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Lattice energy-momentum tensor with Symanzik improved actions
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We define the energy-momentum tensor on a lattice for the AP and for the nonlinear o-model
Symanzik tree-improved actions, using Ward identities or an explicit matching procedure. The
resulting operators give the correct one loop scale anomaly, and in the case of the o model they can
have applications in Monte Carlo simulations.
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I. INTRODUCTION

The lattice regularization is the preferred framework
for the nonperturbative study of a field theory by means
of numerical simulations. It gives the bonus of explicit
preservation of gauge invariance, which is believed to be
the key to understanding very important phenomena,
such as, for example, confinement. The lattice, how-

ever, breaks other symmetries, such as the translation
(Poincare) invariance, and it is important to verify the
correct restoration of these properties in the continuum
limit.

A classical symmetry is expressed at the quantum level

by a series of Ward identities involving the associated cur-
rent operator. These identities cannot be satisfied in the
presence of a noninvariant regulator A. If the invariance
must be preserved, we can expect that, after a suitable
O{h) operator redefinition, these relations will be broken
only by "irrelevant" (that is to say, which vanish remov-
ing the regularization) terms.

In general this program cannot be accomplished, as
classical invariance may not be compatible with quanti-
zation. A well-known example is the dilatation invariance
that, independently of the regularization chosen, cannot
be restored in the renormalized theory. However, if an
invariant regulator can be found, we must be able to re-
store the Ward identities in another scheme, whatever it
would be.

This is the case of the translation invariance, for which
an invariant scheme exists {for example, dimensional
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regularization). The relative Ward identities are rela-
tions between insertions of the energy-momentum tensor
(EMT) that can be written as

On the lattice, we can perturbatively impose the validity
of these equations up to terms O(a) [or O{a ) in absence
of fermionic ffelds]: explicit one-loop calculations have
been done for the AP model [1], for @ED [2], and for
@CD [3,4].

In a concrete lattice simulation the cutoff' A = 1/a is
obviously finite. This gives rise to systematic errors in the
estimation of observable quantities that can be reduced
using very large lattices. An alternative possibility, pro-
posed by Symanzik [5], is to redefine the lattice action:
we can exploit the ambiguity inherent to the lattice tran-
scription and perturbatively eliminate the cutoff effects
to a given power of a.

We have explicitly calculated the finite corrections nec-
essary for the one-loop definition of the EMT with a
Symanzik tree-improved action. First, as an academic
exercise, we have analyzed the simple AP model [6].
Next we have considered the nonlinear O(N) bidimen-
sional o model [7]. This is of much interest as it shares
some important properties with lattice gauge theories [8],
first of which is the asymptotic &eedom which is an ar-
gument to justify a perturbative approach.

Since the EMT is related with the dilatation current,
which as we said is broken at the quantum level, we have
also verified that the so-defined operator gives the correct
one-loop anomaly.
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II. SYMANZIK IMPROVEMENT A. Energy momentum tensor

We use the A(t model to explain in detail the proce-
dure. Starting from the classical continuum action S we
can write a lattice regularized version of it S~ qt in infinite
ways, requiring only that

Prom now on we work in the tree-improved theory de-

fined by S& ~'t, which is equivalent to an efFective con-
tinuum (dimensionally regularized) action that can be
written as

lim S( „[P]= S[P]. (2) S = dD -Z 0 0 +- 'Z '+ —Z
4!

The simplest option is the substitution of the integral
with a sum over lattice sites n, and of the derivatives with
the ffnite differences A+/(n) = [P(n+ ap) —P(n)]/a: The Z constant can be determined imposing the equiva-

lence of superficially divergent I" functions. For the two
points one particle irreducible (1PI) function we have, on
the lattice (see Appendix A for the notations),

+—m P (n) + —gP (n)
2 4r

= S[P]+O(a ).

0„=—ln (1+am+)
1

(4)

If we limit ourselves to a tree level (classical) improve-
ment we can easily do better. Differences proportional to
powers of a between the two actions arise from the deriva-
tive term, and can be compensated adding to the lattice
Lagrangian suitable irrelevant operators, or equivalently
using an improved finite difference formally defined by

and, in the continuum,

gp4 —D
I, „„(00)=m+

2

d

)
~ Dcont (t )

g m' (1 m'5=m'+ —,
~

———1 + p& + ln
2 (4vr)' ( e 4vr p2)

4
I I.",, (0, 0) = m'+ —,D&.«(l)

2 2~4

g Zp m 2
2 2+

2 a' (4vr) ' (ln a m, —Epppp —1

+ Zz —To)] (8)

with the second term expanded at the desired order. The
classical action with the O(a ) artifacts removed is given
by

S(.';; [y] = S,".„'[y]+ a')
,
a'~+~—+y(n)~+~+y(n)

n, p,

= S[&1+O(a')

as can be easily verified by expanding the finite difkr-
ences.

In the quantized theory it is necessary to parametrize
the divergences of the continuum theory, for instance, us-
ing dimensional regularization, and to define an improve-
ment criterion. We require that the lattice one particle
irreducible functions I' generated by S& tt coincide at
small external momenta with the continuum ones, apart
from O(h') + O(a2") corrections. Symanzik has shown
that it is possible to write

(9)

Now we must subtract the pole part in (9) (we use min-
imal subtraction in the continuum), and dispose of the
quadratically divergent piece in (8) by imposing the van-
ishing of the self-energy on the lattice for p = m = 0 with
a suitable counterterm:

(10)

Comparing the two results we obtain (we set the mass
scale as p = 1/a for simplicity)

gZ —1+
2(4~) 2 [ln 4vr —To —&oooo] .

n l NI,

S,':,;"[~]= S,'...'[~]+).):~") f.(g)
k=pp=1

x a a 0, {n)
(2k+Le) ~

where the D~"~ are A;-dimensional lattice operators, and
the coefEcients fez are calculable imposing the improve-
ment criterion with a p-loop calculation.

The procedure for the determination of Zg is analogous.
For the four-point functions we obtain, on the lattice,

d4/

3 g= g ——
[
—Pz + &oooo + To

2 (4m)2
—ln a'm'],

and, in the continuum,
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so that

3 g2 1 m= g ——
2 (47l) e 47l p

——p@ —ln

3 g
Zg = 1 + [lil 47l Tp Epppp] .

2 (4')~ (14)

It is now possible to define the EMT in a very simple
way. In fact it can be shown [9,10] that, given the effec-
tive Lagrangian L,& defined by (7), it is sufficient to write
a lattice operator which reduces in the leading order in
a to

T„'„=ZyN [8„$0„$]—h„„N[L,fr],

where N[O] is an operator corrected accordingly to the
prescription of the effective Lagrangian. We note that as
we consider only the integrated T„„,there are no prob-
lems of ambiguity in the definition of the classical op-
erator, so that we can neglect the so-called "improved
Coleman term" [11,12].

We can also write, at the one-loop order,

2

T„„=ZiA„PD„P ——(A„PA„P+ A„Pb,„P)

G

,') ~,ys, y —) z-,ya', y
P P

b,„PA„P+ m P +, gPP P 4| (16)

where we have used the symmetric finite difference
A„P(n) = [P(n+ ap) —P(n —ap)]/2a, and we have im-
posed the Ward identities to determine the Z Gnite cor-
rections. We have explicitly checked that the two meth-
ods agree with each other.

The expression (16) reduces to the classical improved
quantity if Zq ——Z2 ——Z4 ——Z5 ——1, Z3 ——0, and as
we are considering only tree improvement we can neglect
O(a g) corrections. The resulting Feynman rules give

two and four lines vertices T„„and T„„.The relevant(2) (4)

identities defined by (1) involve the insertion of these ver-
tices in the two- and four-point irreducible functions (see
Fig. 1). We start from the two points identity, written in
momentum space for the integrated T„„:

FIG. 1. The relevant insertions of T„„.

(Zi —1) = (Z2 —1) = Zs ——O(g ),

Z4 ——1+ — 4D, t, (l) 2+

g 2 1=1+
2(47l )2

Tp —T2 + 2m' Zpppp —1 ——T4
3

g Ty T3+ —+-
a2m2 4 12

(2o)

The determination of the Z5 correction can be done
considering the four-point identity

I" (o;o, o, o, o) = —b„„r~'l(o, o, o, o). (21)

a4&r' ' (o;o, o, o, o) = —b„.gz, + 3g'b„„,D,'.„(l)
4

2

(l„l„+l l„)

We calculate the relevant insertion which, taking into
account the relations (20), is of the form

r' '. (0 p P) =
I

—" -+ —" —~ - Ir"(p).
( 2 Bp~ 2 Op~

"-4—b„„ll + —l +m
3

(22)

We have already calculated the one-loop correction to
r~ l [see Eq. (8)], while for the insertion we obtain

x 8„„+2T~„l (l, —l)Di~„(l)

and substituting in (17) we find the conditions

Using this result and Eq. (12) we obtain

3 d4)
z, = i+ -g D,.„(l)2 2~4

a2
x i —D,.«(l) I

l'

g 2 1= 1+3
2(4m) 2 Tp T2 + 27l Zpppp 1 T4 ~

3
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B. The dilatation current anomaly

Prom the Ward identity for the Noether current con-
nected to scale invariance

J Xg/Tpl/)(D)
P

one can show that the scaling equation is related to the
EMT trace as

( c) c)—m —N
l
r'"'(p, , p~)c)a Bm )

This Lagrangian generates an infinite number of vertices,
but at a given perturbative order only a restricted set
of them gives a contribution. At one loop we need the
propagator of vr; fields D,j(p) and the four-point vertex
+ij kl (pl & p2& p3& p4) ~

The O(N) invariance gives strong constraints to the
renormalized action. Solving explicitly the relative Ward
identities [13] one can prove that this can be written in
terms of two renormalization constants Z, Zq.

S~"~= d, ~I -' a ~.a ~D —2 Z
2Zt

= r "'(0;

Now, the mass derivative is equivalent to the insertion in
1" of a renormalized mass operator, and analogously the
field number N can be generated inserting the renormal-
ized operator Pg. It follows that the scale anomaly is
equivalent to the insertion of the evanescent operator

(26)

~ = gz-i —~'. (30)

—~0 + ~1 + ~meas)

with

On the lattice the tree-improved action can be written

Using the defined EMT we obtain the same results one
finds with the nonimproved action [1]. This is correct,
as the anomaly is proportional to the P functions of the
theory that, as well known, does not depend to this order
on the regularization scheme.

S, = a') —~+~(n) . ~+~(n)
n

m2
+ 4+a(n) 4—+o (n) — o (n)P P t

III. RESULTS FOR THE IMPROVED
NONLINEAR SIGMA MODEL ~, = a') ~+~+~(n) ~+~+~(n)

The nonlinear O(N) sigma model is defined by the
path integral

a A+A+o (n)A+A+o (n)24t P P P P (33)

Z= 17 x 2x —1

xexp —— d yO y . t9 y
1 2

S, , = a ) —lno. (n), (34)

where P = (Pi, . . . , P)v) are N scalar fields. In the con-
tinuum we use, as usual, the dimensional regularization
scheme, with minimal subtraction at the scale p = 1/a,
and in order to eliminate in&ared divergences, which are
an artifact of perturbative approximation, we add to the
action a mass term which breaks the O(N) symmetry.
With the chosen regularization there are no contribu-
tions &om the path integral measure, and we can write
the action as

the last term coming &om the exponentiated path inte-
gral measure. This action is equivalent to an effective
continuum one, that must be of the form (30). To deter-
mine the finite renormalizations Z, Zq it is sufFicient to
compare the two-point irreducible function on the con-
tinuum,

r„,..., (p, -p) = ~, ,
'

—
—, l

p'+(2) p +m2 1 (2 N —1

4'
2

S = d X p —B~'K ' 0~7f + —0~0'0~0' — 0D D 2 1 1 m
2t 2t t

(28)

a'm'
x l» +p~ I,4~ ) (35)

with the parametrization

m=(Pi, . . . , P~ i), o=P)v =pl —n n. (29) and on the lattice,
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r;, , .„(p -p) = +). I p, + —p, I

——,+t,D.. (l)
b;, 2 . (2 a ~l & %+1. 2 dl
t -

g
' 12 ') a' 2 27r 2

P

t+
2

d2l f ~2 ~2 a2 ~4 a2 ~4)
(2vr) 2 D& «(1)).l (&+ I) + (& l) + 9'+ l) + (—p —l)12 ' l2

P

Using the lattice integral properties and suppressing ir-
relevant terms we can write

T(MF) Z4W (44)

(45)

d2l ~K —1
D)~„(l)

l

m
27K ( 2

+(1+ 4 cos ali —2 cos ali)—
3 )

(37)

Z, = 1+—(m —2) l p~+ Zo4'
t (8 4 2+—

l

———Es+ —Eo+
4~ q3 3 3

(Z = 1+ (& —1)
l pE + @o

4

321+ ln —
l4~)

2

3 )
32)+ ln —

l

.
4vr )

A. Energy-momentum tensor

At first we note that we expect to obtain an O(K)
invariant result, except for contributions proportional to
the symmetry breaking mass or to the motion equation

where the quadratic divergence in the integral has been
canceled by the measure term. The final result is

k.I!,' (k; k, O) = —k„r!,'l(O, o). (46)

The contribution of the various insertions can be written
as

Io(k, o) = b,~b„„—Z4 k + 2m —Z m" ""t
b~ d2l

2 27r 2 2D) t,g(l) + (K —1)Ii(k, o) =—

When Z» ——Z2 ——1, the term T~ reduces to the naive(o)

lattice transcription of the classical operator. T„can-
cels the O(a2) lattice artifacts at the tree level, and we
have not considered O(t) corrections for it, as they would

be irrelevant to the order we are working. T~™ is a pos-
sible contribution proportional to the motion equation,
and as we said it does not need to be O(N) invariant.
It is not present at tree level, so Z4 ——O(t). T„ is an(&) ~

operator with only the hypercubic lattice symmetry that
can be required to ripristinate the O(a2) rotational in-
variance.

As in the A4 model, it is possible to calculate the Z
corrections by using two equivalent methods. We start
evaluating the insertion with external momenta p = k
and q = 0 (see the graphs IO,I1,I2 in Fig. 1). In this
regime the Ward identity reduces to

bg) tt 1 o. —m-
ba t " " o- 0

(4o)
D'"'"'D'-""+") ~ (k+ «)D) «(k)

So at the order we are working the operator can be writ-
ten as —b„„

l

—App(k+1, k)+m2
l

(1
q2 ) (48)

with

(41) d2l
I2(k, o) = b,~ 2D(~tt(l) A„(k+ l, l)

27r 2

—b„„ l

—A (&+ l, k) + m l, (49)
(1 - %+1
(2 2

T(»)

P
2

(a„@.a'.@+a'„y ~.@)

G+b„.—) ~,@.~',y,

(42)

(43)

(5o)

Summing the three contributions, and using (46) we ob-
tain

Z4 ———(N —1),8'
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Z = 1 — —(N —1).8'
The other constants can be calculated from the insertions
of the integrated operator. With the same notation we
have

t
c~ = 1+—(N —2)Es —(N —1)

l

» —+ ~~ I4' 4~

1 8
24 3

b. . a~
I,(p, —p) =," 2Z, p„p. +

3 (p„p'. +p'„p.)

Q 2
—h„Z2p'+ —p'+ Z,p„'+ Z m'

3

+2Z4(p + m ) (53)

(54)

—" ~„(i+~r+p)+(~, +i) * ).
(55)

m2
Ig (p, —p) = 8;~6'„„2D( „(l)[2D(~tt(p + t)"""2 2vr'

+ (N —1)m'],
d2t

12(p, —p) = b;, , D) „,(I) (2A„(p+ Ip+I),
27r 2

32
c2 ——cs ———(N —1) ln —+ p~ —Es

4m 4m

de6ned by

2

N[8„@.B„P]= b, a„y.Z.@——(a„@.a'.y

+A„Q A P) + b2b„„Dpg Dp@

+b,b„.A„Q. A„P

+64b„m o-+ 65b„„m2

N[Bp@ Bpg] = cqAp@ Ap@ — ApP—
2 bS)~tg

+C2m 0 + C37t'

B. The dilatation current anomaly

(65)

(66)

(67)

Taking all together, and using the Ward identity (17) we
obtain . ( 2

a ) i Tp~ ——m (7 (68)

In analogy with the A4 model, we find that the scale
anomaly is proportional to the irrelevant operator

Zy = 1 + (4Es + Ep —3Ey —2Es —3E2 —20), (56)
127r

Z2 —1 + [4Es —2Ep —2Es + 8E4 —3(N —1) —5],
12%

whose insertions are equivalent to those of

a ) ~
P(t)t —— 7r —p (t)m —

~

S. (69)
. f (9 ((t) (9

Bt 2 07r Om2 )

Zs —— (3E() —3Eg —3Eg —SE4 —12).6' (58)
Independently of the action (improved or standard) we
find

This result can be checked by an explicit determination
of a lattice transcription of the effective EMT,

(N —2) 1- 2O=a ) — ——6 @.6 @+mo.2' P
n

T„'„=— N[B„P 0„—@] —8„„N[1,~],t Zg
(59) (N —3), (N —1) hS) „

4~ 4~

32
4' 4'

( 32 Ev
b2 ———(N —2)

~

—ln —p&+ Es+ 1 ~—
87r i 4m 24

(61)

(60)

where I,fr is deffned by (30). It is sufficient to match
lattice and continuum insertion of operators in the two-
point function.

For reference we list the results for the matching coef-
Bcients: () (N —2)

~-(t) = —t (N —3)

(71)

(72)

(73)

and we obtain the correct one-loop (scheme-independent)
results:

b3 — [12 —3E() + 3Eg + 3E2 + SE4]
127r

32
b4 ——bs ———(N —1) —1 —Es + ln —+ p~

8m 4m
(63)

C. Results for the standard theory

We report the results obtained for the nonimproved
theory. With the same notation used previously we have,
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for the renormalized Lagrangian,

(N —2) 32
Zg ——1+ t ln —+ p~

47r 47r 4'

(N —1) 32
Z = 1+t ln —+p~

47r 4' (7s)

think another interesting possibility is the test of EMT
in variational computations, in order to clarify what are
in this &amework the inHuences of lattice artifacts.

APPENDIX A: NOTATIONS AND INTECRALS

The relevant insertion of composite operators appearing
rn T& grves

The lattice propagator is defined as

t
bs ———[1 —vr],

7r

(N —1)
b4 ——b5 ——t 8'

3 32——+ln —+p~
2 4'

32
bg ——1 ——4+ ln —+ p~4~ 47r

t'3 32
b2 ———2 —~+ (N —2)

~

——» ——pz
~8' ).

(76)

(78)

We use also

1.
l~ = —sinai&.

a (A2)

The lattice integral needed for calculations with the stan-
dard (nonimproved) action for Aci can be evaluated in
terms of integrals of modified Bessel functions [15]. All
the relevant cases can be expressed in term of two pa-
rameters:

t 1 32
ci ——1+——(N —2) —(N —1)

~

lil —+ p~ ~4' 2 4vr )

+3m —6 (80)

(N —1) 32
c2 ——c3 ——t ln —+ p@ ——

ivr 4' 2

t
Z, = 1 ——[4+7r],4'

t
Z, = 1+—[3~ —8 —(N —2)],

4m

2
Z, = t [1 —~], —

t
Z4 ———[N —1],

87r

(82)

(83)

(84)

(85)

The renormalization constants for the energy-momentum
tensor are

d4l

(2~) q + m
2Zoo oo m 2 2

a' (4~)' (1+Foooo —pz —lna m )

+O(a m ),
041

(27r)4 (qz + m2)2

(4~) 2 (Foppp —pE —lna m ) + O(a m ),

I3 ——
d4l

(2vr) (q + m2)s (4vr)2 2m2
+0 a

(2vr) (q +m ) 2a ( 8)
a m+ (2~ Zoooo + 3z —1 —Foooo
(4~) 2

(A4)

(As)

(A6)

Z = 1 ——[N —1].
87r

(86) +lna m ) +O(a m ), (A7)

IV. CONCLUSIONS

We have defined on the lattice, to one loop, the energy-
momentum tensor for two Symanzik tree-improved. ac-
tions, the A4 scalar theory and the bidimensional non-
linear 0 model. In the 0 model case, due to the asymp-
totic freedom of the theory, the calculation is reliable in
the asymptotic scaling regime.

We have found the correct scale anomaly, which as
expected. , is independent of the regularization scheme.

For the 0 mod. el the corrected EMT we have found can
be a starting point for a successive nonperturbative de-
termination with numerical method [14]. As the Tpo com-
ponent of EMT is the energy density, it can be used on
lattice for the determination of the mass spectrum. We

(A8)

where

+oooo = ze 'Io (2z) dz

+ ze Io 2z

d4q 1
(27r)4 q2

2
Zoooo = a

esz
4.369, (A9)

4vrz 2

(A10)

d l g~g~
(2vr)4 (q' + m')'

4(4~)2 (Foooo —2~ Zoooo —pz —lna m )

+O(a m ),
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For the standard sigma model case all integrals are ana-
litically calculable in term of erst and second type elliptic
functions Zp 0.129 1

(4 )

TABLE I. The constants Zp and T, .

—0.008

d2l

(2~)' l'+ m'
1 a m2 2

2 2= ——jn +0(a m ),
4w 32
d l cosalq 1 a m

(27r) l& + m& 4vr 32

(A11)

——+0(a m ),
1 2 2

4

(A12)

T3

0.045

0.029

1
(~ )'

T4
(4~)~

—0.005

0.009

4
M7 —a ~D) «(l)q = T4 + 0(a m ).

d l cos al~ cos al2

(2~)' j' + m'
1 a m 1= ——1n + —+0(a m ),

4m 32 vr
(A13)

(A14)

d2l cos2 alp

(2~)' l + m3

] a m ] ]= ——ln +0(a m ).
4m 32 2

The integrals which appear in calculations with the
improved actions are not analitically calculable. For the
A4 model we need to extract the asymptotic a m 0
values of

d4l
Mi ——

~ Di~«(I)
2vr ~

m2= I, — Tp+ + 0(a m ), (A15)
4vr 3 a

d l
M3 —— D( «(l)

2m 4

d'l 1 f a'm' lSi = D] «(l) = —
~

Ep —ln
~
+0(a )(27r)' 47r ( 32 )

(A22)

d2l
S3 = 3D)~«(l) cos ali

27r 2

a'm' )= —
~

Es —7r —1n ~+0(a ),4 32 ) (A23)

(A21)

The general strategy is to add and subtract an integral
resulting &om the standard lattice formulation &om the
improved one. In this way we obtain a divergent piece
that can be calculated explicitly (as is a standard I; in-
tegral), and a finite expression that can be evaluated nu-
merically. We give the values of the relevant constants in
Table I. For the sigma model we need

=I3+ To+0(a m ),
1 2 2

4' 3

d4l
M3 —— D& «(I) = I3 + 0(a m ),

27r ~

(A16)

(A17)

d2l
3

( ),D&~«(l) cos ali cos al3

a'm' )= —
~

Ei+4 —» ~+0(a'),
47r q 32

(A24)

d l
M4 =,Di.«(l)q

2m 4

m 2—+ (27r Zpppp + pE —1 —T3a (4vr)

—Foooo —1na m ) + 0(a m ), (A18)

(A19)

d4l
Ms —— DI „(l)q

2m 4

= T2 1 2 2 2

(4~)3 (4~)3+ (Eoooo —2m Zoooo —pz —1na m )

+0(a m ),

d l 2S4 —— D~~t, t, (l) cos al 1
27r 2

( a'm' )E3 + 4 —2rr —1n
~

+ 0(a ), (A25)
47r 32 )

d2/ . 4 1 2Ss —— Dl~t, t(l) sin ali —— E4 + 0(a ), —(A26)
(27r) 3 47r

TABLE II. The constants E;.

2 —4Ms ——a DI „(l)q2' 4

= T3 2m 2
2 4T4+ 0(a m ),a3 (4~)3 (A2O)

1
4m

+41
4m

—0.5928

0.0443

0.1056

0.8706

0.0245

—0.3127
—0.0577

7.041



4502 BUONANNO, CELLA, AND CURCI

Ss —— D~~tt(l) sin alq cos alq cos alz
27r 2 +O(a ), (A28)

—Ez+ O(a ),=1 2

4' (A27)
which have been evaluated with the same technique, in
terms of the constants reported in Table II.
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