Cortical parcellation of Broca's region based on functional connectivity glyphs Estrid Jakobsen ${ }^{1,2}$, Charlotte Chaze ${ }^{2}$, Joachim Böttger², Stefan Geyer ${ }^{1}$, Robert Turner ${ }^{1}$, Michael Petrides ${ }^{3}$, Daniel S. Margulies ${ }^{2}$ ${ }^{1}$ Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ${ }^{2}$ Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany			
- To employ prior anatomical knowledge and resting-state functional connectivity, together - The manual parcellations provide training datasets for the development of automated with a novel visualization method, to manually parcellate the cortex of human brain in vivo. parcellation algorithms with comparable precision at the individual level.			

Data

65 ICA-FIX denoised resting-state fMRI datasets from the Human Connectome Project ${ }^{4}$ Additional processing steps: (1) Time-series data of the left hemisphere extracted (2) 2 mm surface smoothing applied (3) Node-wise Pearson correlation matrix computed and Fisher's r-to-z transformed (4) Correlation matrices averaged over four rfMRI runs for each participan (5) Resulting data visualized in brainGL ${ }^{5}$.

Results

Functional connectivity-based probabilistic area maps

Group-average masks of each area. Color indicates probability of mask overlap across all 65 subjects. (A) and (B) show cytoarchitectonic probability maps from the Juelich Brain Model ${ }^{6}$ on the fsaverage 5 surface

Comparison of manual labeling to automatic clustering techniques

K-means and hierarchical clustering were run for a region of interest defined by each individual's combined areas 45 and 44 manual labels. Left: Distribution of Dice similarity values of automatically and manually labeled areas. Right: Clustering results and manual labels superimposed on the inflated surface for the first 10 subjects.

Conclusions

- BA 44 and 45 could be clearly distinguished from each other and neighboring regions in all 65 subjects.
Results are consistent with previous studies showing unique connectivity patterns of BA 44 and 45.
Validates the usefulness of glyph visualization for manual cortical segmentation based on connectivity information.
Group-average masks demonstrate areas of consistency and variability across individuals and highlight the importance of individual-level analysis.
- Future research will apply the same methods to further cortical areas, with the aim of Future research will apply the same methods to further cortical areas, with the aim of
developing a functional connectivity-based probabilistic atlas of the prefrontal cortex. The manually delineated datasets serve in the development of automated parcellation The manually delineated datasets serve in the development of aut
methods that aim for comparable precision at the individual-level.

Manually labeled areas 45 and 44 for one individual subject on the pial and inflated surfaces with functional connectivity glyphs in the ventrolateral frontal cortex. Each glyph represents the full functional connectivity profile from that node to the rest of the cortical surface. Glyph color indicates correlation value. Connectivity of areas 44 and 45 can be distinguished in the anterior temporal and inferior parietal regions.

Average functional connectivity across subjects

Group-level T-maps for each area showing the functional connectivity for the manual labels across all 65 subjects, with a voxel-wise threshold of $p<0.001$.

6 Inter-rater reliability of manual labeling using functional connectivity glyphs

Top: Distribution of Dice similarity values, which describe spatial overlap, between two independent raters for each area. Bottom: Both raters' area 44 and 45 labels shown on the inflated surface from the five subjects with the highest and lowest Dice similarity. Right: Mean difference map between raters on the pial and inflated surfaces, as shown by the group -averaged mask of the labeled nodes differing between raters.

Abbreviations

Abbreviations
aalf: anterior ascending ramus of the lateral fissure AnG: angulargyrus asme and pms cgs: anterior and posterior supramarginal gy cs: cengulat sulcus cs: central sulcus

half: horizontal ascending ramus of the lateral fissure
iprs: inferior precentral sulcus iprs: inferior precentral sulcus
PM C : middle eosteriomedial cortex
Pre-SM A And SMA PMCM: midadle eosteriomedial cortex
Pre-SM and SMA: pre-supplementary
motor cortex STSoa, STSTM, and STSp: anterior, middle, and posterior
superior temporal sucus STSa, STSM, and STSp: a
superior temporal sulcus

1 Kelly, C. et al. (2010), Eur J of Neurosci 32(3).	
2 Margulies, D.S. and Petrides, M. (2013), J Neurosci 33(42).	
etrides, M. and Pandya, D.N. (2009), PLoS Biol 7(8).	
4 Smith, S.M. et al. (2013), Neurolmage 8	
5 Bötger, J. et al. (2014), Frontiers in Neurosc	McDo
6 Amunts et al. (1999), J Comp Neurol 412.	Washington University

