Angewandte

Supporting Information
© Wiley-VCH 2014

69451 Weinheim, Germany

Catalysis-Based Total Synthesis of Putative Mandelalide A** Jens Willwacher and Alois Fürstner*

anie_201400605_sm_miscellaneous_information.pdf

Table of Contents

Schematic Overview page 3
Experimental Procedures page 6
Synthesis of the acid fragment page 6
Synthesis of the alcohol fragment page 18
Synthesis of the rhamnosyl donor page 31
Assembly and Endgame page 34
Comparison of the NMR data of $\mathbf{1}$ and 11-epi-1 with those of the natural page 44
product
Comparison of the NMR spectra of $\mathbf{1}$ and 11-epi-1 with those of the page 49 natural product
The spectra of putative Mandelalide A (1) are not strongly concentration page 54
dependent
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of new compounds page 55

1) $\mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}=20: 1$, rt 2) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}$ 68% over 2 steps
38
86\%
39
40

Scheme 1: Synthesis overview of the southern fragment 11 and rhamnosyl donor 40.

83\%
19

$82 \%, 94 \% e e, 98: 2$ d.r.

23

N-PSP (1.2 eq.) TFA (1.2 eq.)

2) CSA (30 mol \%)
$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 2: 1,0^{\circ} \mathrm{C}, 98 \%$
 $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{S}(0.12 \mathrm{eq})$
26
$(\mathrm{n}-\mathrm{Bu})_{3} \mathrm{SnH}$
$\xrightarrow[\text { toluene, } 80^{\circ} \mathrm{C}]{\text { AIBN }}$
93\%

28

Scheme 2: Synthesis Overview of the northern Fragment 30

1） $\mathrm{K}_{2} \mathrm{CO}_{3}$
$\mathrm{MeOH}, 0^{\circ} \mathrm{C}$
80\％；88\％
2）HF－pyr，pyr THF， $0^{\circ} \mathrm{C}$ to rt 80\％；85\％

三⿳亠二口力
（proposed Mandelalide A）
blue：yield for proposed structure green：yield for 11－epi compound

64\％（6h）

43a

Scheme 3：Synthesis overview of the assembly stage and endgame．

General. All reactions were carried out under Ar in flame-dried glassware unless $\mathrm{H}_{2} \mathrm{O}$ was used as a solvent. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}(\mathrm{Mg} /$ anthracene $), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, hexane, toluene $(\mathrm{Na} / \mathrm{K}), \mathrm{MeOH}(\mathrm{Mg}$, stored over MS $3 \AA$), $\mathrm{EtOH}(\mathrm{MS} 3 \AA)$, $\mathrm{EtOAc}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right.$, filter through dry $\mathrm{Al}_{2} \mathrm{O}_{3}$, store over $4 \AA \mathrm{MS}$); dioxane, $\mathrm{DMF}, \mathrm{MeCN}, \mathrm{NEt}_{3}$ and pyridine were dried by an adsorbtion solvent purification system based on molecular sieves. Thin layer chromatography (TLC): Macherey-Nagel precoated plates (POLYGRAM® SIL/UV254); Flash chromatography: Merck silica gel 60 (40-63 $\mu \mathrm{m}$) with predistilled or HPLC grade solvents. NMR: Spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AVIII 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.24 \mathrm{ppm}$; $\mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{C}} \equiv 128.0 \mathrm{ppm}$; residual $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}: \delta_{\mathrm{H}} \equiv 7.16 \mathrm{ppm}$, pyr-d ${ }^{5}: \delta_{\mathrm{C}} \equiv 150.35 \mathrm{ppm}$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.24 \mathrm{ppm}$). IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Mat 95 (Finnigan). Optical rotations ($[\propto]_{20}^{D}$) were measured with a Perkin-Elmer Model 343 polarimeter. Unless stated otherwise, all commercially available compounds (Alfa Aesar, Aldrich, Fluka, Lancaster) were used as received.
(4S,6S)-Nona-1,8-diene-4,6-diol (4). According to the procedure from Krische et. al., ${ }^{1}$ a flame-dried Young tube was charged with $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(974 \mathrm{mg}, 1.45 \mathrm{mmol}),(S)-\mathrm{Cl}, \mathrm{MeO}-$ BIPHEP $(1.89 \mathrm{~g}, 2.90 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(3.78 \mathrm{~g}, 11.6 \mathrm{mmol})$ and 4-chloro-3nitrobenzoic acid ($1.17 \mathrm{~g}, 5.80 \mathrm{mmol}$). 1,4-Dioxane $(65 \mathrm{~mL})$ and distilled allyl acetate (31.3 mL , 290 mmol) were added, the flask was sealed, and the suspension heated to $90^{\circ} \mathrm{C}$ for 30 min and cooled back to room temperature. A solution of 1,3-propanediol (3) ($2.10 \mathrm{~mL}, 29.0 \mathrm{mmol}$) in 1,4-dioxane $(65 \mathrm{~mL})$ was introduced, the flask sealed and stirring continued at $90^{\circ} \mathrm{C}$ for 72 h . After cooling to ambient temperature, the mixture was filtered through a pad of Celite (eluent: EtOAc) and the filtrate was concentrated. The brown residue was purified by flash chromatography (hexanes/EtOAc 3:1) to give the desired diol as a pale yellow oil ($3.22 \mathrm{~g}, 71 \%$ yield, $>99 \%$ ee, $>29: 1$ d.r.). $[\propto]_{20}^{D}=+24.5$ (c $=$ $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.85-5.72(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.09-5.07$ $(\mathrm{m}, 2 \mathrm{H}), 4.01-3.91(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.72-2.57(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{tr}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.6,118.0,68.1,42.0,41.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3340,3077$, $2979,2936,1723,1641,1434,1327,1232,1133,1047,994,912,871,830 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=$ 115 (10), 97 (74), 79 (38), 73 (19), 71 (89), 69 (52), 67 (49), 55 (19), 45 (39), 41 (100), 39 (29), 29 (13), 27 (28). HRMS (ESIpos): calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{H}$: 157.1228; found: 157.1229. The enantiomeric excess was determined by HPLC analysis of the bis-(4-nitrobenzoate) derivative (5 eq. 4-nitro-

[^0]benzoic acid anhydride, 10 eq. pyridine, 0.2 eq. DMAP, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). HPLC: 250 mm Chiralpak IB ($\emptyset 4.6 \mathrm{~mm}$), n-heptane/2-propanol $85: 15,1.0 \mathrm{~mL} / \mathrm{min}, 298 \mathrm{~K}, 4.4 \mathrm{MPa}: \mathrm{R}_{\mathrm{t}}=8.54 \mathrm{~min}$ (major), 10.64 min (meso), 15.44 min (minor).

The analytic and spectroscopic data matched those reported in the literature. ${ }^{1}$
(2S,4R,6S)-2-Allyl-6-(iodomethyl)tetrahydro-2H-pyran-4-ol (4a). NaHCO_{3} (4.18 g, 49.8 mmol)

was added at $-40^{\circ} \mathrm{C}$ to a solution of diol $4(3.11 \mathrm{~g}, 19.9 \mathrm{mmol})$ in MeCN $(360 \mathrm{~mL})$ and the resulting suspension was vigorously stirred for $10 \mathrm{~min} . \mathrm{I}_{2}$ $(15.2 \mathrm{~g}, 59.7 \mathrm{mmol})$ was carefully added in three portions and the resulting brown mixture stirred for 15 h at $-40^{\circ} \mathrm{C}$. The mixture was poured into sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$-solution (200 mL) and rinsed with EtOAc ($2 \times 50 \mathrm{~mL}$). After extraction with EtOAc ($2 \times 150 \mathrm{~mL}$), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The brown residue was purified by flash chromatography (hexanes/EtOAc $3: 1$) to yield a $5: 1$ mixture of diastereoisomers (based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration, solvent: $\mathrm{C}_{6} \mathrm{D}_{6}$) as a colorless oil $(4.55 \mathrm{~g}, 81 \%)$. This mixture was purified by flash chromatography $\left(\mathrm{SiO}_{2} 60(15 \times 40 \mu \mathrm{~m}), \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 5: 1\right)$ to give the desired all-cis diastereomer as a colorless oil $(3.54 \mathrm{~g}, 63 \%)$, which solidified upon prolonged storage at $-20^{\circ} \mathrm{C} .[\propto]_{20}^{D}=+25.7(\mathrm{c}=$ $0.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.84$ (dddd, $J=16.8,10.2,7.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.11-$ $5.02(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{dd}, J=5.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.26-$ $2.12(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{ddt}, J=12.5,4.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=134.3,117.1,75.4,75.0,67.8,40.7,40.2,40.1,8.7 \mathrm{ppm}$. IR (film): $\tilde{v}=3346$, 2942, 2917, 2850, 1641, 1446, 1430, 1414, 1368, 1325, 1270, 1185, 1136, 1080, 1038, 998, 916, 854 $\mathrm{cm}^{-1} . \operatorname{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=282(0.3), 241(100), 223(23), 197$ (38), 73 (14), 67 (17), 45 (15), 43 (10). HRMS (ESIpos): calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{INa}$: 305.0009; found: 305.0009.
(((2S,4R,6S)-2-allyl-6-(iodomethyl)tetrahydro-2H-pyran-4-yl)oxy)(tert-butyl)-dimethylsilane (5).

A solution of alcohol $\mathbf{4 a}(3.10 \mathrm{~g}, 11.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ before 2,6-lutidine $(1.79 \mathrm{~mL}, \quad 15.4 \mathrm{mmol})$ and TBSOTf $(3.03 \mathrm{~mL}$, 13.2 mmol) were added dropwise via syringe. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$-solution $(40 \mathrm{~mL})$. After phase separation, the aqueous layer was extracted with EtOAc $(2 \times 25 \mathrm{~mL})$, the combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 29:1) to yield the desired silyl ether as a colorless oil (4.18 g, 96\%). $[\propto]_{20}^{D}=+15.8$ (c $\left.=1.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.90-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.12-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.74$ (dddd, $J=10.8,10.7,4.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=5.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{dtt}, J$ $=13.3,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dddd}, J=14.4,7.1,5.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dddd}, J=12.4,4.1,1.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=5.92$ (dddd, $\left.J=16.7,10.9,8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.09-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.54$ (dddd, J $=10.8,10.7,4.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dddd}, J=11.5,6.7,5.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dddd}, J=11.2,6.6$, $4.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=10.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dtt}, J=13.2$, $8.1,6.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dddt}, J=14.0,7.5,5.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{ddt}, J=12.3,47,2.0,1 \mathrm{H}), 1.63$ (dddd, $J=12.6,4.6,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{ddd}, J=12.6,11.1,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{ddd}, J=12.2$, $11.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.5,116.8$, $75.4,75.1,68.3,41.1,40.7,40.2,25.8,18.0,8.9,-4.6 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=2950,2928,2856,1642$, $1471,1462,1383,1251,1126,1087,1068,1005,916,833,773,669 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=340$ (14), 339 (81), 271 (27), 269 (10), 172 (14), 171 (100), 141 (14), 129 (42), 101 (38), 79 (21), 75 (37), 73 (23), 67 (11), 59 (14), 43 (25), 41 (18). HRMS (ESIpos): calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{2}$ SiINa: 419.0872; found: 419.0874.

At this stage, the relative stereochemistry of the tetrahydropyran ring was confirmed by NOESY experiments in $\mathrm{C}_{6} \mathrm{D}_{6}$ (which showed the best signal separation). Although no direct NOESY contacts between H5, H7 and H9 of the sixmembered ring were observed (which was the case on later
 intermediates, see for example the analysis of the final compounds $\mathbf{1}$ and 11-epi-1), the structure was assigned to an all-cis configured THP ring. Further evidence was obtained from the coupling constants in $\mathrm{C}_{6} \mathrm{D}_{6}$ for H6ax (1.21 ppm , ddd, $J=12.5,11.3,11.3 \mathrm{~Hz}$) and H8ax (1.10 ppm , ddd, $J=12.2,11.1$, 11.0 Hz), suggesting one geminal and two axial vicinal couplings; for H6eq (1.63 ppm , dddd, $J=12.6$, $4.6,2.0,2.0 \mathrm{~Hz}$) and H8eq (1.74 ppm , dddd, $J=12.3,4.4,2.3,2.3 \mathrm{~Hz}$) one geminal and two equatorial vicinal coupling constants were observed. The coupling constants of H 9 (2.93 ppm , dddd, $J=11.2$, $6.6,4.6,2.0 \mathrm{~Hz})$ can be assigned to H8ax $(11.2 \mathrm{~Hz}), \mathrm{H} 10 \mathrm{a}(6.6 \mathrm{~Hz}), \mathrm{H} 10 \mathrm{~b}(4.6 \mathrm{~Hz})$ and H8eq
$(2.0 \mathrm{~Hz})$, which is consistent with the assignment. The pseudosymmetric nature of the signals around the THP ring gives additional evidence for an all-cis substitution.
(R)-3-((2R,4R,6S)-6-Allyl-4-((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)-N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpropanamide (7). A flame-dried 3-necked round-
 bottom flask equipped with a stirbar, a reflux condenser and a dropping funnel was charged with dry $\mathrm{LiCl}(5.13 \mathrm{~g}, 121 \mathrm{mmol})$, diisopropylamine ($6.24 \mathrm{~mL}, 44.4 \mathrm{mmol}$) and THF (75 mL). After cooling to $-78^{\circ} \mathrm{C}$, a solution of $\mathrm{n}-\mathrm{BuLi}(1.50 \mathrm{M}$ in hexanes, 29.0 mL , 43.5 mmol) was added dropwise over 20 min and the mixture was stirred for 10 min before it was warmed to $0^{\circ} \mathrm{C}$. After 10 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of ($1 S, 2 S$)-N-(2-hydroxy-1-methyl-2-phenylethyl)- N-methylpropionic amide ${ }^{2}$ (6) (4.69 g , 21.2 mmol) in THF (115 mL) was added over 45 min via the dropping funnel. The resulting yellow suspension was stirred for 1 h at $-78^{\circ} \mathrm{C}$, for 30 min at $0^{\circ} \mathrm{C}$ and for 20 min at RT before it was cooled to $0^{\circ} \mathrm{C}$. A solution of alkyl iodide $5(4.01 \mathrm{~g}, 10.1 \mathrm{mmol})$ in THF ($6 \mathrm{~mL}+2 \times 2 \mathrm{~mL}$ rinse) was then added dropwise over 5 min via syringe. The mixture was warmed to $45^{\circ} \mathrm{C}$ and stirred at this temperature for 48 h . After cooling to RT, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(300 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc ($4 \times 200 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 2:1) to give the alkylated compound as a white foam that collapsed to a colorless syrup upon storage $(3.83 \mathrm{~g}, 76 \%) .[\alpha]_{20}^{D}=+50.7\left(\mathrm{c}=0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were complex and broadened due to the presence of amide bond rotamers. IR (film): $\tilde{v}=3387,2933,2930$, 2856, 1619, 1462, 1409, 1374, 1252, 1115, 1072, 913, 835, 774, 700, $673 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=$ 433 (31), 432 (97), 383 (16), 382 (31), 325 (19), 258 (20), 257 (100), 216 (31), 193 (16), 171 (10), 148 (21), 129 (10), 119 (11), 101 (12), 99 (19), 79 (11), 75 (22), 73 (25), 58 (39). HRMS (ESIpos): calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{SiNa}$: 512.3167 ; found: 512.3166.
(S)-3-((2R,4R,6S)-6-Allyl-4-((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)-N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpropanamide (11-epi-7). Prepared analogously from

($1 R, 2 R$)- N-(2 -hydroxy-1-methyl-2-phenylethyl)- N-methylpropionic amide ${ }^{2}$ (ent-6) and alkyl iodide $5(3.08 \mathrm{~g}, 7.77 \mathrm{mmol})$ as a sticky syrup $(3.20 \mathrm{~g}, 84 \%) .[\propto]_{20}^{D}=-24.3\left(\mathrm{c}=0.77, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were complex and partially broadened due to the presence of amide bond rotamers. IR (film): $\tilde{v}=3376,2934,2930$, $2856,1619,1472,1463,1374,1328,1306,1254,1120,1073,1006,915,857,836,775,702,671 \mathrm{~cm}^{-}$

[^1]${ }^{1}$. MS (EI) m/z (\%) = 474 (5), 433 (28), 432 (89), 383 (15), 382 (26), 325 (22), 258 (20), 257 (100), 222 (17), 193 (13), 148 (18), 119 (10), 99 (19), 75 (15), 73 (17), 58 (23). HRMS (ESIpos): calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{SiNa}$: 512.3167; found: 512.3169.
(R)-3-((2R,4R,6S)-6-allyl-4-((tert-Butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)-2-methyl-
 propan-1-ol (7a). A solution of $n-\mathrm{BuLi}(1.60 \mathrm{M}$ in hexanes, 23.1 mL , 37.0 mmol) was added over 15 min at $-78^{\circ} \mathrm{C}$ to a solution of diisopropylamine ($5.57 \mathrm{~mL}, 39.6 \mathrm{mmol}$) in THF (34 mL) and the resulting mixture was stirred at this temperature for 15 min and for 45 min at $0^{\circ} \mathrm{C}$. Solid $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(90 \%, 1.31 \mathrm{~g}$, 38.1 mmol) was then added in one portion and the resulting mixture stirred for 40 min at $0^{\circ} \mathrm{C}$ and for 45 min at ambient temperature. After cooling to $0^{\circ} \mathrm{C}$, a solution of amide 7 $(3.80 \mathrm{~g}, 7.62 \mathrm{mmol})$ in THF (34 mL) was slowly added over 10 min . After stirring for 3 h at $0^{\circ} \mathrm{C}$, the mixture was warmed to RT and stirring continued for 1 h before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ solution. The mixture was vigorously stirred for 45 min before the phases were separated, the aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 120 \mathrm{~mL})$, the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 5:1) to give the desired alcohol as a colorless oil ($2.42 \mathrm{~g}, 96 \%$). $[\propto]_{20}^{D}=+17.8$ (c $=$ $0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=5.85(\mathrm{dddd}, J=16.0,9.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.00$ (m, 2H), 3.63 (dddd, $J=10.7,10.4,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (ddd, $J=10.5,5.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (ddd, $J=10.4,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{dddt}, \mathrm{J}=14.1,7.0,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.15$ (br t, 1H), 2.12-2.04 (m, 1H), 1.78 (dddd, $J=12.4,6.2,6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.55$ $(\mathrm{ddd}, J=14.4,9.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{ddd}, J=14.4,6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}$, $9 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=134.9$, $117.2,75.3,74.8,69.1,68.2,43.0,41.4,41.2,40.8,34.5,26.0,18.2,18.0,-4.3 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=$ 3395, 2926, 2929, 2856, 1643, 1472, 1462, 1375, 1253, 1152, 1123, 1070, 975, 914, 835, 774, $671 \mathrm{~cm}^{-}$ ${ }^{1}$. MS (EI) m/z (\%) = 271 (33), 201 (20), 179 (37); 171 (47), 161 (16), 159 (47), 145 (46), 131 (12), 129 (69), 127 (12), 125 (15), 119 (15), 111 (12), 109 (65), 107 (12), 105 (22), 101 (44), 93 (18), 85 (93), 81 (28), 79 (26), 75 (100), 73 (49), 67 (43), 59 (22), 57 (14), 55 (24), 43 (17), 41 (32). HRMS (ESIpos): calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3}$ SiNa: 351.2326; found: 351.2326 .
(S)-3-((2R,4R,6S)-6-allyl-4-((tert-Butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)-2-methyl-propan-1-ol (11-epi-7a). Prepared analogously from amide 11-epi-7 $(3.20 \mathrm{~g}$,
$6.53 \mathrm{mmol})$ as a colorless oil $(1.86 \mathrm{~g}, 87 \%) .[\alpha]_{20}^{D}=+1.8\left(\mathrm{c}=1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$
$\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=5.85(\mathrm{dddd}, J=17.7,9.6,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-$
$4.99(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dddd}, J=10.7,10.7,5.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H})$,
$3.36(\mathrm{dd}, J=10.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dddd}, J=11.5,8.3,3.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$
$4.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.86(\mathrm{qt}, J=6.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{ddd}, J=$ $13.9,8.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.20(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=135.0,117.0,75.3,73.5,69.2,67.5,42.3,41.6,40.8,40.0,32.9,26.0$, 18.2, 17.6, -4.3 ppm. IR (film): $\tilde{v}=3394,2950,2929,2857,1375,1254,1151,1123,1072,1005,914$, $836,775,672 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=271$ (33), 201 (20), 179 (37); 171 (47), 161 (16), 159 (47), 145 (46), 131 (12), 129 (69), 127 (12), 125 (15), 119 (15), 111 (12), 109 (65), 107 (12), 105 (22), 101 (44), 95 (41), 93 (18), 85 (93), 81 (28), 79 (26), 75 (100), 73 (49), 67 (43), 59 (22), 57 (14), 55 (24), 43 (17), 41 (32). HRMS (ESIpos): calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}$: 351.2326; found: 351.2327.

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((R)-3-hydroxy-2-methylpropyl)-
 tetrahydro-2H-pyran-2-yl)but-2-enoate (7b). Hoveyda-Grubbs $2^{\text {nd }}$ gen. catalyst 13 ($137 \mathrm{mg}, 0.219 \mathrm{mmol}$) was added to a solution of the terminal alkene $7 \mathbf{a}(2.40 \mathrm{~g}, 7.30 \mathrm{mmol})$ and methylacrylate $(3.27 \mathrm{mmol}, 36.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$. The mixture was stirred under Ar for 7.5 h at ambient temperature. After concentration, the residue ($E / Z=12: 1$ based on ${ }^{1} \mathrm{H}$ NMR integration of a crude sample) was purified by flash chromatography (hexanes/EtOAc $5: 1$ to $4: 1$) to give the title compound as a pale brown oil $(2.33 \mathrm{~g}$, single isomer, $83 \%) .[\propto]_{20}^{D}=+9.0(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.09(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=15.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.57$ (dddd, $J=10.8,10.6,4.94 .8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) 3.39-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.09$ (dddd, $J=$ 11.7, 9.7, 2.3, 2.3 Hz, 1H), 2.96 (dddd, $J=11.7,7.0,4.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dddd}, J=14.8,7.4,7.3$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dddd}, J=8.6,8.6,5.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51$ $(\mathrm{ddd}, J=14.4,9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=166.4,145.1,123.5,74.6$, $74.2,68.9,68.1,51.0,42.7,41.5,40.7,38.7,34.0,26.0,18.2,17.7,-4.3,-4.3 \mathrm{ppm} . \operatorname{IR}(f i l m): \tilde{v}=$ $3436,2933,2929,2856,1725,1659,1462,1436,1376,1324,1255,1175,1122,1069,985,855,836$, $775,669 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=329(14), 237(54), 229(17), 203(11), 159(26), 137(11), 131$ (12), 129 (20), 109 (30), 101 (23), 97 (20), 93 (21), 89 (11), 85 (100), 81 (15), 75 (46), 73 (32), 67 (18), 59 (13), 55 (12), 41 (15). HRMS (ESIpos): calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}$: 409.2381 ; found: 409.2381 .

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S)-3-hydroxy-2-methylpropyl)-
 tetrahydro-2H-pyran-2-yl)but-2-enoate (11-epi-7b). Prepared analogously from the terminal alkene 11 -epi- $7 \mathbf{a}(1.82 \mathrm{~g}, 5.63 \mathrm{mmol})$ as a colorless oil $(1.99 \mathrm{~g}, 91 \%) .[\propto]_{20}^{D}=-0.4\left(\mathrm{c}=1.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $=7.09(\mathrm{dt}, J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{tt}, J=$ $10.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 5 \mathrm{H}), 3.27-3.15(\mathrm{dddd}, J=11.6,8.6,3.4,1.8 \mathrm{~Hz}$, 1 H), $3.04-2.94$ (dddd, $J=11.7,7.4,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.16-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.97-1.89(\mathrm{dddd}, J=14.9,7.1,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{tdd}, J=12.8,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddt}, J=$
$12.6,4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddt}, J=12.4,4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{ddd}, J=14.1,8.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.35$ $(\mathrm{ddd}, J=14.2,7.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{ddd}, J=11.8,11.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{ddd}, J=11.7,11.6$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ $=166.6,145.5,123.3,74.2,73.8,69.0,67.5,51.0,42.2,41.7,40.0,38.7,32.9,26.0,18.2,17.7,-4.3$, $-4.3 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=3436,2951,2930,2857,1726,1660,1463,1436,1376,1330,1256,1175$, $1154,1122,1072,987,854,837,776 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=329$ (14), 237 (54), 229 (17), 203 (11), 159 (26), 137 (11), 131 (12), 129 (20), 109 (30), 101 (23), 97 (20), 93 (21), 89 (11), 85 (100), 81 (15), 75 (46), 73 (32), 67 (18), 59 (13), 55 (12), 41 (15). HRMS (ESIpos): calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}$: 409.2381; found: 409.2382.
(R)-Mosher Ester of (11-epi)-7b (all 4 possible Mosher Esters were prepared analogously): Pyridine

$(10.5 \mu \mathrm{~L}, \quad 129 \mu \mathrm{~mol}) \quad$ and $\quad(S)-(+)-\alpha$-methoxy- $\alpha-$ trifluoromethylphenylacetyl chloride $(9.77 \mu \mathrm{~L}, 51.8 \mu \mathrm{~mol})$ were successively added to a solution of the primary alcohol 11-epi-7b $(10.0 \mathrm{mg}, 25.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$. The mixture was stirred for 90 min before the reaction was quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}$-solution (3 mL). The aqueous phase was extracted with EtOAc (2 x 3 mL), the combined extracts were washed with NaHCO_{3}-solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 15:1) to give the desired (R)-mosher ester as a colorless oil ($14.5 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{dt}, J$ $=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=10.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=10.8$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{q}, ~ J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.33(\mathrm{dddd}, J=11.6,7.0,5.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ $(\mathrm{tdd}, J=9.2,4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (ddt, $J=12.5,4.1$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{ddd}, J=14.7,8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{ddd}, J=14.2,7.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.8,166.6,145.4,132.4,129.6,128.4,127.4,122.9,74.1,73.4,70.5,68.5$, $55.4,51.4,41.8,41.2,39.0,38.7,29.4,25.8,18.1,17.6,-4.5,-4.5 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.6 \mathrm{ppm} . \mathrm{MS}(E S I p o s) \mathrm{m} / \mathrm{z}(\%)=625.4\left(100\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right)$. HRMS (ESIpos): calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{SiNa}$: 625.2779; found: 625.2774 .

For a comparison of the full range ${ }^{1} \mathrm{H}$ NMR spectra of all four diastereomers, see page 112 ; shown below is the characteristic region between 4.45 and 3.95 ppm , displaying the two proton signals of C12:

As expected from literature data, ${ }^{3,4}$ the distance between the two inner lines of the dd of the protons at C12 is bigger for the (R)-Mosher Ester of the $(11 R)$-isomer, whereas it is bigger in case of the (S) Mosher Ester for the (11S)-isomer. Therefore the configuration of the stereogenic center at C11 corresponds to the prediction for the auxiliary-controlled asymmetric alkylation. ${ }^{2}$

Mosher Ester	$\mathbf{C 1 1}$	$\mathbf{H 1 2 a} / \mathbf{p p m}$	$\mathbf{H 1 2 b} / \mathbf{p p m}$	$\Delta(\mathbf{p p m})$ between two inner lines
R	\mathbf{R}	$4.24(\mathrm{dd}, \mathrm{J}=10.7,5.2 \mathrm{~Hz})$	$4.09(\mathrm{dd}, \mathrm{J}=10.7,6.3 \mathrm{~Hz})$	0.108
S	R	$4.19(\mathrm{dd}, \mathrm{J}=10.7,5.3 \mathrm{~Hz})$	$4.14(\mathrm{dd}, \mathrm{J}=10.7,6.4 \mathrm{~Hz})$	0.009
S	S	$4.21(\mathrm{dd}, \mathrm{J}=10.8,5.3 \mathrm{~Hz})$	$4.11(\mathrm{dd}, \mathrm{J}=10.8,6.0 \mathrm{~Hz})$	0.058
\mathbf{R}	S	$4.21(\mathrm{dd}, \mathrm{J}=10.8,5.8 \mathrm{~Hz})$	$4.13(\mathrm{dd}, \mathrm{J}=10.8,5.0 \mathrm{~Hz})$	0.043

[^2] hydro-2H-pyran-2-yl)but-2-enoate (8). A solution of Dess-Martin periodinane ($524 \mathrm{mg}, 1.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ before a solution of alcohol 7b $(398 \mathrm{mg}, 1.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}+$ 1 mL rinse) was added dropwise via syringe. After 5 min , the mixture was allowed to warm to ambient temperature and stirring was continued for 3 h . The reaction was quenched by addition of aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3}-solution $(1: 1,15 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue purified by flash chromatography (hexanes/EtOAc $12: 1$ to $9: 1$) to yield the desired aldehyde as a colorless oil ($305 \mathrm{mg}, 77 \%$). $[\propto]_{20}^{D}=+3.4\left(\mathrm{c}=0.81\right.$, hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.55(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=15.7,7.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (ddd, $J=15.7,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{dqd}, J=7.1$, $7.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{ddd}, J=14.3,9.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.38$ $(\mathrm{ddd}, J=14.3,7.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}$, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=204.8,166.8,145.2,123.0,74.2,73.4,68.4,51.5,43.8$, $41.8,41.1,38.6,37.3,25.8,18.1,13.8,-4.5 \mathrm{ppm} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=328$ (15), 327 (60), 309 (27), 235 (20), 229 (49), 227 (16), 203 (51), 201 (22), 199 (22), 185 (15), 183 (36), 175 (16), 157 (33), 145 (30), 129 (33), 109 (15), 107 (23), 101 (48), 97 (29), 93 (29), 89 (22), 85 (31), 83 (25), 81 (36), 79 (15), 75 (100), 73 (54), 59 (27), 41 (25). HRMS (ESIpos): calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}$: 407.2228; found: 407.2224.

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S)-2-methyl-3-oxopropyl)tetra-
 hydro-2H-pyran-2-yl)but-2-enoate (11-epi-8). A slightly modified procedure had to be used: A solution of Dess-Martin periodinane (783 mg , $1.85 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaHCO}_{3}(358 \mathrm{mg}$, 4.27 mmol) was added as a solid, followed by addition of a solution of alcohol 11-epi-7b ($550 \mathrm{mg}, 1.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \mathrm{~mL}+1 \mathrm{~mL}$ rinse).

After 5 min , the mixture was allowed to reach ambient temperature and stirring was continued for 3 h . The mixture was filtered and the filtrate loaded onto SiO_{2}. Purification by flash chromatography (hexanes/EtOAc $12: 1$ to $9: 1$) gave the desired aldehyde as a colorless oil ($414 \mathrm{mg}, 76 \%$). $[\propto]_{20}^{D}=$ $+17.7\left(\mathrm{c}=1.105, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.59(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dt}, J=$ $15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 4 \mathrm{H}), 3.39-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.48(\mathrm{~m}$, $1 \mathrm{H}), 2.41-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{ddd}, J=14.4,8.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{ddd}, J=$ $14.0,9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=204.5,166.8,145.2,122.9,74.1,72.8,68.4,51.4,42.8,41.6,41.1$, $38.6,36.9,25.8,18.0,13.8,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2951,2939,2856,1725,1660,1462,1436$, $1376,1330,1255,1175,1122,1072,853,776 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=328(14), 327$ (60), 309 (29), 235 (20), 229 (49), 227 (16), 203 (51), 201 (22), 199 (22), 185 (15), 183 (36), 175 (16), 157 (33), 155
(13), 153 (15), 151 (17), 145 (30), 143 (10), 129 (33), 109 (15), 107 (23), 101 (48), 97 (29), 93 (29), 89 (22), 85 (31), 83 (25), 81 (36), 79 (15), 75 (100), 73 (54), 67 (17), 59 (27), 43 (17), 41 (25). HRMS (ESIpos): calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}$: 407.2224; found: 407.2224.

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((R,E)-4-iodo-2-methylbut-3-en-1-yl)-tetrahydro-2H-pyran-2-yl)but-2-enoate (9). A flame-dried Schlenk tube
 was charged with $\mathrm{CrCl}_{2} \cdot 1.7$ THF ($1.21 \mathrm{~g}, 4.94 \mathrm{mmol}$) which was suspended in degassed THF $(11.5 \mathrm{~mL})$ and cooled to $-8^{\circ} \mathrm{C}$. Solid $\mathrm{CHI}_{3}(642 \mathrm{mg}$, 1.63 mmol) was then added under vigorous stirring, causing a color change from green-grey to brown. After 5 min , a solution of aldehyde $8(190 \mathrm{mg}$, $0.494 \mathrm{mmol})$ in degassed THF ($1 \mathrm{~mL}+2 \mathrm{x} 0.5 \mathrm{~mL}$ rinse) was added dropwise. After 3 h at $-8^{\circ} \mathrm{C}$, the reaction was quenched by addition of aq. serine $/ \mathrm{KHCO}_{3}$ solution $(1 \mathrm{~m}, \mathrm{pH}=8,25 \mathrm{~mL})^{5}$ and hexanes/EtOAc (1:1, 40 mL). The mixture was allowed to warm to room temperature and vigorously stirred for 30 min . After phase separation, the deep violet aqueous phase was extracted with hexanes/EtOAc (1:1, $3 \times 40 \mathrm{~mL})$ and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc, 100:0 (until all CHI_{3} was removed) to $99: 1$ to $49: 1$ to $39: 1$ to $29: 1$) to yield the desired (E)-vinyl iodide as a colorless oil (181 mg, 72\%) and the isomeric (Z)-vinyl-iodide ($18.8 \mathrm{mg}, 8 \%$). $[\propto]_{20}^{D}=-29.6\left(\mathrm{c}=1.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=6.94(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=14.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}$, $J=14.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.25(\mathrm{dddd}, J=10.0,8.4,4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.25(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{ddd}, J=$ $13.8,8.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{ddd}, \mathrm{J}=13.9,7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,152.0,145.4,122.8$, $74.1,73.3,73.2,68.6,51.4,41.9,41.6,41.3,38.7,37.1,25.8,19.1,18.1,-4.5 \mathrm{ppm} . \operatorname{IR}(f i l m): \tilde{v}=$ 2949, 2929, 2856, 1725, 1660, 1435, 1376, 1329, 1269, 1255, 1174, 1069, 950, 836, 775, $670 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%) = 452 (23), 451 (100), 229 (47), 197 (11), 181 (37), 169 (10), 157 (11), 131 (34), 129 (31), 101 (19), 93 (12), 89 (13), 75 (28), 73 (21), 59 (11). HRMS (ESIpos): calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{O}_{4}$ SiINa: 531.1398; found: 531.1402 .

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S,E)-4-iodo-2-methylbut-3-en-1-yl)-
 tetrahydro-2H-pyran-2-yl)but-2-enoate (11-epi-9). Prepared analogously from aldehyde 11-epi-8 ($404 \mathrm{mg}, 1.05 \mathrm{mmol}$) as a mixture of olefin isomers $(E / Z=10: 1)$. An aliquot ($340 \mathrm{mg}, 0.669 \mathrm{mmol}$) was purified by preparative HPLC (2 runs with 170 mg each, Nucleodur C18 HTec $10 \mu \mathrm{~m}$, length: 250 $\mathrm{mm}, \varnothing: 40 \mathrm{~mm}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=93: 7,75 \mathrm{~mL} / \mathrm{min}$) to give the desired $(E)-$ isomer as a colorless syrup ($286 \mathrm{mg}, 84 \%$). $[\propto]_{20}^{D}=+92.8\left(\mathrm{c}=1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,

[^3]$\left.\mathrm{CDCl}_{3}\right): \delta=6.95(\mathrm{dt}, J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=14.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=14.3,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.86(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{dddd}, J=11.5,8.2,4.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (dddd, $J=12.0,10.4,3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{tdd}, J=9.2,6.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dddd}, J=15.3,8.4$, $7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (dddd, $J=9.1,7.1,3.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{ddd}, J=14.2$, $10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.11(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,151.2,145.9,122.6,74.4,74.3,73.2,68.5,51.5,42.4,41.9,41.5$, $38.6,37.4,25.8,20.6,18.1,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2950,2928,2855,1724,1660,1435,1375$, $3129,1253,1219,1175,1156,1126,1067,987,955,869,834,774,669 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=452$ (24), 451 (100), 229 (41), 181 (22), 131 (26), 129 (20), 101 (11), 75 (14), 73 (10). HRMS (ESIpos): calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{SiINa}$: 531.1398; found: 531.1393.

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((R,E)-2-methylhept-3-en-5-yn-1-yl)-
 tetrahydro-2H-pyran-2-yl)but-2-enoate (10). A flame-dried twonecked round-bottom flask equipped with a reflux condenser was charged with 1-propynylsodium ($42.1 \mathrm{mg}, 0.677 \mathrm{mmol}$), which was suspended in degassed THF $(4 \mathrm{~mL})$. Trimethyl borate $(76.9 \mu \mathrm{~L}$, 0.677 mmol) was added dropwise via syringe at RT. After stirring for $20 \mathrm{~min},\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(42.5 \mathrm{mg}, 0.0521 \mathrm{mmol})$ was added, causing the reaction mixture to turn dark red. Next, a solution of (E)-vinyl iodide 9 (265 mg , 0.521 mmol) in degassed THF ($3 \mathrm{~mL}+1 \mathrm{~mL}$ rinse) was added and the mixture stirred at $65^{\circ} \mathrm{C}$. After 2 h , the pale orange mixture was allowed to cool to ambient temperature, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 15 \mathrm{~mL})$, the organic phase was extracted with $\mathrm{EtOAc}(3 \mathrm{x} 20 \mathrm{~mL})$ and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash chromatography (hexanes/EtOAc $49: 1$ to $39: 1$ to $29: 1$) to give the title compound as a pale yellow oil ($177 \mathrm{mg}, 81 \%$) . $[\propto]_{20}^{D}=-30.0\left(\mathrm{c}=0.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.94$ (dt, $J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddd}, J=15.9,7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37$ $(\mathrm{dqd}, J=15.9,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.25$ (dddd, J $=11.2,7.4,5.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.25(\mathrm{~m}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{dt}, J=4.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.75(\mathrm{dt}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dddd}, J=7.1,7.1,7.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{ddd}, \mathrm{J}=13.6,7.7$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.9,148.5,145.5,122.8,108.2,84.4,78.3,74.1,73.2,68.6,51.4,42.3,41.5$, $41.3,38.7,33.4,25.8,19.6,18.1,4.2,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2951,2928,2856,1725,1660$, $1435,1376,1328,1255,1174,1068,985,962,836,775,670 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=420(19), 364$ (11), 363 (40), 313 (13), 288 (11), 229 (53), 189 (17), 181 (37), 171 (12), 169 (13), 159 (16), 157 (14), 145 (32), 131 (24), 129 (37), 123 (10), 121 (10), 120 (13), 119 (37), 108 (13), 105 (23), 101 (33), 97 (18), 93 (100), 91 (45), 89 (21), 81 (19), 79 (13), 77 (41), 75(48), 73 (46), 59 (17), 41 (14). HRMS (ESIpos): calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}$: 443.2588; found: 443.2592.

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S,E)-2-methylhept-3-en-5-yn-1-yl)-tetrahydro-2H-pyran-2-yl)but-2-enoate (11-epi-10). Prepared
 analogously from vinyl iodide 11 -epi-9 $(185 \mathrm{mg}, 1.05 \mathrm{mmol})$ as a pale yellow oil ($117 \mathrm{mg}, 76 \%$). $[\propto]_{20}^{D}=+93.8\left(\mathrm{c}=0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.96(\mathrm{dt}, J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dt}, J=$ $15.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79$ (ddd, $J=15.8,9.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (dqd, $J=$ $15.9,2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 4 \mathrm{H}), 3.38-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.20$ (dddd, $J=11.8,10.2,3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{tdd}, J=7.7,4.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{ddd}, J=14.0,10.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-$ $1.10(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=166.8,148.0,145.8,122.7,109.2,84.2,78.4,74.1,73.3,68.6,51.4,42.9,42.0,41.4,38.6,33.9$, 25.8, 21.1, 18.1, 4.2, $-4.5,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2951,2929,2856,1727,1660,1435,1375,1329$, 1257, 1218, 1155, 1118, 1072, 962, 852, 837, $776 \mathrm{~cm}^{-1}$. MS (EI) m/z $(\%)=420(19), 364(11), 363$ (40), 313 (13), 288 (11), 229 (53), 189 (17), 181 (37), 171 (12), 169 (13), 159 (16), 157 (14), 145 (32), 131 (24), 129 (37), 123 (10), 121 (10), 120 (13), 119 (37), 107 (13), 105 (23), 101 (33), 97 (18), 93 (100), 91 (45), 89 (21), 81 (19), 79 (14), 77 (41), 75(48), 73 (46), 59 (17), 41 (14). HRMS (ESIpos): calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}$: 443.2588; found: 443.2586.

(E)-4-((2S,4R,6R)-4-((tert-Butyldimethylsilyl)oxy)-6-((R,E)-2-methylhept-3-en-5-yn-1-yl)tetra-

 hydro-2H-pyran-2-yl)but-2-enoic acid (11). KOTMS ($90 \%, 246 \mathrm{mg}$, 1.73 mmol) was added to a solution of methyl ester $\mathbf{1 0}$ (145 mg , $0.345 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(7.0 \mathrm{~mL})$. After stirring for 1 h , additional KOTMS $(90 \%, 246 \mathrm{mg}, 1.73 \mathrm{mmol})$ was introduced and stirring of the yellow suspension continued for 5 h . Excess base was quenched with aq. HCl ($0.5 \mathrm{~m}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with EtOAc (5 x 15 mL). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue purified by flash chromatography (hexanes/EtOAc $6: 1$ with $0.1 \% \mathrm{AcOH}$) to give the desired acid as a colorless oil ($112 \mathrm{mg}, 80 \%$). As a by-product, the β, γ-olefin was isolated as a colorless oil (9.8 mg , $7 \%) .[\propto]_{20}^{D}=-28.2\left(\mathrm{c}=1.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.0-10.4(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.06$ (dt, $J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=15.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=15.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37$ (ddd, J $=15.9,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.28(\mathrm{~m}, 3 \mathrm{H})$, $1.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{ddd}, J=7.1,7.0,7.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{ddd}, \mathrm{J}=$ 13.6, 7.7, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.4,148.5,148.2,122.4,108.2,84.4,78.3,73.9,73.3,68.6,42.3$, $41.5,41.4,38.8,33.4,25.8,19.6,18.1,4.2,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2928,2926,2855,1698$, 1654, 1462, 1443, 1376, 1282, 1255, 1152, 1068, 960, 852, 835, 815, 774, 699, $669 \mathrm{~cm}^{-1}$. MS (EI) m/z
$(\%)=418(5), 349(8), 257(13), 237(24), 169(23), 160(12), 145(27), 131(33), 129(11), 121(10)$, 119 (28), 107 (12), 105 (12), 101 (24), 93 (100), 91 (37), 79 (13), 77 (37), 75 (47), 73 (32), 59 (11), 41 (11). HRMS (ESIpos): calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{SiNa}$: 429.2427; found: 429.2431 .
(E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S,E)-2-methylhept-3-en-5-yn-1-yl)tetra-
 hydro-2H-pyran-2-yl)but-2-enoic acid (11-epi-11). Prepared analogously from methyl ester 11 -epi- $10(116 \mathrm{mg}, 0.276 \mathrm{mmol})$ as a colorless oil ($101 \mathrm{mg}, 88 \%$), along with the corresponding β, γ-olefin as a colorless oil ($8.2 \mathrm{mg}, 7 \%$). $[\propto]_{20}^{D}=+84.0\left(\mathrm{c}=1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.6-9.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.08(\mathrm{dt}, J=15.8,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.87(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=15.9,8.9,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.41(\mathrm{ddt}, J=16.0,2.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dddd}, J=12.6,6.1,4.0,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.22 (dddd, $J=10.9,10.4,2.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=2.3$, $0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{ddd}, J=14.1,10.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.5,148.3,148.0$, $122.4,109.2,84.3,78.4,74.0,73.4,68.5,42.9,41.9,41.5,38.7,33.9,25.8,21.1,18.1,4.2,-4.5,-4.6$ ppm. IR (film): $\tilde{v}=2952,2928,2856,1696,1653,1421,1375,1304,1283,1254,1154,1117,976$, 960, $924,852,834,774,739,669 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=418$ (6), 349 (8), 257 (13), 237 (25), 169 (23), 160 (12), 145 (27), 131 (33), 129 (11), 121 (10), 119 (28), 107 (12), 105 (11), 101 (24), 93 (100), 91 (39), 79 (13), 77 (37), 75 (49), 73 (32), 59 (12). HRMS (ESIneg): calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}$: 405.2467; found: 405.2468.
(R)-tert-Butyl(oxiran-2-ylmethoxy)diphenylsilane (16). A solution of TBDPSCl (18.1 mL,

OTM$69.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added over 15 min via a dropping funnel to a solution of (S)-glycidol (15) $(4.41 \mathrm{~mL}, 66.1 \mathrm{mmol})$ and imidazole $(5.99 \mathrm{~g}$, $87.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. A white solid started to precipitate after 5 min and the reaction mixture was allowed to warm to RT. After $2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ was added and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 19:1 to 9:1) to give the desired silyl ether as a colorless oil $(19.5 \mathrm{~g}, 94 \%)$. $\alpha \propto]_{20}^{D}=$ $+0.9\left(\mathrm{c}=1.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 6 \mathrm{H})$, $3.84(\mathrm{dd}, J=11.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=11.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=5.2$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=135.6$, $135.5,132.3,129.7,127.0,64.3,52.3,44.4,26.8,19.2 \mathrm{ppm}$. IR (film): $\tilde{v}=3071,3049,2998,2930$, 2894, 2857, 1472, 1427, 1390, 1361, 1254, 1159, 1136, 1111, 1091, 1030, 980, 917, 823, 739, 700, $690 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=256(11), 255(53), 226(20), 225(100), 211$ (22), 184 (16), 183 (87),

181 (20), 177 (46), 117 (38), 105 (13), 77 (99). HRMS (ESIpos): calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}$: 335.1438; found: 335.1435 .
(R)-4-((tert-Butyldiphenylsilyl)oxy)-1-morpholino-3-((trimethylsilyl)oxy)butan-1-one
(17).

According to a modified protocol from Jacobsen et. al., ${ }^{6}$ a flame-dried two-necked round-bottom flask was charged with $\mathrm{Co}_{2}(\mathrm{CO})_{8}(274 \mathrm{mg}$, $0.8 \mathrm{mmol})$. The flask was evacuated $\left(1 \times 10^{-1} \mathrm{mbar}\right)^{7}$ and backfilled with CO (1 atm , from a balloon, 3 cycles). Dry EtOAc (15 mL) was introduced and the suspension stirred for 10 min , at which point freshly distilled N-trimethylsilyl morpholine ($2.66 \mathrm{~mL}, 15.0 \mathrm{mmol}$) and silylated epoxide $16(3.12 \mathrm{~g}, 10.0 \mathrm{mmol})$ were added via syringe. The brown mixture was vigorously stirred under CO atmosphere (balloon) for 15 h , before it was concentrated. The residue was quickly purified by flash chromatography (hexanes/EtOAc $5: 1$ to $4: 1$) to yield the desired morpholine amide as a colorless oil $(3.70 \mathrm{~g}, 74 \%) .[\propto]_{20}^{D}=+21.1\left(\mathrm{c}=0.915, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.65(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.25(\mathrm{ddt}, J=8.5,5.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 7 \mathrm{H}), 3.56-3.44(\mathrm{~m}$, $3 \mathrm{H}), 2.62(\mathrm{dd}, J=14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=14.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1,135.6,135.6,133.4,129.7,129.7,127.7,127.7,70.7,67.8$, $66.9,66.7,46.5,41.9,37.5,26.8,26.8,19.2,0.1 \mathrm{ppm}$. IR (film): $\tilde{v}=2958,2930,2857,1644,1460$, $1428,1249,1186,1111,1070,1033,959,840,824,741,701,612 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=484(11)$, 444 (13), 443 (36), 442 (100), 364 (23), 271 (13), 230 (6), 193 (14), 135 (5), 114 (7), 73 (4). HRMS (ESIpos): calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}_{2} \mathrm{Na}$: 522.2466; found: 522.2465.
(R)-7-((tert-Butyldiphenylsilyl)oxy)-6-hydroxyhept-2-en-4-one (19). A solution of
 propenylmagnesium bromide (18) (0.5 M in THF, $8.6 \mathrm{~mL}, 4.30 \mathrm{mmol}$) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$ to a solution of amide $17(565 \mathrm{mg}$, $1.131 \mathrm{mmol})$ in THF $(9 \mathrm{~mL})$ and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$ and slowly transferred via canula into a vigorously stirred aq. solution of $\mathrm{HCl}(0.75 \mathrm{~m}, 130 \mathrm{~mL})$. The reaction flask was rinsed with EtOAc (2 x 10 mL), which was also transferred to the aqueous acid layer. After stirring for 15 min at ambient temperature, EtOAc $(20 \mathrm{~mL})$ was added, the phases were separated and the aqueous phase extracted with EtOAc (3 x 40 mL). The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 9:1 to $7.5: 1$ to $6: 1$) to give the desired enone as an inconsequential mixture of olefin isomers ($E / Z=2: 1,360 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, only the peaks assigned to the major isomer are given): $\delta=7.70-7.57$ $(\mathrm{m}, 4 \mathrm{H}), 7.47-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.84(\mathrm{dq}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dq}, J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-$ $4.14(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dd}, J=$

[^4]$6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ only the peaks assigned to the major isomer are given): $\delta=199.6,143.7,135.5,135.5,133.2,133.1,132.3,129.8,127.7,68.5,67.0,42.8$, 26.8, 19.2, 18.3 ppm . IR (film): $\tilde{v}=3462,3071,2930,2587,1680,1663,1628,1472,1428,1362$, 1188, 1112, 969, 823, 741, $702 \mathrm{~cm}^{-1} . \mathrm{MS}($ ESIpos $) \mathrm{m} / \mathrm{z}(\%)=405.2\left(100\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right), 787.3(85$ $\left(\left(2 \mathrm{M}+\mathrm{Na}^{+}\right)\right.$. HRMS (ESIpos): calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}$: 405.1856; found: 405.1856.

3-(Benzyloxy)propanal (21). According to the procedure of Stahl et. al., ${ }^{8}$ a 1 L-round-bottom flask
 was charged with 3-(benzyloxy)propanol (20) (7.20 g, 43.3 mmol) and MeCN (HPLC grade, 210 mL). $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{BF}_{4}(683 \mathrm{mg}, 2.17 \mathrm{mmol})$ and 2,2'-bipyridine $(339 \mathrm{mg}$, 2.17 mmol) were added as solids, followed by N-methyl imidazole ($346 \mu \mathrm{~L}, 4.34 \mathrm{mmol}$) and TEMPO ($339 \mathrm{mg}, 2.17 \mathrm{mmol}$). The resulting red/brown mixture was vigorously stirred open to air for 3 h until the reaction mixture turned dark green. After concentration at reduced pressure, the residue was purified by flash chromatography (hexanes/EtOAc $6: 1$ to $5: 1$ to $4: 1$) to give the desired aldehyde as a colorless oil with an unpleasant smell $(6.69 \mathrm{~g}, 94 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.78(\mathrm{t}, \mathrm{J}=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{td}, J=6.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{tt}, J=6.1,1.6 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.1,137.8,128.4,127.7,127.7,73.2,63.8,43.9 \mathrm{ppm}$. IR (film): $\tilde{v}=3031,2860,2733,1721,1496,1454,1394,1362,1205,1091,1027,899,885,736,697$ $\mathrm{cm}^{-1} . \operatorname{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=108(79), 107(85), 92(17), 91(66), 79(100), 78(14), 77(56), 65(14), 56$ (29), 55 (22), 51 (18), 39 (10), 28 (11), 27 (22), 26 (11). HRMS (ESIpos): calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{H}$: 165.0916; found: 165.0914 .
(3R,4R)-1-(Benzyloxy)-4-methylhex-5-en-3-ol (22). A solution of crotylsilane $(R, R)-31^{9}(1.0 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.62 \mathrm{mmol}, 6.62 \mathrm{~mL}$) was added dropwise at $-78^{\circ} \mathrm{C}^{10}$ via syringe to a solution of aldehyde $21(906 \mathrm{mg}, 5.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(56 \mathrm{~mL})$. Next, solid $\mathrm{Sc}(\mathrm{OTf})_{3}(136 \mathrm{mg}, 0.276 \mathrm{mmol})$ was added and the mixture stirred for 15 min at $-78^{\circ} \mathrm{C}$ before it was allowed to reach $0^{\circ} \mathrm{C}$. Stirring was continued for 2 h . At this point, NMR analysis of an aliquot $(50 \mu \mathrm{~L})$ confirmed full consumption of the aldehyde. The mixture was concentrated and treated with $\mathrm{HCl}(1 \mathrm{M}, 70 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL})$ under vigorous stirring for 1 h . The white precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ (treatment of this solid with NaOH allowed the diamine ligand to be recovered after chromatographic purification in $>90 \%$). The phases of the filtrate were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined extracts were washed with $\mathrm{NaHCO}_{3}(70 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 5:1) to give the crotylated alcohol as a colorless oil (995 mg , 82% yield, 94% ee, $98: 2$ d.r. $)$. $[\propto]_{20}^{D}=+16.5\left(\mathrm{c}=1.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40$

[^5]$-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.77(\mathrm{ddd}, J=17.7,10.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.75-3.59$ $(\mathrm{m}, 3 \mathrm{H}), 2.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=141.0,137.9,128.4,127.7,127.7,114.9,74.5,73.3,69.4,43.9,33.5,15.0$ ppm. IR (film): $\tilde{v}=3471,3031,2943,2865,1638,1496,1454,1418,1363,1206,1092,1071,1028$, 997, 949, 913, 736, $697 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=220(0.1), 165(2.6), 107$ (14), 92 (13), 91 (100), 79 (7), 65 (8), 55 (7). HRMS (ESIpos): calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}$: 243.1355; found: 243.1356. The enantiomeric excess was determined by HPLC of the TBS ether (prepared from the alcohol with TBSOTf (1.2 eq.) and 2,6-lutidine (1.4 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): HPLC: 150 mm Chiralcel OJ-3R ($\emptyset 4.6 \mathrm{~mm}$), $\mathrm{MeCN} /$ water $70: 30,0.5 \mathrm{~mL} / \mathrm{min}, 308 \mathrm{~K}, 9.2 \mathrm{MPa}: \mathrm{R}_{\mathrm{t}}=12.64 \mathrm{~min}$ (major syn), 14.10 min (anti), 15.27 min (minor syn).

(($(\mathbf{3 R}, 4 R)$-1-(Benzyloxy)-4-methylhex-5-en-3-yl)oxy)triethylsilane (23). $\mathrm{NEt}_{3} \quad$ (0.951 mL ,
 $6.86 \mathrm{mmol})$ and $\mathrm{TESCl}(1.05 \mathrm{~mL}, 6.29 \mathrm{mmol})$ were added via syringe at $0^{\circ} \mathrm{C}$ to a solution of alcohol $22(1.26 \mathrm{~g}, 5.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28.6 \mathrm{~mL})$. DMAP (34.9 mg , 0.286 mmol) was then introduced and the mixture stirred for 90 min at $0^{\circ} \mathrm{C}$ and for another 30 min at RT before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$-solution. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 30 mL), the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc 35:1) yielded the target silyl ether as a colorless oil $(1.72 \mathrm{~g}, 90 \%) .[\propto]_{20}^{D}=+38.6\left(\mathrm{c}=1.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.39-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.86(\mathrm{ddd}, J=17.3,10.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.95$ $(\mathrm{m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dt}, J=8.2,4.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.8$, $138.6,128.3,127.7,127.5,114.3,73.2,73.0,67.2,43.4,33.7,15.0,7.0,5.2 \mathrm{ppm}$. IR (film): $\tilde{v}=2954$, $2911,2876,1455,1414,1363,1238,1091,1004,911,840,725,695 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=305(8)$,

279 (17), 173 (33), 159 (6), 117 (9), 115 (10), 91 (100), 87 (9), 59 (5). HRMS (ESIpos): calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}$: 357.2220; found: 357.2222.
($6 R, 11 R, 12 R, E)-12-(2-(B e n z y l o x y) e t h y l)-14,14-d i e t h y l-6-h y d r o x y-2,2,11-t r i m e t h y l-3,3-d i p h e n y l-~$ 4,13-dioxa-3,14-disilahexadec-9-en-8-one (24). A flame-dried
 two necked round-bottom flask equipped with a reflux condenser and a septum was charged with a solution of olefin 23 ($495 \mathrm{mg}, 1.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The Zhan-catalyst 1B $32(39.4 \mathrm{mg}, 53.7 \mu \mathrm{~mol})$ was added and the resulting mixture was heated to $45^{\circ} \mathrm{C}$ while a solution of enone 19 ($514 \mathrm{mg}, 1.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise through the septum over the course of 1 h via syringe pump. After 16 h , the mixture was cooled to RT, another batch of Zhancatalyst 1B $32(19.7 \mathrm{mg}, 26.9 \mu \mathrm{~mol})$ was added and stirring continued at $45^{\circ} \mathrm{C}$. This procedure was repeated once again after additonal 12 h . After an overall reaction time of 48 h , the mixture was concentrated and the residue purified by flash chromatography (hexanes/EtOAc 14:1 to 12:1 to 9:1) to yield the title compound as a pale orange oil $(716 \mathrm{mg}, 79 \%) .[\propto]_{20}^{D}=+41.2\left(\mathrm{c}=0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.67-7.60(\mathrm{ddd}, J=7.9,3.8,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.34-$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{dd}, J=16.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=16.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dt}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=5.5$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.41(\mathrm{~m}, 1 \mathrm{H})$, $1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $9 \mathrm{H}), 0.57$ (q, $J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.8,150.5,138.4,135.5$, $135.5,133.2,133.2,130.4,129.8,128.3,127.7,127.7,127.6,73.0,72.4,68.5,67.1,66.8,42.6,42.6$, $33.9,26.9,19.3,14.2,7.0,5.1 \mathrm{ppm}$. IR (film): $\tilde{v}=3512,3071,2955,2932,2875,1664,1624,1456$, 1427, 1362, 1238, 1186, 1112, 1007, 823, 739, $701 \mathrm{~cm}^{-1}$. MS (ESIpos) m/z (\%) $=697.5(100$ $\left.\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right)$. HRMS (ESIpos): calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}$: 697.3715; found: 697.3720.
($6 R, 8 R, 11 R, 12 R, E)-12-(2-(B e n z y l o x y) e t h y l)-14,14-d i e t h y l-8-h y d r o x y-2,2,11-t r i m e t h y l-3,3-$ diphenyl-4,13-dioxa-3,14-disilahexadec-9-en-6-yl isobutyrate (25). A freshly prepared solution of
 $\mathrm{SmI}_{2}{ }^{11}$ (0.096 M in THF, $3.80 \mathrm{~mL}, 0.363 \mathrm{mmol}$) was slowly added at $-50^{\circ} \mathrm{C}$ alongside the cold wall of the flask to a solution of enone $24(700 \mathrm{mg}, 1.04 \mathrm{mmol})$ and freshly distilled isobutyraldehyde $(473 \mu \mathrm{~L}, 5.19 \mathrm{mmol})$ in degassed THF $(9.4 \mathrm{~mL})$. The mixture was stirred for 1 h at $-50^{\circ} \mathrm{C}$ before it was poured into sat. aq. $\mathrm{NaHCO}_{3}(65 \mathrm{~mL})$. The mixture was diluted with $\mathrm{EtOAc}(40 \mathrm{~mL}$ overall) and vigorously stirred until ambient temperature was reached. The phases were separated, the aqueous layer was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), and the combined extracts were washed with brine

[^6]$(60 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. During concentration, a small amount of SiO_{2} was added and the crude product loaded on a silica gel column, from which the title compound was eluted with hexanes/EtOAc (12:1 to 9:1); colorless oil ($598 \mathrm{mg}, 78 \%$). $[\alpha]_{20}^{D}=+27.2\left(\mathrm{c}=1.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 11 \mathrm{H}), 5.69(\mathrm{ddd}, J=15.8,6.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddd}, J=15.6,6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{ddt}, J=9.4,5.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, J=9.8,6.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J$ $=7.4,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.56(\mathrm{hep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.53(\mathrm{~m}$, $4 \mathrm{H}), 1.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.95-0.89(\mathrm{~m}, 12 \mathrm{H}), 0.56(\mathrm{q}, J=$ $8.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.0,138.5,135.6,135.5,133.3,133.3,133.2$, $131.8,129.8,129.7,128.3,127.7,127.7,127.5,73.2,73.0,71.9,68.3,67.2,65.7,42.0,39.0,34.2$, 33.7, 26.7, 19.2, 19.2, 19.0, 15.3, 7.0, 5.2 ppm. IR (film): $\tilde{v}=3502,2956,2932,2875,1732,1457$, $1428,1388,1362,1239,1196,1160,1111,1007,975,823,738,701,612 \mathrm{~cm}^{-1}$. MS (ESIpos) m/z (\%) $=769.5\left(100\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right)$. HRMS (ESIpos): calcd for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 769.4290; found: 769.4291.
($6 R, 8 R, 11 R, 12 R, E)-12-(2-(B e n z y l o x y) e t h y l)-8-((t e r t-b u t y l d i p h e n y l s i l y l) o x y)-14,14-d i e t h y l-2,2,11-$ trimethyl-3,3-diphenyl-4,13-dioxa-3,14-disilahexadec-9-en-6-yl isobutyrate (25a). TBDPSCl
 $(284 \mu \mathrm{~L}, 1.09 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ to a solution of the homoallylic alcohol 25 ($584 \mathrm{mg}, 0.782 \mathrm{mmol}$) and imidazole ($90.5 \mathrm{mg}, 1.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.2 \mathrm{~mL})$. After 5 min , the mixture was allowed to reach ambient temperature and stirring was continued for 17 h before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(25 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue purified by flash chromatography (hexanes/EtOAc 39:1) to yield the title compound as a colorless syrup ($671 \mathrm{mg}, 87 \%$). $[\propto]_{20}^{D}=+36.7$ $\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.25(\mathrm{~m}, 17 \mathrm{H}), 5.34$ $(\mathrm{dd}, J=15.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=15.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.46(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{td}, J=7.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.49-$ $3.36(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{hep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{ddd}, J=14.0,7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.77(\mathrm{ddd}, J=14.1,7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $6 \mathrm{H}), 1.02(\mathrm{~s}, 18 \mathrm{H}), 0.89(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=176.1,138.7,136.0,135.9,135.6,135.5,134.7,134.0,133.5,133.5$, 133.3, 129.6, 129.6, 129.4, 129.2, 128.3, 127.6, 127.6, 127.4, 127.2, 73.0, 72.9, 72.0, 71.4, 67.2, 65.2, $41.7,39.8,34.1,33.5,27.0,26.8,19.2,19.0,18.9,15.0,7.0,5.1 \mathrm{ppm}$. IR (film): $\tilde{v}=2956,2932,2875$, $2858,1734,1471,1427,1387,1361,1259,1191,1157,1105,1007,977,822,736,698 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z}(\%)=927$ (2), 820 (2), 561 (2), 509 (6), 493 (7), 469 (4), 467 (4), 377 (5), 322 (3), 319 (3), 280 (22), 279 (97), 269 (26), 199 (16), 174 (15), 173 (100), 171 (14), 135 (22), 131 (44), 91 (57), 73 (16). HRMS (ESIpos): calcdfor $\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}$: 1007.5468; found: 1007.5473.
($6 R, 8 R$)-8-((3R,4R,E)-6-(Benzyloxy)-4-hydroxy-3-methylhex-1-en-1-yl)-2,2,11,11-tetramethyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (26). Camphorsulfonic acid
 $(47.7 \mathrm{mg}, 0.205 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ to a solution of compound 25a ($675 \mathrm{mg}, 0.685 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 1$, 12.6 mL). The resulting mixture was stirred for 90 min before the reaction was carefully quenched with sat. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ solution. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 40 \mathrm{~mL})$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a colorless oil, which was purified by flash chromatography (hexanes/EtOAc 8:1) to give the title compound as a colorless oil ($576 \mathrm{mg}, 97 \%$) . $[\propto]_{20}^{D}=+22.9\left(\mathrm{c}=1.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.64-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.25(\mathrm{~m}, 18 \mathrm{H}), 5.35(\mathrm{dd}, J=15.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.06$ $(\mathrm{m}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=15.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.51-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 2.51-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{ddd}, J=11.5,7.4,4.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.73(\mathrm{dt}, J=13.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $18 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 176.2, 138.0, 135.9, 135.9, 135.6, $135.5,134.6,134.2,133.6,133.4,133.4,132.8,129.6,129.6,129.6,129.3,128.4,127.7,127.6,127.5$, $127.3,74.0,73.3,72.0,69.3,65.2,42.3,39.7,34.1,33.5,26.9,26.7,19.2,19.0,19.0,15.0 \mathrm{ppm}$. IR (film): $\tilde{v}=3511,2960,2931,2858,1734,1472,1427,1389,1361,1260,1193,1158,1111,1082,976$, $822,739,701 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=527(5), 467$ (8), 393 (28), 363 (27), 319 (11), 271 (12), 270 (18), 269 (81), 209 (11), 200 (13), 199 (71), 197 (19), 135 (48), 108 (21), 91 (100), 81 (11), 43 (15). HRMS (ESIpos): calcd for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 870.4711; found: 870.4715.
($6 R, 8 R$)-8-((2S,3R,4S,5R)-5-(2-(Benzyloxy)ethyl)-4-methyl-3-(phenylselanyl) tetrahydrofuran-2-yl)-2,2,11,11-tetramethyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (27). According to a modified protocol from Denmark et. al., ${ }^{12}$ a
 solution of alcohol $26(574 \mathrm{mg}, 0.659 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was prepared and cooled to $-40^{\circ} \mathrm{C} . \mathrm{N}$-(Phenylseleno)phthalimide ($239 \mathrm{mg}, \quad 0.791 \mathrm{mmol}$) followed by a solution of triphenylphosphine sulfide $(23.3 \mathrm{mg}, 79.1 \mu \mathrm{~mol})$ and trifluoroacetic acid $(56.7 \mu \mathrm{~L}, 0.791 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added via syringe over 5 min . After complete addition, the mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ and stirring was continued for 3 h before the mixture was poured into a stirred emulsion of sat. aq. NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,40 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$), the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. ${ }^{1} \mathrm{H}$ NMR and HPLC analysis of the crude mixture revealed a d.r. of $14: 1$. The residue was purified by flash chromatography (hexanes/EtOAc $100: 0$ to $49: 1$ to $29: 1$ to $24: 1$) to give the cyclized product as a colorless oil ($560 \mathrm{mg}, 83 \%$ yield, $14: 1$ d.r.). An analytically pure sample was obtained by preparative

[^7]HPLC (Triart C185 $\left.5 \mathrm{~m}, 12 \mathrm{~nm}, 150 \times 30 \mathrm{~mm}, 100 \% \mathrm{MeCN}, 35^{\circ} \mathrm{C}, 35 \mathrm{bar}, 35 \mathrm{~mL} / \mathrm{min}\right) .[\propto]_{20}^{D}=+1.1$ (c $=0.93, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table 1. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.0$, 138.7, 136.1, 135.8, 135.6, 135.6, 134.4, 134.4, 133.6, 133.4, 133.3, 129.6, 129.6, 129.3, 129.2, 129.1, $128.3,127.7,127.7,127.6,127.4,127.3,127.1,85.8,72.9,72.7,71.6,67.9,65.3,49.6,44.6,36.1$, 34.1, 30.6, 29.7, 27.1, 26.7, 19.7, 19.2, 19.0, 18.8, 14.9 ppm . IR (film): $\tilde{v}=2961,2929,2855,1733$, 1472, 1427, 1361, 1260, 1192, 1111, 1021, 821, 802, 738, $701 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=970(6), 969$ (9), 883 (9), 882 (13), 881 (22), 880 (8), 879 (11), 805 (11), 724 (11), 723 (11), 563 (11), 467 (10), 361 (25), 349 (11), 319 (13), 296 (11), 295 (45), 270 (23), 269 (100), 241 (14), 239 (34), 200 (13), 199 (73), 197 (30), 136 (12), 135 (93), 91 (84), 43 (13). HRMS (ESIpos): calcd for $\mathrm{C}_{60} \mathrm{H}_{74} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{SeNa}$: 1049.4081; found: 1049.4072.

Table 1: Assignment \& NOESY relations for the aliphatic signals of major cyclization isomer 27; ${ }^{13}$ numbering scheme as shown in the Insert.

atom ${ }^{\circ}$	${ }^{1} \mathrm{H} / \mathrm{ppm}$	multiplet	J / Hz	${ }^{13} \mathrm{C} / \mathrm{ppm}$	COSY	NOESY
1	3.52	dd	10.9, 4.1	65.3	1a, 2	1a,2,(3a)
1a	3.45	dd	10.9, 5.4	-	1,2	1,2,(3a)
2	5.12	m	-	71.6	1, 1a, 3, (3a)	1, 1a(3),3a,(4)
3	2.16	ddd	14.6, 9.8, 3.9	36.1	2, 3a, 4	3a, (4),(5),6
3a	1.73	ddd	14.7, 7.1, 2.8	-	2, 3, 4	3, (4), (5)
4	3.68	ddd	6.9, 6.9, 3.8	72.7	3, 3a, 5	2,3a,6
5	3.63	dd	6.5, 6.5	85.8	4, 6	(6),7,8,(3a)
6	2.93	dd	6.3, 3.5	49.6	5,7	4,(8),12
7	2.07	ddq	12.4, 7.1, 3.6	44.6	6, 8, 12	(5),6,8,12
8	3.85	ddd	8.2, 5.5, 5.0	77.1	7, 9	5,7,9,9a, 10,10a
9	1.46	m	-	30.6	8, 10, 10a	8,10,10a,12
9 a	1.46	m	-	-	8,10,10a	8,10,10a,12
10	3.11	m	-	67.9	9, 9a	8,9,9a,11,11a
10a	3.11	m	-	-	9, 9a	8,9,9a,11,11a
11	4.32	S	-	72.9	-	10,10a
11a	4.32	S	-	-	-	10,10a
12	0.49	d	7.14	14.9	7	(4),6,7,9,9a
13	-	-	-	176.0	-	-
14	2.40	hept	7.0	30.6	15, 15a	15,15a
15	1.07	d	7.0	18.8	14	14, 15a
15a	1.05	d	7.0	19.0	14	14, 15
16	-	-	-	19.7	-	1, 1, 17
16a	-	-	-	19.2	-	4, 17a
17	0.98	S	-	27.1	-	1, 1a, 16
17a	1.01	S	-	26.7	-	4, 16a

[^8]($6 R, 8 R$)-8-((2R,3S,4S,5R)-5-(2-(Benzyloxy)ethyl)-4-methyl-3-(phenylselanyl) tetrahydrofuran-2-yl)-2,2,11,11-tetramethyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate. ${ }^{14}$

Obtained as the minor isomer by preparative HPLC (conditions see above) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table 2. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.1,138.5,136.1$, $136.0,135.6,135.5,134.2,133.5,133.4,133.4,133.1,132.5$, $130.9,130.6,129.6,129.6,129.4,129.0,128.8,128.4,127.7,127.6,127.6,127.5,127.3,127.0,83.3$, $78.7,73.0,71.9,71.6,68.0,65.3,48.1,40.2,34.0,33.6,31.9,27.1,26.7,19.4,19.2,19.0,18.9,11.6$ ppm. IR (film): $\tilde{v}=2962,2930,2854,1732,1472,1427,1360,1260,1192,1110,1021,823,799,738$, $701 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=970(6), 969(9), 883(10), 882(14), 881$ (22), 880 (8), 879 (11), 805 (11), 724 (11), 723 (11), 563 (11), 467 (11), 361 (25), 349 (11), 319 (13), 296 (12), 295 (47), 270 (23), 269 (100), 241 (14), 239 (34), 200 (13), 199 (73), 197 (30), 135 (93), 91 (84). HRMS (ESIpos): calcd for $\mathrm{C}_{60} \mathrm{H}_{74} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{SeNa}$: 1049.4081; found: 1049.4075.

Table 2: Assignment \& NOESY relations for the aliphatic signals of minor cyclization isomer, ${ }^{15}$ numbering scheme as shown in the Insert.

$\mathbf{a t o m ~ n ~}^{\circ}$	${ }^{\mathbf{1}} \mathbf{H} / \mathbf{p p m}$	multiplet	$\mathbf{J} / \mathbf{H z}$	${ }^{\mathbf{1 3}} \mathbf{C} / \mathbf{p p m}$	$\mathbf{C O S Y}$	NOESY
$\mathbf{1}$	3.53	dd	$11.0,3.9$	-	2,1	$1 \mathrm{a}, 2(15)$
$\mathbf{1 a}$	3.41	dd	$10.9,5.2$	65.3	$2,1 \mathrm{a}$	$1,2,(15)$
$\mathbf{2}$	5.02	m	-	71.6	$1,3,3 \mathrm{a}$	$1,1 \mathrm{a}, 3 \mathrm{a}, 4$
$\mathbf{3}$	1.99	ddd	$14.5,9.9,4.3$	33.6	$2,3 \mathrm{a}, 4$	$3 \mathrm{a}, 4,6$
$\mathbf{3 a}$	1.80	m	-	-	$2,3,4$	$2,3,4$
$\mathbf{4}$	4.04	ddd	$7.9,4.1,1.4$	71.9	$3,3 \mathrm{a},(5)$	$2,3,5,6$
$\mathbf{5}$	3.92	dd	$9.9,1.3$	83.3	$(4), 6$	$4,6,12$
$\mathbf{6}$	3.67	dd	$9.9,6.2$	48.1	5,7	$4,5,8,3,7$
$\mathbf{7}$	2.20	m	-	40.2	$6,(8), 12$	6,8
$\mathbf{8}$	3.98	ddd	$8.8,4.5,4.5$	78.7	$(7), 9,(9 \mathrm{a})$	$6,7,9,9 \mathrm{a}, 10$
$\mathbf{9}$	1.82	m	-	31.9	$8,10,10 \mathrm{a}$	$(8), 9 \mathrm{a},(10 \mathrm{a}), 10,12$
$\mathbf{9 a}$	1.73	ddd	$13.7,7.3,5.0$	-	$(8), 10,10 \mathrm{a}$	$(8), 9,10,10 \mathrm{a}, 12$
$\mathbf{1 0}$	3.59	ddd	$9.1,7.7,5.4$	68.0	$9,9 \mathrm{a}, 10 \mathrm{a}$	$9,(9 \mathrm{a}), 10 \mathrm{a}, 11,11 \mathrm{a}$
$\mathbf{1 0 a}$	3.50	dd	$9.2,7.2$	-	$9,9 \mathrm{a}, 10$	$9,(9 \mathrm{a}), 10,11,11 \mathrm{a}$
$\mathbf{1 1}$	4.48	d	13.8	73.0	-	$10,10 \mathrm{a}, 11 \mathrm{a}$
$\mathbf{1 1 a}$	4.48	d	13.8	-	-	$10,10 \mathrm{a}, 11 \mathrm{a}$
$\mathbf{1 2}$	0.86	d	7.1	11.6	7	$5,7,9$
$\mathbf{1 3}$	-	-	-	176.1	-	-
$\mathbf{1 4}$	2.27	hept	-	34.0	$15,15 \mathrm{a}$	$15,15 \mathrm{a}$
$\mathbf{1 5}$	1.00	d	7.0	19.0	$14,15 \mathrm{a}$	$14,15 \mathrm{a}$
$\mathbf{1 5 a}$	0.99	d	7.0	18.9	14,15	14,15
$\mathbf{1 6}$	-	-	-	19.2	-	-
$\mathbf{1 6 a}$	-	-	-	19.4	-	-
$\mathbf{1 7}$	0.97	s	-	26.7	-	$1,(1 \mathrm{a})$
$\mathbf{1 7 a}$	1.01	s	-	27.1	-	4

[^9]NOESY signals important for the assignment of the relative stereochemistry of the THF ring of the two isomers:

Additional support for this assignment was obtained by comparison of the chemical shift of H 6 of the two isomers. As reported in the literature, ${ }^{12,13}$ the chemical shift is strongly dependent on the number of syn-alkyl groups, which cause an up-field shift.

Compound	\# of syn-alkyl groups	$\boldsymbol{\delta}(\mathbf{H 6}) / \mathbf{p p m}$	$\boldsymbol{\delta}^{\text {(Lit.) }}{ }^{\mathbf{1 6 , 1 7}} \mathbf{/ p p m ~}^{\text {/pm }}$
$\mathbf{2 7}$ (major isomer)	2	2.93	2.80
minor isomer	1	3.67	3.50
-	0	-	3.90

(6R,8R)-8-((2R,4R,5R)-5-(2-(Benzyloxy)ethyl)-4-methyltetrahydrofuran-2-yl)-2,2,11,11-tetra-methyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (27a). A flame-dried
 two-necked round-bottom flask equipped with a reflux condenser was charged with a solution of selenoether 27 (560 mg , $0.546 \mathrm{mmol})$ in degassed toluene $(22 \mathrm{~mL}) .(n \mathrm{Bu})_{3} \mathrm{SnH}(177 \mu \mathrm{~L}$, 0.655 mmol) was added via syringe, followed by solid AIBN $(0.9 \mathrm{mg}, 5.5 \mu \mathrm{~mol})$. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 90 min under Argon, allowing the generated N_{2} to evaporate. After cooling to room-temperature, the mixture was concentrated and the residue purified by flash chromatography (hexanes/EtOAc $100: 0$ to $49: 1$ to $39: 1$ to $29: 1$) to yield the title compound as a sticky colorless syrup ($440 \mathrm{mg}, 93 \%$ yield, single d.r.). $[\propto]_{20}^{D}=+34.1$ (c $=0.95$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71-7.61(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 17 \mathrm{H}), 5.24-5.17(\mathrm{~m}$, $1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.72-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.15-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{hep}, J=$

[^10]$7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dddd}, \mathrm{J}=13.3,11.7,6.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{ddd}, J=12.3,7.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ $(\mathrm{ddd}, J=14.1,9.1,0.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{ddd}, J=14.4,7.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.06-0.99$ $(\mathrm{m}, 25 \mathrm{H}), 0.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.1,138.8,136.2,135.9$, $135.6,135.5,135.0,133.8,133.5,133.4,129.6,129.3,129.0,128.3,127.7,127.6,127.6,127.6,127.4$, $127.3,127.0,80.8,78.3,73.2,72.8,71.3,68.2,63.4,36.1,35.6,35.2,34.0,31.0,27.2,26.7,19.6$, 19.3, 19.0, 18.8, 15.6 ppm . IR (film): $\tilde{v}=2959,2930,2856,1734,1471,1427,1388,1361,1258$, $1192,1157,1110,998,937,822,738,700 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=814(16), 813(25), 726(18), 725$ (29), 563 (14), 558 (17), 557 (37), 469 (12), 319 (12), 301 (13), 296 (13), 295 (47), 271 (11), 270 (23), 269 (100), 241 (24), 239 (29), 200 (14), 199 (77), 197 (25), 163 (13), 136 (10), 135 (80), 91 (96). HRMS (ESIpos): calcd for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 893.4603; found: 893.4594.
$(6 R, 8 R)-8-((2 R, 4 R, 5 R)-5-(2-H y d r o x y e t h y l)-4-m e t h y l t e t r a h y d r o f u r a n-2-y l)-2,2,11,11-t e t r a m e t h y l-~$ 3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (27b). A flame-dried Schlenk tube was charged with $\operatorname{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{wt} . \%, 35.5 \mathrm{mg}$,
 $50.5 \mu \mathrm{~mol})$. The flask was evacuated ($5 \mathrm{x} 10^{-1} \mathrm{mbar}$) and backfilled with H_{2} from a balloon (two cycles). EtOH (27 mL) was added and the suspension vigorously stirred for 10 min before a solution of benzyl ether $\mathbf{2 7 a}(440 \mathrm{mg}, 0.505 \mathrm{mmol})$ in $\mathrm{EtOAc}(3 \mathrm{~mL})$ was introduced. After stirring for 7.5 h under a H_{2} atmosphere (balloon), the mixture was filtered through a short pad of Celite that was carefully rinsed with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined filtrates were concentrated and the residue was purified by flash chromatography (hexanes/EtOAc $4: 1$) to yield the desired product as a white foam ($345 \mathrm{mg}, 88 \%$) . $[\propto]_{20}^{D}=+24.2\left(\mathrm{c}=0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.71-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 12 \mathrm{H}), 5.12(\mathrm{ddd}, J=9.6,4.8,4.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-$ $3.66(\mathrm{~m}, 3 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.36($ hep, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dddd}, J=$ $14.1,14.1,7.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{dd}, \mathrm{J}=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{ddd}, J=14.3$, $7.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.06-1.00(\mathrm{~m}, 24 \mathrm{H}), 0.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.1,136.1,135.8,135.6,135.5,134.7,133.5,133.4$, $133.3,129.6,129.6,129.5,129.2,127.6,127.6,127.4,127.2,80.9,80.3,72.2,71.2,65.3,61.4,35.5$, $35.3,35.2,34.0,32.9,27.1,26.7,19.5,19.2,19.0,18.8,15.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3487,2960,2930$, 2857, 1735, 1472, 1428, 1388, 1259, 1193, 1158, 1112, 998, 823, 740, 702, $610 \mathrm{~cm}^{-1} . \mathrm{MS}(E I) \mathrm{m} / \mathrm{z}$ $(\%)=723(12), 646(10), 645(18), 636(13), 635(23), 563(12), 558(20), 557(41), 437(16), 379$ (31), 319 (13), 301 (18), 295 (34), 270 (18), 269 (82), 241 (32), 239 (32), 200 (18), 199 (97), 197 (38), 183 (12), 181 (14), 163 (14), 145 (11), 139 (12), 137 (12), 136 (14), 135 (100), 85 (29), 71 (14), 43 (26). HRMS (ESIpos): calcd for $\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 803.4134; found: 803.4135.
($6 R, 8 R$)-2,2,11,11-Tetramethyl-8-((2R,4R,5R)-4-methyl-5-(2-oxoethyl)tetrahydrofuran-2-yl)$\mathbf{3 , 3 , 1 0 , 1 0}$-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (28). A solution of the primary
 alcohol 27b ($341 \mathrm{mg}, 0.437 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}+2 \times 0.5 \mathrm{~mL}$ rinse) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of Dess-Martin periodinane $(463 \mathrm{mg}, 1.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$. After complete addition, the ice bath was removed and stirring continued at RT for 4.5 h before the reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and sat. NaHCO_{3} solution (1:1, $20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified flash chromatography (short column, hexanes/EtOAc 19:1) to give the desired aldehyde as a colorless sticky syrup (310 mg, 91\%). $[\propto]_{20}^{D}=$ $+35.2\left(\mathrm{c}=0.57, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.13(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.59(\mathrm{~m}$, $8 \mathrm{H}), 7.46-7.25(\mathrm{~m}, 12 \mathrm{H}), 5.18$ (dddd, $J=9.5,4.8,4.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (ddd, $J=8.8,6.5,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{hep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H})$, $2.16(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=16.2,4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.83$ (ddd, J $=14.2,9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{ddd}, J=14.4,7.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.14-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=202.1,176.1,136.1,135.7,135.6,135.5,134.8,133.7,133.4,133.4,129.7$, $129.4,129.1,127.7,127.7,127.3,127.0,81.3,76.3,72.9,71.2,65.3,44.8,35.8,35.5,35.2,34.0,27.1$, 26.7, 19.6, 19.3, 19.0, 18.8, 15.6 ppm . IR (film): $\tilde{v}=2959,2929,2856,1729,1472,1427,1388,1240$, $1192,1158,1111,998,822,740,701 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=721$ (7), 635 (16), 634 (42), 633 (80), 563 (7), 377 (15), 319 (11), 295 (31), 270 (22), 269 (100), 241 (14), 239 (21), 225 (10), 200 (12), 199 (66), 197 (29), 183 (13), 179 (15), 163 (12), 136 (10), 136 (78), 43 (19). HRMS (ESIpos): calcd for $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 801.3977; found: 801.3977.
($6 R, 8 R$)-2,2,11,11-Tetramethyl-8-($(2 R, 4 R, 5 R)-4-m e t h y l-5-(p r o p-2-y n-1-y l) t e t r a h y d r o f u r a n-2-y l)-$ 3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (29). A flame-dried Schlenk tube was charged with dimethyl-1-diazo-2-oxopropylphosphonate
 (33) ($306 \mathrm{mg}, 1.592 \mathrm{mmol}$) and THF (8 mL). The resulting solution was cooled to $-78^{\circ} \mathrm{C}$ before a freshly prepared solution of NaOMe $(0.5 \mathrm{M}, 3.18 \mathrm{~mL}, 1.592 \mathrm{mmol})^{18}$ was added over the course of 10 min via syringe, causing the mixture to turn intensively yellow. After stirring for 15 min at $-78^{\circ} \mathrm{C}$, a precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of aldehyde $28(310 \mathrm{mg}, 0.398 \mathrm{mmol})$ in THF ($5 \mathrm{~mL}+2 \mathrm{x} 1 \mathrm{~mL}$ rinse) was added slowly via canula. The reaction flask was then equipped with an Argon bubbler to allow the generated N_{2} to evaporate. The mixture was slowly warmed to $-50^{\circ} \mathrm{C}$, causing a heavy gas evolution. After stirring for 90 min at $-50^{\circ} \mathrm{C}$, the reaction was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution

[^11]$(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc (4 x 30 mL). The combined extracts were washed with brine (35 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The orange residue was purified by flash chromatography (hexanes/EtOAc 39:1) to yield the desired alkyne as a white foam that collapsed upon storage ($287 \mathrm{mg}, 93 \%$). $[\propto]_{20}^{D}=+19.4\left(\mathrm{c}=1.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.48-7.25(\mathrm{~m}, 12 \mathrm{H}), 5.13(\mathrm{dddd}, J=9.5,4.7,4.6$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{hep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=$ $14.0,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (ddd, J $=14.5,7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.98(\mathrm{~m}, 24 \mathrm{H}), 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.1,136.1,135.9,135.6,135.5,134.7,134.0,133.5,133.4,129.6$, $129.6,129.3,129.1,127.7,127.6,127.3,127.0,81.6,81.0,79.3,72.7,71.2,69.1,65.3,35.2,35.1$, 34.0, 27.2, 26.7, 20.6, 19.6, 19.2, 19.0, 18.8, 14.8 ppm . IR (film): $\tilde{v}=2960,2930,2857,1735,1472$, $1428,1388,1260,1192,1158,1112,1006,822,740,702 \mathrm{~cm}^{-1} . \mathrm{MS}($ ESIpos $) \mathrm{m} / \mathrm{z}(\%)=797.5(100$ $\left.\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right)$. HRMS (ESIpos): calcd for $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}$: 797.4028; found: 797.4028.
($6 R, 8 R$)-2,2,11,11-Tetramethyl-8-((2R,4R,5R)-4-methyl-5-(prop-2-yn-1-yl)tetrahydrofuran-2-yl)-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-ol (30). A solution of DIBAL-H in toluene
 $(1.0 \mathrm{M}, 1.10 \mathrm{~mL}, 1.10 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$ to a solution of ester 29 ($285 \mathrm{mg}, 0.368 \mathrm{mmol}$) in toluene (24 mL) and the resulting mixture was stirred for 30 min at this temperature. The mixture was then poured via canula into a stirred sat. solution of Rochelle salt (150 mL), the flask was rinsed with EtOAc ($2 \times 20 \mathrm{~mL}$) and the emulsion was vigorously stirred at ambient temperature for 4 h . The layers were separated, the aqueous phase was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$) , and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by flash chromatography (hexanes/EtOAc 24:1 to 19:1) to give the title compound as a sticky colorless syrup ($252 \mathrm{mg}, 97 \%$) $[\alpha]_{20}^{D}=+18.2\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.75-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 12 \mathrm{H}), 4.06(\mathrm{ddd}, J=$ $6.7,6.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (hep, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (ddd, $J=16.7,6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{ddd}, J=16.6,7.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ $(\mathrm{ddd}, J=12.5,7.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{ddd}, J=14.3,9.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.56$ (ddd, $J=14.4,6.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{ddd}, J=12.5,9.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.87$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.1,136.0,135.5,135.5,134.2,134.1$, $133.4,133.4,129.7,129.4,129.4,127.7,127.4,127.2,81.6,81.0,79.5,73.2,69.3,68.8,68.3,36.6$, $35.2,35.1,27.1,26.8,20.8,19.6,19.2,14.8 \mathrm{ppm}$. IR (film): $\tilde{v}=3311,2957,2928,2856,1472,1469$, 1427, 1390, 1362, 1269, 1189, 1111, 999, 822, 739, $701 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=570(22), 569(48)$, 491 (8), 417 (7), 319 (18), 299 (10), 259 (12), 257 (14), 241 (35), 239 (19), 223 (11), 221 (35), 200 (19), 199 (100), 197 (40), 183 (17), 181 (14), 175 (16), 163 (22), 149 (34), 139 (13), 136 (12), 135
(88), 117 (17), 93 (12), 91 (22), 79 (12). HRMS (ESIpos): calcd for $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$: 727.3609; found: 727.3610 .

Allyl $\boldsymbol{\alpha}$-L-rhamnopyranoside (35). L-Rhamnose (34) (4.0 g, 22 mmol) was dissolved in allyl alcohol $(30 \mathrm{~mL})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.4 \mathrm{~mL})$ was added. The mixture was stirred at
 $100^{\circ} \mathrm{C}$ for 1 h while its color changed to brown. After cooling to ambient temperature, solid $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{mg})$ was added and excess allyl alcohol was removed under reduced pressure. The residue was purified by flash chromatography (EtOAc) to yield the targeted compound as highly viscous colorless oil ($3.5 \mathrm{~g}, 78 \%$). $[\propto]_{20}^{D}=-83.0\left(\mathrm{c}=1.29, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.85(\mathrm{dddd}, J=17.2,10.3,6.1,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{dq}, J=17.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dq}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ $-4.56(\mathrm{~s}, 1 \mathrm{H}), 4.39-4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30-4.17-(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.12(\mathrm{ddt}, J=13.0,5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{dd}, J=9.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dq}, J=9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.7,117.5,98.9,72.8,71.7$, 710, 68.2, 68.0, 17.5 ppm . IR (film): $\tilde{v}=3371,2977,2915,1450,1422,1383,1265,1128,1046,980$, $880,835,808,734,685 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=131(5), 100(46), 87(21), 85$ (11), 83 (5), 74 (7), 73 (18), 72 (5), 71 (63), 61 (13), 60 (96), 59 (11), 58 (46), 57 (26), 56 (6), 55 (10), 45 (18), 43 (41), 42 (15), 41 (100), 39 (21), 31 (18), 29 (25), 27 (11). HRMS (ESIpos): calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}$: 227.0889; found: 227.0891.

Compound 36. Trimethylorthoacetate (44.8 mL 350 mmol) and 2,3-butadione ($7.7 \mathrm{~mL}, 88 \mathrm{mmol}$)
 were dissolved in $\mathrm{MeOH}(200 \mathrm{~mL})$ and treated with $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.25 \mathrm{~g}$, 6.57 mmol) before the mixture was stirred at $75^{\circ} \mathrm{C}$ for 24 h . After cooling to ambient temperature, a solution of rhamnoside 35 ($3.02 \mathrm{~g}, 14.8 \mathrm{mmol}$) in $\mathrm{MeOH}\left(7 \mathrm{~mL}+7 \mathrm{~mL}\right.$ rinse) was added and the mixture stirred at $75^{\circ} \mathrm{C}$ overnight. After cooling to ambient temperature, $\mathrm{NEt}_{3}(1.2 \mathrm{~mL})$ was added to neutralize the medium prior to evaporation of the solvents under reduced pressure. The residue was purified by flash chromatography (hexanes/EtOAc 4:1) to give the desired bis-acetal as a highly viscous colorless syrup $(3.21 \mathrm{~g}, 72 \%) .[\propto]_{20}^{D}=-182.6\left(\mathrm{c}=0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.86(\mathrm{dddd}, J=$ $16.8,10.3,6.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dq}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddt}, J=12.9,5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{dq}, J=9.7,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}$, $3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.8,117.4,100.2,99.8,98.9$, $69.9,68.4,68.2,67.9,66.5,48.0,47.6,17.8,17.6,16.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3464,2932,2834,1454$, $1376,1138,1111,1076,1034,984,929,915,882,848,734,701,672 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=116$ (7), 113 (7), 101 (33), 85 (7), 84 (100), 83 (23), 75 (16), 73 (11), 57 (5), 55 (11), 43 (34), 41 (21), 29 (7). HRMS (ESIpos): calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{Na}: 341.1571$; found: 341.1571.

Compound 37. A solution of bisacetal $36(3.17 \mathrm{~g}, 10.4 \mathrm{mmol})$ in DMF (10 mL) was slowly added at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{NaH}(748 \mathrm{mg}, 31.2 \mathrm{mmol})$ in DMF $(60 \mathrm{~mL})$. The resulting mixture was stirred for about 30 min at $0^{\circ} \mathrm{C}$ until gas evolution had ceased. MeI ($1.95 \mathrm{~mL}, 31.2 \mathrm{mmol}$) was then added dropwise, causing a color change to yellow. The mixture was warmed to room temperature overnight before the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc (3 x 150 mL), the combined organic extracts were washed with brine (200 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 3:2) to give the methylated product as pale yellow oil $(2.21 \mathrm{~g}, 64 \%) .[\propto]_{20}^{D}=-214.0$ ($\mathrm{c}=0.88$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.91(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=17.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=$ $10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=9.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{dq}, J=9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}$, $3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.9,117.3,99.8,99.5,97.1,78.8,68.7,68.4,67.9,66.9,59.2,47.9,47.6$, $17.8,17.8,16.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2932,2832,1453,1375,1197,1138,1114,1083,1037,994,932$, $882,848,815 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=116(9), 115(11), 101(25), 99(11), 98$ (100), 97 (17), 83 (16), 75 (5), 73 (16), 71 (5), 67 (9), 55 (7), 45 (10), 43 (30), 41 (29), 39 (6), 29 (7). HRMS (ESIpos): calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O} 7 \mathrm{Na}: 355.1727$; found: 355.1725 .

Allyl 2-O-methyl- $\boldsymbol{\alpha}$-L-rhamnopyranoside 37a. Trifluoroacetic acid (19 mL) was added to an emulsion of compound $37(2.05 \mathrm{~g}, 6.17 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture turned slightly yellow and was allowed to stir for 7 min at this temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the diol as a pale orange oil that was used in the next step without further purification ($1.32 \mathrm{~g}, 98 \%, 95 \%$ purity). An analytically pure sample was obtained by flash chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=1: 1$ to $1: 2) .[\propto]_{20}^{D}=-46.3\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.84(\mathrm{dddd}, J=17.2,10.4,6.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.14(\mathrm{dq}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddt}, J=13.0,5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ $(\mathrm{ddt}, J=13.0,6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.56(\mathrm{dq}, J=9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.42(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.43(\mathrm{dd}, J=3.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.11(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.7,117.2,95.4,80.4,73.5,71.4,67.9$, $67.8,58.8,17.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3416,2976,2932,2907,2832,1453,1382,1192,1133,1103$, $1075,1038,990,975,926,912,874,836,807 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=157(8), 156(16), 129(18)$, 125 (7), 116 (28), 115 (8), 114 (17), 113 (15), 103 (5), 96 (13), 87 (22), 85 (13), 83 (12), 74 (50), 45 (9), 43 (100), 41 (20).

Allyl 3,4-bis-O-acetyl-2-O-methyl- $\boldsymbol{\alpha}$-L-rhamnopyranoside (38). $\mathrm{NEt}_{3}(2.8 \mathrm{~mL}, 21 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}$ $(1.4 \mathrm{~mL}, 21 \mathrm{mmol})$ were subsequently added via syringe at $0^{\circ} \mathrm{C}$ to a solution of
 DMAP ($152 \mathrm{mg}, 1.2 \mathrm{mmol}$) and the crude diol 37a ($1.4 \mathrm{~g}, 6.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The ice bath was removed and stirring continued for 2 h at ambient temperature. Aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added and the aqueous phase extracted with EtOAc (3 x 7 mL). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 3:2) to give the desired bisacetate as a white crystalline solid ($1.28 \mathrm{~g}, 68 \%$). $[\propto]_{20}^{D}=-72.3\left(\mathrm{c}=0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.86(\mathrm{dddd}, J=17.3,10.4,6.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (ddt, $J=12.9,5.1$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{ddt}, J=12.9,6.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dq}, \mathrm{J}=9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=3.3,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=170.3,169.8,133.5,117.5,96.4,78.4,71.6,71.5,68.1,66.4,59.5,20.9,20.7,17.4 \mathrm{ppm}$. IR (film): $\tilde{v}=2924,1740,1455,1370,1239,1219,1107,1074,1036,1000,976,915,835,798 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%) = 157 (8), 156 (16), 129 (18), 125 (7), 116 (28), 115 (8), 114 (17), 113 (15), 103 (5), 96 (13), 87 (22), 85 (13), 83 (12), 74 (50), 45 (9), 43 (100), 41 (20). HRMS (ESIpos): calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}: 325.1258$; found: 325.1255 .

3,4-Bis-O-acetyl-2-O-methyl- $\boldsymbol{\alpha}$-L-rhamnopyranose (39). SeO_{2} ($488 \mathrm{mg}, 4.40 \mathrm{mmol}$) was added to a
 solution of compound $38(1.20 \mathrm{~g}, 3.97 \mathrm{mmol})$ and $\mathrm{AcOH}(183 \mu \mathrm{~L}, 3.20 \mathrm{mmol})$ in 1,4-dioxane $(10 \mathrm{~mL})$ and the resulting suspension was stirred at reflux temperature for 2 h . After cooling to room temperature, the mixture was neutralized with $\mathrm{Et}_{3} \mathrm{~N}(0.44 \mathrm{~mL})$ and concentrated under reduced pressure. The residue was purified by flash chromatography (hexanes/EtOAc 3:2) to give the desired hemiacetal as a white solid (0.891 g , $86 \%) .[\propto]_{20}^{D}=-42.3\left(\mathrm{c}=0.94, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, data of the major anomer only): $\delta=5.26-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dq}, J=9.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data of the major anomer only): $\delta=170.4,170.0,92.0,78.6,71.5$, $71.3,66.3,59.5,20.9,20.7,17.4 \mathrm{ppm}$. IR (film): $\tilde{v}=3453,2923,2854,1741,1456,1373,1243,1225$, $1108,1074,1050,916,797 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=156(14), 129(34), 116(12), 115(5), 114$ (14), 113 (7), 87 (54), 85 (6), 83 (7), 74 (56), 45 (7), 43 (100), 29 (6). HRMS (ESIpos): calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{Na}: 285.0945$; found: 285.0947 .

Trichloroacetimidate 40. $\mathrm{Cl}_{3} \mathrm{CCN}(0.934 \mathrm{~mL}, 9.31 \mathrm{mmol})$ was added dropwise to a suspension of hemiacetal 39 ($348 \mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(86.7 \mathrm{mg}, 0.039 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7.0 mL). After stirring for 3 h at room temperature, the mixture was filtered and the filtrate was evaporated. The
residue was purified by flash chromatography (hexanes/EtOAc 4:1) to give the desired trichloroacetimidate as a white solid $(532 \mathrm{mg}, 98 \%) .[\propto]_{20}^{D}=-59.9\left(\mathrm{c}=1.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.62(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.10(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{dq}, J=9.0$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=3.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.9,169.3,160.0,94.6,90.5,76.1,70.7,70.2,69.0$, 59.2, 20.5, 20.4, 17.2 ppm . IR (film): $\tilde{v}=3332,2988,2922,2851,1741,1673,1448,1368,1279$, 1236, 1219, 1156, 1107, 1056, 1039, 968, 943, 926, 842, 831, 793, $734 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=245$ (28), 184 (19), 143 (14), 142 (24), 129 (16), 125 (28), 116 (18), 113 (13), 87 (22), 74 (34), 43 (100). HMRS (ESIpos): calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{NCl}_{3} \mathrm{Na}$: 428.0041; found: 428.0042 .

Diyne 41. A flame-dried Schlenk tube was charged with a solution of alcohol 30 (224 mg , $0.318 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ and a solution of acid $11(142 \mathrm{mg}, 0.350 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$. DMAP (194 mg, 1.59 mmol) and DCC ($138 \mathrm{mg}, 0.668 \mathrm{mmol}$) were introduced as solids and the resulting mixture was stirred at ambient temperature for 18 h . The white precipitate was filtered off through a short pad of Celite that was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were concentrated
 and the residue purified by flash chromatography (hexanes/EtOAc $24: 1)$ to give the diyne as a mixture of α, β - and β, γ-olefins (1.5:1, $222 \mathrm{mg}, 64 \%$) as a white foam, along with recovered alcohol 30 $(63.1 \mathrm{mg}, 28 \%)$ as a colorless oil.

A solution of $\mathrm{DBU}(0.5 \mathrm{M}$ in $\mathrm{MeCN}, 102 \mu \mathrm{~L}, 0.051 \mathrm{mmol})$ was added to a solution of this mixture of diynes $(222 \mathrm{mg}$, 0.203 mmol) in $\mathrm{MeCN}(25 \mathrm{~mL})$ and the resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 70 h . After cooling to ambient temperature, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) containing 10 drops of 1 M HCl was added, the aqueous phase was extracted with $\mathrm{EtOAc}(4 \times 30 \mathrm{~mL})$, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 24:1) to yield the desired α, β olefin as a white foam ($202 \mathrm{mg}, 91 \%$). $[\propto]_{20}^{D}=-10.5\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.66-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.47-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.85(\mathrm{dt}, J=15.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=15.9$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{ddd}, J=15.9,2.0,0.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.11(\mathrm{~m}, 1 \mathrm{H})$, 3.79 (ddd, $J=7.9,6.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=10.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=$ $10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{ddd}, J=11.4,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, \mathrm{J}=11.6,6.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-$ $2.19(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{t}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.80-1.73(\mathrm{dd}, J=11.7,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{ddd}, J=13.8,7.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 1 \mathrm{H})$, $1.23-1.07(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.6,148.4,144.7$, $136.0,136.0,135.9,135.6,135.6,134.6,134.0,133.5,133.4,129.6,129.3,129.1,127.6,127.6,127.3$, $127.1,123.4,108.3,84.4,81.7,80.9,79.3,78.3,74.1,73.2,72.3,69.2,68.6,65.2,42.3,41.4,41.3$,
$38.8,35.1,35.0,34.6,33.3,27.2,26.8,25.8,20.7,19.8,19.6,19.2,18.1,3.2,-4.5,-4.5 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=2956,2930,2856,1720,1656,1472,1462,1427,1376,1361,1257,1175,1111,1071$, 1006, 836, 823, 776, 740, $701 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=1115.7(100(\mathrm{M}+\mathrm{Na})$. HRMS (ESIpos): calcd for $\mathrm{C}_{67} \mathrm{H}_{92} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1115.6043; found:1115.6049.

Diyne (11-epi)-41. Prepared analogously from acid 11-epi-11 ($34.9 \mathrm{mg}, 85.8 \mu \mathrm{~mol}$) and alcohol $\mathbf{3 0}$
 $\left(55 \mathrm{mg}, 78.0 \mu \mathrm{~mol}\right.$) as a white foam ($1^{\text {st }}$ step: $61 \mathrm{mg}, 71 \%$ yield, $2^{\text {nd }}$ step: $\left.56 \mathrm{mg}, 92 \%\right) .[\propto]_{20}^{D}=+32.5\left(\mathrm{c}=0.72, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.25(\mathrm{~m}, 12 \mathrm{H})$, 6.86 (dt, $J=15.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=15.8,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.73 (dt, $J=15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=15.7,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22-5.14(\mathrm{~m}, 1 \mathrm{H}), 3.81$ (ddd, $J=7.8,6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-$ 3.67 (m, 3H), 3.64 (dd, $J=10.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.7$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.34$ $(\mathrm{m}, 2 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.83$ $(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{ddd}, J=14.0,9.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.12(\mathrm{~m}, 4 \mathrm{H})$, $1.02(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$, 0.03 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.5,148.0,144.7,136.0,135.9,135.9,135.6$, 135.5, 134.6, 133.9, 133.5, 133.4, 129.6, 129.3, 129.1, 127.6, 127.6, 127.3, 127.1, 123.3, 109.2, 84.3, 81.6, 81.0, 79.3, 78.4, 74.0, 73.3, 72.3, 71.4, 69.2, 68.6, 65.2, 42.9, 41.9, 41.3, 38.8, 35.1, 35.0, 34.7, $33.9,27.2,26.8,25.8,21.0,20.7,19.5,19.2,18.1,14.8,4.2,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2956$, 2930, 2856, 1721, 1472, 1462, 1428, 1361, 1258, 1112, 1075, 1006, 836, 776, 740, 702, $612 \mathrm{~cm}^{-1} . \mathrm{MS}$ $($ ESIpos $) \mathrm{m} / \mathrm{z}(\%)=1115.7\left(100(\mathrm{M}+\mathrm{Na})\right.$. HRMS (ESIpos): calcd for $\mathrm{C}_{67} \mathrm{H}_{92} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}: 1115.6043$; found:1115.6053.

Macrocyclic Enyne 43. A flame-dried Schlenk tube was charged with powdered 4 $4 \AA$ molecular sieves
 $(\sim 1.2 \mathrm{~g})$ and $5 \AA$ molecular sieves $(\sim 1.5 \mathrm{~g})$. The flask was then evacuated and the molecular sieves were flame-dried. After reaching ambient temperature, a solution of diyne 41 ($191 \mathrm{mg}, 0.175 \mathrm{mmol}$) in toluene (85 mL) was added and the resulting suspension was stirred for 45 min . In a separate flame-dried Schlenk tube, a stock solution of the molybdenum alkylidyne complex $\mathbf{4 2}(18.2 \mathrm{mg}, 17.5 \mu \mathrm{~mol})$ in toluene (2 mL) was prepared. This solution was added dropwise to the flask containing the diyne via syringe and the resulting mixture was stirred at ambient temperature for 3 h . The mixture was filtered through a short pad of Celite that was carefully rinsed with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined filtrates were evaporated and the brown residue was purified by flash chromatography (hexanes/EtOAc $29: 1$ to $24: 1$ to $19: 1$) to yield the targeted
macrocyclic as a white foam (133 mg, 72\%). $[\propto]_{20}^{D}=-7.4\left(\mathrm{c}=0.87, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.68-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.45-7.24(\mathrm{~m}, 12 \mathrm{H}), 6.87(\mathrm{ddd}, J=15.7,8.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}$, $J=16.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dq}, J=15.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.15(\mathrm{~m}$, $1 \mathrm{H}), 4.09(\mathrm{ddd}, J=9.6,5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.3$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, \mathrm{J}=10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dddd}, J=11.2,9.2,2.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.14$ $(\mathrm{m}, 1 \mathrm{H}), 2.31(\mathrm{tdd}, J=9.1,4.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 5 \mathrm{H}), 2.10(\mathrm{dd}, J=14.2,9.3,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.86-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.11(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.01$ $(\mathrm{s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,148.5,144.9,135.9,135.8,135.6,135.2,135.0,134.9,133.9,133.6$, $133.0,129.5,129.3,129.2,127.9,127.6,127.6,127.4,127.2,123.6,107.8,86.8,81.3,81.2,78.5$, $75.6,74.5,71.9,71.7,68.6,65.5,43.2,42.2,41.8,38.4,36.5,35.1,34.0,33.8,29.7,27.2,26.8,25.8$, $21.6,19.6,19.3,18.1,13.8,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2955,2929,2856,1718,1472,1462,1428,1361$, $1328,1256,1174,1112,1071,986,836,823,775,737,700 \mathrm{~cm}^{-1}$. MS (ESIpos) m/z $(\%)=1075.7(100$ (M+Na). HRMS (ESIpos): calcd for $\mathrm{C}_{64} \mathrm{H}_{88} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}: 1075.5730$; found:1075.5725.

Macrocyclic Enyne (11-epi)-43. Prepared analogously from diyne 11-epi-41 (52 mg, $47.5 \mu \mathrm{~mol}$) as a
 white foam ($32 \mathrm{mg}, 64 \%$). $[\propto]_{20}^{D}=+54.6\left(\mathrm{c}=1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69(\mathrm{ddd}, J=7.7,3.3,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.63-$ $7.56(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.97(\mathrm{ddd}, J=15.4,8.2,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=15.7,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{dt}, J=15.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{ddd}, J=8.8$, $6.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (ddd, $J=8.2,5.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.68(\mathrm{~m}$, $2 \mathrm{H}), 3.65(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=11.0,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.20-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.13$ $(\mathrm{dd}, J=12.9,7.9,1 \mathrm{H}), 2.07(\mathrm{ddd}, J=16.9,5.7,0.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, J=14.5,7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.01$ $(\mathrm{m}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=165.3,146.2,146.0,135.9,135.9,135.6,134.8,134.6,133.6,133.6,129.5,129.2,129.1$, $127.6,127.5,127.3,127.2,123.3,110.4,86.6,81.6,81.0,78.8,75.5,74.1,72.9,72.9,68.7,65.8,42.6$, $42.2,41.9,38.6,36.6,35.8,35.3,33.8,27.3,26.8,25.8,23.1,21.3,19.7,19.3,18.1,13.7,-4.5,-4.6$ ppm. IR (film): $\tilde{v}=2955,2930,2857,1722,1472,1462,1428,1361,1327,1257,1176,1112,1067$, 854, 836, 823, 776, 739, 701, $608 \mathrm{~cm}^{-1} . \mathrm{MS}($ ESIpos $) \mathrm{m} / \mathrm{z}(\%)=1075.6(100(\mathrm{M}+\mathrm{Na})$. HRMS (ESIpos): calcd for $\mathrm{C}_{64} \mathrm{H}_{88} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1075.5730; found:1075.5722.

Macrocyclic Diene 43a. In order to obtain reproducible results, all solvents used for the preparation of the activated $\mathrm{Zn} / \mathrm{Cu} / \mathrm{Ag}$ and the reaction were degassed by bubbling
 Ar through the solvent for at least 20 min.
A Young tube was evacuated, backfilled with Argon and charged with a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,1.8 \mathrm{~mL})$. Freshly prepared $\mathrm{Zn} / \mathrm{Cu} / \mathrm{Ag}^{19}$ $(1.6 \mathrm{~g})$ was added, followed by a solution of enyne 43 (130 mg , 0.123 mmol) in THF ($0.5 \mathrm{~mL}+2 \times 0.2 \mathrm{~mL}$ rinse). The Young tube was sealed and placed in a preheated $\left(45^{\circ} \mathrm{C}\right)$ oil bath. The suspension was vigorously stirred at this temperature for 70 h before it was allowed to reach ambient temperature. The mixture was filtered through a short pad of Celite that was rinsed with $\mathrm{EtOAc} / \mathrm{EtOH}(9: 1,75 \mathrm{~mL})$. The combined filtrates were concentrated to $\approx 1 / 10$ of the original volume before brine (10 mL) was added. The aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 29:1 to $24: 1$ to 19:1) to give the desired diene as a white foam $(115 \mathrm{mg}, 89 \%) .[\propto]_{20}^{D}=-47.9\left(\mathrm{c}=0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64-7.54(\mathrm{~m}$, $8 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 12 \mathrm{H}), 6.84(\mathrm{ddd}, J=15.7,8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=15.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ $(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dt}, J=15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.08(\mathrm{~m}$, $2 \mathrm{H}), 3.99$ (ddd, $J=8.8,6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=7.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dt}, J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dt}, J=7.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.32-$ 2.24 (m, 1H), 2.20 (ddd, $J=16.0,8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.14-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.90(\mathrm{dt}, J=15.7,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{ddd}, J=12.7,7.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.25(\mathrm{~m}$, $1 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.8$, $145.0,140.2,136.0,136.0,135.6,135.6,134.7,133.9,133.5,133.5,129.6,129.5,129.4,127.6,127.6$, $127.4,127.2,126.4,124.3,123.3,81.4,80.1,74.2,73.4,72.0,71.6,68.7,65.4,43.1,41.9,41.9,38.5$, $35.4,34.4,34.3,32.1,30.0,27.2,26.8,25.8,20.7,19.5,19.3,18.1,15.4,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=$ 2956, 2930, 2857, 1721, 1654, 1472, 1462, 1428, 1375, 1257, 1175, 1112, 1073, 1006, 836, 823, 775, $739,702 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=1077.6(100(\mathrm{M}+\mathrm{Na})$). HRMS (ESIpos): calcd for $\mathrm{C}_{64} \mathrm{H}_{90} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}: 1077.5887$; found:1075.5884.

Macrocyclic Diene (11-epi)-43a. Prepared analogously from enyne $11-$ epi-43 ($31.0 \mathrm{mg}, 29.4 \mu \mathrm{~mol}$) as a white foam ($26.8 \mathrm{mg}, 86 \%$). $[\propto]_{20}^{D}$ $=+15.2\left(\mathrm{c}=1.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66-$ $7.53(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.20(\mathrm{~m}, 12 \mathrm{H}), 7.09(\mathrm{ddd}, J=15.1,10.3,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.21(\mathrm{dd}, J=14.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{tt}, J=10.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.74(\mathrm{dd}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=14.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-$

[^12]$5.02(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=$ $11.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{tdd}, J=9.6,4.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-$ $2.11(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{dt}, J=15.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dt}, J=14.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.66$ $(\mathrm{dd}, J=12.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{ddd}, J=14.0,10.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.12(\mathrm{~m}$, $4 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.2,145.7,139.8,135.9,135.8,135.7$, $135.6,134.1,133.9,133.7,133.4,129.6,129.5,127.6,127.5,127.5,127.4,125.9,125.6,122.8,81.3$, 80.7, 75.1, 73.0, 72.3, 72.0, 68.5, 65.1, 43.5, 42.3, 42.1, 39.3, 35.6, 34.6, 34.6, 33.9, 29.4, 27.1, 26.7, $25.8,22.1,19.4,19.2,18.1,15.1,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2957,2928,2856,1724,1427,1257$, $1157,1113,1076,833,822,778,741,703,557 \mathrm{~cm}^{-1} . \mathrm{MS}($ ESIpos $) \mathrm{m} / \mathrm{z}(\%)=1077.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): calcd for $\mathrm{C}_{64} \mathrm{H}_{90} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1077.5887; found: 1077.5884.

Alcohol 44. $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(6.2 \mathrm{mg}, 32.6 \mu \mathrm{~mol})$ was added to a solution of silyl ether $\mathbf{4 3 a}(114 \mathrm{mg}$,
 0.109 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 1,12 \mathrm{~mL})$ and the mixture was stirred for 5 h . The reaction was quenched by addition of sat. NaHCO_{3} solution $(12 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 8 mL). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography (hexanes/EtOAc 2:1) to yield the desired alcohol as a white foam $(92 \mathrm{mg}, 90 \%) .[\propto]_{20}^{D}=-42.5\left(\mathrm{c}=0.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.70-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.87(\mathrm{ddd}, J=$ $15.8,7.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{ddt}, J=15.6,10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=$ $15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=15.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{ddd}, J=8.8,6.0,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.35-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{tdd}, J=$ $7.5,3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{ddd}, \mathrm{J}=14.5,10.1,0.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 5 \mathrm{H})$, $1.76(\mathrm{ddd}, J=14.0,8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, J=12.8,7.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33$ $(\mathrm{ddd}, J=13.5,8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{ddd}, J=11.5,10.9,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{ddd}, J=11.6,11.3$, $1.09 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7,143.7,140.0,136.0,136.0,135.6,135.6,134.6,133.9,133.5$, $130.0,129.6,129.6,129.4,129.2,127.6,127.6,127.4,127.2,126.4,124.4,123.3,81.4,80.1,74.2$, $73.4,72.1,71.6,68.1,65.4,42.9,41.4,41.3,38.4,35.4,34.5,34.3,32.1,30.0,27.2,26.8,20.9,19.5$, 15.4 ppm . IR (film): $\tilde{v}=3454,2957,2930,2857,1720,1654,1472,1427,1361,1265,1176,1112$, 1006, 822, 739, $702 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=963.6(100(\mathrm{M}+\mathrm{Na})$. HRMS (ESIpos): calcd for $\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 963.5022; found: 963.5028.

Alcohol (11-epi)-44. Prepared analogously from silyl ether 11-epi-43a ($24.2 \mathrm{mg}, 22.9 \mu \mathrm{~mol}$) as a white foam $(19.3 \mathrm{mg}, 89 \%) .[\propto]_{20}^{D}=+28.4\left(\mathrm{c}=0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.66-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.20(\mathrm{~m}$, $12 \mathrm{H}), 7.07$ (ddd, $J=15.1,10.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=14.9$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{tt}, J=10.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}, J=15.6,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{dd}, J=14.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.83$ $(\mathrm{m}, 2 \mathrm{H}), 3.79-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}$, $J=11.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{tt}, J=9.5,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{tdd}, J=9.6,4.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{dd}$, $J=8.0,7.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{ddd}, J=$ $13.6,7.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.23-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.78$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.2,145.4,139.6,135.9,135.8,135.7$, $135.6,134.1,133.9,133.6,133.5,129.6,129.5,127.6,127.5,127.5,127.4,126.0,125.7,122.9,81.3$, $80.8,75.0,73.1,72.4,72.1,68.0,65.2,43.4,41.7,41.6,39.2,35.6,34.6,34.6,34.0,29.5,27.1,26.7$, 20.1, 19.4, 19.2, 15.1 ppm . IR (film): $\tilde{v}=3414,2957,2930,2857,1722,1655,1472,1428,1361$, $1326,1262,1177,1111,990,822,739,702,610 \mathrm{~cm}^{-1} . \mathrm{MS}($ ESIpos $) \mathrm{m} / \mathrm{z}(\%)=963.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): calcd for $\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 963.5022; found: 963.5017.

Glycoside 45. A Schlenk tube was charged with powdered $4 \AA$ MS (400 mg) that was flame-dried in
 vacuo. After reaching RT, the molecular sieves were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and a solution of alcohol $44(87.0 \mathrm{mg}, 92.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ was introduced. Rhamnosyl donor $40(56.3 \mathrm{mg}$, $139 \mu \mathrm{~mol})$ was added as a solid and the resulting suspension was stirred for 45 min at ambient temperature before it was cooled to $-50^{\circ} \mathrm{C}$. A solution of $\operatorname{TESOTf}(0.1 \mathrm{M}, 277 \mu \mathrm{~L}, 27.7 \mu \mathrm{~mol})$ was added dropwise via syringe over 1 min . After stirring for 30 min at $-50^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{NEt}_{3}(0.1 \mathrm{~mL})$, the mixture was filtered through a pad of Celite and the filtrate was evaporated. The crude residue was purified by flash chromatography (hexanes/EtOAc $3: 1$) to yield the desired glycoside as a white foam $\left(97.0 \mathrm{mg}, 88 \%\right.$ yield, $16: 1$ d.r.). $[\propto]_{20}^{D}=-61.5$ ($\mathrm{c}=$ $\left.0.82, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70-7.55(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.24(\mathrm{~m}, 12 \mathrm{H}), 6.85$ (ddd, $J=15.8,8.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=15.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=$ $15.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.14(\mathrm{~m}, 3 \mathrm{H}), 5.08(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ $(\mathrm{d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=8.8,6.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dq}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.70(\mathrm{~m}$, $2 \mathrm{H}), 3.65(\mathrm{dd}, J=10.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}$, $3 \mathrm{H}), 3.32-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=15.3,8.1,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90-$
$1.81(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{ddd}, J=14.1,8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{ddd}, J=12.7,7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.28$ $(\mathrm{m}, 2 \mathrm{H}), 1.27-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.79(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.3,169.9,165.7,144.5$, $140.0,136.0,136.0,135.6,135.6,135.6,134.6,133.9,133.5,130.0,129.6,129.6,129.4,129.2,127.6$, $127.6,127.4,127.2,126.5,124.4,123.5,95.4,81.4,80.1,78.8,74.1,73.4,73.2,72.1,71.7,71.6,71.6$, $66.7,65.4,59.6,43.0,39.1,38.5,37.6,35.4,34.5,34.3,32.1,29.9,29.7,27.2,26.8,21.0,20.8,19.5$, 19.3, 17.5, 15.3 ppm . IR (film): $\tilde{v}=2958,2929,2857,1745,1720,1654,1472,1361,1427,1365$, 1241, 1223, 1177, 1107, 1074, 1040, 998, 822, 803, 755, $702 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=1207.6$ (100 (M+Na)). HRMS (ESIpos): calcd for $\mathrm{C}_{69} \mathrm{H}_{92} \mathrm{O}_{13} \mathrm{Si}_{2} \mathrm{Na}$: 1207.5969; found: 107.5976.

Glycoside (11-epi)-45. Prepared analogously from 11-epi-44 ($24.2 \mathrm{mg}, 22.9 \mu \mathrm{~mol}$) as a white foam
 ($20.6 \mathrm{mg}, 87 \%$ yield, single dr). $[\propto]_{20}^{D}=-17.4\left(\mathrm{c}=0.87, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.52(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.24$ $(\mathrm{m}, 11 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{ddd}, J=15.2,10.3,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.19$ (dd, $J=14.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ $(\mathrm{dd}, J=15.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, \mathrm{J}=15.0 \mathrm{~Hz}, 9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ $(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.00(\mathrm{~m}, 3 \mathrm{H}), 4.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dq}, J=9.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.66$ (m, 2H), $3.52(\mathrm{dd}, J=3.18,1.98 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=$ $11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, \mathrm{J}=11.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.06(\mathrm{~m}$, $2 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dddd}, \mathrm{J}=14.1,9.3,4.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.74$ $(\mathrm{m}, 2 \mathrm{H}), 1.56(\mathrm{dd}, J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{q}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.23-1.16$ $(\mathrm{m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.3,169.9,165.2,145.3,139.5,135.9,135.8$, $135.6,135.6,134.1,133.9,133.6,133.4,129.6,129.5,129.5,127.6,127.5,127.5,127.4,126.0,125.7$, $123.0,95.4,81.3,80.8,78.8,75.0,73.1,73.1,72.4,72.1,71.6,71.6,66.6,65.1,59.6,43.4,39.3,39.3$, $37.9,35.6,34.6,33.9,29.4,27.0,26.7,22.0,21.0,20.8,19.4,19.2,17.4,15.1 \mathrm{ppm} . \operatorname{IR}(f i l m): \tilde{v}=$ $2956,2930,2857,1725,1428,1365,1327,1243,1223,1178,1110,1042,912,824,736,703,611 \mathrm{~cm}^{-}$ ${ }^{1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=1207.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): calcd for $\mathrm{C}_{69} \mathrm{H}_{92} \mathrm{O}_{13} \mathrm{Si}_{2} \mathrm{Na}$: 1207.5969; found: 1207.5966.

Diol 45a. Dry $\mathrm{K}_{2} \mathrm{CO}_{3}(28.3 \mathrm{mg}, 205 \mu \mathrm{~mol})$ was added to a solution of compound 45 (96.9 mg ,

$81.8 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(11 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 2 h before a second portion of $\mathrm{K}_{2} \mathrm{CO}_{3}(22.6 \mathrm{mg}$, $164 \mu \mathrm{~mol})$ was introduced. After an additonal 2 h at $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL) and the mixture allowed to reach ambient temperature. The aqueous phase was extracted with EtOAc ($4 \times 15 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 2:3) to give the desired product as a white foam ($72.3 \mathrm{mg}, 80 \%$) $[\propto \propto]_{20}^{D}=-53.1\left(\mathrm{c}=0.57, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.66-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.41-7.25(\mathrm{~m}$, $12 \mathrm{H}), 6.86$ (ddd, $J=15.8,8.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{ddt}, J=15.5,10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.80(\mathrm{dt}, J=15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=8.9,6.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{td}, J=9.6,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=3.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=$ $9.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H})$, $2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{ddd}, J=14.9,10.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 3 \mathrm{H})$, 1.75 (ddd, $J=14.0,8.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{ddd}, J=12.8,7.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{ddd}, J=13.7,8.0,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.7,144.5,140.0,136.0$, $136.0,135.6,135.6,135.5,134.6,134.0,133.5,130.0,129.6,129.6,129.3,129.2,127.6,127.6,127.4$, $127.2,126.5,124.4,123.5,93.9,81.4,80.6,80.1,74.0,74.0,73.5,72.7,72.1,71.7,71.4,67.9,65.4$, $58.9,43.0,39.1,38.5,37.5,35.4,34.5,34.4,29.9,27.2,26.8,20.8,19.5,19.3,17.5,15.4 \mathrm{ppm}$. IR (film): $\tilde{v}=3411,2958,2930,2857,1719,1656,1462,1428,1360,1327,1263,1176,1111,1076$, 1045, 823, 740, $702 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=1123.7(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): calcd for $\mathrm{C}_{65} \mathrm{H}_{88} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na}$: 1123.5757; found: 1123.5748 .

Diol (11-epi)-45a. Prepared analogously from alcohol 11-epi-45 $(20.0 \mathrm{mg}, 16.9 \mu \mathrm{~mol})$ as a white foam $(16.4 \mathrm{mg}, 88 \%) .[\propto]_{20}^{D}=-5.9$ $\left(\mathrm{c}=0.67, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65-7.53(\mathrm{~m}$, $8 \mathrm{H}), 7.42-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{ddd}, J=15.5$, $10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{tt}, J=11.0$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=14.9,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 2 \mathrm{H})$, $3.76-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=9.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dq}, J=9.4$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=9.3$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{tt}, J=11.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{tdd}, J=11.2,3.3$,
$1.8 \mathrm{~Hz}, 1 \mathrm{H}) 2.70-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dddd}, J=14.4,9.2,4.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.23-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{dt}, J=13.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{ddd}, J=14.1,11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{ddd}, J=13.6,7.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.22$ $(\mathrm{m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}$, $9 \mathrm{H}), 0.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.2,145.3,139.6,135.9$, $135.8,135.7,135.6,134.1,133.9,133.6,133.4,129.6,129.5,129.5,129.5,127.6,127.5,127.5,127.4$, $126.0,125.7,123.0,93.9,81.3,80.7,80.6,74.9,74.0,73.1,72.6,72.4,72.1,71.4,67.8,65.1,58.8$, $43.4,39.3,37.9,35.6,34.6,34.6,33.9,29.4,27.0,26.7,22.0,19.4,19.2,17.5,15.2 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=$ 3426, 2956, 2929, 2857, 1722, 1461, 1428, 1390, 1361, 1326, 1261, 1178, 1108, 1077, 1043, 909, $822,734,702,611 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=1123.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): calcd for $\mathrm{C}_{65} \mathrm{H}_{88} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na}$: 1123.5757; found: 1123.5754 .

Putative Mandelalide A (1). A Teflon vial was charged with diol 45a ($42.0 \mathrm{mg}, 38.1 \mu \mathrm{~mol}$) and THF
 $(2.5 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$ before pyridine $(2.5 \mathrm{~mL})$ and HF-pyridine (2.5 mL) were slowly added via an Eppendorf pipette. After stirring for 5 min at $0^{\circ} \mathrm{C}$, the ice bath was removed and stirring continued at ambient temperature for 46 h . The mixture was diluted with EtOAc (10 mL) and carefully poured into NaHCO_{3} solution (30 mL). The aqueous phase was extracted with EtOAc/EtOH (9:1, $4 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3\right.$ to $96: 4$ to $95: 5$ to $\left.96: 4\right)$ to give the desired compound as a white amorphous solid ($19.1 \mathrm{mg}, 80 \%$). $[\propto]_{23}^{D}=-29(\mathrm{c}=0.25, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: see Table $3 .{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, CDCl_{3}): see Table 3. IR (film): $\tilde{v}=3427,2924,1714,1653,1454,1373,1323,1275,1179,1106$, 1043, 988, $734 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=647.4(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{11} \mathrm{Na}$: 647.3402; found: 647.3406.

(11-epi)-Isomer of putative Mandelalide A (11-epi-1). Prepared analogously from diol 11-epi-45a ($10.0 \mathrm{mg}, 9.08 \mu \mathrm{~mol}$) as a white amorphous solid ($4.8 \mathrm{mg}, 85 \%$). $[\propto]_{23}^{D}=-25.8(\mathrm{c}=0.41, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table 4. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table 4. IR (film): $\tilde{v}=3411,2924,2854,1716,1654,1457,1373,1246$, 1178, 1107, 1045, 992, 812, $733 \mathrm{~cm}^{-1}$. MS (ESIpos) m/z $(\%)=647.4$ (100 (M+Na)). HRMS (ESIpos): calcd for $\mathrm{C}_{65} \mathrm{H}_{88} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na}$: 647.3402; found: 647.3402.

The following Scheme shows key NOESY contacts observed for $\mathbf{1}$ and 11-epi-1. The structural assignments made above for the different building blocks were confirmed by the observed NOE contacts between H5, H7 and H9 for the southern THP unit. Furthermore, the NOE contacts between H17, H18 and H19 indicates once again an all-cis configured THF ring. Interesting to note are the different NOE contacts across the macrocycle for the two isomers.

KEY NOESY correlations for 1

KEY NOESY correlations for (11-epi)-1

different colors were used only for better overview

For comparison with the natural product, the ${ }^{13} \mathrm{C}$ NMR spectra of synthetic $\mathbf{1}$ and 11-epi-1 were referenced to $\mathrm{CDCl}_{3}=77.23 \mathrm{ppm}$ as in the isolation paper (in other spectra reported above, the solvent signal was set to 77.00 ppm).

Table 3: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data of putative Mandelalide $\mathrm{A}(\mathbf{1})\left({ }^{1} \mathrm{H}\right.$ NMR: $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR: $150 \mathrm{MHz}, 4.2 \mathrm{mg}$ in $0.45 \mathrm{~mL} \mathrm{CDCl}_{3}$). ${ }^{20}$

atom \mathbf{n}°	$\begin{gathered} { }^{1} \mathbf{H} \\ / \mathrm{ppm} \end{gathered}$	$\begin{gathered} { }^{13} \mathbf{C} \\ / \mathbf{p p m} \end{gathered}$	m	J/Hz	COSY	HMBC	NOESY
1	--	167.3	-	-	-	-	-
2	5.92	123.1	dt	15.6, 1.5	3, (4ab)	1, (3), 4	3, 4(a)b, (25)
3	7.02	146.3	ddd	15.5, 8.6, 5.5	2, 4a(b)	1,2, 4, 5	2, 4a(b), (6a)
4a	2.34	38.5	ddd	15.2, 6.5, 5.6, 1.8	(3), 4b, 5	2, 3, 5, 6	(2), 3, 4b, 5
4b	2.46	--	dddd	15.2, 8.6, 3.7, 1.2	3, 4a, (5)	2, 3, 5, (6)	2, 3, 4a, 5, 25
5	3.42	73.4	m	-	4a(b), 6a	3, (4), 7, 9	(3), 4ab, 6b, 7, 9
6a	1.26	36.7	m	-	5, 6b, 7	5,7,8	-
6b	1.94	--	ddt	12.0, 4.6, 1.9	6a, 7	6,8	(5), 6a, 7, 1'
7	3.77	72.8	m	-	6ab, 8ab	6, 8, (1')	5, 6b, 8b, 9, 1'
8a	1.22	39.3	m	-	7, 8b, 9	-	-
8b	1.84	--	dddd	12.5, 4.2, 1.9, 1.9	7, 8a, (9)	6, 7, 9	7, 8a, 9
9	3.33	73.1	m	-	8a(b), 10ab	(5), (7), 8,10	5, 7, 8b, 10b, 25
10a	1.27	42.9	m	-	9, 10b, 11	-	-
10b	1.69	--	ddd	14.1, 9.1, 5.1	9, 10a, (11)	8, 9, 11, 12, 25	9, 10a
11	2.44	32.8	m	-	10a(b), 12, 25	9, 10, 12, 13, 25	9, 10a, 12, 13, 25
12	5.61	140.9	dd	15.2, 7.6	11, 13	10, 11, 14, (15), 25	(10ab), 11, 13, 14, 25
13	6.22	123.8	ddt	15.2, 10.8, 1.0	12, 14	11, 14, 15	11, 12, 14, 16ab, 25
14	6.01	130.5	tt	10.8, 1.8	13, 15	12, 13, 16	12, 13, 15
15	5.27	126.5	ddd	10.8, 8.3, 7.5	14, 16ab	13, 16, 17	14, 16ab, 17, (26)
16a	2.14	31.2	Dddd	14.8, 6.8, 5.1, 1.9	15, 16b, 17	14, 15, 17, 18	$\begin{gathered} 13,(15), 16 \mathrm{a},(17), \\ \text { (26) } \end{gathered}$
16b	2.29	--	dtd	14.8, 8.5, 1.6	15, 16a, 17	(13), 14, 15, 17, 18	13, 15, 16b, 17, 26
17	4.03	81.3	ddd	8.6, 7.2, 4.9	16ab, 18	15, 19, 20, 26	$\begin{gathered} 15,16 \mathrm{a}(\mathrm{~b}), 18,(20), \\ (26) \end{gathered}$
18	2.43	37.1	m	-	17, 19a(b), 26	16, 17, 19, (20), 26	17, 19ab, 20, 26
19a	1.28	36.0	m	-	18, 19b, 20	-	(18), 19b, 21, 26
19b	2.04	--	dt	12.3, 6.7	(18), 19a, 20	17, 18, (20), 21, 26	18, 19a, 20, (26)
20	3.71	82.7	ddd	8.4, 8.2, 6.7	19ab, 21	(17), (18), 19, 21, 22	$\begin{gathered} 17,18,19 \mathrm{~b}, 21, \\ 22 \mathrm{a}(\mathrm{~b}) \end{gathered}$
21	3.45	73.4	m	-	20, 22(a)b	(19), 20, 22, 23	$\begin{gathered} (16 \mathrm{a}), 19 \mathrm{a}, 20,22 \mathrm{~b}, \\ 23,25,26 \end{gathered}$
22a	1.54	34.1	ddd	14.4, 10.5, 2.5	21, 22b, (23)	20, 23, 24	20, 21, 22b, 23, 24ab
22b	1.77	--	ddd	14.4, 10.8, 2.0	(21), 22a, 23	(20), 23, 24	$\begin{gathered} (19 b), 21,22 a, 23, \\ (24 a) \end{gathered}$
23	5.24	72.5	m	-	22(a)b, 24ab	(22), (1)	21, 22a(b), 24ab
24a	3.65	65.7	m	-	23, 24b	22, 23	(22ab), 23, 24b
24b	3.78	--	dd	12.1, 3.3	23, 24a	22, (23)	21, 23, 24a
25	1.00	20.1	d	6.7	11	10, 11, 12	$\begin{gathered} \hline 9,(10 b), 11,12,13, \\ , 21,2 \end{gathered}$
26	0.98	14.7	d	7.0	18	17, 18, 19	16a(b), (17), 18, (21)
1^{\prime}	5.02	94.0	d	1.5	2^{\prime}	7, 2', 3', 5'	6b, 7, 2', 7^{\prime}
2	3.40	80.9	dd	3.8, 1.5	1', 3'	3', 4', 7'	$1^{\prime}, 7{ }^{\prime}, 3^{\prime}$
3'	3.69	71.7	m	-	2', 4^{\prime}	(2'), $\mathbf{4}^{\prime}$	(2'), 5^{\prime}
4'	3.34	74.2	t	9.4	3', 5'	3', 5'	6', 7'
5	3.63	68.2	dd	9.4, 6.1	4', 6'	(1'), 3', 4', (6')	(2'), 3', 6'
$6{ }^{\prime}$	1.28	17.7	d	6.3	5	(1'), 4', 5'	4', 5', 7'
7'	3.46	59.2	s	-	-	2'	1', 6^{\prime}
OHa	2.56-2.33	-	-	-	21	21,22	
OHb	2.56-2.33	-	-	-			
OHc	2.44-2.34	-	-	-	3'	3'	
OHd	2.78-2.64	-	br s	-	4'	4^{\prime}	

[^13]Table 4: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data of 11-epi-Isomer of putative Mandelalide A (11-epi-1) $\left({ }^{1} \mathrm{H}-\mathrm{NMR}: 600\right.$
$\mathrm{MHz},{ }^{13} \mathrm{C}-\mathrm{NMR}: 150 \mathrm{MHz}, 4.1 \mathrm{mg}$ in 0.25 mL CDCl 3$) .{ }^{22}$

atom \mathbf{n}°	$\begin{gathered} { }^{\mathbf{1}} \mathbf{H} \\ / \mathbf{p p m} \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \\ / \mathbf{p p} \\ \mathbf{m} \end{gathered}$	m	$J / \mathbf{H z}$	COSY	HMBC	NOESY
1	--	166.8	-	-	-	-	-
2	5.92	123.6	dt	15.6, 1.1	3, (4a)	1, 3, 4, (5)	3, 4b
3	7.09	146.1	ddd	15.6, 8.2, 6.7	2, 4ab	1, 2, 4, 5	2, 4ab, 5, 11, 13, (21)
4a	2.31	39.5	dddd	$14.3,8.2,2.7,0.8$	3, 4b, (5)	2, 3, 5, (6)	2, 3, 4b, 5, (6a)
4b	2.39	-	m	-	3, 4a, 5	2, 3, 5, 6	2, 3, 4b, 6a
5	3.26	74.0	dddd	11.2, 10.5, 3.0, 2.1	4a, 4b, 6a(b)	(3), (4), (9)	4a, 6b, 7, 9
6a	1.15	38.2	ddd	11.8, 11.7, 11.6	5, 6b, 7	5, 7, 8	4b, 6b, 8a
6b	1.98	-	ddt	12.2, 4.7, 1.9	5, 6a, 7	(5), 7, 8	4a, 5, 6a, 7, 1'
7	3.76	72.7	m	-	6a(b), 8a(b)	8, (9), 1'	5, 6b, 8b, 9, 1'
8a	1.27	39.2	m	-	7, 8b, 9	6, 7, 9, 10	6a, 8b
8b	1.75	-	ddt	12.4, 4.7, 1.9, 1.7	7, 8a, (9)	6, 7, 9	7, 8a, 9, 10a
9	3.16	73.2	tt	11.1, 1.5	8a, 10(a)b	5, 7, 10, 11	5, 7, 8b, 10a
10a	1.14	43.5	m	-	(9), 10b, 11	(5), 7, 8, 11, 12, 25	8b, 9, 10b, (12), (25)
10b	1.52	-	ddd	13.9, 11.0, 2.8	9, (11), 10a	9, 11, 12, 25	(8a), 10a, 11, 25
11	2.48	34.1	m	-	10a, 12, 25	9, 10, 12, 13, (25)	9, 10b, (12), 13, 25
12	5.32	141.3	dd	14.9, 9.7	11, 13	$10,11,14,25$	(9), 10a, (11), 13, 14, 25
13	6.10	124.9	dd	14.9, 11.0	12, 14	11, 14, 15	(3), 11, 12, 16(a)b, (21)
14	6.00	130.6	ddt	11.0, 10.9, 1.5	(10ab), 13, 15	12, 13, 16	12, 15, 16b
15	5.20	126.2	m	-	14, 16ab	13, 16, 17	13, 14, 16ab, 17, 26
16a	2.08	31.0	ddd	14.6, 5.9, 1.9	15, 16b, 17	(13), 14, 15, 17, 18	13, 15, 16b, 17, 21, 26
16b	2.25	-	dddd	14.7, 9.0, 7.5, 1.4	$\begin{gathered} (14), 15,16 a, \\ 17 \\ \hline \end{gathered}$	14, 15, 17, 18	$\begin{gathered} 13,(14), 15,16 \mathrm{a}, 17,19 \mathrm{a}, \\ 26 \end{gathered}$
17	3.99	81.8	dt	7.3, 6.2	18, 16ab	15, 19, 20, 26	16ab, 18, 20, (26)
18	2.46	36.9	m	-	17, 19ab, 26	16, 17, 20, 26	(15), 17, 19(a)b, 20, 26
19a	1.26	36.4	m	-	18, 19b, 20	18, (20), 21, 26	(18), 19b, 26
19b	2.09	-	ddd	12.3, 7.1, 7.1	(18), 19a, 20	18, 20, 21, 26	18, 19a, 20, 21
20	3.74	82.1	m	-	19ab, 21	17, 19, 21, 22	17, 18, 19(a)b, 21, (22b)
21	3.46	73.3	dddd	9.1, 7.6, 2.8, 1.6	20, 22ab, OH1	20, 22, 23	$\begin{gathered} (3), 19 \mathrm{a}, 20,22 \mathrm{ab}, 23, \\ (26), \mathrm{OH} 1 \end{gathered}$
22a	1.55	34.7	ddd	14.7, 9.2, 2.1	21, 22b, (23)	20, 21, 24	21, 22b, 24ab
22b	1.88	-	dddt	14.4, 11.5, 1.4	21, 22a, 23	20, 23, 24	19a(b), 21, 22a, 24ab
23	5.23	73.9	dddd	11.2, 5.3, 2.8, 2.7	22(a)b, 24ab	(1), 22	21, 22ab, 24ab
24a	3.65	65.7	m	-	23, 24b	22, 23	22ab, 23, 24b
24b	3.79	-	m	-	23, 24a	22, 23	22a(b), 23, 24a
25	0.98	22.0	d	6.8	11	10, 11, 12	10ab, 11, 12
26	0.98	14.9	d	7.0	18	17, 18, 19	16a(b), (15), (17), 18
$1 '$	4.99	94.1	d	1.2	2^{\prime}	2', 3', 5', 7	2', 7', 6b, 7
2^{\prime}	3.38	80.9	dd	3.8, 1.5	1', 3'	3', 4', 7'	1', 3', 7'
$3 '$	3.68	71.6	td	9.7, 3.8	2', 4', OH3	1', 4'	2', 5', OH3, OH4
4'	3.33	74.2	td	9.5, 1.9	3', 5', OH4	3', 5', 6', 7'	5', 6', OH3, OH4
$5 '$	3.61	68.2	dq	9.4, 6.2	4', 6'	1', 3', 4', 6'	3', 4', 6'
$6{ }^{\prime}$	1.26	17.7	d	6.2	5'	4', 5'	4', 5', 7'
$7{ }^{\prime}$	3.44	59.1	S	-		2^{\prime}	2', 6', OH3
OHa	2.74-2.72	-	br s	-	21	21,22	
OHb	2.40-2.36	-	m	-			
OHc	2.42-2.35	-	m	-	3^{\prime}	3'	
OHd	2.48-2.44	-	m	-	$4 '$	$4 '$	

Table 5: Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1}$ and 11-epi-1 with the data of the natural sample. ${ }^{20,21}$

	putative Mandelalide A (1)		Natural Product		11-epi-1	
$\begin{gathered} \text { atom } \\ \mathbf{n}^{\circ} \\ \hline \end{gathered}$	${ }^{1} \mathrm{H} / \mathrm{ppm}$	${ }^{13} \mathbf{C} / \mathrm{ppm}$	${ }^{1} \mathrm{H} / \mathrm{ppm}$	${ }^{13} \mathbf{C} / \mathrm{ppm}$	${ }^{1} \mathrm{H} / \mathrm{ppm}$	${ }^{13} \mathbf{C} / \mathrm{ppm}$
1	--	167.3	-	167.5^{22}	--	166.8
2	5.92	123.1	6.01	123.1	5.92	123.6
3	7.02	146.3	6.97	147.1	7.09	146.1
4a	2.34	38.5	2.36	38.8	2.31	39.5
4b	2.46	--	2.39	-	2.39	-
5	3.42	73.4	3.36	73.9	3.26	73.9
6a	1.26	36.7	1.20	37.6	1.15	38.2
6b	1.94	--	2.02	--	1.98	-
7	3.77	72.8	3.82	73.1	3.76	72.7
8a	1.22	39.3	1.22	39.7	1.27	39.2
8 b	1.84	--	1.87	--	1.75	-
9	3.33	73.1	3.32	72.5	3.16	73.2
10a	1.27	42.9	1.21	43.1	1.14	43.5
10b	1.69	--	1.51	-	1.52	-
11	2.44	32.8	2.37	34.2	2.48	34.1
12	5.61	140.9	5.45	141.5	5.32	141.3
13	6.22	123.8	6.28	123.9	6.10	124.9
14	6.01	130.5	6.05	131.3	6.00	130.6
15	5.27	126.5	5.28	126.9	5.20	126.2
16a	2.14	31.2	1.88	31.1	2.08	31.0
16b	2.29	--	2.28	-	2.25	-
17	4.03	81.3	3.98	81.0	3.99	81.8
18	2.43	37.1	2.52	$37.4{ }^{22}$	2.46	36.9
19a	1.28	36.0	1.17	36.8	1.26	36.4
19b	2.04	--	2.01	-	2.09	-
20	3.71	82.7	3.63	83.2	3.74	82.1
21	3.45	73.4	3.42	73.0	3.46	73.3
22a	1.54	34.1	1.46	34.1	1.55	34.7
22b	1.77	--	1.76	-	1.88	-
23	5.24	72.5	5.23	72.3	5.23	74.0
24a	3.65	65.7	3.61	66.1	3.65	65.7
24b	3.78	--	3.81	-	3.79	-
25	1.00	20.1	0.85	18.3	0.98	22.0
26	0.98	14.7	1.03	14.5	0.98	14.9
1^{\prime}	5.02	94.0	5.02	94.2	4.99	94.1
2^{\prime}	3.40	80.9	3.40	80.8	3.38	80.9
3'	3.69	71.7	3.68	71.7	3.68	71.6
4'	3.34	74.2	3.34	74.3	3.33	74.2
$5 '$	3.63	68.2	3.62	68.1	3.61	68.2
6 '	1.28	17.7	1.27	17.7	1.26	17.7
$7{ }^{\prime}$	3.46	59.2	3.45	59.1	3.44	59.1
OH1	2.56-2.33				2.74-2.72	-
OH2	2.56-2.33				2.40-2.36	-
OH3	2.44-2.34		2.24		2.42-2.35	-
OH4	2.78-2.64		1.54		2.48-2.44	-

[^14]Table 5: Comparison of the ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{1}$ and 11-epi-1 with the data of the natural product (NP); $\Delta=$ chemical shift differences (in ppm), as indicated. ${ }^{20,21}$

atom ${ }^{\circ}$	1	natural product	11-epi-1	$\Delta(1-N P)$	$\begin{gathered} \Delta(11-e p i-1- \\ \mathrm{NP}) \end{gathered}$
1	--	-	--	--	--
2	5.92	6.01	5.92	-0.09	-0.09
3	7.02	6.97	7.09	0.05	0.12
4a	2.34	2.36	2.31	-0.02	-0.05
4b	2.46	2.39	2.39	0.07	0.00
5	3.42	3.36	3.26	0.06	-0.10
6a	1.26	1.20	1.15	0.06	-0.05
6 b	1.94	2.02	1.98	-0.08	-0.04
7	3.77	3.82	3.76	-0.05	-0.06
8 a	1.22	1.22	1.27	0.00	0.05
8b	1.84	1.87	1.75	-0.03	-0.12
9	3.33	3.32	3.16	0.01	-0.16
10a	1.27	1.21	1.14	0.06	-0.07
10b	1.69	1.51	1.52	0.18	0.01
11	2.44	2.37	2.48	0.07	0.11
12	5.61	5.45	5.32	0.16	-0.13
13	6.22	6.28	6.10	-0.06	-0.18
14	6.01	6.05	6.00	-0.04	-0.05
15	5.27	5.28	5.20	-0.01	-0.08
16a	2.14	1.88	2.08	0.26	0.20
16b	2.29	2.28	2.25	0.01	-0.03
17	4.03	3.98	3.99	0.05	0.01
18	2.43	2.52	2.46	-0.09	-0.06
19a	1.28	1.17	1.26	0.11	0.09
19b	2.04	2.01	2.09	0.03	0.08
20	3.71	3.63	3.74	0.08	0.11
21	3.45	3.42	3.46	0.03	0.04
22a	1.54	1.46	1.55	0.08	0.09
22b	1.77	1.76	1.88	0.01	0.12
23	5.24	5.23	5.23	0.01	0.00
24a	3.65	3.61	3.65	0.04	0.04
24b	3.78	3.81	3.79	-0.03	-0.02
25	1.00	0.85	0.98	0.15	0.13
26	0.98	1.03	0.98	-0.05	-0.05
$1 '$	5.02	5.02	4.99	0.00	-0.03
2^{\prime}	3.40	3.40	3.38	0.00	-0.02
3'	3.69	3.68	3.68	0.01	0.00
4'	3.34	3.34	3.33	0.00	-0.01
5	3.63	3.62	3.61	0.01	-0.01
$6{ }^{\prime}$	1.28	1.27	1.26	0.01	-0.01
7'	3.46	3.45	3.44	0.01	-0.01

Table 6: Comparison of the ${ }^{13} \mathrm{C}$ data of $\mathbf{1}$ and 11-epi-1 with the data of the natural product (NP) ; $\Delta=$ chemical shift differences (in ppm), as indicated. ${ }^{20,21}$

atom ${ }^{\circ}$	1	natural product	11-epi-1	$\Delta(1-N P)$	$\begin{gathered} \Delta(11-e p i-1- \\ \mathrm{NP}) \end{gathered}$
1	167.3	167.5	166.8	-0.2	-0.7
2	123.1	123.1	123.6	0.0	0.5
3	146.3	147.1	146.1	-0.8	-1.0
4	38.5	38.8	39.5	-0.3	0.7
5	73.4	73.9	73.9	-0.5	0.0
6	36.7	37.6	38.2	-0.9	0.6
7	72.8	73.1	72.7	-0.3	-0.4
8	39.3	39.7	39.2	-0.4	-0.5
9	73.1	72.5	73.2	0.6	0.7
10	42.9	43.1	43.5	-0.2	0.4
11	32.8	34.2	34.1	-1.4	-0.1
12	140.9	141.5	141.3	-0.6	-0.2
13	123.8	123.9	124.9	-0.1	1.0
14	130.5	131.3	130.6	-0.8	-0.7
15	126.5	126.9	126.2	-0.4	-0.7
16	31.2	31.1	31.0	0.1	-0.1
17	81.3	81.0	81.8	0.3	0.8
18	37.1	37.4	36.9	-0.3	-0.5
19	36.0	36.8	36.4	-0.8	-0.4
20	82.7	83.2	82.1	-0.5	-1.1
21	73.4	73.0	73.3	0.4	0.3
22	34.1	34.1	34.7	0.0	0.6
23	72.5	72.3	74.0	0.2	1.7
24	65.7	66.1	65.7	-0.4	-0.4
25	20.1	18.3	22.0	1.8	3.7
26	14.7	14.5	14.9	0.2	0.4
1^{\prime}	94.0	94.2	94.1	-0.2	-0.1
2^{\prime}	80.9	80.8	80.9	0.1	0.1
3'	71.7	71.7	71.6	0.0	-0.1
4'	74.2	74.3	74.2	-0.1	-0.1
5'	68.2	68.1	68.2	0.1	0.1
$6{ }^{\prime}$	17.7	17.7	17.7	0.0	0.0
7'	59.2	59.1	59.1	0.1	0.0

Comparison of the NMR spectra $\left(\mathbf{C D C l}_{3}\right)$ of putative Mandelalide A ($\mathbf{1 , ~} \mathbf{6 0 0} \mathbf{M H z}$, bottom) with those of the natural product (top, 700 MHz)

Comparison of the NMR spectra ([$\left.D_{5}\right]$-pyridine) of putative Mandelalide A $(1,600 \mathrm{MHz}$, bottom) with that of the natural product (700 MHz , top)

. 5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5

Comparison of the NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of 11 -epi- $1(600 \mathrm{MHz}$, , bottom) with those of natural product (top, 700 MHz)

The spectra of putative Mandelalide $A(1)$ in $C D C l_{3}(600 \mathrm{MHz})$ are not strongly concentration dependent:

proposed Mandelalide A (1)
1.3 mg in $0.5 \mathrm{~mL} \mathrm{CDCl}_{3}$

$\underline{0}$	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

-0	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
												62										

19, $E / Z=2: 1$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
												71											

.0	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
												88											

[^0]: ${ }^{1}$ Y. Lu, I. S. Kim, A. Hassan, D. J. Del Valle, M. J. Krische, Angew. Chem. Int. Ed. 2009, 48, 5018-5021.

[^1]: ${ }^{2}$ A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.

[^2]: ${ }^{3}$ E. Finamore, L. Minale, R. Riccio, G. Rinaldo, F. Zollo, J. Org. Chem. 1991, 56, 1146.
 4 J. M. Seco, E. Quiñoá, R. Riguera, Chem. Rev. 2004, 104, 17 and references cited therein.

[^3]: 5 D. P. Stamos, X. C. Sheng, S. S. Chen, Y. Kishi, Tetrahedron Lett. 1997, 38, 6355.

[^4]: ${ }^{6}$ S. N. Goodman, E. N. Jacobsen, Angew. Chem. Int. Ed. 2002, 41, 4703-4705.
 7 Due to the volatility of the catalyst, a higher vacuum should be avoided.

[^5]: 8 J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 16901-16910.
 9 B. Hackman, P. J. Lombardi, J. L. Leighton, Org. Lett. 2004, 6, 4375.
 ${ }^{10}$ If the addition of $\mathrm{Sc}(\mathrm{OTf})_{3}$ was performed at $0^{\circ} \mathrm{C}$ as described in the literature, lower ee values were obtained.

[^6]: ${ }^{11}$ For the preparation of SmI_{2}, see: M. Szostak, M. Spain, D. J. Procter, Nature Protocols 2012, 7, 970-977.

[^7]: ${ }^{12}$ S. E. Denmark, D. Kalyani, W. R. Collins, J. Am. Chem. Soc. 2010, 132, 15752.

[^8]: 13 The aromatic signals were not assigned, they were found at: $\delta=7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 6 \mathrm{H})$, $7.44-7.24(\mathrm{~m}, 19 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

[^9]: 14 This compound was isolated after the reaction of alcohol 26 with PhSeBr in MeCN , which gave a 2.6:1 ratio of $\mathbf{2 7}$:undesired isomer.
 15 The aromatic signals were not assigned, they were found at: $\delta=7.70-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H})$, $7.60-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 17 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

[^10]: ${ }^{16}$ E. D. Mihelich, G. A. Hite, J. Am. Chem. Soc. 1992, 114, 7318.
 ${ }^{17}$ D. R. Williams, Y. Harigaya, J. L. Moore, A. D'sa, J. Am. Chem. Soc. 1984, 106, 2641.

[^11]: 18 A solution of NaOMe was prepared by adding an equimolar amount of MeOH to a suspension of NaH in THF at $0^{\circ} \mathrm{C}$, which was allowed to stir at room-temperature until gas evolution had ceased ($\sim 1 \mathrm{~h}$).

[^12]: 19 W. Boland, N. Schroer, C. Sieler, M. Feigel, Helv. Chim. Acta 1987, 70, 1025.

[^13]: ${ }^{20}$ The assignment of multiple protons on a single carbon (e.g. 4a and 4b) is in analogy to the ones reported in the isolation paper (Ref. 24)

[^14]: 21 J. Sikorska, Andrew M. Hau, C. Anklin, S. Parker-Nance, M. T. Davies-Coleman, J. E. Ishmael, K. L. McPhail, J. Org. Chem. 2012, 77, 6066-6075.
 ${ }_{22}$ The indicated value was taken from the spectra contained in the SI of Ref. 21 rather than from Table 1 in the printed communication, since an error of $\approx 0.1 \mathrm{ppm}$ was noticed (for example for $\mathrm{C} 1: 167.47$ in the spectra, 167.4 in the table)

