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Abstract. The kinetic equation solved I§SFPQL was obtained by surface-averaging the Fokker—Planck @®jten, thus
neglecting both the finite width of the ion orbits and the jdéd modulation of their velocity. Owing to the latter effeand
depending on the position of the resonance layer, a fracfitnapped particles do not even reach the ion-cyclotroarrasce.
In addition, since the resonant ions gain perpendicularggnéhey tend to accumulate on trapped orbits barely iefgting
the resonance. Still neglecting the effects due to the fivii¢h of the orbits, here we discuss the form of the FP equoatioen
the velocity modulation is taken into account. In particuae examine the implementation of this effect in the quedr
operator ofSSFPQL, and present a few numerical results.
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INTRODUCTION

The packag@ORI C- SSFPQL [1] for numerical simulations of lon Cyclotron (IC) HeatimgTokamaks is particularly
fast. This is due in part to the fact that®8FPQL the solution of the surface-averaged quasilinear kinefi@aéon is
obtained as a velocity dependent superposition of Leggmalymomials in the velocity pitch-angle. This transforms
the equation into a (formally infinite) set of ODEs, which amved using cubic FEM. This approach, however, is
straightforward only because the solved kinetic equatieglects not only the finite width of the ion orbits, but also
the poloidal modulation of their parallel velocity, and $ithe existence of a population of deeply trapped ions which
do not reach the IC resonance. These effects can appreaiflignce the heating efficiency, and their importance is
expected to increase when the heating is applied off-axis.

We present the form taken by the surface-averaged kinetiatem when these effects are included in the model
solved bySSFPQL. Their inclusion greatly complicates the evaluation of toefficients of the ODEs system to
be solved, which must be obtained with great precision tadawonvergence problems in the Legendre summation.
To make this possible, we have developed a humerical metaseldbon long-integer arithmetics, which could have
interesting applications also in other fields of analys]sA2 present, only the quasilinear term has been implentente
with this new method; thus we present preliminary resultahiich toroidal trapping in the zero-orbit-width (ZOW)
approximation is taken into account in the description sbrent IC interactions, but not in the collisional operator

ZERO-ORBIT-WIDTH AVERAGED QUASILINEAR FOKKER-PLANCK EQU  ATION

To highlight the central assumptions done in the following, briefly recall the main general steps that starting
from the orbit average lead to the ZOW-average, and finallhéosurface average &FPQL [1]. Orbit averaging
reduces the dimensionality of the phase space: it is doneilifgy a coordinate system with the constant of motions
(COM), which exist for the considered dynamical system, eoighpleting it with the required number of periodic
coordinates; then, by averaging over these periodic coatés, the final equation is formulated in a reduced phase-
space spanned only by the COMs. Often this comes at a prieeviraging procedure is complex or/and the usage
of COMs is cumbersome. In tokamak axisymmetric configuratictypical set of COMs are the energy per unit
mass.s, = v/2 (for simplicity, here the presence of an electrostatidfigineglected), the magnetic momentum per
unit massuy, = vi/ZB, and the toroidal momentum per unit maBs= —QcW,/B+ RVHB¢/B, with Q. the cyclotron
frequencyP the confining magnetic field a8}, its toroidal component, ariél, the poloidal magnetic flux. Hereafter,
parallel and perpendicular refer to the direction of thelaonfining magnetic field. The three periodic coordinates
are the toroidalg, poloidal,&, and gyro,@, angles. This set of coordinates is finally completed withslgn ofy



on the external midplane poing,,. If the radial drifts are neglected, any monotonic flux fimicto can be used as
COM in place ofPy, which in turn is conserved only on the bouncef/transit timg cale. This is what is couched in
the zero-orbit-width expression, since the width of theopal projection of the trapped orbits shrink to zero when
drifts are neglected. Because of the axisymmetry of the guordtion, the average ovéris straightforward as is the
gyro-average. The average overinstead, requires some discussion, which is postpondgbtnext section. In short,
the ZOW-averaged quasilinear kinetic equation (KE) can btem in divergence form,
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whereFs is the distribution function of the ions species indexedW#’, < ... > stands for the average operation, and
J is the Jacobian of the starting coordinate system, naf®ly, ¢, p, &, Lv). Because of the ZOW approximation,
equation (1) is a two-dimensional PDE with) = (&, ). However, before averaging, we transform the quasilinear
operator [3] to the coordinate system having the same agiahles, butv, &eq, p) as COMs, wheré = v; /v: this is

the set of COMs used i8SFPQL [1]. Hereafter, the subscript “eq” stays for the value atdkternal midplane point,
through which all the particles transit. In these coordisahe ZOW-averaged quasilinear operator is
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The full expressions d¥¢(v), W (v), and®dc(v) are given in [1], whereas the quasilinear diffusion coedfitD is
derived in [3], and discussed later. Finally, the ZOW averaglefined as
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where the space JacobiRn 7, is given in [3] and< J >= AgV2. In the KE solved so far bSFPQL, V|| is assumed
constant. Therefore the energy conservation requiresoigt@ncy also of |, i.e.& = &.q. However, sincgt, involves

the fastest time scale of the particle motiqR, must also be locally conserved, and this implies the coogtaf

B on the magnetic surface, i.B.= Beq. Briefly, in (2) inside the brackets ... > survives onlyDg, whereas the
average disappears from (3). Moreover, the particle vglaimplifies in the average operator, which becomes a
pure geometrical average over the whole magnetic surfdids.iJ the meaning of “surface average”, and in the next
paragraph we show how to relax it for the quasilinear diffastoefficient inSSFPQL.

ZOW-AVERAGED QUASILINEAR DIFFUSION COEFFICIENT
We start from the gyro-averaged quasilinear diffusion ficieht derived in [3], and already averaged oger
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FIGURE 1. (a)Catto-Myra function (7) for different values of the dedation parametes. The SP and AF asymptotic solutions
are also shown for comparison. (b) Resonance intefgfrat C(&eq, 0) /Ty, for three values of the energies. For comparison, the SP
approximation is shown in dashed lines. The separationdmiwrapped/passing and resonating/not-resonatinglgaris shown
with vertical solid lines.

whereé’,. are the rotating components of the rf electric fielgjgx) are the Bessel functions of the first kirgglis the
safety factor, and indicates the component along the diamagnetic directigroriapproximating? ~ v||/qR with
R(p,d) = RnaR(p, ) the distance from the torus axis and “ma” for the values omthgnetic axis, the time integral

in (5) can be transformed into an integral oerlike the second integral in (5) coming from the formal smintof

the Vlasov equation. By splitting the pha\sg(ﬁh, )= Xp(R|r,0) —Xp(R| 17’,0), and by keeping only the contribution
from the last bounce/transit period in the second integ@d@¢cating intrinsic and/or extrinsic decorralationsiesn

the contributions from nearest periods), the two integrg(S) can be dealt on the same footing. Since typicalkt 1,

the integrands are characterized by a slow and a rapidljlaistyj components, and the resulting cancellations due
to the latter are mitigated only in the neighborhoodtzdtionary-phasgointstsy, i.e. 0Xp/(?r|rsp =0. If tsp are well

separatedgecantesonances), the stationary-phase (SP) approximatioheapplied, otherwise the interference of
the transit through two close resonana#sgeneraleis captured with the squared Airy function (AF) [4]. To pceibe

a smooth transition between these two asymptotic regimesise the heuristic model proposed by Catto and Myra [5]
and justified in presence of decorrelation mechanisms, asicbllisions. In brief, the time integrals are approxirdate
with
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where the subscript “icr” stands for the values at the iodatyon resonancef,(t) represents the slow part of the
integrands in (5). Decorrelations enter \da which depends at least on the collisional frequency. Thito&dyra
function Qx, o) is shown in figure (1.a) for a few values of, and for comparison the AF and SP asymptotic
solutions are overplotted. For< —1, C(x,0) matches the SP solution when> 0, whereas it overlaps the AF
approximation wherwr = 0. The major obstacle in matching the SP and AF asymptotidisal is the difference in
their arguments. We can derive a convenient expressiog(ay, &) if we assume that the confining magnetic field
varies likeB(p,3) = Bma/R(p,3),
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A particle with &e equal toégeg= /1 — Ricr/Re has its banana tips at the icr resonance layer, which irestbe
magnetic surface if R< Rie;y < Re, with “i” standing for the internal midplane point. An exatepf the resonance
integral?” = C/1y, for three values of the particle energy is shown in figure)(1rbthe model (8) we have neglected
the Doppler shift in the phasg. Thus, the dependence®f on the particle energy enter only throughForé < &geg,

W goes to zero, since the particle do not resonate with the sva\e hollow around the passing/trapped boundary is
due to the increase af, when approaching that border.

9(Ticrs &e) = (8)
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FIGURE 2. Contour plots of the hydrogen (minority) distribution faion with (red) and without (blue) trapping effects. (a) At
the maximum of absorbed power (abouit = 0.35) with Re = 1.095 , Rey = 1.089, R = 0.895, {geg= 0.076, andéyp = 0.428.
(b) Ataroundx/a = 0.5 with Re = 1.131 , Re; = 1.096, R = 0.850, {geg= 0.175, andérp = 0.499.

NUMERICAL RESULTS

The numerical scheme @SFPQL is based on the expansion of the solution in Legendre polyaerm.r.t. e
dependence, which are eigenfunctions of the pitch anglegiahe collisional diffusion operator. This is possible
because the dependence of the surface-avedgeth v andéeq can be separated thanks to the multiplication theorem
of Bessel functions. In doing so, the integration of the kimequation oveéeq is reduced to integrals involving only
Legendre polynomials, which can be calculated recursivéig key dodge of the algorithm is that all these integrals
can be calculated with machine precision by means of softii@rlong-integer arithmetics [1]. Recently we have
shown that this stratagem can be extended to geégralependences &g [2]. However, thev- andéeq-dependence

of the resonance integrals in the ZOW-avera@eggis entangled in such a way that the separation of variables is
not anymore feasible. In absence of an expedient, we canaidenstant energy to estimatge and for the cases
considered here the results are not so sensitive to the thvasige if it ranges from the thermal energy to a few tens
times it. As an illustrative example, we have consideredcitreventional minority heating scenario of hydrogen in
deuterium plasma, where the IC resonance layer interckptmidplane ak/a = 0.4 on the I.f.s. The contour plot

of the hydrogen distribution function (df) at about the nrmaxim of rf power absorption is shown in figure (2.a): for
comparison the blue lines are obtained neglecting the imgmdfects. As it is well known, the trapping effects reduce
considerably the df anysotropy. In addition, we have carsid as reference energy fgrthe thermal energy and
twenty times it, but the differences are no visible in figlaj. Finally, the df in figure (2.b) refers to a more off-axis
position f/a~ 0.5) where the absorbed power is much less. The comparisorbetiigures (2.a) and (2.b) confirms
a common understanding that the higher the power absorpéimore visible the trapping effects are.

CONCLUSIONS

In [2] we proved the feasibility of accounting for thie modulation inSSFPQL code, and here we have outlined the
physical model which takes advantage of this extensiorseaPityy in progress there are the revising of the power
balance and the updating of the interface VilittRI C, which now requires the mapping of the distribution funetio
from the external midplane point to the position of the ICorence. Finally, the ZOW-averaged collisional operator
must be included in the physical model®$FPQL. These issues will be discussed in the near future.
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