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Swendsen-Wang update algorithm for the Symanzik improved cr model
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We study a generalization of the Swendsen-Wang algorithm suited for Potts models with next-
next-neighborhood interactions. Using the embedding technique proposed by Wol8' we test it on
the Symanzik improved bidimensional nonlinear o model. For some long range observables we 6nd
a small slowing down exponent (z 0.3) that we interpret as an effect of the partial frustration of
the induced spin model.

PACS number(s): 02.70.Lq, 02.50.Ng, 05.50.+q, 11.10.Lm

I. INTRODU CTIGN p(n) = p~(n) + leap(n)
.rlo„.

The Swendsen-Wang algorithm [1] is known to be
a very efficient way of generating configurations for a
Monte Carlo simulation, owing to its small slowing down
exponent. For the bidimensional Ising model the numer-
ical data are consistent with 7 oc (= ', to be compared
with r cc (= of the conventional, local algorithms (see
for example [2—6]).

However, the original formulation in the framework of
the Potts spin model cannot be easily generalized to other
statistical systems, for example, lattice gauge theories, in
spite of many efforts to do it [7,8].

Wo18' [9—11] has shown that it is possible to incorpo-
rate the Swendsen-Wang dynamics in an O(N) invariant,
multicomponent statistical system, embedding Ising vari-
ables in the continuous degrees of freedom. This method
proved to be extraordinarily efBcient, with an almost
complete absence of critical slow'ing down 7 oc (=

Motivated by a concrete application to the nonlin-
ear, Symanzik improved O(3) bidimensional o model, we
study a simple generalization of the algorithm.

II. THE ALGORITHM

The basic idea of the Swendsen-Wang procedure is to
introduce some auxiliary degrees of freedom in the model
one wants to simulate. We apply the algorithm to the
0 model de6ned in our case by the Symanzik tree level
improved action

with

At fixed p~ and lp . rl the system is equivalent to a
dishomogeneous Ising model

nn'

with a ferromagnetic nearest neighbor coupling and an
antiferromagnetic third neighbor one

J[n, n'] = 2Ply(n) r lip(n') rl

The partition function can be written, neglecting an ir-
relevant multiplicative constant, as a product of terms:

Z = ) [1+k(n, n')b „,]
~~~ n, n~

with

In each of them we introduce a new degree of freedom
l ~, which can get values in (1,0), so that in the general
case we can write (b i, = 1 —8 i, )

4 1S =P) ——p (n)p (n+n„)+ p (n)p (n+2n„)

and by the constraint &p (n)p (n) = 1. We fix an arbi-
trary unit vector r and parametrize the Geld as

1+ k(n, n')8 ) (W, , (n, n')S „,
I =p, l

+We, o(n, n')h „,8i, o

+W~, ob „, „,bi„„„o
+~o,i4„,.„,4„„„&)

' Electronic address: buonanno Qsunthpil. difi. unipi. it
Electronic address: cellasun 1O.difi. unipi. it

with the conditions Wq q+Wi p
——1+& and Wp p+lVp i ——

1. As the TV; ~ constants are proportional to probabilities
they must be non-negative.
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The variables we have added are in a one-to-one cor-
respondence with the interactions of the model, and we
sum over all configurations (I, cr). We obtain a new par-
tition function which describes the joint dynamics of all
the degrees of freedom.

We start by considering the evolution of the set (o) at
fixed (I). If we make the choice

This fact has two interesting consequences. First of
all at P = oo our algorithm is no more ergodic, as one
can easily construct Beld. conBgurations that are left un-
changed by it, apart for a trivial global Rip. To see this

TABLE I. Results of numerical simulations for the auto-
correlation times vrith the Swendsen-Wang algorithm.

Wi o(n, n') = W (n, n'),

the interaction between the sites n and n' becomes ir-
relevant if l „~ = 0. This means that the spin system
decomposes in a set of independent clusters C, , each of
them made of all the lattice sites which can be joined by
a chain of l = 1 interactions.

Inside each C; the dynamics is described by an Ising-
like effective action

which can be simplified by imposing another condition.
If k ) 0 (i.e. , if the interaction is ferromagnetic) we can
choose TVi q

——k, obtaining a model in which the two
spins must be aligned in order not to pay an infinite ac-
tion tribute. If the action is antiferromagnetic the anal-
ogous choice is R'q i ——0: in this case the two spins must
be necessarily unaligned.

For a fixed (cr) configuration the probability distri-
bution for / I depends only on the two spins o. and
o. ~. For a ferromagnetic interaction the relevant term is
[cf. Eq. (6)]

8 [kbi i+bio]+b bio.

It follows that if the two spins are unaligned / must be set
to zero. In the case of alignment there is on the contrary
an "activation" probability proportional to k/(1+ k). If
the interaction is antiferromagnetic we obtain

'4, cr' [(1+ k)bl, o kbl, l] + (1 + k)'4, cr'bl, o ~ (10)

In this case if the spins are aligned it follows necessarily
I, = 0; in the other case we have L = 1 with probability
—k.

From these considerations it follows that after the gen-
eration of the (l) set inside each cluster the spins auto-
matically satisfy the constraint imposed by Eq. (8), and
that the only possible moves are the Aippings of a cluster
as a whole.

In conclusion, we can sum up the procedure as follows.
After choosing a random direction r we set the / values
with the appropriate probabilities. Next we construct
the clusters, and Hip each of them with some assigned
probability.

In absence of Symanzik improvement there are only
ferromagnetic couplings, so each cluster is composed of
aligned spins. In our case it is possible for two or more
clusters of this type with opposite spin orientation to be
joined by an antiferromagnetic active 4t.

I
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32
32
32
32
64
64
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64
64
64
64
64
128
128
128
128
128
128
128
128
128
128
128
128
256
256
256
256
256
256
256
256
256
256
256
256
256
256
512
512
512
512
512
512
512

1024
1024
1024
1024
1024

1.250
1.300
1.350
1.400
1.450
1.500
1.250
1.300
1.350
1.400
1.450
1.500
1.525
1.550
1.575
1.600
1.300
1.400
1.500
1.525
1.550
1.575
1.600
1.625
1.650
1.675
1.700
1.725
1.300
1.400
1.500
1.600
1.625
1.650
1.675
1.700
1.725
1.750
1.775
1.800
1.825
1.850
1.400
1.500
1.600
1.650
1.700
1.750
1.800
1.550
1.600
1 ~ 700
1.800
1.900

int
x

11.2 (5)
i2.i (6)
i3.8 (7)
14.6 (7)
14.6 (7)
15.9 (8)
2i.4 (i3)
14.3 (7)
12.8 (3)
13.4 (7)
15.8 (8)
16.7 (9)
16.3 (9)
17.4 (10)
19.6 (12)
17.6 (10)
26.4 (18)
17.s (io)
15.1 (8)
is.6 (8)
16.9 (9)
17.0 (9)
2O.9 (i3)
22.0 (14)
22.0 (14)
21.3 (13)
19.5 (12)
20.7 (13)
73.1 (85)
33.7 (26)
19.6 (12)
16.6 (9)
17.9 (1O)
20.1 (12)
22.2 (i4)
24.1 (16)
25.3 (17)
30.1 (22)
27.4 (19)
27.4 (19)
24.4 (16)
29.2 (21)
89.9 (115)
38.5 (32)
20.3 (12)
19.1 (11)
19.1 (11)
24.3 (16)
33.7 (26)
52.s (s2)
32.1 (25)
21.2 (13)
25.7 (18)
41.7 (36)

22.6 (14)
23.9 (16)
24.0 (16)
24.6 (16)
23.2 (1S)
2i.i (13)
17.8 (10)
17.3 (io)
2O.7 (i3)
26.2 (i8)
27.8 (2O)
25.5 (17)
27.7 (2o)
26.1 (18)
26.9 (19)
25.3 (17)
27.5 (19)
19.9 (12)
29 5 (22)
3O.1 (22)
31.4 (24)
31.8 (24)
34.6 (28)
39.2 (28)
33.2 (26)
32.4 (2S)
28.6 (21)
29.7 (22)
74.4 (87)
24.6 (16)
19.6 (12)
30.3 (23)
37.2 (3i)
37.4 (31)
40.8 (35)
38.0 (32)
44.s (4o)
49.2 (47)
39.6 (34)
43.1 (38)
36.7 (30)
37.3 (3i)
73.8 (86)
24.7 (17)
22.8 (1S)
23.3 (15)
29.6 (22)
51.1 (49)
53.5 (53)
46.6 (43)
2s.o (17)
21.0 (13)
46.1 (42)
78.2 (94)

int
+Ey

0.55 (6)
0.51 (6)
0.79 (1)
o.so (6)
0.50 (6)
0.50 (6)

0.520 (6)
0.500 (6)
0.510 (6)
0.500 (6)
0.500 (6)
o.soo (6)
0.500 (6)
0.500 (6)
o.soo (6)
0.500 (6)
o.soo (6)
0.500 (6)
0.500 (6)
0.500 (6)
o.soo (6)
0.500 (5)
0.500 (5)
o.soo (5)
0.500 (6)
0.500 (6)
0.500 (5)
0.500 (5)
0.500 (6)
o.so3 (6)
0.500 (6)
0.500 (6)
0.500 (6)
0.500 (6)
0.500 (6)
0.500 (6)
0.500 (6)
o.soo (6)
0.500 (5)
0.500 (6)
o.soo (6)
0.500 (6)
0.500 (6)
0.500 (6)
0.500 (5)
0.500 (6)
0.500 (6)
o.soo (5)
0.500 (5)
o.soo (6)
o.soo (6)
0.500 (6)
0.500 (5)
0.500 (5)
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consider three spins in the sites n, n+ n„, and n+ 2n&.
If o„g cr„+2 the antiferromagnetic bound t
is surely activated, and the same must be true for one
of the two ferromagnetic ones l + or I +
so that all the spins belong to the same cluster. If

are activated and the three spins are connected again.
Only if o g o + g cr +2, there is a probability that
the spins can be changed independently, but this can-
not occur for a suKciently smooth configuration. So at
P = oo the algorithm can change only high wavelength
modes, while if the field configuration is smooth all spins
are connected in one unique cluster, and the only possible
update is a global parity. If P is large but finite we expect
the formation of a large cluster which connects nearly all
the sites, and then a reduced decorrelation. We empha-

size that this is not the case for the nonimproved model,
where also at P = oo the only stable configuration is that
in which all the spins are aligned.

Another point is that the mean size of the cluster is
no more connected with the susceptibility, as is the case
without improvement where a Fortuin-Kasteleyn repre-
sentation exists [12].

III. PER.FORMANCES

In order to test the eKciency of the generalized algo-
rithm we have measured the integrated autocorrelation
time for the observables [13]:

A im

TABLE II. Results of numerical simulations for the autocorrelation times with over heat bath
algorithm.

Lr
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128
128
128
128
128
128
128
128
128
128
256
256
256
256
256
256
256
256
256
256
256

1.250
1.300
1.350
1.400
1.450
1.500
1.200
1.250
1.300
1.350
1.400
1.450
1.500
1.525
1.550
1.575
1.600
1.200
1.300
1.400
1.500
1.525
1.550
1.575
1.600
1.625
1.650
1.675
1.700
1.725
1.300
1.400
1.500
1.600
1.625
1.650
1.675
1.700
1.725
1.775
1.800

int
x
8.8 (4)

10.9 (6)
12.4 (7)
11.2 (6)
9.8 (5)
8.8 (4)
7.8 (a)

11.1 (6)
17.7 (12)
24.8 (19)
33.4 (30)
37.8 (36)
40.4 (40)
s4.9 (s2)
ao.i (26)
26.0 (21)
28.2 (23)

7.o (3)
11.3 (6)
16.8 (10)
48.7 (53)
93.0 (139)

127.6 (223)
143.1 (265)
140.1 (257)
144.3 (269)
126.6 (221)
117.3 (197)
121.3 (207)
75.o (ioi)
19.1 (13)
62.2 (7O)

184.7 (275)
255.5 (447)
488.9 (1184)
455.7 (1066)
582.6 (1541)
576.9 (2147)
373.6 (1119)
377.4 (1136)
524.2 (1860)

int
Tx'
5.8 (2)
6.3 (2)
7.4 (3)
7.3 (3)
7.o (3)
6.9 (3)
5.9 (2)
7.7 (3)

10.1 (5)
14.7 (9)
18.7 (13)
23.6 (18)
20.7 (15)
23.5 (18)
22.1 (16)
20.9 (15)
23.1 (17)
6.8 (3)

10.8 (6)
14.5 (9)
a7.o (so)
72.9 (97)
74.4 (100)
96.4 (147)
83.0 (117)

101.1 (158)
82.4 (116)
88.6 (129)

108.0 (174)
65.6 (82)
i9.i (is)
47.8 (51)
92.3 (97)

183.6 (272)
195.4 (299)
319.2 (625)
412.6 (918)
313.1 (859)
247.2 (602)
378.5 (1141)
246.1 (593)

int
+E1

2.37 (o)
2.7o (7)
2.75 (7)
2.48 (6)
2.ii (5)
1.93 (4)
2.io (5)
2.33 (6)
2.ss (6)
2.62 (7)
2.60 (7)
2.5S (7)
2.32 (6)
2.28 (5)
2.14 (5)
2.04 (5)
1.95 (4)
2.38 (o)
2.45 (6)
2.os (7)
2.O6 (7)
2.59 (7)
2.47 (O)
2.24 (5)
2.26 (5)
2.22 (5)
2.03 (4)
1.98 (4)
i.92 (4)
1.91 (4)
2.45 (6)
2.6O (7)
2.58 (5)
2.33 (4)
2.27 (4)
2.os (s)
2.oo (3)
i.9o (3)
1.96 (3)
1.88 (4)
i.7o (4)
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) e2mi(nq —m, q }/I Pa (n) Pa (ni)
TABLE III. Critical slowing down exponents for the gen-

eralized algorithm.
A im

(12)

F, = —) P (n)qP(n+ n„).

& = V-'(M2) = G(&)
lpl=o

(14)

These are "long distance" dynamical quantities (in par-
ticular y is the susceptibility) from which it is possible
to calculate

From the mean values of M and E one can easily eval-
uate the two point function at the two smaller momenta
available on a finite lattice:

11
32
32
32
32
32
64
64
64
64
128
128
128
256
256
512

12
64
128
256
512
1024
128
256
512
1024
256
512
1024
512
1024
1024

M
0.19
0.24
0.26
0.27
0.32
0.23
0.24
0.23
0.30
0.25
0.20
0.31
0.24
0.35
0.47

ZF
0.11
0.23
0.25
0.23
0.29
0.30
0.22
0.18
0.26
0.16
0.10
0.21
0.16
0.20
0.38

Z+1
~pp

0.0
0.0
0.0

~ 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

~ 0.0
0.0

(x/x') —1

4 sin (vr/L)
(i6)

which is a possible definition of correlation length in a
finite volume. On the other side the mean value of Ei is
connected to the short distance dynamics:

10

8-
11

C$

We have chosen the single cluster update scheme pro-
posed by Wolff' [9—11], and we have measured also the
size of the Hipped cluster N, . In our parameter range
the ratio (/L is always less than 0.5, and the asymptotic
scaling regime is not yet reached. For example we ob-
serve at best a 15'Fo discrepancy between our measured
correlation length and the exact value predicted by the
Bethe ansatz [14].

We report in Table I the integrated autocorrelation
time for y,y', Ei, and N, extracted from a series of 10
consecutive cluster updates. In Table II we list the anal-
ogous results obtained using the over heat bath algo-
rithm [15].

We have calculated the integrated correlations apply-
ing the self-consistent method proposed by Madras and
Sokal [16],and we have checked the stability of the result.

In order to evaluate the critical slowing down exponent
for a given observable 0 we try to fit our data using the
standard Rnite size scaling ansatz

gy L)z y
&(&& L)

Here ((P, L) is the measured correlation length defined
by (16) and P is an unknown universal function. As an
example we report in Fig. 1 ( 'g versus (/L for all mea-
sures we have taken, using the value z = 0.3 which gives
a reasonable result.

Our best estimate for the critical slowing down expo-
nents are reported in Tables III and. IV. As one can
see the cluster algorithm performs certainly better in re-
spect to the local one. For the long range quantities M
and E we argue that 0.2 ( z ( 0.4. It is interesting to
note that for the local quantity Ei the results are con-
sistent with a total elimination of slowing down. This is
in some sense an intermediate situation between a local
algorithm, which decorrelates short scales much better
than long ones (see Table IV for the over heat bath case),
and the usual Swendsen-Wang algorithm which reduces
slowing down with the same efBciency at all scales.

6—

's-
4

TABLE IV. Critical slowing down exponents for the over
heat bath algorithm.

3-

0
0.15

I

0.2
I

0.25
I

0.3
I

0.35
I

0.4

FIG. 1. Finite size scaling of 7'" .

L=32
L=64
L== 128
L=256
L=512
L=1024

0.45 0.5

Lg
32
32
32
64
64
128

12
64
128
256
128
256
256

M
1.65
1.65
1.69
1.81
1.43
1.66

ZF
1.63
1.73
1.76
1.91
1.83
1.67

Z~i
~ 00
~ 00
~ 0.0

0.0
0.1
0.2
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14 IV. CONCLUSIONS

12-

10

4-

0
0 50 100 150

(
200

I

250 300

FIG. 2. The ratio N /y versus the measured correlation
length.

In Fig. 2 we plot the ratio between the measured sus-
ceptibility and the mean size of flipped cluster versus the
correlation length. As we have anticipated with our gen-
eralized algorithm y is not proportional to N, as one
can easily see. We try to interpret the plot in the fol-
lowing way: for ( ( 0.2 L the finite size effects are small,
and we can see that the cluster size grows more rapidly
than the "physical" size connected to the susceptibility.
This is consistent with the discussion of the previous sec-
tion about the expected behavior at large P values. For
( ) 0.2 L volume effects prevent more effectively the clus-
ter size than susceptibility from growing; hence, N, /y
decreases.

Our results show that the proposed algorithm is ef-
fective in reducing the slowing down at short and long
scales. In the last case the slowing down is not com-
pletely eliminated and we can interpret this fact in two
equivalent ways.

As there is no proportionality between the cluster size
and the physical scale of the model the algorithm is not
forced to operate on the modes physically relevant.

From another point of view we have seen that the
nonoptimal behavior at large P is connected to the si-
multaneous presence of ferromagnetic and antiferromag-
netic interactions in the efFective spin model, that be-
comes ft..ustrated. It is well known that in the presence of
frustration the reduction of slowing down is an extremely
diKcult task.

In our case the frustration is small, and the algo-
rithm is in any case more eKcient than a local one. We
have worked out a more elaborate generalization of the
Swendsen-Wang algorithm that could be efFective in re-
ducing the excessive growth of cluster size, and we are
testing it to see if it is possible to further reduce slowing
down in this model [17).

We are also extending our study to a larger correlation
length, in order to be sure that the dynamical exponents
we have estimated are really the asymptotic ones.
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