [24] ). This (.9( 1/n 2) estimate agrees with 

our result within < 0.5% which is the same amount of  deviation from unity seen in 

Fig. 9 for the correlation length. Therefore the 1/n expansion agrees fairly well with 

our data. Notice that data in the standard scheme do not converge monotonically; indeed 

we have the sequence "2-loop" > "4-loop" > "3-loop". This is due to the fact that the 

coefficients bl and b2 in Eq. (2.10) have opposite signs. 
In Fig. 11 we show the PT ratio for the 0 ( 8 )  model. We show this ratio up to 4 

loops. We do not show the data at 1 loop in the standard scheme because again they lie 

far from the window shown in the vertical axis. We have also omitted the error bars in 
the further corrections to render the figure clearer. The data stabilize for large enough 

In s c after having included the non-universal corrections. The convergence is extremely 
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Fig. 11. The PT ratio for the 0(8) model with standard action. Full circles (open diamonds, full diamonds) 
stand for the 2-loop (further loops) approximation in the standard scheme. Open squares (full squares, open 
triangles, full triangles) stand for the I-loop (further loops) approximation in the energy scheme. The highest 
order corrections in the energy scheme have been slightly shifted horizontally to render the figure clearer. 

good. The straight horizontal line is the prediction (and error) Eq. (2.16) taking the 

value of Eq. (2.11) for Q and the result 0.1028(2) for C x from the previous figure. 
Our data gives Rer = 2.220(5). 

Finally Fig. 12 shows the KT ratio for the 0 ( 8 )  model. As in the 0 ( 3 )  case, we 
have neglected the variation of r r inside the interval 4.6 < fl < 6.5. The solid line is 

the PT prediction for this ratio using Eq. (2.10) up to 4 loops, Eq. (2.11) for Q and 
the result from Fig. 10 for C x. We observe that the KT ratio is not constant and that its 

non-constancy is well explained by PT. Notice that the same set of values for C x and 
Q explain well both the PT and KT ratios. 

In conclusion, PT works fairly well for the 0 ( 8 )  model. The data agree with the 

exact mass gap [ 10] with a precision about 0.5%. Analogously the l / n  2 prediction for 
the magnetic susceptibility is in fair accordance with our data within the same error. 
Moreover the PT and KT ratios are well described by the PT formulae (2.10). 

5. Conclusions 

We have done a Monte Carlo simulation for the 0 ( 3 )  and 0 ( 8 )  non-linear ~r-models 
in 2 dimensions. The simulation was performed with the tree-level Symanzik action 
for the 0 ( 3 )  model and the standard action for the 0 ( 8 )  model. We have improved 
the statistics with respect to previous works and have taken advantage of the recently 
calculated 4-loop corrections to scaling [21 ]. We have taken into account the systematic 
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Fig. 12. The KT ratio for the 0(8) model with standard action. The open circles are the data from our Monte 
Carlo simulation. The solid line is the prediction of perturbation theory at 4 loops. 

errors coming from the finite lattice size [20] and from the different non-perturbative 
constants for the correlation length [ 21 ]. In order to reduce them we made use of the 

correlation length data for the ~:(2) definition, Eq. (2.7), and calculated numerically the 
corrective factor to pass from C¢~x~, Eq. (2.11 ), to C~2~. T h e  result for this numerically 

calculated factor was in good agreement with the 1 / n  estimate (2.13). 
The ensemble of independent configurations was created with the fast Wolff algorithm, 

[ 12 ]. The independence of the measurements done on these configurations was explicitly 

verified. However, in the small physical size regime, p = L / ~  << 1 we discovered 
a worsening in the performance of this algorithm. We argued that this fact can be 
explained by the presence of large Fortuin-Kasteleyn clusters [ 33,34] when p << 1, see 

Table 3. 
We have also made use of the data of Ref. [6] for the 0 ( 3 )  model with standard 

action. 
In all cases we tested the perturbation theory predictions in both the standard scheme 

(expansions in the bare coupling 1 / f l )  and the energy scheme (energy modified coupling 
1~f iE) .  For this purpose in Appendix A we have computed the weak coupling expansion 
of the energy up to 4 loops for the standard action and 3 loops for the Symanzik action. 
The fourth loop term in the standard action and the whole expansion up to 3 loops in 
the Symanzik action are new results of the present paper. Moreover, for the Symanzik 
action, we computed two different operators, E s and E s, in order to check the validity of 
the energy scheme: they should give almost identical results. This check was successful 
(see Figs. 2-4) .  

We saw that the results for the 0 ( 3 )  model agree fairly well with PT in the energy 
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Table 7 
Results for the ratio q as a function of 13 

533 

3 q 

1.40 1.0052(40) 
1.45 1.0056(41) 
1.50 1.0028(46) 
1.55 1.0031(34) 
1.60 1.0007(89) 
1.65 1.0043(79) 
1.70 0.9981(60) 

scheme. The PT ratio leads to an almost constant already at 2 loops for both standard 

and Symanzik actions. This constant was ln(Cx/C~) = 4.54(2) and 4.57(2) for the 
standard and Symanzik actions respectively. The value observed for the non-perturbative 

constant C( differs from the prediction (2.11) by almost 2-3% in the Symanzik action 
and ~> 10% for the standard one. In both cases we refer to the results in the energy 

scheme. Even though these differences are still too large, they are much smaller than 

when obtained from the expansion in the standard 1/fl (~  20%). The numbers for 

the constant C x are 0.0138(2) and 0.0130(5) for the Symanzik and standard actions 

respectively (both in units of Astandard)- The 1/n 2 prediction [24] is 0.0127. Besides, our 
determinations are in acceptable accordance with the prediction [41,42] C x ~ 0.0145. 
This number has been extracted from the non-perturbative constant/ll obtained in [41 ] 

and the ratio between the on-shell and zero-momentum field-renormalization constants 
q =- zzer°'m°m/z °n'shell at large ft. This ratio is known in the 1/n expansion [42] 

to be q = 1 + 0.0132/n + . . .  We have computed this ratio from our Monte Carlo 
data, Z zer°'m°m being X/~ ~2) and Z °"sheu being the constant in front of the wail-wall 

correlation function for large separation t 

G( t )  ~ Z °n-shell exp (L/(2sc~xP)) cosh ( ( t -  L/2)/~'xP). (5.1) 
L/~exp 

The value for Z °n-shell presented a plateau as a function of t in the interval ~exP/2 ~< 

t ~< 3scexp/2 and we chose the value at t = s ~exp. In Table 7 we give our numerical result 
for the ratio q from our data for the 0 ( 3 )  model with Symanzik action as a function 

of ft. The average is q = 1.0035(18) which is in excellent agreement with the 1In 
expansion. The fact that q is close to 1 up to few per cent, implies that the estimate 

C x ,~ 0.0145 is valid within few per cent. We see again a good performance of the 
1In expansion even at n = 3. In particular there is a considerable improvement from the 
(,9(l/n) approximation [23] in Eq. (2.14) to the O(1/n 2) order [24] in Eq. (2.15). 
This fact makes us to suspect that also in Eq. (2.13) the O( 1/n 2) term would notably 
improve the agreement with our numerical result for that ratio. 

Recall that the Symanzik action has been designed to reduce lattice artifacts [43]. 
However, this improvement can be overwhelmed by the large corrections to asymptotic 
scaling. The effective schemes can cure this last problem. Hence the combination of an 
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improved action together with the use of an effective scheme should provide the best 

results. This may be the reason for the good agreement between the PT predictions and 
our data from the 0 ( 3 )  model with Symanzik action within the energy schemes. 

Our analysis of the Monte Carlo results for the 0 ( 8 )  model reveals a satisfactory 

agreement between the PT predictions and the data. The value (2.11 ) for C¢ is recovered 

within 0.5% and the O ( 1 / n  2) prediction for C x agrees within less than 0.5% with our 
result 0.1028(2), (again there is a remarkable improvement between the (.9(I/n) and 

O ( 1 / n  2) calculations). Analogously the PT ratio tends to stabilize at ln (Cx /C~)  = 

2.220(5); the same prediction calculated from the previous value for C x and the exact 
C¢ (2.11) is shown in Fig. 11 as an horizontal line at In Rvr = 2.224(2). 

We have also checked the set of predictions of the KT scenario for the 0 ( 3 )  model 
with Symanzik action and the 0 ( 8 )  model with standard action. Figs. 5 and 12 show 

the results for these two cases for the KT ratio. None of them yield a constant as it 

happened for the data of Ref. [28]. We stress the fact that our data have better resolution 
as the error bars are almost one order of magnitude shorter than in [28]. As for the 
0 ( 3 )  model, we showed that the probability of having a straight line after eliminating 

the first two data points in Fig. 5 is less than 10%. The situation for the 0 ( 8 )  model 

is much clearer: the data are definitively far from constant. In this case perturbation 
theory predicts fairly well the trend of the data, mainly for the largest correlations. It is 

worth noticing that the two ratios, RKT and Rvr, are well explained with the same set 
of parameters C¢ and C x obtained from our analysis. We could not draw a similar PT 

prediction for the RKT ratio for the 0 ( 3 )  model like the solid line in Fig. 12 because 

the results for C x and C¢ for the 0 ( 3 )  model had less precision and the KT ratio is 
rather sensitive to the precision. 

We also tried a fit of the data for the correlation length to the KT law (2.17). The 
fit is unstable because the actual value for/3KT (if  it is finite) is much larger than our 

working/3's. 
In summary, PT works well if one includes also the non-universal corrections. Only 

the correlation length data for the 0 ( 3 )  model with standard action still stays far from 
the (2.11) prediction, although these non-universal corrections improve the accordance 

by a factor of 2. In this respect, we have seen that the energy scheme [ 18] performs 
very well and it is a reliable scheme as explicitly proved by using two different operators 
with the Symanzik data for 0 (3 ) .  In Ref. [44] the authors calculate the non-universal 

corrections to scaling for the spherical model, discovering that they are absent for the 
energy scheme. We have seen that this good behaviour is almost preserved at low values 
of n. 
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Appendix A 

In this appendix we sketch the calculation of the energy up to 4 loops for the standard 

action and 3 loops for the tree-level improved Symanzik action. 

A.1. Standard action 

We define the energy for the standard action as (not summed on /z ! )  

E - (4,(0) • 4,(0 + /2 ) )  (A.1) 

which in the weak coupling expansion can be written as 

Wl w2 w3 w4 
E(/3) = I /3 /32 /33 /34 " ' "  (A.2) 

The first two coefficients Wl and w2 can be straightforwardly computed giving 

( n  - l )  ( n  - l )  
wl = - - ,  w2 = - -  (A.3) 

4 32 

The order O(1//33 ) coefficient has been computed in [44] (for the 0 ( 3 )  model it 

was also calculated in [48] and for general n in [49] ). We have checked their result 
by computing the diagrams for the free energy in Fig. A.1 and by making use of the 

relationship 

1 3 
E - lnZ, 

2v0/3 

Z = f Ddp(x) 6(~b(x) 2 - 1) exp (--S~ta"dard). (A.4) 

V is the space-time volume and D the standard functional measure. In the evaluation of 
the Feynman diagrams the following identity is useful 

2 ~ 2 ~ 2 
(Pl + P 2 )  q- (Pl + P 3 )  q- (Pl q-P4) =/32 q_p2 +/32 q_p2 _ ~1234, 

2ijkt =-- Z Pi~Pj~zPk~Pt~, (A.5) 
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Fig. A.1. Feynman diagrams contributing to the 3-loop coefficient of the free energy. Crosses stand for 
insertions of the measure iagrangian that comes from the Dirac delta in Eq. (A.4). 

provided that pl + P2 + P3 + p4 = 0 [44].  We make use of  the standard notation, 
/~u = 2 s i n ( p u / 2 )  and p2 _ ~up2u.  Another relation useful during the evaluation of  

tadpole diagrams is 

2 (pl + m )  = : ~  + P 2  2 - l ^2 ^2 
Pl P2 + odd terms, (A.6) 

valid for any pair of  momenta pl and P2. 

The result for w3 is 

(n161)2K+ (n-l) (~ 3 ) w3= ~ - K +  J . 

K and J are finite integrals 

(A.7) 

f AI2ZI34 
K = D3 ,62/3~ ^z ^2 = 0.0958876, 

P3 P4 

+/  (~1234) 2 
J ~ D3 i02 t02/~2 j042 

2 3 
- - T r  

where the measure D3 is 

and 

= 0.136620 (A.8) 

D3 ~ d2pl d2p2 d2p3 d2p4 (2"a') 2 
(27.r) 2 (2,n.) 2 (2,n.) 2 (277.) 2 ~(pl  +P2  + P 3  + p 4 )  

A 2 
a,j  =- (p,  + p j )  - # - :~, 

2 
Ai - j  =-- (Pi - Pj)  - fi2i - fi~; 

(A.9) 

(A.10) 

di_ j will be used later. 
In Fig. A.2 we show the diagrams needed for the evaluation of  W4. Again Eqs. (A.5) 

and (A.6) are useful. No new identities among momenta are needed. The result is 
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Fig. A.2. Feynman diagrams contributing to the 4-loop coefficient of the free energy. Same meaning as in 
Fig. 9 for the crosses. 

3 ( n 8 1 ) ( 1 1 1 1  ~ 4 1 1  ) w4- 1~-8 ~HI - ~H2 - ~H3 + J-  ~K- ~H5 

3 ( n - l ) 2 ( 1 1 1 1  1 1 l ) 
-+ ~- ~ -q- ~H1 -% ~H2 q- gH3 q- H4 + g g  q- 5H5 

( n -  1) 3 
- -  H5. 

32 
(A.11) 

K and J are given in Eq. (A.8) while H1 . . . . .  H5 are genuine 4-loop integrals 

~-~'r 

/112 /13421256 
HI ---- 04 /~2/~2/~2 ~24/~25/~2 = 0.0378134, 

+7/" 

/134 -~1234 ,~1256 
H2 -- D4 /~12/~/~/~42/~2 

-- , ' i t  

= -0.0322778, 

A13 A45 AZ-6 = 
H3 - D4 p~ p~ ~ p~ p25 P~ -0.0136824, 

-- ' ; ' r  

-~Tr 

f ~1234 ~3456 ,~1256 
H4 ~ D4 /~2 fi2/~2/~2/~25/~2 = 0.0411085. 
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~-Tr 

Hs =-- / D4 
--TY 
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AI2 A34 ,456 
p12 p2 p2 042 ^2 ^2 = -0 .0501528.  

2 3 P5 P6 

The measure for the 4-loop integrals is 

d2pl d2p2 d2p3 d2p4 d2p5 d2p6 
D4 ~ (207") 2 (27./.)2 (207") 2 (2"//') 2 (207") 2 (2/7.)2 

x (27r)2 8(pl  + P 2  +P3  + P 4 )  (2rr)2 8(P5 + P 6  +P3  + P 4 ) .  

Numerically at 4 loops the expansion (A.2) reads 

n - 1 n - 1 0.00726994(n - 1) + 0.00599298(n - 1) 2 
E(fl) =1 

4 3 32fl 2 fl 3 

0.00291780(n - 1) + 0.00332878(n - 1) 2 + 0.00156728(n - 1) 3 

(A.12) 

(A.13) 

3 4 

For n = 3 and n = 8 the expansion (A.14) becomes 

(A.14) 

1 1 0.03851 0.03169 
E(fl, n = 3) = 1 2 3  1632 3 3 fl'--'---~-- ' (A.15) 

7 7 0.3445 0.7211 
E( 3, n = 8) = l 4 3  3232 33 34 (A.16) 

A.2. Symanzik action 

As for the Symanzik action, we have used two different local operators to define the 
so-called energy scheme (not summed ove r / z ! )  

A 1 

e s _ (4 , (0)  • 4 , (0  + ~ ) ) .  

(A.17) 

(A.18) 

The first operator is the energy density for the Symanzik-improved action, hence its 
weak coupling expansion can be computed by evaluating the free energy and making 
use of  Eq. (A.4).  In Ref. [50] it was computed up to 2 loops for the n = 3 case. We 
have checked their result which for any n can be written as 

e s ( 3 )  = 15 .,fl 
12 3 3 2 3 3 

wSl, ( ,~ - 1) 
4 ' 

wSl= (n--1)Y148 (1 - ~4YI)  " (A.19) 



YI 
Symanzik action 

±[] HP=--P2+ 12 p' 

The l-loop integral is 

+~ 
f d2p r-lp 

I~ ~ (2~r) 2 Hp - 2.043576. 
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is a l-loop integral. The notation Hp will mean the inverse propagator for the 

Ot ' = ~ / ~ 4 .  (A.20) 

(A.21) 

= 0.0673316, 

= 0.104551, (A.26) 

205 y3"~ 
l J .  (A.24) 

(A.25) 

Y2 is a l-loop integral 

+'rr 
f d2P []~ 4.783071 Y2 ---=-lr (277"/2 (//p)2 

The 3-loop integrals are 

+Tr 
f s s  "412/134 

K s=- D3iI~lnp  2np 3G,, 
- -  3 , r  

+/ (sS) 2 
j s  ~ D3 ~ 1  //]/2 /'/P3 //P4 

--q'r 

where AS 2 ~ (//pl+p2 - //pl - //p2). 
Numerically E s is 

= ~ +~--~J - ~ K  + ~-~Y2 

The 3-loop coefficient can be obtained by evaluating a set of diagrams analogous to 
the one in Fig. A.1. Useful identities are 

np+q + Ilp+k + G,+r = Ilp + I~q + n~ + tlr - .~s, 

4 1 
2s =-- -3 Z fi~'gluk~'p~" - -~ Z 2p~,Zq~2k~2r~,, (A.22) 

I.~ tz 

valid whenever p + q + k + r = 0 and 

5 l-[p+q = IIp + IIq - ~-~ IIp F]q - ~-~ Ilq [--]p +-i-~ [~]p [~q q- odd terms (A.23) 

for any pair of momenta p and q. The result for w sl is 
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@ @  
Fig. A.3. Feynman diagrams contributing to the 3-loop coefficient of the operator E s, Eq. (A.18). Crosses 
and black spots stand for insertions of measure and the operator E s respectively. 

ES(/3) = 15 n -  1 0.0244486(n- 1) 
12 4/3 /32 

0.00449054(n- 1) + 0.00420822(n- 1) 2 
/33 (A.27) 

For n = 3 it is 

15 l 0.04890 0.02581 
Es(/3, n = 3) - 12 2/3 /32 /33 (A.28) 

The second operator used is Eq. (A.18). The computation of the coefficients in the 
weak expansion 

Wf 2 W $2 wS2 
ES(/3) = 1 /3 /32 /33 "'" (A.29) 

requires the evaluation of diagrams with an insertion of the operator in (A.18). In 
Fig. A.3 we show the diagrams necessary for the 3-loop coefficient. The results for all 
coefficients are 

wS2 7 1-  ~ , 

w~2 - z) 5 _ ( n  (rl (~ + 2_i_~r~) _ i t , , _  49 r2_ 1 ) l ~  1 , 

( n -  l)  ( 2 - -  1~-~ w~2__ (" -i-6-- 1)2 (2~-  - ~s)  + ~ . e  - 2 ~  + ~.,,s _ 

13 3529 y3 1 Y-. 
-t24 4-i-~-2 1 + 2-~8Y2 + 5--~--Y22- 5184 4-~ 3 

695 62@08 t5) 
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+ y • (  27 127 25 z 25_~Y3) ) 
32 i~Tg r2 6--~0-g r~ + (A.30) 

The integrals are 

-~-qr 

f d2p []3 
r3 ; (2~) 2 (n~) 3 - - =  11.816615, 

q-Tt 

g~- ~ f AS2A34 
j D3//pl//p 2 lIp3IIp4 = 0.0578002, 

- -Tr  

f AS AS ,~2 - -  .~12,.,34tu 1 
K S :-- D3 "// IIp2 Hp3IIp4 

- ,  ( p,)2 =0.0572726,  

+~- 
/ "~1234"~S 

js = D3 lip, lip2 lip~ lip, = 0.0809553, 
- -  T r  

+Tr 

f xs2fsP~ = 0.0867806. 
f i ~  D3 (l ip,)2[ipjlp3lip4 

--77" 

(A.31) 

Numerically E s is 

ES(/3) = 1 0 . 2 0 7 4 2 5 ( n -  1) 0 . 0 1 8 9 0 1 0 ( n -  1) 

/3 /32 
0 . 0 0 3 5 3 3 8 1 ( n -  1) + 0 . 0 0 3 5 4 6 5 6 ( n -  1) 2 

/33 (A.32) 

F o r n = 3  it is 

ES(fl ,  n = 3) = 1 0.41485 0.03780 0.02125 (A.33 
/3 /32 /33 

Another method to calculate the previous coefficients has been proposed in [51-53]  

The Monte  Carlo determination of  any operator at large fl can be straightforwardly com- 
pared to its perturbative expansion, allowing an estimate of  the perturbative coefficients. 
In the last three rows of  Table 4 we give the values of  E s and E s for fl = 5, 10, 15. 

The O(1/fl) coefficient can be obtained comparing the energy at fl = 15 with the 
expression 15/12 - wSl/fl and 1 - wS2/fl. We obtain w sl = 0 .502(1)  and w s2 = 
0 .4167(3) .  

Assuming that the exact first-order coefficient is known, one can use the value of the 
energy at fl = 10 to determine the (.9( 1/f l  2) coefficient obtaining w sl = 0.051(2)  and 
w s2 = 0 .039(4) .  

Similarly, by using the exact two first coefficients and the value a t /3  = 5 one obtains 
wS13 = 0 .028(2)  and w s2 = 0 .022(5) .  
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These  results are clearly influenced by the next orders and l ikely also by the small  

size ( L  = 100) o f  the latt ice used to calculate the energies for these l a rge /3 ' s .  A better 

analysis must  use a global  fit for  all coefficients and higher  precis ion in the Mon te  Car lo  

de terminat ion  o f  the operator.  Here  we have used this technique jus t  as an approximate  

check for our  analytical  computat ion.  
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