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Abstract
It is shown that the condition of stationary second adiabatic invariant at the mag-

netic axis of a stellarator configuration can be satisfied to good accuracy for all reflected
particles.

Introduction
In the course of the introduction of quasi-isodynamicity [1], qi, deeply to moder-

ately deeply reflected particles trapped in one period of a stellarator were considered.
Inclusion of all reflected particles led to configurations with poloidally closed contours
of the magnetic field strength on magnetic surfaces [2]. An integrated physics optimiza-
tion of such a configuration led to promising neoclassical and magnetohydrodynamic
properties [3]. An analysis of the qi quality of this configuration near its magnetic
axis was performed in [4] and showed that qi is qualitatively but not closely realized.
Here, it is investigated whether the qi property to lowest order in the distance from the
magnetic axis, i.e the stationarity of the second adiabatic invariants for all reflected
particles, can be achieved more closely.

A two-stage procedure is adopted; first, this problem is investigated in terms of the
structure of the magnetic field strength in magnetic coordinates near the magnetic axis;
then the solution is substantiated by finding the associated lowest-order flux-surface
geometry.

Procedure
For the type of configurations discussed here, with stellarator symmetry and poloi-

dally closed contours of B , it is appropriate to interpret ι as the rotational transform
per period and the toroidal magnetic coordinate φ normalized to 2π for one period; so
the qi property is to be considered in 0 ≤ φ ≤ π and restricts the Fourier components
of the field strength in leading order (square root of the normalized toroidal flux s ):

B = Bo(φ) + s
1
2B1(θ, φ) with B1(θ, φ) =

∑
bn cos(θ − nφ) . In magnetic coordinates,

the relevant equation [1, 5] reads 2

0 = cos ιφ
∑
bn cos(nφ) + sin ιφ

∑
bn sin(nφ) . (1)

Obviously the equation does not have a smooth solution. With the convention that
φ = 0 correspond to the minimum of Bo(φ) and φ = π to its maximum, the area
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2A nonvanishing integration constant in [5] would only imply that an even function cannot be equal

to an odd function.



around φ = 0 determines the behavior of the deeply trapped particles, the area
around φ = π the behavior of the barely trapped ones. If the plasma β is not
very large, deeply trapped particles are most endangered to be lost by radial drift.
Barely trapped/transitional particles can get lost through collisionless diffusion. So,
it might be useful to select approximate solutions satisfying the equation near the
extrema of Bo . This is done here and shown that the qi condition can be closely
approximated with few first-order Fourier components of the field strength. The three
equations for first-order accuracy (in the distances from the endpoints 0 and π ) are∑
bn = 0;

∑
(−1)|n|bn = 0;

∑
(−1)|n|nbn = 0 . In addition, the derivative at φ = 0 of

the odd part of B along a field line is required to vanish,
∑
nbn = 0 , to avoid an extra

local minimum of B near φ = 0 .
So, since the problem is linear, for example for a seven-components model a two-

dimensional minimization problem results for the square of the qi condition.
Finally and more laboriously, the associated flux-surface geometry is found by op-

timization of the shape of the boundary of zero - β MHD equilibria.

Results
Since toroidal configurations are considered and quasihelically symmetric configu-

rations are excluded here, it appears natural to employ b0 (representing the toroidal
effect) for normalization: b0 = −1 . Figure 1a shows the result for the two-parameter
minimization for the set of seven Fourier components [ bn, |n| ≤ 3 ] and a prescribed
value of ι . Shown are the two terms of the qi condition, eq. 1, and their sum which
exhibits a cancellation of a factor of about 7 compared to a single term and about
10 compared to the dominant helical component b1 . Figure 1b shows the result of
the four-parameter minimization which, additionally, uses the components b5 and b−5
and leads to a cancellation of about one-and-a-half orders of magnitude.

Realization of such a spectrum of the first order ( s
1
2 ) of the field strength in mag-

netic coordinates was obtained by optimization of a stellarator with N = 5 peri-
ods and aspect-ratio A ≈ 14 with its boundary, in VMEC [6] given by R(u, v) =
ΣRmn cos(mu− nv) and Z(u, v) = ΣZmn sin(mu− nv) , solely comprising m = 0 and
m = 1 Fourier coefficients. The result is shown in Fig. 2a, b. Fourier coefficients
of B1 beyond |n| = 7 have not been used so that a small tail of Fourier coefficients
of O( 10−4 ) of the field strength persists as, for example, indicative of a modular-coil
ripple. Figure 3 shows contours of B on this magnetic surface and elucidates how
quasi-isodynamicity is realized. Figure 4 shows flux surface cross-sections; the main
overall geometrical characteristic features are that the magnetic axis is not nearly heli-
cal (see, eg., Fig. 13 of [3]) but exhibits a dominant vertical excursion and the turning
rate of the cross-section with respect to the z-direction is largest around the position
of smallest ellipticity of the cross-section.

Discussion
The computational evaluation of the contours of the second adiabatic invariant is

seen in Fig. 5 in the neighborhood of the magnetic axis. Thus, the stagnation point
behavior is verified; attainment of quasi-isodynamicity at finite aspect ratio is a subject
of further work. Since the diamagnetic effect at finite β is of higher order in the
distance from the magnetic axis than considered in eq.(1), O-point behavior cannot
be expected but nevertheless occurs for intermediate reflected particles. A detailed



consideration of particle orbits is only meaningful if, beyond the result found here,
further work shows that all contours of the second adiabatic invariant can be closed
poloidally.

Appendix
In [4] the qi condition was related to the near-axis geometry with the help of

Mercier’s expansion and noted that, for the qi case, a cancellation of rapidly vary-
ing functions, the torsion of the magnetic axis and the rotation of the elliptical flux
surface cross-section, occurred which is due to measuring this rotation against the ro-
tation of the normal to the magnetic axis. Here, in view of the simplicity of Fig. 4,
the qi condition is obtained from the near-axis VMEC output directly, namely the
geometry of an inner flux tube given by ΣRmn cos(mu− nv) and ΣZmn sin(mu− nv)
with m = 0, 1 so that m = 0 describes the center of the flux tube and m = 1 its
boundary.

The strength of the magnetic field near the magnetic axis in the direction of the
normal ~n to the centre of the flux tube (which coincides with the magnetic axis in the
present approximation) is expressed as Bκξ(u, v) where the curvature κ is obtained
from the m = 0 coefficients and the distance ξ(u, v) from the m = 1 coefficients
as follows. These coefficients lead to four functions rc(v) = ΣR1n cosnv , rs(v) =
ΣR1n sinnv , zs(v) = ΣZ1n cosnv and zc(v) = −ΣZ1n sinnv . Then, ξ(u, v) is given
by the projection of the position vector onto ~n , so that ξ = ξc cosu + ξs sinu with
ξc = rcnr + zcnz and ξs = rsnr + zsnz , so that the functions κnr and κnz occur
in the first-order field strength; these functions only contain second derivatives along
the center of the flux tube and are smooth independently of whether the curvature is
small. To obtain the condition for quasi-isodynamicity, κ(v)ξ(u, v) is now expressed
in magnetic Boozer coordinates θ and φ (see, e.g. [7]). To the order needed the
transformation is given by (F ′T derivative of toroidal flux wrt. s , I total poloidal
current bounded by the flux tube in one period, guv = ∂u~r · ∂v~r etc.)

u = θ − ι χ̃0

I
+ λ0

F ′
T

; v = φ− χ̃0

I
, where χ̃0 is given by

(d/dv)χ̃0 = I(gvv0/
√
g
0
)˜/ < gvv0/

√
g
0
>v , with < ... >v the v -average and ˜ the

variation of gvv0/
√
g
0

. ι and λ0 are obtained as follows: the condition of vanishing
toroidal current (as appropriate for qi-configuration),

∮
Budu = 0 , leads to an equation

for λ0 and λ1 from which λ1 is eliminated with the help of the first order of the
condition that the current density lie in magnetic surfaces, ∂vBu − ∂uBv = 0 ; the
result is

(
d
dv
λ0

F ′
T
− ι) < gvv0guu2 − g2uv1) >u=< gvv0guv2 − gvv1guv1 +

√
g
0
guv1∂v

∫ guv1√
g
0
du′ >u,

where the subscripts 0, 1 and 2 indicate the orders with respect to s
1
2 . This equation

leads to a formula for ι in terms of the geometry of the flux tube by appropriately
averaging over v and then to λ0 by integrating over v .

The evaluation is seen in Fig. 6 and shows that a solution of the problem discussed
in this work could have been obtained, too, by optimization of an analytically given
thin flux tube (in VMEC coordinates), which, however, then would not have been
imbedded in a finite-aspect-ratio configuration.
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Figure captions
Fig. 1.(a) The two terms of the qi condition, eq. 1, for ι = 0.173 and their sum as

functions of φ between the minimum and Maximum of Bo for b0 = -1, b3 = -1.095,
b−3 = 0.778; (b) same as (a), but for b3 = -0.952, b−3 = 0.603, b5 = -0.111, b−5 =
-0.111.

Fig. 2. (a) Same as Fig. 1 but without normalization at about a fifth of the minor
radius of the configuration shown in Fig. 3 without b8, b9, b11, b12 which were not part
of the optimization; (b) with these coefficients.

Fig. 3. Contours of the magnetic field strength at 1/5 of the minor radius of the
VMEC equilibrium.

Fig. 4. Six flux surface cross-sections equally spaced in toroidal direction along half
a period.

Fig. 5. Contours of the second adiabatic invariant for deeply (first) to shallowly
(third) reflected particles. The radial coordinate is the normalized toroidal flux.

Fig. 6. Evaluation of the qi condition directly from the VMEC output.
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