Angewandte

Supporting Information
© Wiley-VCH 2014

69451 Weinheim, Germany

Total Synthesis of the Biphenyl Alkaloid (-)-Lythranidine**

Konrad Gebauer and Alois Fürstner*
anie_201402550_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION

General. All reactions were carried out under Ar in flame-dried glassware. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar : THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg/anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}\left(\mathrm{CaH}_{2}\right)$, hexane, toluene $(\mathrm{Na} / \mathrm{K})$, $\mathrm{MeOH}(\mathrm{Mg})$, DMF, EtOAc (MS 4Å). Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$, Merck silica gel 60 (15-40 $\mu \mathrm{m}$) or Aldrich Alox (activated, neutral, 150 mesh). Preparative HPLC: Armen Instrument - Spot Prep Liquid Chromatography, Column: Merck NW50, Nucleodur-100-10-C18/A, 203x48 mm. NMR: Spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AVIII 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.16 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.26 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{C}} \equiv$ 128.06 ppm ; residual $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}: \delta_{\mathrm{H}} \equiv 7.16 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}: \delta_{\mathrm{C}} \equiv 20.43 \mathrm{ppm}$; residual $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{2} \mathrm{H}: \delta_{\mathrm{H}}$ $\equiv 2.08 \mathrm{ppm}$). IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers ($\tilde{\mathrm{v}}$) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan). Unless stated otherwise, all commercially available compounds (ABCR, Acros, Aldrich, Strem) were used as received.

1-Iodo-4-(methoxymethoxy)benzene (6). $\mathrm{NaH}(1.2 \mathrm{~g}, 50 \mathrm{mmol})$ was added in portions over 30 момо \min to a solution of 4-iodophenol $(10.0 \mathrm{~g}, 45.5 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$.
$\mathrm{MOMCl}(3.8 \mathrm{~mL}, 50 \mathrm{mmol})$ was then added dropwise at room temperature to the yellow solution. The resulting mixture was stirred for 16 h before the reaction was quenched with aqueous $\mathrm{NaOH}(1 \mathrm{M}, 100 \mathrm{~mL}$). The aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford the product as a colorless liquid ($12.0 \mathrm{~g},>99 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H})$, $5.24(\mathrm{~s}, 2 \mathrm{H}), 3.46 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.3,138.4$ (2C), 118.7 (2C), 94.5, 84.4, 56.2 ppm ; IR (film): $\tilde{v}=2953,2930,2900,2825,1585,1574,1482,1441,1403$, $1308,1299,1275,1231,1197,1174,1149,1076,985,919,818,648,609,575,504 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI): m / z (\%): 264 (37), 234 (13), 45 (100); HRMS (EI): $m / z:$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{I}[\mathrm{M}]^{+\bullet}$: 263.96473, found 263.96451 .

3-(4-(Methoxymethoxy)phenyl)propanal (7). A Schlenk tube was charged with NaHCO_{3} (7.65 момо $\mathrm{g}, 91.0 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NCl}(12.6 \mathrm{~g}, 45.5 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(102 \mathrm{mg}, 0.455$ mmol) and the vessel was then evacuated and backfilled with Argon three times. A solution of iodide $6(12.0 \mathrm{~g}, 45.5 \mathrm{mmol})$ in DMF (47 mL) and allyl alcohol (4.65 mL , 68.3 mmol) were successively added and the mixture was stirred for 16 h at $50^{\circ} \mathrm{C}$. The
suspension was filtered through a plug of Celite which was rinsed with EtOAc (250 mL). The combined filtrates were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, and then dried over MgSO_{4}. The solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 5:1) to afford the product as a yellow liquid (7.0 g, 80\%). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=9.81(\mathrm{t}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}$, $3 \mathrm{H}), 2.91(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.77-2.73 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.8$, 155.9, 133.8, 129.4 (2C), 116.6 (2C), $94.7,56.1,45.6,27.5 \mathrm{ppm}$; IR (film): $\tilde{v}=2898,2826$, 2725, 1720, 1611, 1510, 1443, 1407, 1388, 1312, 1230, 1198, 1176, 1149, 1110, 1076, 994, 920, 860, 813, 767, $732 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%):194 (73), 164 (12), 121 (29), 108 (10), 77 (12), 45 (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 217.08352$, found 217.08366.

1-(4-(Methoxymethoxy)phenyl)hex-4-yn-3-ol (8). Propynylmagnesium bromide (0.5 M in THF,
 $88 \mathrm{~mL}, 44 \mathrm{mmol}$) was added dropwise within 2 h to a solution of aldehyde $7(4.27 \mathrm{~g}, 22.0 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The ice bath was removed and the mixture stirred for 15 h at room temperature. After quenching at $0^{\circ} \mathrm{C}$ with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, the aqueous layer was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography (hexanes/EtOAc $4: 1 \rightarrow 2: 1$) to yield the title compound as a colorless liquid ($3.65 \mathrm{~g}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.15-7.11 (m, 2H), 6.98-6.94 (m, 2H), $5.15(\mathrm{~s}, 2 \mathrm{H}), 4.35-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{t}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), 2.00-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.86 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=2.0 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 155.7, 135.0, 129.6 (2C), 116.5 (2C), $94.8,81.6,80.3,62.2,56.1,39.9,30.7,3.7 \mathrm{ppm}$; IR (film): $\tilde{v}=3412,2920,1611,1509,1442,1406,1311,1230,1197,1175,1150,1076,1000,919,826$, $730 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 234 (38), 216 (11), 107 (19), 43 (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 257.11482$, found 257.11462.
tert-Butyl((1-(4-(methoxymethoxy)phenyl)hex-4-yn-3-yl)oxy)dimethylsilane (9). Imidazole
 $(3.69 \mathrm{~g}, 54.3 \mathrm{mmol})$, DMAP ($4.34 \mathrm{mmol}, 0.530 \mathrm{~g}$) and TBSCl (4.91 g , $32.6 \mathrm{mmol})$ were added to a solution of alcohol $\mathbf{8}(5.08 \mathrm{~g}, 21.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 16 h at room temperature before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated. The crude product was purified by
flash chromatography (hexanes/EtOAc, 5:1) to obtain the product as a pale yellow liquid (7.38 g , 98%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$, 4.34-4.31 (m, 1H), $3.48(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dt}, 2 \mathrm{H}, J=8.0,4.0 \mathrm{~Hz}), 1.94-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~d}, 3 \mathrm{H}, J$ $=2.0 \mathrm{~Hz}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.09 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.5$, 135.6, 129.5 (2C), 116.4 (2C), $94.8,80.9,80.5,62.7,56.0,40.9,30.8,26.0,18.4,3.7,-4.3,-4.8$ ppm; IR (film): $\tilde{v}=2953,2928,2894,2856,1612,1510,1472,1463,1360,1311,1249,1231$, 1198, 1175, 1151, 1078, 1004, 923, 833, 774, $666 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 291 (16), 260 (21), 259 (100), 229 (17), 151 (23), 121 (24), 97 (11), 75 (15), 73 (10), 45 (50); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 371.20191$, found 371.20110.
Hept-5-ynal. To a solution of oxalyl chloride ($4.83 \mathrm{~mL}, 56.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(235 \mathrm{~mL})$ was

added to DMSO ($8.00 \mathrm{~mL}, 113 \mathrm{mmol}$) within 10 min at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 50 min at this temperature before hept-5-yn-1-ol (12) $(5.27 \mathrm{~g}$, $46.9 \mathrm{mmoL})$ was added within 15 min . Stirring was continued for 45 min at $-78^{\circ} \mathrm{C}$. $\mathrm{NEt}_{3}(32.7$ $\mathrm{mL}, 235 \mathrm{mmol}$) was then added within 1 h and the resulting slurry was allowed to reach room temperature within 13 h . Brine (100 mL) was introduced, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated. Flash chromatography (pentanes/tert-butyl methyl ether, $7: 1 \rightarrow 5: 1$) afforded the title compound as a colorless liquid ($4.67 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.80(\mathrm{t}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 2.56(\mathrm{dt}, 2 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz}), 2.23-2.18(\mathrm{tq}, 2 \mathrm{H}, J=$ $7.1,2.5 \mathrm{~Hz}$), 1.80 (quint, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $1.77 \mathrm{ppm}(\mathrm{t}, 3 \mathrm{H}, J=2.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=202.2,78.0,76.9,43.0,21.6,18.3,3.5 \mathrm{ppm}$; IR (film): $\tilde{v}=2921,2844,2724,1721$, 1437, 1411, 1390, 1364, 1335, 1243, 1177, 1071, 1032, 925, 866, 795, $689 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 82 (25), 68 (100), 67 (12), 66 (65), 65 (20), 55 (17), 53 (42), 51 (14), 41 (30), 39 (32), 29 (11), 27 (28); HRMS (EI): m / z : calcd. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{+\bullet}: 110.07317$, found 110.07307.
(R)- \boldsymbol{N}-(Hept-5-yn-1-ylidene)-4-methylbenzenesulfinamide (13). A solution of hept-5-ynal
 $(4.32 \mathrm{~g}, 39.2 \mathrm{mmol}),(R)-(-)$ - p-toluenesulfinamide $(6.09 \mathrm{~g}, 39.2 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{OEt})_{4}(41.1 \mathrm{~mL}, 196 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ was stirred at $55^{\circ} \mathrm{C}$ for 15 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, the suspension was filtered through a plug of Celite, eluting with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic phase was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue was purified by flash
chromatography (hexanes/EtOAc, 5:1) to give the desired product as a pale yellow liquid (8.94 g , $92 \%) .[\alpha]_{20}^{D}=-307.7\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26(\mathrm{t}, 1 \mathrm{H}, J=4.5$ $\mathrm{Hz}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 2.62-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{tq}, 2 \mathrm{H}, J$ $=7.2,2.6 \mathrm{~Hz}$), 1.80 (quint, $2 \mathrm{H}, 7.2 \mathrm{~Hz}$), $1.76 \mathrm{ppm}(\mathrm{t}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=166.8,142.0,141.8,129.9$ (2C), 124.7 (2C), 78.1, 77.4, 35.1, 24.8, 21.6, 18.4, 3.6 ppm; IR (film): $\tilde{v}=2918,1619,1492,1436,1350,1178,1097,1071,1016,808,753,704,666$ cm^{-1}; MS (EI): $m / z(\%): 184$ (18), 140 (19), 139 (100), 92 (15), 91 (21), 67 (10), 65 (13); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOSNa}[\mathrm{M}+\mathrm{Na}]^{+}: 270.09230$, found 270.09220.

4-(3-Iodo-4-methoxyphenyl)butan-2-one (11). $\mathrm{Ag}_{2} \mathrm{SO}_{4}(11.1 \mathrm{~g}, 35.8 \mathrm{mmol})$ and $\mathrm{I}_{2}(9.07 \mathrm{~g}, 35.8$
 mmol) were added to a solution of 4-(4-methoxyphenyl)butan-2-one (10) ($5.79 \mathrm{~g}, 32.5 \mathrm{mmol}$) in $\mathrm{MeOH}(290 \mathrm{~mL})$. The initially dark brown suspension was vigorously stirred for 1.5 h , while turning bright yellow. The reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(200 \mathrm{~mL})$ and filtered through a pad of Celite, eluting with EtOAc (100 mL). The organic phase was evaporated and the aqueous layer was extracted with $\operatorname{EtOAc}(3 \mathrm{x} 125 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification of the residue by flash chromatography (hexanes/EtOAc, 4:1) yielded the title compound as a yellow liquid ($8.78 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.60(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.12(\mathrm{dd}, 1 \mathrm{H}, J=8.3,2.0 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, 2.81-2.78 (m, 2H), 2.73-2.69 (m, 2H), $2.13 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 207.7, 156.7, 139.3, 135.5, 129.6, 111.0, 86.2, 56.6, 45.3, 30.2, 28.4 ppm; IR (film): $\tilde{v}=3003$, 2939, 2836, 1710, 1598, 1563, 1489, 1460, 1439, 1400, 1361, 1279, 1250, 1204, 1180, 1159, 1048, 1016, 891, 805, 747, 711, $662 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 305 (12), 304 (100), 247 (86), 234 (10), 134 (15), 91 (10), 90 (10), 43 (26); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}$: 326.98524, found 326.98506 .
(\boldsymbol{R})- \boldsymbol{N}-((\boldsymbol{R})-1-(3-Iodo-4-methoxyphenyl)-3-oxoundec-9-yn-5-yl)-4-methylbenzenesulfinamide
 (14). A solution of ketone $11(2.59 \mathrm{~g}, 8.51 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(27 \mathrm{~mL})$ was added within 75 min to a solution of KHMDS $(1.82 \mathrm{~g}, 9.12$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(27 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 2 h at this temperature, a solution of compound $13(1.40 \mathrm{~g}, 5.66 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(27 \mathrm{~mL})$ was added within 20 min while keeping the temperature at $-78^{\circ} \mathrm{C}$. The resulting suspension was stirred for 2 h before the reaction was quenched with sat.
aq. $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{~mL})$ at the same temperature. The layers were separated, the aqueous layer was extracted with EtOAc (3 x 100 mL) and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a diastereomeric ratio of $10: 1$ in favor of $\left(R, R_{S}\right)$-14. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$, 10:1, Merck silica gel $60(15-40 \mu \mathrm{~m})$) to give product $\left(R, R_{S}\right)-14$ as a colorless oil $(2.00 \mathrm{~g}, 64 \%)$. $[\alpha]_{20}^{D}=-38.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.50(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz})$, 7.47 (d, 2H, $J=7.9 \mathrm{~Hz}), 7.20(\mathrm{~d}, 2 \mathrm{H}, 7.9 \mathrm{~Hz}), 7.02(\mathrm{dd}, 1 \mathrm{H}, J=8.3,1.8 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.63(\mathrm{~m}$, $2 \mathrm{H}), 2.56(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{t}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz}), 1.63-1.55$ $(\mathrm{m}, 3 \mathrm{H}), 1.51-1.45 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=208.5,156.7,142.6,141.4$, 139.2, 135.1, 129.6 (2C), 129.5, 125.5 (2C), 111.0, 86.1, 78.7, 76.1, 56.5, 52.4, 48.8, 45.1, 35.2, 28.1, 25.8, 21.4, 18.6, 3.6 ppm ; IR (film): $\tilde{v}=3220,2919,1708,1598,1863,1490,1439,1400$, 1367, 1279, 1252, 1179, 1087, 1048, 1016, 907, 809, 726, $662 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 503 (10), 428 (17), 413 (13), 412 (59), 304 (19), 260 (11), 247 (100), 140 (12), 139 (92), 134 (11), 124 (27), 110 (62), 108 (26), 93 (22), 91 (27), 90 (15), 77 (16), 43 (10); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{ISNa}[\mathrm{M}+\mathrm{Na}]^{+}: 574.08833$, found 326.08824.

(R)-N-((3S,5R)-3-Hydroxy-1-(3-iodo-4-methoxyphenyl)undec-9-yn-5-yl)-4-methylbenzene-

 sulfinamide (15). A Schlenk tube was charged with pre-dried LiCl $(1.92 \mathrm{~g}, 45.3 \mathrm{mmol})$ and then heated under vacuum (heatgun). After the vessel had reached room temperature, a solution of β-ketoamide $14(2.50 \mathrm{~g}, 4.53 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(226 \mathrm{~mL})$ was introduced and the mixture sonicated in an ultrasonic bath for 15 min . The resulting suspension was cooled to $-78^{\circ} \mathrm{C}$ before $\mathrm{LiAlH}(\mathrm{OtBu})_{3}(1 \mathrm{M}$ in $\mathrm{THF}, 13.6 \mathrm{~mL}, 13.6 \mathrm{mmol})$ was added dropwise at this temperature. Stirring was continued at $-78^{\circ} \mathrm{C}$ for 13.5 h before the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$), the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product showed a diastereomeric ratio of 4.5:1 in favor of $\left(3 S, 5 R, S_{R}\right) \mathbf{- 1 5}$. Purification of the crude material by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1 \rightarrow\right.$ 3:1) furnished syn-15 as a colorless foam ($1.99 \mathrm{~g}, 79 \%$) as well as a second fraction containing the corresponding anti-configured product as a colorless foam ($0.41 \mathrm{~g}, 16 \%$). Data of compound syn-15: $[\alpha]_{20}^{D}=-40.5\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.61(\mathrm{~d}, 2 \mathrm{H}, J=8.0$
$\mathrm{Hz}), 7.61(\mathrm{~d}, 1 \mathrm{H}, 2.2 \mathrm{~Hz}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.13(\mathrm{dd}, 1 \mathrm{H}, J=8.3,2.1 \mathrm{~Hz}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.3 \mathrm{~Hz}), 4.21(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.96(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 3.59-3.52 (m, 1H); 2.74-2.67 (m, 1H), 2.61-2.54 (m, 1H), 2.41 (s, 3H), 2.21-2.17 (m, 2H), $1.78(\mathrm{t}$, $3 \mathrm{H}, J=2.5 \mathrm{~Hz}$), 1.71-1.52 ppm (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.4,142.2,141.7$, $139.3,136.7,129.7$ (2C), 129.6, 125.4 (2C), 111.0, 86.0, 78.8, 76.1, 70.3, 56.5, 56.3, 44.1, 40.1, 37.3, 30.5, 25.2, 21.5, 18.7, 3.6 ppm; IR (film): $\tilde{v}=3211,2916,2858,1597,1562,1489,1439$, 1398, 1278, 1250, 1179, 1086, 1045, 1015, 907, 807, 751, 730, $663 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 505 (14), 430 (43), 415 (21), 414 (100), 247 (54), 154 (17), 140 (13), 139 (95), 110 (46), 93 (25), 91 (19), 90 (10); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{ISNa}[\mathrm{M}+\mathrm{Na}]^{+}: 576.10398$, found 576.10453.

Data of compound anti-15: $[\alpha]_{20}^{D}=-33.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.57-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.09(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.0 \mathrm{~Hz}), 6.69(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 4.14(\mathrm{~d}, 1 \mathrm{H}, 8.5 \mathrm{~Hz}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.62-3.56(\mathrm{~m}$, $1 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{t}, 3 \mathrm{H}, J=2.3$ $\mathrm{Hz}), 1.73-1.53(\mathrm{~m}, 7 \mathrm{H}), 1.42 \mathrm{ppm}(\mathrm{ddd}, 1 \mathrm{H}, J=14.5,9.7,2.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=156.4,142.3,141.8,139.5,136.8,129.8(2 \mathrm{C}), 129.7,125.5$ (2C), 111.0, 86.0, 78.9, 76.2, $66.3,56.5,53.5,43.5,39.4,36.9,30.8,25.8,21.5,18.8,3.6 \mathrm{ppm}$; IR (film): $\tilde{v}=3299,2938$, 2918, 2859, 1597, 1489, 1439, 1399, 1279, 1251, 1179, 1086, 1045, 1015, 909, 807, 729, 626, $528,452 \mathrm{~cm}^{-1}$; MS (pos. ESI): m / z (\%): 554 (100), 576 (28); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{IS}[\mathrm{M}+\mathrm{H}]^{+}: 554.12204$, found 554.12183.

(R)-N-((3S,5R)-3-((tert-Butyldiphenylsilyl)oxy)-1-(3-iodo-4-methoxyphenyl)undec-9-yn-5-

 yl)-4-methylbenzenesulfinamide (16). Imidazole ($6.78 \mathrm{mmol}, 461$ mg), DMAP ($0.54 \mathrm{mmol}, 66 \mathrm{mg}$) and TBDPSCl ($1.76 \mathrm{~mL}, 6.78$ $\mathrm{mmol})$ were successively added to a solution of compound 15 (1.5 $\mathrm{g}, 2.71 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 15 h at room temperature before it was filtered, and the filtrate was evaporated. Flash chromatography (hexanes/EtOAc $2: 1$) gave the title compound as a pale yellow foam ($1.93 \mathrm{~g}, 90 \%$). $[\alpha]_{20}^{D}=-16.2\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.70(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.38-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.92(\mathrm{dd}, 1 \mathrm{H}$, $J=8.4,1.7 \mathrm{~Hz}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~d}, 1 \mathrm{H}, J=8.3$ $\mathrm{Hz}), 3.24-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=2.2$
$\mathrm{Hz}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-1-37(\mathrm{~m}, 6 \mathrm{H}), 1.06 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $156.4,142.3,141.2,139.1,136.7,136.1$ (4C), 134.3, 134.2, 129.9 (2C), 129.5 (2C), 129.3, 127.8 (4C), 125.9 (2C), 111.0, 86.0, 79.0, 76.0, 70.2, 56.5, 52.0, 43.2, 38.1, 36.6, 29.8, 27.2 (3H), 25.1, $21.5,19.5,18.9,3.6 \mathrm{ppm}$; IR (film): $\tilde{v}=3196,2931,2857,1737,1597,1490,1460,1440,1427$, 1372, 1278, 1250, 1178, 1157, 1104, 1087, 1047, 1017, 909, 810, 731, 701, 686, $663 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI): m / z (\%): 736 (18), 735 (46), 734 (100), 653 (26), 652 (62), 595 (11), 594 (29), 396 (12), 247 (25), 224 (20), 199 (22), 139 (29); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{NO}_{3} \mathrm{ISSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 814.22176, found 814.22162.

Diyne S1. A solution of compound $9(2.81 \mathrm{~g}, 806 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was carefully treated
 with tert-BuLi (1.7 M in pentanes, $4.74 \mathrm{~mL}, 8.06 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The resulting dark yellow solution was stirred at this temperature for 40 min before ZnCl_{2} (1 M in THF, $10.1 \mathrm{~mL}, 10.1 \mathrm{mmol}$) was introduced. A white precipitate was formed which quickly dissolved again. The mixture was stirred at room temperature for 1 h before it was transferred into a second Schlenk tube containing iodide $16(2.39 \mathrm{~g}, 3.02 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(87.0 \mathrm{mg}, 0.076 \mathrm{mmol})$ in THF (41 mL). The flask was placed into a preheated oil bath at $60^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 2 h under an argon stream to remove the $\mathrm{Et}_{2} \mathrm{O}$. After quenching with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{~mL})$ and extraction of the aqueous phase with EtOAc (3 x 75 mL), the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated. Flash chromatography (hexanes/EtOAc 3:1) afforded a crude product which was further purified by preparative HPLC ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 98: 2$) to yield the desired product as a colorless foam (2.29 g , $75 \%) .[\alpha]_{20}^{D}=-12.2\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70-7.67(\mathrm{~m}, 4 \mathrm{H})$, $7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.38-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, $6.95(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.0 \mathrm{~Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.03(\mathrm{~s}, 2 \mathrm{H})$, $4.40(\mathrm{dt}, 1 \mathrm{H}, J=6.0,2.0 \mathrm{~Hz}), 3.86-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.17(\mathrm{~m}, 1 \mathrm{H})$, $2.81-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dt}, 1 \mathrm{H}, J=11.0,5.7 \mathrm{~Hz}), 2.48(\mathrm{dt}, 1 \mathrm{H}, J=12.0,5.0 \mathrm{~Hz}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, 2.08-2.03 (m, 2H), 2.01-1.96 (m, 2H), $1.84(\mathrm{~d}, 3 \mathrm{H}, J=2.0 \mathrm{~Hz}), 1.75(\mathrm{t}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz}), 1.64-$ $1.61(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.11 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.2,153.3,142.3,141.1,136.1$ (5C), 135.3, 134.3, 134.0, 131.4, 131.3, 129.8 (2C), 129.5 (2C), 129.2, 128.5, 128.1, 128.0, 127.7 (4C), 125.8 (2C), 115.8, 110.8, $95.5,81.0,80.4,75.9,70.5,62.8,55.8,55.8$ (2C), 52.1, 43.2, 40.8, 38.4, 36.5, 30.9, 30.3, 27.2
(3C), 26.0 (3C), 25.1, 21.4, 19.5, 18.8, 18.4, 3.7, 3.6, -4.3, -4.8 ppm ; IR (film): $\tilde{v}=2929,2857$, 1494, 1462, 1427, 1360, 1238, 1154, 1079, 1051, 1004, 922, 835, 812, 776, 740, $702 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (pos. ESI): m / z (\%): 1034.6 (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{61} \mathrm{H}_{81} \mathrm{NO}_{6} \mathrm{SSi}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1034.52154, found 1034.52082.

Amine S2. A solution of diyne S1 ($2.12 \mathrm{~g}, 2.09 \mathrm{mmol}$) and Dess-Martin periodinane (975 mg ,
 $2.30 \mathrm{mmol})$ in a mixture of $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(20.8 \mathrm{~mL}, 2.6 \mathrm{~mL}, 2.6$ mL) was stirred for 20 h . The reaction was quenched with aq. sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc (3 x 100 mL$)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 3:1 $+1 \mathrm{vol} .-\% \mathrm{NEt}_{3}$) to give the title compound as a pale yellow foam ($1.38 \mathrm{~g}, 76 \%$). $[\alpha]_{20}^{D}=+16.6$ $\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69(\mathrm{~d}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.41-7.32(\mathrm{~m}, 6 \mathrm{H})$, 7.13 (s, 2H), 7.93 (s, 1H), 6.97 (dd, 1H, $J=8.4,1.9 \mathrm{~Hz}$), $6.89(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.67(\mathrm{~m}$, $3 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~d}, 3 \mathrm{H}, J=1.5 \mathrm{~Hz}), 1.83-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{t}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 2 \mathrm{H})$, 1.18-1.14 (m, 1H), $1.06(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.2,153.3,136.1$ (5C), 135.4, 134.5, 134.2, 131.5, 131.4, 129.7 (2C), 129.2, 128.5, 128.2, 128.0, 127.7 (4C), 115.8, 110.7, 95.5, 80.9, 80.4, 79.1, 75.8, 71.5, 62.8, 55.8 (2C), 48.5, 45.3, 40.7, 39.0, 38.0, 30.9, 30.4, 27.2 (3C), 26.0 (3C), 25.7, 19.6, 18.9, 18.4, 3.7, 3.6, $-4.3,-4.8 \mathrm{ppm}$; IR (film): $\tilde{v}=2929,2856,1500,1471,1462,1427,1389,1361,1238,1198$, $1154,1104,1078,1005,922,836,821,776,755,741,702,686,666 \mathrm{~cm}^{-1}$; MS (pos. ESI): m/z. (\%): 874.7 (100); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{54} \mathrm{H}_{76} \mathrm{NO}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 874.52566$, found 874.52597.

Compound 17. $\mathrm{CbzCl}(0.451 \mathrm{~mL}, 3.16 \mathrm{mmol})$ was added dropwise to a solution of amine $\mathbf{S} \mathbf{2}$
 $(1.38 \mathrm{~g}, 1.58 \mathrm{mmol})$ in $\mathrm{NEt}_{3}(0.661 \mathrm{~mL}, 4.74 \mathrm{mmol})$ and EtOAc (10 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$. The suspension was stirred for 30 min before the reaction was quenched with aq. sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$) and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography (hexanes/EtOAc, 3:1) afforded the product as a colorless liquid $(1.16 \mathrm{~g}, 79 \%) .[\alpha]_{20}^{D}=+3.4(\mathrm{c}=$
1.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.04-7.32(\mathrm{~m}, 11 \mathrm{H}), 7.14(\mathrm{~s}$, $2 \mathrm{H}), 7.06-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 4.40-$ $4.37(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.36$ $(\mathrm{s}, 3 \mathrm{H}), 2.81-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.86(\mathrm{~m}$, $1 \mathrm{H}), 1.83(\mathrm{~d}, 3 \mathrm{H}, J=2.0 \mathrm{~Hz}), 1.81-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{t}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}), 1.68-1.62(\mathrm{~m}, 1 \mathrm{H})$, $1.43-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.20(1 \mathrm{H}, \mathrm{m}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.9,155.2,153.3,136.9,136.0$ (4C), 135.3, 134.6, 134.3, $134.2,131.5$ (2C), 129.8 (2C), 129.3, 128.6 (2C), 128.5, 128.2, 128.1 (3C), 128.0, 127.7 (4C), $115.8,110.9,95.5,81.0,80.4,78.9,75.9,70.7,66.5,62.9,55.8$ (2C), 48.3, 42.6, 40.7, 38.2, 35.5, 30.9, 30.5, 27.2 (3C), 26.0 (3C), 25.2, 19.5, 18.7, 18.4, 3.7, 3.6, -4.3, -4.8 ppm ; IR (film): $\tilde{v}=$ 2929, 2856, 1718, 1504, 1462, 1427, 1360, 1340, 1237, 1155, 1104, 1078, 1004, 921, 835, 821, 775, 754, 701, $666 \mathrm{~cm}^{-1}$; MS (pos. ESI): m / z (\%): 1030.6 (100); HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{62} \mathrm{H}_{81} \mathrm{NO}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1030.54438$, found 1030.54369.

Cycloalkyne 18. A suspension of diyne $17(1.37 \mathrm{~g}, 1.36 \mathrm{mmol})$ and activated molecular sieves
 ($5 \AA$, powder, 1.36 g) in toluene (680 mL) was stirred for 30 min at room temperature before the molybdenum complex 25 ($71.0 \mathrm{mg}, 0.068 \mathrm{mmol}$) was added. The mixture was stirred for 3 h before it was filtered through a plug of silica, eluting with EtOAc (300 mL). The combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 6:1) to yield the title compound as a colorless foam ($1.18 \mathrm{~g}, 91 \%$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra show 4 sets of signals even at elevated temperature $\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 378 \mathrm{~K}\right)$, indicating that two diastereomers exist in solution, as two conformers each. $[\alpha]_{20}^{D}=+3.4$ ($\mathrm{c}=1.00, \mathrm{CHCl}_{3}$) ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right): \delta=7.81-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 9 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.0$ $(\mathrm{s}, 2 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.50(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.90-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.47-4.36$ $(\mathrm{m}, 1 \mathrm{H}), 4.05-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.38-3.33(\mathrm{~m}, 3 \mathrm{H}), 3.16-3.13(\mathrm{~m}, 3 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.31$ (m, 2H), 2.11-1.94 (m, 5H), 1.87-1.78 (m, 1H), 1.55-1.44 (m, 2 H$), 1.41-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.18$ $(\mathrm{m}, 10 \mathrm{H}), 0.98-0.96(\mathrm{~m}, 9 \mathrm{H}), 0.18-0.09 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right): \delta=$ 155.5 (3C), 155.4 (4C), 155.3, 154.1 (3C), 154.0, 137.4, 137.3 (2C), 137.0, 136.3, 136.2 (3C), 136.1, 136.0, 135.1 (2C), 134.9, 134.4 (3C), 134.3, 133.8, 133.6, 133.4, 133.2, 132.7, 132.2, 132.1, 131.8, 131.6, 129.8 (3C), 129.7 (2C), 129.6 (2C), 129.4, 129.1, 128.4, 128.3 (5C), 127.8 (3C), 115.1, 115.0, 114.8, 110.7, 110.5, 110.2, 94.8, 94.7, 85.1, 85.0, 84.7, 82.2, 82.0, 81.8, 77.5,
$71.4,68.9,68.6,66.4$ (2C), 66.1 (2C), 63.2, 63.1, $62.3,62.2,55.0$ (3C), 54.6 (2C), 54.5, 48.7, $48.2,47.9,42.6,42.4,42.3,40.5,40.2,39.3,38.6,37.2,34.1,32.5,32.0,31.4,30.9,30.7,30.1$, 29.9, 27.0 (2C), 26.9, 25.8 (2C), 25.5, 25.0, 19.5, 19.3, 19.3, 18.7, 18.4, 18.3, 18.2 (2C), 17.9, $1.2,-4.3(3 \mathrm{C}),-4.4,-4.8,-4.9,-5.0(2 \mathrm{C}),-5.1 \mathrm{ppm}$; IR (film): $\tilde{v}=2931,2856,1721,1501$, 1462, 1427, 1340, 1238, 1155, 1077, 1004, 921, 834, 776, 739, 701, $667 \mathrm{~cm}^{-1}$; MS (pos. ESI): $m / z(\%): 976.6$ (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{58} \mathrm{H}_{75} \mathrm{NO}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 976.49743$, found 976.49649.

Compound 19. A solution of diyne 17 ($79.2 \mathrm{mg}, 0.078 \mathrm{mmol}$) in $\mathrm{HCl} / \mathrm{EtOH}(1 \%$ conc. HCl in
 $\mathrm{EtOH}, w / w, 1.2 \mathrm{~mL}$) was stirred for 17 h at room temperature. Aq. sat. $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$ was added and the aqueous layer extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 2:1) to give diol 19 as a colorless oil ($51.3 \mathrm{mg}, 77 \%$). $[\alpha]_{20}^{D}=+4.9\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67(\mathrm{~d}, 4 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.40-$ $7.26(\mathrm{~m}, 10 \mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.09-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.76$ $(\mathrm{dd}, 1 \mathrm{H}, J=9.0,5.4 \mathrm{~Hz}), 3.60-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H})$, 2.67$2.58(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 5 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{t}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz})$, 1.66-1.59 (m, 2H), 1.38-1.32 (m, 4H), $1.07 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $156.0,153.8,152.1,136.8,136.1$ (4C), 134.6, 134.3 (2C), 132.6, 131.4 (2C), 129.9 (2C), 129.3, $129.1,128.6$ (2C), 128.2, 128.1 (3C), 127.8 (5C), 117.6, 111.6, 81.3, 80.3, 78.9, 76.0, 70.5, 66.7, $62.0,56.5,48.3,42.7,40.0,38.2,35.7,30.8,30.5,27.2$ (3C), 25.2, 19.5, 18.8, 3.7, 3.6 ppm ; IR (film): $\tilde{v}=3406,3069,2932,2857,1701,1588,1497,1455,1427,1341,1236,1181,1110$, 1063, 1027, 909, 821, 773, 734, $702 \mathrm{~cm}^{-1}$; MS (pos. ESI): m / z (\%): 872.5 (100); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{54} \mathrm{H}_{63} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 872.43169, found 872.43221.

Compound 20. Procedure A: A solution of diyne 18 ($1.18 \mathrm{~g}, 1.23 \mathrm{mmol}$) in $\mathrm{HCl} / \mathrm{EtOH}(1 \%$
 conc. HCl in $\mathrm{EtOH}, w / w, 60 \mathrm{~mL}$) was stirred for 15 h at room temperature. Aq. sat. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ was then added and the aqueous layer was extracted with EtOAc ($3 \times 250 \mathrm{~mL}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 2:1) to give diol 20 as a colorless oil ($880 \mathrm{mg}, 89 \%$). Procedure B: A suspension of diyne $19(51.3 \mathrm{mg}, 0.060 \mathrm{mmol})$ and activated molecular sieves ($5 \AA$, powder, 60 mg) in toluene $(30 \mathrm{~mL})$ was stirred for 15 min at room temperature before the molybdenum complex $25(3.1 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$ was added. The mixture was stirred for 3 h before it was filtered through a plug of silica, eluting with EtOAc $(50 \mathrm{~mL})$. The combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 2:1) to give the title compound as a colorless oil ($37.3 \mathrm{mg}, 78 \%$). For analytical purposes the diastereomeric mixture was separated by flash chromatography (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 10:10:1, Merck silica gel $60(15-40 \mu \mathrm{~m})$). Diastereomer $A:[\alpha]_{20}^{D}=-50.0\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.66-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 11 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.6 \mathrm{~Hz})$, $7.06(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}$, $1 \mathrm{H}, J=12.2 \mathrm{~Hz}), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}), 4.44-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, 3.84-3.80 (m, 2H), 0.43-3.41 (br s, 1H), 2.86-2.68 (m, 3H), 2.65-2.60 (m, 1H), $2.28(\mathrm{~m}, 1 \mathrm{H})$, 2.20-2.15 (m, 1H), 2.12-2.05 (m, 1H), 2.01-1.94 (m, 1H), 1.90-1.80 (m, 2H), 1.76-1.71 (m, 1H), 1.58-1.49 (m, 1H), 1.46-1.40 (m, 2H), 1.32-1.23 (m, 2H), $1.07 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta=156.1,153.3,152.3,136.5,136.2,136.1$ (2C), 136.0 (2C), 134.5, 134.3, 133.9 (2C), $132.8,132.5,129.9,129.8,129.5,129.1,128.6$ (2C), 128.3 (3C), 127.8 (4C), 126.3, 118.3, 111.9, $85.1,82.7,70.5,66.9,60.8,56.8,48.3,42.8,38.9,37.5,35.3,30.9,30.5,27.2$ (3C), 23.6, 19.5, 18.8 ppm ; IR (film): $\tilde{v}=3399,3353,2932,2857,1700,1498,1454,1427,1342,1263,1236$, $1180,1110,1083,1062,1021,822,737,703,612,506 \mathrm{~cm}^{-1}$; MS (pos. ESI): $m / z(\%): 818.5$ (100); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 818.38474$, found 818.38551. Diastereomer B: $[\alpha]_{20}^{D}=+47.7\left(\mathrm{c}=0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67(\mathrm{~d}$, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.63(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.40-7.29(\mathrm{~m}, 11 \mathrm{H}), 7.14(\mathrm{dd}, 1 \mathrm{H}, J=8.7,1.9 \mathrm{~Hz}), 7.07$ $(\mathrm{d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$, $6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 4.30-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.85(\mathrm{~m}$, $2 H), 3.59-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.15(\mathrm{~m}$, $2 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.07 \mathrm{ppm}(\mathrm{s}$,

9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.9,153.4,152.3,136.7,136.4,136.1$ (2C), 136.0 (2C), 134.3 (2C), 133.9, 132.7, 132.2, 129.9 (2C), 129.1, 128.9, 128.6, 128.2 (2C), 128.2 (2C), 127.8 (4C), 127.6, 126.4, 118.2, 112.1, 85.6, 81.7, 69.9, 66.7, 62.2, 56.8, 48.2, 41.9, 39.8, 37.6, 34.4, 30.8, 29.8, 27.2 (3C), 25.0, 19.5, 18.1 ppm ; IR (film): $\tilde{v}=3401,3353,2932,2858,1703$, $1498,1454,1427,1341,1264,1235,1108,1061,1020,895,820,733,700,611,501,438 \mathrm{~cm}^{-1}$; MS (pos. ESI): m / z (\%): 818.5 (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 818.38474, found 818.38551.

Enone 21. A solution of the propargylic alcohol $20(413 \mathrm{~g}, 0.519 \mathrm{mmol})$, [(indenyl) $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$]

21 ($12.1 \mathrm{mg}, 0.016 \mathrm{mmol}$) and CSA ($12.1 \mathrm{mg}, 0.052 \mathrm{mmol}$) in THF (49 mL) was stirred for 5 min before $\operatorname{In}(\mathrm{OTf})_{3}(8.75 \mathrm{mg}, 0.016 \mathrm{mmol})$ was introduced. The flask was placed in a preheated oil bath at $80^{\circ} \mathrm{C}$ and the mixture stirred at this temperature for 4 h . Additional [(indenyl) $\left.\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right](12.1 \mathrm{mg}, 0.016 \mathrm{mmol})$ and $\mathrm{In}(\mathrm{OTf})_{3}(8.75 \mathrm{mg}$, 0.016 mmol) were added and stirring continued for another 1 h . The solution was filtered through a plug of silica, rinsing with EtOAc $(50 \mathrm{~mL})$. The filtrate was evaporated and the crude product purified by flash chromatography (hexanes/EtOAc, 3:1) to afford product 21 as a white solid (304 $\mathrm{mg}, 74 \%) .[\alpha]_{20}^{D}=+17.5\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 7.63(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.41-7.28(\mathrm{~m}, 11 \mathrm{H}), 7.12(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.9 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}$; $J=7.8 \mathrm{~Hz}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.73(\mathrm{dt}$, $1 \mathrm{H}, J=15.8,7.0 \mathrm{~Hz}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 3.96-3.94(\mathrm{~m}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.74-2.67$ $(\mathrm{m}, 1 \mathrm{H}), 2.61-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H}) ; 2.83-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.37$ (m, 2H), 1.35-1.23 (m, 4H), $1.08 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.0,155.8$, $153.5,152.4,147.6,136.3,136.0$ (4C), 134.0 (2C), 133.4, 133.2, 132.8, 131.5, 130.5, 129.9 (2C), $129.8,129.0$ (2C), 128.6 (2C), 128.2, 128.1, 127.8 (4C), 127.4, 126.5, 118.0, 112.0, 70.0, 66.6, 56.7, 48.3, 41.6, 40.7, 37.8, 34.8, 31.7, 30.6, 29.8, 27.1 (3C), 24.5 , 19.5 ppm ; IR (film): $\tilde{v}=$ 3347, 2932, 2858, 1715, 1668, 1499, 1454, 1427, 1338, 1237, 1110, 1085, 1027, 821, 740, 702 cm^{-1}; MS (pos. ESI): $m / z(\%): 818.4$ (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{NO}_{6} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 818.38474$, found 818.38440 .

Piperidines 22 and 9-epi-22. A solution of PTSA ($0.1 \mathrm{M} \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.250 \mathrm{~mL}, 0.025 \mathrm{mmol}$) was
 added to a solution of enone $21(200 \mathrm{mg}, 0.251 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(8.2 \mathrm{~mL})$ and the mixture was stirred at $45^{\circ} \mathrm{C}$ for 14 h . After quenching the reaction with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extraction of the aqueous phase with EtOAc (3×50 $\mathrm{mL})$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone $10: 10: 1$, Merck silica gel $60(15-40 \mu \mathrm{~m})$) yielded $22(93.5 \mathrm{mg}, 47 \%, 67 \% \mathrm{brsm})$ and a second fraction consisting of $\mathbf{9}$-epi$22(38.9 \mathrm{mg}, 20 \%, 27 \% \mathrm{brsm})$ as white solids each. Data of compound 22: $[\alpha]_{20}^{D}=+40.1(\mathrm{c}=$ $1.00, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 318 \mathrm{~K}$): $\delta=7.93-7.90(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 2 \mathrm{H})$, $7.51(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.24-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04-$ 7.02 (m, 2H), $7.00(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.3 \mathrm{~Hz}), 6.98-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, 1 \mathrm{H}, J=$ 8.3, 2.3 Hz), $6.49(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.79-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=12.6$ Hz), 3.45 (dddd, $1 \mathrm{H}, J=11.8,9.4,5.3,2.2 \mathrm{~Hz}$), $3.34(\mathrm{dd}, 1 \mathrm{H}, J=17.1,9.3 \mathrm{~Hz}$), $3.20(\mathrm{ddd}, 1 \mathrm{H}, J$ $=14.3,11.8,2.0 \mathrm{~Hz}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{ddd}, 1 \mathrm{H}, J=15.5,6.7,5.7 \mathrm{~Hz}), 2.76(\mathrm{ddd}, 1 \mathrm{H}, J=17.6$, $12.0,1.0 \mathrm{~Hz}$), 2.72 (ddd, $1 \mathrm{H}, J=15.4,7.2,5.8 \mathrm{~Hz}$), $2.43(\mathrm{ddd}, 1 \mathrm{H}, J=14.2,7.1,1.8 \mathrm{~Hz}), 2.34$ (ddd, $1 \mathrm{H}, J=14.3,11.0,2.9 \mathrm{~Hz}$), 2.25 (dddd, $1 \mathrm{H}, J=13.7,7.1,5.9,3.4 \mathrm{~Hz}), 2.24(\mathrm{ddd}, 1 \mathrm{H} ; J=$ $17.4,7.0,1.9 \mathrm{~Hz}$), $2.03(\mathrm{dd}, 1 \mathrm{H}, J=17.1,5.3 \mathrm{~Hz}), 1.97(\mathrm{ddd}, 1 \mathrm{H}, J=14.0,7.5,6.4 \mathrm{~Hz}), 1.40-$ $1.34(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{ddd}, 1 \mathrm{H}, J=14.3,8.2,3.5 \mathrm{~Hz}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.22-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{qd}, 1 \mathrm{H}$, $J=12.0,4.6 \mathrm{~Hz}), 1.06-1.01 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 318 \mathrm{~K}$): $\delta=205.1,154.8$, 153.6, 153.1, 137.9, 137.3, 136.7 (2C), 136.6 (2C), 136.0, 135.8, 135.2 (2C), 134.4, 133.7, 132.5, 129.8 (2C), 129.7, 129.6, 129.2, 129.1, 128.4, 128.1, 127.9, 127.7, 126.7, 117.9, 112.2, 71.5, $66.5,56.1,50.4,48.1,47.7,43.5,38.4,37.3,32.0,30.9,30.3,30.1,28.4,27.6$ (3C), 26.8, 20.5, 19.9 ppm ; IR (film): $\tilde{v}=3394,2928,2855,1716,1694,1498,1428,1308,1284,1236,1110$, 1080, 1025, 821, 740, $702 \mathrm{~cm}^{-1}$; MS (pos. ESI): $\mathrm{m} / \mathrm{z}(\%): 818.6$ (100); HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 818.38474$, found 818.38399 .
nOe-analysis:

Data of compound 9-epi-22: $[\alpha]_{20}^{D}=38.7\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 318 \mathrm{~K}\right)$: $\delta=7.83-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.20 (m, 1H), 7.17-7.14 (m, 4H), 7.10 (d, 1H, $J=2.3 \mathrm{~Hz}), 7.07-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.1 \mathrm{~Hz}), 6.84(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.3 \mathrm{~Hz}), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.23$ $(\mathrm{m}, 1 \mathrm{H}), 5.23-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.47(3.50-3.46 \mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H})$, $2.82(\mathrm{ddd}, 1 \mathrm{H}, J=14.4,11.9,4.2 \mathrm{~Hz}), 2.64(\mathrm{dt}, 1 \mathrm{H}, J=14.4,4.8), 2.60-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~d}$, $1 \mathrm{H}, J=17.5,10.6 \mathrm{~Hz}$), 2.47 (ddd, $1 \mathrm{H}, J=13.1 \mathrm{~Hz}, 13.0 \mathrm{~Hz}, 4.2 \mathrm{~Hz}$), 2.41-2.37 (br s, 2H), 2.10 (dt, 1H, $J=13.6,4.7 \mathrm{~Hz}$), $1.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, 1 \mathrm{H}, J=13.3,11.3,3.0$ $\mathrm{Hz}), 1.79-174(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.78$ (d(quint), $1 \mathrm{H}, J$ $=14.0,4.0 \mathrm{~Hz}), 0.49(\mathrm{q}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 318 \mathrm{~K}$): $\delta=207.9,155.5$, $153.9,153.5,138.0,136.4$ (2C), 136.2 (2C), 135.6 (2C), 135.0, 134.8, 134.3, 132.2, 131.1, 130.0, 129.8 (2C), 128.6 (2C), 128.4, 128.3 (6C), 126.4, 118.3, 113.5, 70.0, 67.0, 56.4, 50.9, 48.3, 46.3, $42.2,38.3,38.2,31.1,30.1,30.0,28.2,27.3$ (3C), $26.2,19.6,14.2 \mathrm{ppm}$; IR (film): $\tilde{v}=3368$, 2932, 2897, 2857, 1711, 1686, 1499, 1454, 1427, 1409, 1359, 1320, 1295, 1271, 1237, 1178, $1108,1090,1062,1022,1012,901,821,802,768,735,702,610,502 \mathrm{~cm}^{-1} ;$ MS (EI): $\mathrm{m} / \mathrm{z}(\%):$ 739 (25), 738 (46), 696 (19), 695 (54), 694 (100), 225 (14), 199 (12), 91 (44), 82 (11); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$: calcd. for $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 818.38474, found 818.38491.
nOe-analysis:

Compound 23 and 11-epi-23. Procedure $A: \mathrm{NaBH}_{4}(13.3 \mathrm{mg}, 0.351 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ to
 a solution of ketone 22 ($93.1 \mathrm{mg}, 0.117 \mathrm{mmol}$) in $\mathrm{MeOH}(4.7 \mathrm{~mL})$. The mixture was stirred for 1.5 h at this temperature before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$ and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Analysis of the crude material by ${ }^{1} \mathrm{H}$ NMR revealed a ratio of $\approx 1: 1$ for the two products. Purification of the residue by flash chromatography (hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 10:10:1; Merck
silica gel $60(15-40 \mu \mathrm{~m}))$ afforded products $\mathbf{2 3}(45.7 \mathrm{mg}, 49 \%, 1: 0.6$ mixture of conformers) and 11-epi-23 ($37.4 \mathrm{mg}, 40 \%$) as white solids each. Procedure B: A Schlenk tube was charged with pre-dried LiCl ($39 \mathrm{mg}, 0.92 \mathrm{mmol}$) and was evacuated while being heated (heatgun). After the flask had reached ambient temperature, a solution of compound 22 ($73.3 \mathrm{mg}, 0.092 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(4.5 \mathrm{~mL})$ was introduced and the mixture was sonicated in an ultrasound bath for 15 min . The suspension was cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{LiAlH}(\mathrm{OtBu})_{3}(1 \mathrm{M}$ in $\mathrm{THF}, 0.37 \mathrm{~mL}, 0.37 \mathrm{mmol})$ was added dropwise at this temperature. Stirring was continued at $0^{\circ} \mathrm{C}$ for 4 h before the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (3 x 15 $\mathrm{mL})$, the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product showed a diastereomeric ratio of 10:1 in favor of 23. Purification of the crude product by flash chromatography (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, $10: 10: 1$; Merck silica gel $60(15-40 \mu \mathrm{~m})$) furnished product 23 as a colorless foam ($67.3 \mathrm{mg}, 92 \%, 1: 0.6$ mixture of conformers). Data of compound 23: $[\alpha]_{20}^{D}=+7.9\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=7.70-7.62(\mathrm{~m}, 6.4 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 14.4 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 1.2 \mathrm{H}), 7.12(\mathrm{dd}, 2 \mathrm{H}, J=$ 8.4, 2.0 Hz), 7.08-7.07 (m, 2H), 7.06-7.02 (m, 3.2H), 6.97-6.92 (m, 2H), 6.90-6.83 (m, 3H), 6.74 $(\mathrm{s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}), 4.92(\mathrm{~d}, 0.6 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.82-$ $4.77(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, 0.6 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.33(\mathrm{sext}, 0.6 \mathrm{H}, J=5.1 \mathrm{~Hz}), 4.09-4.04(\mathrm{~m}, 0.6 \mathrm{H}), 3.91$ $(\mathrm{s}, 1.8 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.57(\mathrm{~m}, 0.6 \mathrm{H}), 3.09(\mathrm{td}, 1 \mathrm{H}, J$ $=9.8,4.5 \mathrm{~Hz}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.61(5.2 \mathrm{H}), 2.53-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 3.2 \mathrm{H})$, $1.88-1.65(\mathrm{~m}, 8.2 \mathrm{H}), 1.63-1.43(\mathrm{~m}, 7.6 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 1.2 \mathrm{H}), 1.05(\mathrm{~s}, 5.4 \mathrm{H}), 1.01 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.4,157.2,153.3,153.2,152.1$ (2C), 137.0, 136.6, 136.3, $136.2,136.1$ (2C), 134.5, 134.4 (2C), 134.3, 134.2, 134.1, 133.9, 133.2, 132.2, 131.5, 129.9, 129.8, 129.7, 129.6, 129.0, 128.9, 128.6, 128.4 (2C), 128.1, 128.0 (2C), 127.8, 117.7, 127.6, $126.4,126.1,118.0,117.6,111.8,111.6,71.1,70.4,69.2,68.7,67.1,66.9,56.7,56.6,53.8,51.4$, $48.7,42.2,39.8,39.7,38.7,38.0,37.7,37.3,36.4,31.1,30.3,29.9,29.6,28.2,27.7,27.3$ (3C), 27.1 (3C), 20.3, 19.5, 19.4 ppm ; IR (film): $\tilde{v}=3419,2930,2897,2859,1694,1499,1456,1444$, 1427, 1269, 1238, 1111, 1075, 1027, 823, 744, 702, 571, 491, $427 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 742 (22), 741 (56), 740 (97), 723 (18), 722 (30), 697 (23), 696 (45), 679 (11), 678 (23), 663 (20), 662 (46), 634 (14), 633 (48), 632 (100), 619 (19), 618 (40), 589 (14), 588 (33), 554 (15), 528 (15), 524 (17), 510 (16), 480 (22), 450 (25), 406 (14), 316 (10), 225 (21), 211 (13), 199 (28), 183 (11), 135 (12), 96 (14), 91 (73), 84 (11), 83 (14), 82 (13); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 820.40038$, found 820.40048.

Data of compound 11-epi-23: $[\alpha]_{20}^{D}=15.5\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.84-7.82 (m, 2H), 7.67-7.62 (m, 3.5H), 7.59-7.57 (m, 2H), 7.45-7.34 (m, 9.5H), $7.24(\mathrm{~s}, 1 \mathrm{H})$, $7.22(\mathrm{~s}, 0.7 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 4.4 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 3.4 \mathrm{H}), 7.05(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.2 \mathrm{~Hz}), 7.02-7.00$ $(\mathrm{m}, 4.1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 1.7 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 2.4 \mathrm{H}), 6.53(\mathrm{~s}, 0.7 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.96-4.88(\mathrm{~m}$, $1.4 \mathrm{H}), 4.59-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.30-4.23(\mathrm{~m}, 1.7 \mathrm{H}), 4.00-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.93$ $(\mathrm{s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 2.1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 0.7 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 1.7 \mathrm{H}), 3.18-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.90$ $(\mathrm{m}, 1 \mathrm{H}), 2.76$ (ddd, $1 \mathrm{H}, J=16.6,11.3,4.2 \mathrm{~Hz}), 2.61-2.27(\mathrm{~m}, 6.5 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1.7 \mathrm{H}), 1.95-$ $1.78(\mathrm{~m}, 5.1 \mathrm{H}), 1.58-1.11(\mathrm{~m}, 13 \mathrm{H}), 1.06(\mathrm{~s}, 15.3 \mathrm{H}), 0.58 \mathrm{ppm}(\mathrm{d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=156.3,153.4,153.3,152.0$ (2C), 136.9, 136.8, 136.5 (2C), 136.3, 136.2, $136.1,136.0,135.3,134.3$ (2C), 133.9, 132.6, 131.0, 130.3, 130.0, 129.9, 129.8, 129.7, 129.5, 128.9, 128.6, 128.3, 137.9 (2C), 127.8, 127.7, 127.6, 127.3, 126.2, 126.1, 118.3, 118.0, 111.6, $111.5,70.4,40.0,67.4,66.5,65.2,65.0,56.6$ (2C), 52.8, 51.7, 49.9, 47.8, 42.3, 42.0, 39.4, 38.4, $36.8,35.4,31.6,30.5,30.2,30.0,29.6,28.4,27.4 / 3 \mathrm{C}$), 27.3 (3C), 26.2, 20.5, 19.4 (2C) ppm; IR (film): $\tilde{v}=3406,2930,2857,1699,1675,1499,1427,1282,1236,1212,1143,1109,1076$, 1064, 1027, 939, 822, 740, 702, 608, 505, $491 \mathrm{~cm}^{-1}$; MS (pos. ESI): m / z (\%): 820.5 (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 820.40038$, found 820.40048 .

Compound S3. Compound 23 ($45.7 \mathrm{mg}, 0.057 \mathrm{mmol}$) was dissolved in $\mathrm{HCl} / \mathrm{EtOH}(0.05 \mathrm{~m}, 5.73$
 $\mathrm{mL}, 0.287 \mathrm{mmol})$ and palladium black $(0.61 \mathrm{mg}, 5.7 \mu \mathrm{~mol})$ was added. The flask was evacuated and backfilled with hydrogen four times. After stirring for 23 h , the suspension was filtered and the filtrate treated with sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated, and the residue was purified by flash chromatography (hexanes/EtOAc, 1:1 + 1 vol.-\% NEt_{3}) to give amine $\mathbf{S 3}(35.2 \mathrm{mg}, 93 \%)$ as a white solid. $[\alpha]_{20}^{D}=-48.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69-7.66(\mathrm{~m}$, $3 \mathrm{H}), 7.55-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.11(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.2$ $\mathrm{Hz}), 7.08(\mathrm{dd}, 1 \mathrm{H}, J=8.5,2.2 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.66(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.06(\mathrm{tt}, 1 \mathrm{H}, J=8.7,4.5 \mathrm{~Hz}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{tt}, 1 \mathrm{H}, J=10.2,2.0 \mathrm{~Hz}), 3.21(\mathrm{dq}, 1 \mathrm{H}, J=$ $8.7,4.1 \mathrm{~Hz}), 2.96-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dt}, 1 \mathrm{H}, J=14.0,4.4 \mathrm{~Hz}), 2.17-2.08(\mathrm{~m}$, $2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.24(\mathrm{~m}, 8 \mathrm{H}), 1.16-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.88 \mathrm{ppm}(\mathrm{s}$, 9 H) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.0,152.1,136.6,136.2$ (2C), 136.1 (2C), 134.8, $134.3,134.1,133.7,132.4,129.4$ (2C), 129.2, 129.1, 128.2, 127.6 (2C), 127.5 (2C), 125.9, 117.5, $112.1,70.6,70.0,56.9,51.3,46.8,42.7,40.7,38.1,35.2,34.3,32.9,30.6,30.4,26.9$ (3C), 19.5,
19.4 ppm ; IR (film): $\tilde{v}=3342$, 2966, 2923, 2853, 1500, 1427, 1259, 1112, 1016, 747, 704, 506 cm^{-1}; MS (pos. ESI): $m / z(\%): 664.5$ (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 664.38166, found 664.38166.

Compound 11-epi-S3. This epimer was prepared analogously in 65% yield. $[\alpha]_{20}^{D}=-6.4$ ($\mathrm{c}=$
 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.60(\mathrm{~m}$, $2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.0 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, $3.90-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dt}, 1 \mathrm{H}, J=8.9,4.5 \mathrm{~Hz}), 2.82-2.73(\mathrm{~m}, 3 \mathrm{H}), 2.69-2.61$ $(\mathrm{m}, 2 \mathrm{H}), 2.02-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{dddd}, 1 \mathrm{H}, J=13.2,9.7,6.24 .0 \mathrm{~Hz}), 1.61-1.52$ $(\mathrm{m}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.03 \mathrm{ppm}$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=153.3,152.0,136.3,136.2$ (2C), 136.1 (2C), 134.7, 134.5, 134.3, 132.5, 131.8, 129.7 (2C), 129.6 (2C), 127.7 (2C), 127.6 (2C), 127.4, 126.3, 117.7, $111.6,70.8,65.5,56.6,47.8,46.4,42.9,40.9,39.1,36.5,33.5,32.5,30.3,29.5,27.2$ (3C), 19.8, 19.5 ppm ; IR (film): $\tilde{v}=3378,2929,2856,1498,1427,1361,1265,1237,1108,1081,1022$, 821, 736, 702, 612, $507 \mathrm{~cm}^{-1}$; MS (pos. ESI): m / z (\%): 664.4 (100); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 664.38166$, found 664.38183.

Lythranidine (1). HOAc ($6.4 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) and TBAF (1 M in THF, $0.11 \mathrm{~mL}, 0.11 \mathrm{mmol}$)
 were succesively added to a solution of $\mathbf{S 3}(15 \mathrm{mg}, 23 \mu \mathrm{~mol})$ in THF (2 mL). The mixture was stirred for 3 d at $45^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and the aqueous layer was extracted with toluene ($4 \times 2 \mathrm{~mL}$). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated, and the residue was purified by flash chromatography $\left(\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 6: 1: 0.5\right.$; neutral Alox) to give the title compound as a white solid ($7.9 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 318 \mathrm{~K}\right): \delta=8.02(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.29(\mathrm{~d}, 1 \mathrm{H}, 8.1 \mathrm{~Hz}), 7.10(\mathrm{dd}, 1 \mathrm{H}, J=$ 8.1, 2.2 Hz), $7.05(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.2 \mathrm{~Hz}), 6.59(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 3.86-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~m}$, $3 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{ddd}, 1 \mathrm{H}, J=14.4,5.5,3.5 \mathrm{~Hz}), 2.60(\mathrm{br}$ s, 1H), $2.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 1 \mathrm{H})$, $1.40-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{ddd}, 1 \mathrm{H}, J=14.3,4.6,2.3 \mathrm{~Hz})$, 0.87 (ddd, $2 \mathrm{H}, J=14.1,5.6,3.2 \mathrm{~Hz}), 0.80-0.75 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 318\right.$ $\mathrm{K}): ~ \delta=153.9,153.4,137.9,135.7,135.3,134.1,129.9,129.2,128.9,127.3,118.2,112.1,71.7$, $70.8,56.3,51.4,51.0,41.5,39.7,39.3,38.7,33.3,33.0,31.0$ (2C), 20.1 ppm ; IR (film): $\tilde{v}=$

3346, 3151, 2933, 2859, 2838, 1499, 1437, 1411, 1276, 1236, 1163, 1101, 1070, 1020, 824, 733, 700, $488 \mathrm{~cm}^{-1}$; MS (ESI): m / z (\%): 426.0 (100); HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 426.26388$ found 426.26367.

Lythranidine•HOAc ($\mathbf{1} \cdot \mathbf{H O A c}$). Lythranidine (4.8 mg , $11 \mu \mathrm{~mol}$) was dissolved in toluene (2 mL) and 3 drops of acetic acid were added. The solution was stirred for 1 h at room temperature and the solvent was evaporated to afford the corresponding hyrdoacetate (5.4 mg , quant.). $[\alpha]_{20}^{D}=-79.0(\mathrm{c}=0.88,1,4$-dioxane $)\left[\right.$ lit.: $-71^{\circ}(\mathrm{c}=1.7,1,4$-dioxane $\left.)\right] ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=7.71(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{dd}, 1 \mathrm{H}, J=8.3,2.0 \mathrm{~Hz}), 7.03(\mathrm{dd}, 1 \mathrm{H}, J=8.3,2.0$ $\mathrm{Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.11-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.52$ $(\mathrm{m}, 2 \mathrm{H}), 2.94-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.56(\mathrm{~m}, 10 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.22 \mathrm{ppm}$ ($\mathrm{m}, 2 \mathrm{H}$).

11-epi-Lythranidine (11-epi-1). The epimer was prepared analogously in 79% yield. The
 purification was performed on deactivated silica gel, eluting with $\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (6:1:1:0.5). $[\alpha]_{20}^{D}=-38.9$ (c = 1.0, 1,4-dioxane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 318 \mathrm{~K}$): $\delta=7.94(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=1.9$ $\mathrm{Hz}), 7.26(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.06(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.0 \mathrm{~Hz}), 7.01(\mathrm{dd}, 1 \mathrm{H}, J=8.2$, $2.0 \mathrm{~Hz}), 6.59(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz})$, 3.40-3.35 (m, 1H), 3.25 (td, 1H, $J=13.3,3.3 \mathrm{~Hz}$), $3.18(\mathrm{~s}, 3 \mathrm{H}), 3.06-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.52(\mathrm{~m}$, $2 H), 2.16-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.19$ (m, 5H), 1.13-1.08 (m, 2H), 0.94-0.87 (m, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 318 \mathrm{~K}$): $\delta=154.0,153.3,136.2,136.1,135.6,130.8,130.4$, $129.0,128.1,127.2,118.4,111.9,69.5,65.8,55.9,51.8,47.4,42.8,39.8,39.1,38.5,33.6,30.7$, 30.3, 29.5, 19.9 ppm ; IR (film): $\tilde{v}=3260,2928,2858,1559,1499,1412,1278,1239,1091$, 1075, 1020, 816, $734 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 426 (38), 425 (87), 424 (21), 409 (13), 408 (15), 407 (10), 381 (12), 380 (23), 368 (11), 367 (13), 212 (12), 211 (30), 210 (10), 209 (13), 207 (14), 205 (14), 198 (11), 195 (25), 194 (24), 184 (15), 183 (21), 182 (12), 181 (21), 178 (12), 174 (11), 167 (11), 166 (11), 165 (15), 155 (22), 153 (16), 152 (13), 142 (16), 141 (11), 140 (25), 128 (20), 127 (21), 126 (27), 124 (13), 122 (22), 115 (13), 113 (11), 108 (11), 98 (21), 97 (16), 96 (78), 84 (55), 83 (100), 82 (90), 81 (17), 80 (11), 79 (16), 70 (18), 69 (14), 68 (20), 67 (14), 57 (15), 56 (50), 55 (71), 45 (13), 44 (57), 43 (34), 42 (15), 41 (37), 40 (11), 39 (12), 30 (22), 29 (21); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]{ }^{-}: 424.24933$, found 424.24946.

Compound 24. A solution of compound $\mathbf{S 3}(16.5 \mathrm{mg}, 24.9 \mu \mathrm{~mol}$) and formaldehyde ($37 \mathrm{w}-\%$ in
 $\mathrm{H}_{2} \mathrm{O}, 2.3 \mu \mathrm{~L}, 31 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(3 \mathrm{~mL}$) was stirred for 20 h at room temperature before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), and the combined extracts were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography (pentane/Et $\mathrm{E}_{2} \mathrm{O}, 1: 2+1$ vol.- $\% \mathrm{NEt}_{3}$) afforded the product as a colorless oil (12.8 $\mathrm{mg}, 76 \%) .[\alpha]_{20}^{D}=-4.3\left(\mathrm{c}=0.28, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 363 \mathrm{~K}\right): \delta=7.59-$ $7.76(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 7.16-7.10(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.1 \mathrm{~Hz}), 6.94(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.3 \mathrm{~Hz}), 6.77(\mathrm{ddt}, 1 \mathrm{H}, J=8.3,2.3,0.7 \mathrm{~Hz}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.52$ $(\mathrm{d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.09$ (dddd, $1 \mathrm{H}, J=9.1,8.2,5.1,3.3 \mathrm{~Hz}), 4.04(\mathrm{~d}, 1 \mathrm{H}, 10.3 \mathrm{~Hz}), 3.77(\mathrm{~d}, 1 \mathrm{H}$, $J=10.3 \mathrm{~Hz}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dddd}, 1 \mathrm{H}, J=10.9,6.4,4.6,2.4 \mathrm{~Hz}), 3.02(\mathrm{dq}, 1 \mathrm{H}, J=9.1,3.9$ Hz), 2.86 (ddd, $1 \mathrm{H}, J=14.9,9.5,6.8 \mathrm{~Hz}$), 2.75-2.63 (m, 3H), $2.52(\mathrm{ddd}, 1 \mathrm{H}, J=15.0,6.4,5.5$ $\mathrm{Hz}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{ddd}, 1 \mathrm{H}, J=14.8,4.1,3.4 \mathrm{~Hz}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}$, $1 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$, $0.68 \mathrm{ppm}(\mathrm{ddd}, 1 \mathrm{H}, J=12.9,3.3,2.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 363 \mathrm{~K}$): $\delta=154.4$, $153.4,136.6$ (2C), 136.5 (2C), 136.0, 135.8, 135.3, 135.0, 133.7, 132.9, 130.2, 130.0, 129.9 (2C), $129.6,128.0$ (4C), 127.5, 117.6, 113.0, 83.5, 78.3, 71.8, 56.8, 55.1, 48.6, 44.5, 38.2, 36.8, 36.4, $33.8,31.7,31.2,30.8,27.8$ (3C), 20.1, 19.8 ppm ; IR (film): $\tilde{v}=2931,2856,1497,1463,1428$, 1377, 1235, 1175, 1111, 1077, 1059, 1020, 983, 821, 802, 741, 703, 612, 544, $508 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI): m / z (\%): 676.0 (100), 698 (20); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}:$ 676.38166, found 676.38195 .
nOe-analysis:

Compound 11-epi-24. This compound was prepared analogously in 61% yield. $[\alpha]_{20}^{D}=-1.4$ (c
 $=0.50, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 363 \mathrm{~K}\right): \delta=7.68-7.66(\mathrm{~m}, 2 \mathrm{H})$, 7.54-7.52 (m, 2H), $7.42(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 7.39(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 7.19-7.17$ $(\mathrm{m}, 3 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.20(\mathrm{tt}, 1 \mathrm{H}, J=9.7,3.9 \mathrm{~Hz}), 4.13(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 3.89(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.53(\mathrm{ddt}, 1 \mathrm{H}, J=9.3,5.3,3.9 \mathrm{~Hz}), 3.32(\mathrm{~s}, 3 \mathrm{H})$, 3.24 (ddd, $1 \mathrm{H}, J=16.3,11.1,4.7 \mathrm{~Hz}), 2.80-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 1 \mathrm{H})$, 2.28-2.20 (m, 2H), 2.10-2.04 (m, 1H), 1.83-1.69 (m, 2H), 1.67-1.61 (m, 1H), 1.47-1.38 (m, 2H), $1.30-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.01-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.78-$ $0.74 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}, 363 \mathrm{~K}$): $\delta=154.2,153.4,136.6$ (2C), 136.5 (2C), 135.9, 135.7, 135.2, 134.8, 134.7, 132.2, 130.4, 129.8 (2C), 129.5, 129.2, 128.0 (2C), 127.9 (2C), 126.8, 118.1, 113.5, 79.5, 71.0, 69.9, 56.9, 50.7, 48.8, 41.9, 35.0, 33.9, 32.7, 30.2, 29.6, 27.9, 27.7 (3C), 24.6, 20.8, 19.9 ppm ; IR (film): $\tilde{v}=2930,2855,1499,1462,1428,1387,1363$, 1236, 1152, 1110, 1069, 1022, 981, 821, 799, 740, 704, 612, 543, 510, $493 \mathrm{~cm}^{-1}$; MS (ESI): m / z (\%): 676.0 (100), 698 (25); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 676.38166$, found 676.38216.
nOe-analysis:

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | ppm |
| :--- |


```
    210
```


\qquad

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40				

\qquad

$\begin{array}{rllllllllll} \\ \mathbf{8 . 5} & \mathbf{8 . 0} & \mathbf{7 . 5} & \mathbf{7 . 0} & \mathbf{6 . 5} & \mathbf{6 . 0} & \mathbf{5 . 5} & \mathbf{5 . 0} & \mathbf{4 . 5} & \mathbf{4 . 0} & \mathbf{3 . 5} \\ \mathbf{3 . 0} & \mathbf{3 . 0} & \mathbf{2 . 5} & \mathbf{2 . 0} & \mathbf{1 . 5} & \mathbf{1 . 0} & \mathbf{0 . 5} & \mathbf{p p m}\end{array}$
\qquad -

\qquad

