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Abstract. The kinetic equation solved bySSFPQLwas obtained by surface-averaging the Fokker–Planck (FP) equation, thus
neglecting both the finite width of the ion orbits and the poloidal modulation of their velocity. Owing to the latter effect and
depending on the position of the resonance layer, a fractionof trapped particles do not even reach the ion-cyclotron resonance.
In addition, since the resonant ions gain perpendicular energy, they tend to accumulate on trapped orbits barely intercepting
the resonance. Still neglecting the effects due to the finitewidth of the orbits, here we discuss the form of the FP equation when
the velocity modulation is taken into account. In particular, we examine the implementation of this effect in the quasilinear
operator ofSSFPQL, and present a few numerical results.
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INTRODUCTION

The packageTORIC-SSFPQL [1] for numerical simulations of Ion Cyclotron (IC) Heatingin Tokamaks is particularly
fast. This is due in part to the fact that inSSFPQL the solution of the surface-averaged quasilinear kinetic equation is
obtained as a velocity dependent superposition of Legendrepolynomials in the velocity pitch-angle. This transforms
the equation into a (formally infinite) set of ODEs, which aresolved using cubic FEM. This approach, however, is
straightforward only because the solved kinetic equation neglects not only the finite width of the ion orbits, but also
the poloidal modulation of their parallel velocity, and thus the existence of a population of deeply trapped ions which
do not reach the IC resonance. These effects can appreciablyinfluence the heating efficiency, and their importance is
expected to increase when the heating is applied off-axis.

We present the form taken by the surface-averaged kinetic equation when these effects are included in the model
solved bySSFPQL. Their inclusion greatly complicates the evaluation of thecoefficients of the ODEs system to
be solved, which must be obtained with great precision to avoid convergence problems in the Legendre summation.
To make this possible, we have developed a numerical method based on long-integer arithmetics, which could have
interesting applications also in other fields of analysis [2]. At present, only the quasilinear term has been implemented
with this new method; thus we present preliminary results inwhich toroidal trapping in the zero-orbit-width (ZOW)
approximation is taken into account in the description of resonant IC interactions, but not in the collisional operator.

ZERO-ORBIT-WIDTH AVERAGED QUASILINEAR FOKKER-PLANCK EQU ATION

To highlight the central assumptions done in the following,we briefly recall the main general steps that starting
from the orbit average lead to the ZOW-average, and finally tothe surface average ofSSFPQL [1]. Orbit averaging
reduces the dimensionality of the phase space: it is done by building a coordinate system with the constant of motions
(COM), which exist for the considered dynamical system, andcompleting it with the required number of periodic
coordinates; then, by averaging over these periodic coordinates, the final equation is formulated in a reduced phase-
space spanned only by the COMs. Often this comes at a price: the averaging procedure is complex or/and the usage
of COMs is cumbersome. In tokamak axisymmetric configuration a typical set of COMs are the energy per unit
mass,εv = v2/2 (for simplicity, here the presence of an electrostatic field is neglected), the magnetic momentum per
unit massµv = v2

⊥/2B, and the toroidal momentum per unit mass,Pϕ =−ΩcΨp/B+Rv‖Bϕ/B, with Ωc the cyclotron
frequency,B the confining magnetic field andBϕ its toroidal component, andΨp the poloidal magnetic flux. Hereafter,
parallel and perpendicular refer to the direction of the local confining magnetic field. The three periodic coordinates
are the toroidal,ϕ , poloidal,ϑ , and gyro,φv, angles. This set of coordinates is finally completed with the sign ofv‖



on the external midplane point,σv. If the radial drifts are neglected, any monotonic flux function ρ can be used as
COM in place ofPϕ , which in turn is conserved only on the bounce/transit time (τb) scale. This is what is couched in
the zero-orbit-width expression, since the width of the poloidal projection of the trapped orbits shrink to zero when
drifts are neglected. Because of the axisymmetry of the configuration, the average overϕ is straightforward as is the
gyro-average. The average overϑ , instead, requires some discussion, which is postponed to the next section. In short,
the ZOW-averaged quasilinear kinetic equation (KE) can be written in divergence form,
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whereFs is the distribution function of the ions species indexed with “s”, < .. . > stands for the average operation, and
J is the Jacobian of the starting coordinate system, namely(φv,ϑ ,ϕ ,ρ , εv, µv). Because of the ZOW approximation,
equation (1) is a two-dimensional PDE with(zi) = (εv, µv). However, before averaging, we transform the quasilinear
operator [3] to the coordinate system having the same angle variables, but(v,ξeq,ρ) as COMs, whereξ = v‖/v: this is
the set of COMs used inSSFPQL [1]. Hereafter, the subscript “eq” stays for the value at theexternal midplane point,
through which all the particles transit. In these coordinates the ZOW-averaged quasilinear operator is
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and the diffusion and friction parts of the linearized collisional operator are
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The full expressions ofΨc(v), Ψτ (v), andΦc(v) are given in [1], whereas the quasilinear diffusion coefficientDql is
derived in [3], and discussed later. Finally, the ZOW average is defined as
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where the space JacobianRJp is given in [3] and< J >= λB v2. In the KE solved so far bySSFPQL, v‖ is assumed
constant. Therefore the energy conservation requires the constancy also ofv⊥, i.e.ξ = ξeq. However, sinceµv involves
the fastest time scale of the particle motion,µv must also be locally conserved, and this implies the constancy of
B on the magnetic surface, i.e.B = Beq. Briefly, in (2) inside the brackets< .. . > survives onlyDql, whereas the
average disappears from (3). Moreover, the particle velocity simplifies in the average operator, which becomes a
pure geometrical average over the whole magnetic surface. This is the meaning of “surface average”, and in the next
paragraph we show how to relax it for the quasilinear diffusion coefficient inSSFPQL.

ZOW-AVERAGED QUASILINEAR DIFFUSION COEFFICIENT

We start from the gyro-averaged quasilinear diffusion coefficient derived in [3], and already averaged overϕ
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FIGURE 1. (a) Catto-Myra function (7) for different values of the decorrelation parameterσ . The SP and AF asymptotic solutions
are also shown for comparison. (b) Resonance integralW =C(ξeq,σ)/τb for three values of the energies. For comparison, the SP
approximation is shown in dashed lines. The separation between trapped/passing and resonating/not-resonating particles is shown
with vertical solid lines.

whereE± are the rotating components of the rf electric fields,Jp(x) are the Bessel functions of the first kind,q is the
safety factor, andδ indicates the component along the diamagnetic direction. Upon approximatingϑ̇ ≈ v‖/qR with
R(ρ ,ϑ) = RmaR(ρ ,ϑ) the distance from the torus axis and “ma” for the values on themagnetic axis, the time integral
in (5) can be transformed into an integral overϑ , like the second integral in (5) coming from the formal solution of
the Vlasov equation. By splitting the phaseχp(~k|τ,τ ′) = χp(~k|τ,0)−χp(~k|τ ′,0), and by keeping only the contribution
from the last bounce/transit period in the second integral (advocating intrinsic and/or extrinsic decorralations between
the contributions from nearest periods), the two integralsin (5) can be dealt on the same footing. Since typicallyη ≪ 1,
the integrands are characterized by a slow and a rapidly oscillating components, and the resulting cancellations due
to the latter are mitigated only in the neighborhood ofstationary-phasepointsτsp, i.e.∂ χp/∂τ

∣

∣

τsp
= 0. If τsp are well

separated (secantresonances), the stationary-phase (SP) approximation canbe applied, otherwise the interference of
the transit through two close resonances (degenerate), is captured with the squared Airy function (AF) [4]. To prescribe
a smooth transition between these two asymptotic regimes, we use the heuristic model proposed by Catto and Myra [5]
and justified in presence of decorrelation mechanisms, suchas collisions. In brief, the time integrals are approximated
with
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where the subscript “icr” stands for the values at the ion-cyclotron resonance,f (t) represents the slow part of the
integrands in (5). Decorrelations enter viaσ , which depends at least on the collisional frequency. The Catto-Myra
function C(x,σ) is shown in figure (1.a) for a few values ofσ , and for comparison the AF and SP asymptotic
solutions are overplotted. Forx ≪ −1, C(x,σ) matches the SP solution whenσ > 0, whereas it overlaps the AF
approximation whenσ = 0. The major obstacle in matching the SP and AF asymptotic solution is the difference in
their arguments. We can derive a convenient expression forg(τicr,ξe) if we assume that the confining magnetic field
varies likeB(ρ ,ϑ) = Bma/R(ρ ,ϑ),

g(τicr,ξe) =
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A particle with ξe equal toξdeg=
√

1−Ricr/Re has its banana tips at the icr resonance layer, which intercepts the
magnetic surface if Ri ≤ Ricr ≤ Re, with “i” standing for the internal midplane point. An example of the resonance
integralW = C/τb for three values of the particle energy is shown in figure (1.b). In the model (8) we have neglected
the Doppler shift in the phaseχp. Thus, the dependence ofW on the particle energy enter only throughη . Forξ < ξdeg,
W goes to zero, since the particle do not resonate with the waves. The hollow around the passing/trapped boundary is
due to the increase ofτb when approaching that border.
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FIGURE 2. Contour plots of the hydrogen (minority) distribution function with (red) and without (blue) trapping effects. (a) At
the maximum of absorbed power (aboutx/a = 0.35) with Re = 1.095 , Ricr = 1.089, Ri = 0.895,ξdeg= 0.076, andξtrp = 0.428.
(b) At aroundx/a = 0.5 with Re = 1.131 , Ricr = 1.096, Ri = 0.850,ξdeg= 0.175, andξtrp = 0.499.

NUMERICAL RESULTS

The numerical scheme ofSSFPQL is based on the expansion of the solution in Legendre polynomials w.r.t. ξeq-
dependence, which are eigenfunctions of the pitch angle part of the collisional diffusion operator. This is possible
because the dependence of the surface-averagedDql onv andξeq can be separated thanks to the multiplication theorem
of Bessel functions. In doing so, the integration of the kinetic equation overξeq is reduced to integrals involving only
Legendre polynomials, which can be calculated recursively. The key dodge of the algorithm is that all these integrals
can be calculated with machine precision by means of software for long-integer arithmetics [1]. Recently we have
shown that this stratagem can be extended to generalξeq-dependences ofDql [2]. However, thev- andξeq-dependence
of the resonance integrals in the ZOW-averagedDql is entangled in such a way that the separation of variables is
not anymore feasible. In absence of an expedient, we consider a constant energy to estimateη , and for the cases
considered here the results are not so sensitive to the chosen value if it ranges from the thermal energy to a few tens
times it. As an illustrative example, we have considered theconventional minority heating scenario of hydrogen in
deuterium plasma, where the IC resonance layer intercepts the midplane atx/a = 0.4 on the l.f.s. The contour plot
of the hydrogen distribution function (df) at about the maximum of rf power absorption is shown in figure (2.a): for
comparison the blue lines are obtained neglecting the trapping effects. As it is well known, the trapping effects reduce
considerably the df anysotropy. In addition, we have considered as reference energy forη the thermal energy and
twenty times it, but the differences are no visible in figure (2.a). Finally, the df in figure (2.b) refers to a more off-axis
position (x/a ≈ 0.5) where the absorbed power is much less. The comparison between figures (2.a) and (2.b) confirms
a common understanding that the higher the power absorbed is, the more visible the trapping effects are.

CONCLUSIONS

In [2] we proved the feasibility of accounting for thev‖ modulation inSSFPQL code, and here we have outlined the
physical model which takes advantage of this extension. Presently in progress there are the revising of the power
balance and the updating of the interface withTORIC, which now requires the mapping of the distribution function
from the external midplane point to the position of the IC resonance. Finally, the ZOW-averaged collisional operator
must be included in the physical model ofSSFPQL. These issues will be discussed in the near future.
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