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Abstract. Analysis is presented in support of the explanation in Ref. [1] for the observation of relativistic electrons during Lower 

Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [1,2]. LH power from the WEGA TE11 circular 

waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B 0.5 T, ne 5x1017 1/m3 plasma at Te 10 eV bulk 

temperature wth a EC generated 50 keV component [1]. The fast electrons cycle around flux or drift surfaces essentially without 

collisions and repeatedly interact with the rf field close to the antenna mouth, gaining energy in the process. Our antenna 

calculations reveal a standing electric field pattern at the antenna mouth, with which we formulate the electron dynamics via a 

relativistic Hamiltonian. A simple approximation of the equations of motion leads to a relativistic generalization of the area-

preserving Fermi-Ulam (F-U) map [3], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna 

conditions, the F-U model predicts an LH driven current of about 230 A, at about 225 W of dissipated power, in good agreement 

with the measurements and analysis reported in [1].  
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1. INTRODUCTION 

This work’s motivation is driven by the wish to provide an alternative explanation to the analysis of the 

observation of relativistic MeV electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the 

WEGA stellarator, reported in Ref [1]. To do so, we, first, extend our previous work [4-8] on electron phase space 

stochasticity caused by electrons repeatedly passing through a spatially localized travelling lower hybrid (LH) wave 

to the case of electrons passing through a standing wave. We note that Ref. [8] presented a relativistic extension of 

the exact nonlinear results of [5-7]. Second, we show that the standing wave interaction can be approximated by the 

“simplified” version of the Fermi-Ulam map [3], which we here generalize to relativistic electron velocities.  

Calculations of the electromagnetic power radiating at 2.45 GHz into a Te 10 eV, line average ne 5x10
17

 1/m
3
, 

B 0.5T, edge plasma by the WEGA TE11 circular waveguide, 9 cm diameter, un-phased antenna, indicate that at 

the given conditions the electric field is polarized predominantly in the z (toroidal) direction; with 40% of the power 

reflected. Most of the transmitted power ends up in non-propagating eigenmodes, only 10% propagates in opposite 

directions along resonance cones, which due to the lack of phasing also forms a standing wave pattern at the antenna 

mouth, where the ~MeV electrons were observed [1]. The standing wave field can be described by a relativistic non-

conservative and non-autonomous Hamiltonian, which, in contrast to the case of a travelling plane wave with a 

rectangular envelope [5-8], is not conserved.  

Fast electrons ( 50 keV) cycle essentially without collisions around a flux or drift surface (as indicated below in 

FIG.1 of Ref [1]) in the low density plasma with an EC generated 50 keV component, and repeatedly interact with 

the rf field close to the antenna mouth. The electrons are not bound to a constant energy surface in phase space, so 

they can, in principle, gain energy, but for coherent phases between interaction events the energy is limited by a 

global stochasticity bound which we shall determine here. Specifically, we show that a simple approximation of the 

equations of motion associated with the Hamiltonian (1) below leads to a relativistic version of the area-preserving 

F-U map. The present form of the relativistic F-U map is distinct from a previous relativistic F-U model - the 

gravitational bouncer model [9] - in which the particle energy can increase indefinitely even if the phase delay 

between interaction events is not random. From numerical and period-one fixed point stability analysis [3], applied 

here to the F-U relativistic case, we find that the electron energy U does not exceed at WEGA conditions about 300 

keV, unless the phases are random. 

References [1,2] report that at energies above 200 keV, the electron confinement in WEGA becomes highly 

asymmetric with electrons in one direction along drift surfaces suffering loss, so a non-inductive current is a fortiori 

generated. First moments of the electron distribution obtained from the iterated F-U map give an LH current density 



of about 7 kA/m
2
, an LH driven current  230 A, and dissipated LH power  225 W. This compares favorably with 

results of Ref. [1].  

 

 
 

FIGURE 1.  Flux surfaces (blue) and particle drift surfaces (green) for different relativistic γ-factors.  On the left there is a 

simplified sketch of the antenna field. This is a poloidal cut of a toroidal configuration 

2. THE RELATIVISTIC FERMI-ULAM MAP 
 

The standing wave relativistic Hamiltonian with canonical momentum p and coordinate z is 

 z)(kkeE(z)Φt),(ω(z)Φ)(γcmH e sin/sin1 0
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The corresponding equations of motion  
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describe electrons orbiting around flux (or drift) surfaces and exchanging momentum with the field when passing by 

the antenna. Denote by z0=0 the position of the antenna, by t0 the time during an orbit at which interaction occurs, 

and by L the electron orbit length. Integrating Eqs (1) for one orbit we obtain: 
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With z0=0, phase =  t, and normalized momentum u=p/(me vq), Eqs (3) give the relativistic form of the F-U map 
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where E0  0.56 kV/cm is the lower hybrid Ez-field amplitude and =2 f. 
The F-U map is a resonant system with the principal, so-called period 1 resonances [3], occurring when the 

electron orbit time L/v equals an integer multiple of the field period 1/f, i.e. when L/v Lme /p=n/f, n=1,2,3,…In the 

present relativistic version we need to formulate the resonance condition in the same frame of reference for the two 

oscillating processes. So, for example, in the antenna rest frame of reference all processes experienced by the 

moving electron are perceived by an observer at rest as slowed down by the Lorentz factor . Hence the momentum 

space resonance condition becomes simply Lme/p=n/f, or M/u=n in normalized form. 

 

Global Stochasticity Boundary from Period 1 Momentum  

 



With the time dilation of the electron orbit taken into account, mapping (4) becomes 

                    111 /2);sin( nnnnnn uMuu      (5) 

One of the standard methods for finding phase space stochasticity domains of (5) is to locally represent the F-U map 

by the “Standard” map whose global stochasticity properties are well known [3]. We thus linearize (5) around the 

period 1 momentum u1=M/n with u=u1+ u, shift the phase = - /2, and introduce a new action variable I=K u, 

where K=2 M/(u1)
2
 is the stochasticity parameter. The map (5) is thus locally represented by the “Standard” map 

       111 );sin( nnnnnn IKII      (6) 

which exhibits global stochasticity when K 1, i.e. when 2 M/(u1)
2

1. The global stochasticity momentum threshold 

is therefore p1 me LHLvq, with the corresponding resonance number n satisfying n M/2 . This last inequality 

expresses the stochasticity threshold in terms of the Chirikov criterion which essentially states that when the 

excitation (E0) is not strong enough, then the lower order resonances run out of overlap. 

 

3. APPLICATION TO WEGA 
 

We now apply results of the preceding section to the WEGA LH operation conditions of Ref. [1]: electron orbit 

mean radius at =2 from FIG. 1, R 0.4 m, safety factor q 5, orbit length L 12.5 m, vq 6.4x10
5
 m/s, stochasticity 

parameter M=4.78x10
4
, the period 1 momentum threshold from the condition K=1, p1=3.2x10

-22
 kg m/s, and 

threshold resonance mode number n= 87. The corresponding energy stochasticity threshold U1=512( 1-1), with 

1= 1+(p1/c me)
2
  is therefore U1=276 keV, dismally short of the expected MeV range. This indicates that the phases 

between interaction events are random, as indicated in Ref. [1]. To confirm this, we carry out some simulations at 

the given parameters with the F-U map (4) and numerical integration of Eqs (2). Results are shown in FIGS 2 and 3. 

First, in FIG. 2 we show results for correlated phases. 

 

FIGURE 2. Fermi-Ulam map (4) surface of section, energy versus phase, at WEGA operating conditions of 

Ref.[1]. Phases between interaction events are here assumed correlated. The lowest-order resonances are evident in 

the detail of the stochasticity boundary shown on the right. U0 indicates the energy initial condition. 

 

A different picture emerges with random phases, as shown in FIG. 3 below. First, FIG. 3a indicates that the 

stochastic barrier of FIG. 2 is destroyed. The electron energy now increases with the number of orbits. The same 

tendency follows from the diffusion coefficient Dk of FIG. 3b, which indicates saturation as function of electron 

initial energy Ein. The final energy Eout is obtained as in Ref. 1, i.e. by numerical integration through the field with a 

Gaussian envelope. The resulting Dk is an ensemble average for one orbit over 10
7
 electrons. 

 

4 CONCLUSION 

 

  



To summarize, there are two main factors allowing the generation of MeV electrons and current drive during 

LH operation with an un-phased antenna at WEGA. First, the 50 keV electrons generated during EC pre-heating are 

sufficiently collisionless in order to cycle around drift surfaces and thereby to gain energy by repeated interaction 

with the field at the antenna mouth.  In so doing the electrons become even less collisional. This is a typical runaway 

situation – a critical velocity for runaway occurs when the fast electron mean-free-path is larger than the total 

orbiting path. Second, motion on the drift surfaces is asymmetric, such that electrons in one direction are not 

confined and in consequence of that a current is generated.  

Thus, finally, the iterated F-U map yields global quantities of interest such as the driven current density J =e 

nehot e <v>bounce  [A/m
2
] and the dissipated power density Q =J <dp/dt>bounce  [W/m

3
]. For the sake of definiteness, 

using the example of FIG. 3a, with a fast electron density estimated in [1] to be about 4x10
14

 1/m3, we obtain I 230 

A and dissipated power P 225 W. This gives a promising LH current drive efficiency I/Pabs of order 1.  

 

 
FIGURE 3 a) Fermi-Ulam map surface of section, energy versus phase, at WEGA operating conditions of 

Ref.[1] for random phases between interaction events.. b) Diffusion coefficient from numerical integration of Eqs. 

(2) as function of electron initial energy. An ensemble of 10
7
 electrons is distinguished by initial random phases. 
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