CHEMISTRY A European Journal

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2014
Oxygenated Metabolites of n - 3 Polyunsaturated Fatty Acids as Potential Oxidative Stress Biomarkers: Total Synthesis of 8-F $\mathrm{F}_{3 \mathrm{t}}$-IsoP, $10-\mathrm{F}_{4 \mathrm{t}}$-NeuroP and $\left[\mathrm{D}_{4}\right]-10-\mathrm{F}_{4 \mathrm{t}}$-NeuroP
Alexandre Guy, ${ }^{[a]}$ Camille Oger, ${ }^{[a]}$ Johannes Heppekausen, ${ }^{[b]}$ Cinzia Signorini, ${ }^{[\text {[] }]}$ Claudio De Felice, ${ }^{[d]}$ Alois Fürstner, ${ }^{[b]}$ Thierry Durand, ${ }^{[1]}$ and Jean-Marie Galano* ${ }^{[([])}$
chem_201400380_sm_miscellaneous_information.pdf
((1R,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2enyl)cyclopentyl)methanol:5
To a solution of the lactone $4(2 \mathrm{~g}, 5 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, was added dropwise the solution of Dibal-H (1.2 M in toluene, $6.2 \mathrm{~mL}, 7.5 \mathrm{mmol}, 1.5 \mathrm{eq})$. After 30 min at $78^{\circ} \mathrm{C}, 100 \mathrm{~mL}$ of a solution of 1 M Rochelle salt were added. The mixture was stirred during 3 hours. The layers were separated and the aqueous one was extracted with $3 \times 50 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were extracted with $2 \times 50 \mathrm{~mL}$ of brine and dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The lactol was obtained as colourless oil and directly used in the next step without further purification.
To a suspension of the (n-propyl) triphenyl-phosphonium bromide ($6.42 \mathrm{~g}, 16.6 \mathrm{mmol}, 3.2 \mathrm{eq}$) in THF (70 mL), at $0^{\circ} \mathrm{C}$, was added dropwise ${ }^{\mathrm{t}} \mathrm{BuOK}$ (1 M in THF, $15.6 \mathrm{~mL}, 15.6 \mathrm{mmol}, 3 \mathrm{eq}$). After 30 min at $0^{\circ} \mathrm{C}$, the mixture was canulated into the lactol solution ($5 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred 30 min . Then, 100 mL of brine were added. The layers were separated and the aqueous one extracted with $3 \times 100 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $2 \times 50 \mathrm{~mL}$ of brine and dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude of the reaction was purified under silica gel chromatography ($97.5 / 2.5$ to $90 / 10$: Pentane/ $\mathrm{Et}_{2} \mathrm{O}$) and the compound 5 was obtained as an oil ($2.01 \mathrm{~g}, 94 \%, 2$ steps). $R_{f}=0.6$ ($8 / 2$: Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=-+5\left(\mathrm{c}=5, \mathrm{CHCl}_{3}\right)$; IR (neat) : $v=3432 \mathrm{~cm}^{-1}(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.44-5.27(\mathrm{~m}, 4 \mathrm{H}) ; 4.02\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}) ; 3.82-3.77(\mathrm{~m}, 1 \mathrm{H}) ; 3.73-3.60(\mathrm{~m}, 2 \mathrm{H}) ; 2.34-2.25(\mathrm{~m}, 2 \mathrm{H}) ; 2.07-1.91(\mathrm{~m}, 5 \mathrm{H}) ; 1.71(\mathrm{ls}$, $1 \mathrm{H}, \mathrm{OH}) ; 1.51\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.95\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 8.86(\mathrm{~s}, 18 \mathrm{H}) ;$ 0.03 (s, 6H); $0.00(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=132.6(\mathrm{CH}) ; 127.7(\mathrm{CH}) ; 75.6$ $(\mathrm{CHOH}) ; 75.0(\mathrm{CHOH}) ; 62.6\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 50.1(\mathrm{CH}) ; 48.2(\mathrm{CH}) ; 44.4\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{2}\right) ; 25.6$ $\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 17.9$ (Cquat); 17.8 (Cquat); $14.0\left(\mathrm{CH}_{3}\right) ;-4.3\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$; $4.9\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{23} \mathrm{H}_{49} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 429.3220$, found 429.3234.
(E)-3-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)-1-(trimethylsilyl)prop-2-en-1-one : 6
To a solution of the alcohol $5(2 \mathrm{~g}, 4.66 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, was added dropwise the Dess-Martin periodinane ($15 \% \mathrm{w} / \mathrm{w}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 14.9 \mathrm{~mL}, 6.9 \mathrm{mmol}, 1.5 \mathrm{eq}\right)$. After 0.5 hour at room temperature, 150 mL of a solution of $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 / 1: \mathrm{v} / \mathrm{v} ; 10 \%)$ were added. The layers were stirred 2 hours and separated. The aqueous phase was extracted with $3 \times 100 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were extracted with $2 \times 50 \mathrm{~mL}$ of brine and dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The aldehyde was obtained as colorless oil and directly used in the next step without further purification.

To a solution of diisopropylamine ($496 \mu 1,3.53 \mathrm{mmol}, 2.4 \mathrm{eq}$) in THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of $\operatorname{BuLi}(2.5 \mathrm{M}$ in Hexane, $1.23 \mathrm{~mL}, 3.085 \mathrm{mmol}, 2.1 \mathrm{eq})$. The mixture was stirred for 30 min , treated with a solution of [(trimethylsilyl)acetyl]trimethylsilane ($608 \mathrm{mg}, 3.23 \mathrm{mmol}, 1.2 \mathrm{eq}$) in THF (10 mL) and re-stirred 30 min . The mixture was treated at $-78^{\circ} \mathrm{C}$ with a solution of aldehyde ($626 \mathrm{mg}, 1.46 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (10 mL). The resulting mixture was stirred 30 min at $-78^{\circ} \mathrm{C}$. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ were added, and the layers were separated. The aqueous layer was extracted with $3 \times 25 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with 25 mL of brine, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude of the reaction was purified under silica gel chromatography (9/1: Cyclohexane/ $\mathrm{Et}_{2} \mathrm{O}$) and $6\left(655 \mathrm{mg}, 85 \%, 2\right.$ steps) was obtained as a colorless oil. $R_{f}=0.66$ (9.5/.5: Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.58\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.6,15.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}) ; 6.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.42-5.20(\mathrm{~m}, 2 \mathrm{H}) ; 3.99\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.6 \mathrm{~Hz} 1 \mathrm{H}\right), 3.85(\mathrm{q}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.83\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.35\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.16$ (quint, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.10-1.79(\mathrm{~m}, 4 \mathrm{H}) ; 1.58(\mathrm{~m}, 1 \mathrm{H}) ; 0.91\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$; $0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.83(\mathrm{~s}, 9 \mathrm{H}) ; 0.23(\mathrm{~s}, 9 \mathrm{H}) ; 0.02(\mathrm{~s}, 6 \mathrm{H}) ;-0.01(\mathrm{~s}, 3 \mathrm{H}) ;-003(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=146.4(\mathrm{CH}) ; 137.1(\mathrm{CH}) ; 132.8(\mathrm{CH}) ; 126.9(\mathrm{CH}) ; 75.5(\mathrm{CHOH}) ; 75.4$ $(\mathrm{CHOH}) ; 53.0(\mathrm{CH}) ; 50.9(\mathrm{CH}) ; 44.3\left(\mathrm{CH}_{2}\right) ; 26.2\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 17.9$ (Cquat); $14.0\left(\mathrm{CH}_{3}\right) ;-2.2\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ;-4.6\left(\mathrm{CH}_{3}\right) ;-4.7\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right) ;-9.0$ (Cquat).
(E)-methyl 10-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)-8-hydroxy-8-(trimethylsilyl)dec-9-en-5-ynoate : 7
A solution of (7-methoxy-7-oxohept-2-ynyl)zinc(II) bromide, was prepared from zinc dust (572 $\mathrm{mg}, 8.74 \mathrm{mmol}, 7 \mathrm{eq}), 1,2$ dibromoethane ($75 \mu \mathrm{l}, 0.87 \mathrm{mmol}, 0.7 \mathrm{eq}$) and methyl 7 -bromohept-5ynoate ($1.37 \mathrm{~g}, 6.25 \mathrm{mmol}, 5 \mathrm{eq}$) in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred 2 hours and added to a solution of $6(655 \mathrm{mg}, 1.25 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (13 mL). The mixture was heated around $30^{\circ} \mathrm{C}$ for 30 min .50 mL of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ were added, and the layers were separated. The aqueous layer was extracted with $3 \times 50 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $2 \times 50 \mathrm{~mL}$ of brine, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude of the reaction was purified under silica gel chromatography (98/2 to 95/5: pentane $/ \mathrm{Et}_{2} \mathrm{O}$) and $7(602 \mathrm{mg}, 73 \%)$ was obtained. $R_{f}=0.25$ (9.5/.5: Cyclohexane/AcOEt); IR (neat) : $v=3503 \mathrm{~cm}^{-1}(\mathrm{OH}), 1741 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.43$ (dd, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=11.9,15.4,1 \mathrm{H}\right) ; 5.37-5.21(\mathrm{~m}, 3 \mathrm{H}) ; 3.92-3.78(\mathrm{~m}, 2 \mathrm{H}) ; 3.65-3.64(\mathrm{~m}, 3 \mathrm{H}) ; 2.65-2.63$ $(\mathrm{m}, 1 \mathrm{H}) ; 2.53-2.30(\mathrm{~m}, 5 \mathrm{H}) ; 2.21-1.97(\mathrm{~m}, 6 \mathrm{H}) ; 1.89-1.70(\mathrm{~m}, 4 \mathrm{H}) ; 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}) ; 0.92(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}) ; 0.02-0.00(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta=173.8$ (Cquat); $136.1(\mathrm{CH}) ; 135.9(\mathrm{CH}) ; 131.9(\mathrm{CH}) ; 131.6(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 127.7$
(CH); 126.0 (CH); 82.9 (Cquat); 82.7 (Cquat); 76.7 (Cquat); 76.2 (CHOH); 75.9 (CHOH); 68.8 $(\mathrm{CHOH}) ; 68.7(\mathrm{CHOH}) ; 53.1(\mathrm{CH}) ; 52.8(\mathrm{CH}) ; 51.4(\mathrm{CH}) ; 50.2(\mathrm{CH}) ; 44.3\left(\mathrm{CH}_{2}\right) ; 44.2\left(\mathrm{CH}_{2}\right)$; $32.9\left(\mathrm{CH}_{2}\right) ; 28.8\left(\mathrm{CH}_{2}\right) ; 28.7\left(\mathrm{CH}_{2}\right) ; 25.9\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 24.1\left(\mathrm{CH}_{2}\right) ; 24.0\left(\mathrm{CH}_{2}\right)$; $20.6\left(\mathrm{CH}_{2}\right) ; 20.5\left(\mathrm{CH}_{2}\right) ; 18.2$ (Cquat); 17.9 (Cquat); $14.2\left(\mathrm{CH}_{3}\right) ; 14.1\left(\mathrm{CH}_{3}\right) ;-4.0\left(\mathrm{CH}_{3}\right)$; 4,1 ($\left.\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ;-4.6\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$.
(E)-3-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl) cyclopentyl) acrylaldehyde : 9

To a solution of the alcohol $5(2 \mathrm{~g}, 4.66 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, was added dropwise the Dess-Martin periodinane ($15 \% \mathrm{w} / \mathrm{w}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 14.9 \mathrm{~mL}, 6.90 \mathrm{mmol}, 1.5 \mathrm{eq}$). After 0.5 hour at room temperature, 150 mL of a solution of $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 / 1: \mathrm{v} / \mathrm{v} ; 10 \%)$ were added. The layers were stirred 2 hours and separated. The aqueous phase was extracted with $3 \times 100 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were extracted with $2 \times 50 \mathrm{~mL}$ of brine and dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The aldehyde was obtained as colorless oil and directly used in the next step without further purification.

To a solution of the aldehyde in THF (50 mL) was added methyl(triphenylphosphoranylidene)acetate ($3.25 \mathrm{~g}, 9.32 \mathrm{mmole}, 2 \mathrm{eq}$) at room temperature. The mixture was stirred 2 days. Celite ${ }^{\circledR}$ was added and the solvents were removed under reduced pressure. The crude of the reaction was purified under silica gel chromatography ($97.5 / 2.5$: Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) and the ester ($1.74 \mathrm{~g}, 75 \%$) was obtained. $R_{f}=0.6$ (8/2: Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=-5.4\left(\mathrm{c}=5, \mathrm{CHCl}_{3}\right)$; IR (neat) : $\mathrm{v}=$ $1721 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) 1651 \mathrm{~cm}^{-1},(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.76\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=10.0\right.$, $15.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.82\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=0.9,15.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.38-5.21(\mathrm{~m}, 2 \mathrm{H}) ; 4.17\left(\mathrm{dq},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.0\right.$, $7.1 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.99-3.95(\mathrm{~m}, 1 \mathrm{H}) ; 3.84\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.79-2.74(\mathrm{~m}, 1 \mathrm{H}) ; 2.35(\mathrm{dt}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.20-1.83(\mathrm{~m}, 5 \mathrm{H}) ; 1.57-1.53(\mathrm{~m}, 1 \mathrm{H}) ; 1.26\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}\right.$, $3 \mathrm{H}) ; 0.92\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.87(\mathrm{~s}, 9 \mathrm{H}) ; 0.84(\mathrm{~s}, 9 \mathrm{H}) ; 0.01(\mathrm{~s}, 6 \mathrm{H}) ;-0.01(\mathrm{~s}, 3 \mathrm{H}) ;-0.02$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.3$ (Cquat); $147.5(\mathrm{CH}) ; 132.5(\mathrm{CH}) ; 127.1(\mathrm{CH}) ;$ $122.8(\mathrm{CH}) ; 75.6(\mathrm{CHOH}) ; 75.2(\mathrm{CHOH}) ; 60.0\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 52.6(\mathrm{CH}) ; 50.5(\mathrm{CH}) ; 44.2\left(\mathrm{CH}_{2}\right)$; $26.2\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 17.8$ (Cquat); $14.2\left(\mathrm{CH}_{3}\right) ; 14.0\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ;-4.7$ $\left(\mathrm{CH}_{3}\right)$; -4.8 $\left(\mathrm{CH}_{3}\right)$;); HRMS (ESI $)$ calculated for $\mathrm{C}_{27} \mathrm{H}_{53} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 497.3482$, found 497.3459.

To a solution of the ester ($1.7 \mathrm{~g}, 3.5 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, was added dropwise the solution of Dibal-H (1 M in heptane, $7.7 \mathrm{~mL}, 7.7 \mathrm{mmol}, 2.2 \mathrm{eq}$). After 30 min at $78^{\circ} \mathrm{C}, 60 \mathrm{~mL}$ of a solution of 1 M Rochelle salt were added. The mixture was stirred during 3
hours. The layers were separated and the aqueous one was extracted with $3 \times 50 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $3 \times 25 \mathrm{~mL}$ of brine and dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The allylic alcohol (1.69 g) with solvent's traces was directly used in the next step without further purification. $R_{f}=0.35$ ($3 / 1$: Cyclohexane/AcOEt); IR (neat) : $\mathrm{v}=3342 \mathrm{~cm}^{-1}(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.67(\mathrm{dt}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.6,15.3 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.49\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.38-5.25(\mathrm{~m}, 2 \mathrm{H}) ; 4.09(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.6 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 3.89\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.79\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.68-$ $2.61(\mathrm{~m}, 1 \mathrm{H}) ; 2.30\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.11-1.88(\mathrm{~m}, 5 \mathrm{H}) ; 1.52(\mathrm{dt}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})==13.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.84 \mathrm{~s}$, $9 \mathrm{H}) ; 0.00(\mathrm{~s}, 6 \mathrm{H}) ;-0.01(\mathrm{~s}, 3 \mathrm{H}) ;-0.02(\mathrm{~s}, 3 \mathrm{H}) ;$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=132.0(\mathrm{CH}) ;$ $131.2(\mathrm{CH}) ; 130.9(\mathrm{CH}) ; 127.7(\mathrm{CH}) ; 76.0(\mathrm{CHOH}) ; 75.7(\mathrm{CHOH}) ; 63.5\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 52.4(\mathrm{CH}) ;$ $50.1(\mathrm{CH}) ; 44.1\left(\mathrm{CH}_{2}\right) ; 26.1\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 17.9$ (Cquat); 17.8 (Cquat); 14.1 $\left(\mathrm{CH}_{3}\right)$; -4.5 $\left(\mathrm{CH}_{3}\right)$; -4.6 $\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{25} \mathrm{H}_{51} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 455.3377, found 455.3378 .

To a solution of the allylic alcohol (" 3.5 mmol") in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$, was added dropwise the Dess-Martin periodinane ($15 \% \mathrm{w} / \mathrm{w}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 11.4 \mathrm{~mL}, 5.25 \mathrm{mmol}, 1.5 \mathrm{eq}$). After 0.5 hour at room temperature, 100 mL of a solution of $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 / 1: \mathrm{v} / \mathrm{v} ; 10 \%)$ were added. The layers were stirred 2 hours and separated. The aqueous phase was extracted with $3 \times 100 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were extracted with $2 \times 50 \mathrm{~mL}$ of brine and dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The aldehyde 9 ($1.42 \mathrm{~g}, 92 \%$), was directly used in the next step without further purification. $R_{f}=0.45$ (9/1 : Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=+4.5\left(\mathrm{c}=2, \mathrm{CHCl}_{3}\right)$; IR (neat) : $\mathrm{v}=1693 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1634 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 6.69\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.3\right.$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.13\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.8,15.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.40-5.20(\mathrm{~m}, 2 \mathrm{H}) ; 4.04\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.5\right.$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.86\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.37\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}\right.$, $\left.{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.23-2.15(\mathrm{~m}, 1 \mathrm{H}) ; 2.05-1.87(\mathrm{~m}, 4 \mathrm{H}) ; 1.60\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.3 \mathrm{~Hz}\right.$, $\left.{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.6 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.83(\mathrm{~s}, 9 \mathrm{H}) ; 0.02(\mathrm{~s}, 6 \mathrm{H}) ;$ $0.00(\mathrm{~s}, 3 \mathrm{H}) ;-0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=193.4(\mathrm{CHO}) ; 157.1(\mathrm{CH}) ; 134.2$ $(\mathrm{CH}) ; 132.8(\mathrm{CH}) ; 126.8(\mathrm{CH}) ; 75.4(\mathrm{CHOH}) ; 75.1(\mathrm{CHOH}) ; 52.9(\mathrm{CH}) ; 50.8(\mathrm{CH}) ; 44.2\left(\mathrm{CH}_{2}\right)$; $26.2\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 25.6\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 17.8(\mathrm{Cquat}) ; 14.1\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ;-4.6$ $\left(\mathrm{CH}_{3}\right)$; -4.7 $\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{25} \mathrm{H}_{49} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$453.3220, found 453.3226.
(E)-1-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)hex-

1-en-5-yn-3-ol 10 :

To a solution of the aldehyde $9(1.2 \mathrm{~g}, 2.6 \mathrm{mmol}, 1 \mathrm{eq})$, in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, was added a freshly prepared solution of propargyl magnesium bromide ($0.5 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}, 10.5 \mathrm{~mL}, 5.25 \mathrm{mmol}, 2 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. After 3 hours at the same temperature, $\mathrm{HCl}(0.1 \mathrm{M}, 50 \mathrm{~mL})$ was added and the mixture was stirred 1 hour. The layers were separated. The crude of the reaction was purified by flash chromatography ($98 / 2$ to $96 / 4$ Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) and the propargyl alcohol $\mathbf{1 0}$ was obtained as an oil ($1.38 \mathrm{~g}, 80 \%$). $R_{f}=0.54$ ($8 / 2$: Cyclohexane/AcOEt); IR (neat) : $v=3420 \mathrm{~cm}^{-1}(\mathrm{OH}), 3314 \mathrm{~cm}^{-1}$ $(\mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.62-5.52(\mathrm{~m}, 2 \mathrm{H}) ; 5.39-5.24(\mathrm{~m}, 2 \mathrm{H}) ; 4.19-4.27(\mathrm{~m}$, $1 \mathrm{H}) ; 3.79\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.68-2.61(\mathrm{~m}, 1 \mathrm{H}) ; 2.44-2.39(\mathrm{~m}, 2 \mathrm{H}) ; 2.31\left(\mathrm{dtd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $\left.1.3,7.2 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.9 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.09-1.82(\mathrm{~m}, 7 \mathrm{H}) ; 1.56-1.40(\mathrm{~m}, 1 \mathrm{H}) ; 0.93\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $1.0,7.4 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.90(\mathrm{~s}, 9 \mathrm{H}) ; 0.84(\mathrm{~s}, 9 \mathrm{H}) ; 0.00(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=132.7$ (CH); $132.0(2 \mathrm{xCH}) ; 131.2(\mathrm{CH}) ; 131.0(\mathrm{CH}) ; 127.7(\mathrm{CH}) ; 80.3$ (Cquat); $75.9(2 \mathrm{xCHOH}) ; 75.7$ $(\mathrm{CHOH}) ; 75.6(\mathrm{CHOH}) ; 70.7(\equiv \mathrm{CH}) ; 70.5(\mathrm{CHOH}) ; 52.3(\mathrm{CH}) ; 52.2(\mathrm{CH}) ; 50.2(\mathrm{CH}) ; 44.2$ $\left(\mathrm{CH}_{2}\right)$; $27.6\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 17.9$ (Cquat); 17.8 (Cquat); $14.1\left(\mathrm{CH}_{3}\right)$; $4.5\left(\mathrm{CH}_{3}\right) ;-4.6(2 \mathrm{x} \mathrm{CH} 3) ;-4.8\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{28} \mathrm{H}_{53} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 493.3533, found 493.3532 .

(S)-((E)-1-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-

enyl)cyclopentyl)hex-1-en-5-yn-3-yloxy)(phenyl)methyl acetate : 11

To a solution of alcohol $\mathbf{1 0}(1.33 \mathrm{~g}, 2.8 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(56 \mathrm{~mL})$, at room temperature, were added (S)-acetyl phenyl acetic acid ($1.09 \mathrm{~g}, 5.6 \mathrm{mmol}, 2 \mathrm{eq}$), EDCI ($1.1 \mathrm{~g}, 5.6 \mathrm{mmol}, 2 \mathrm{eq}$) and DMAP ($137 \mathrm{mg}, 1.1 \mathrm{mmol}, 0.4 \mathrm{eq}$). After 1.5 hour, a saturated solution of $\mathrm{NaCl}(80 \mathrm{~mL})$ was added. The layers were separated and the aqueous one was extracted with $3 \times 80 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $2 \times 40 \mathrm{~mL}$ of brine, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude was purified under silica gel chromatography ($97.5 / 2.5$: Pentane $/ \mathrm{Et}_{2} \mathrm{O}$). the two epimers (S)-11a ($752 \mathrm{mg}, 40 \%$) and (R)-11b ($904 \mathrm{mg}, 48 \%$) were separated.
11b $R_{f}=0.44$ ($8 / 1$: Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=+21.5\left(\mathrm{c}=2, \mathrm{CHCl}_{3}\right)$; IR (neat) : v=3314 $(\mathrm{C} \equiv \mathrm{C}) ; 1748(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48-7.45(\mathrm{~m}, 2 \mathrm{H}) ; 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}) ; 5.90$ $(\mathrm{s}, 1 \mathrm{H}) ; 5.63-5.47(\mathrm{~m}, 2 \mathrm{H}) ; 5.37-5.25(\mathrm{~m}, 3 \mathrm{H}) ; 3.92-3.86(\mathrm{~m}, 1 \mathrm{H}) ; 3.82-3.78(\mathrm{~m}, 1 \mathrm{H}) ; 2.65-2.61$ $(\mathrm{m}, 1 \mathrm{H}) ; 2.38-2.36(\mathrm{~m}, 2 \mathrm{H}) ; 2.31\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.16(\mathrm{~s}, 3 \mathrm{H})$; 2.04-1.93 (m, 4H); 1.88-1.75 (m, 2H); $1.51\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.2 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.93(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.84(\mathrm{~s}, 9 \mathrm{H}) ; 0.01(\mathrm{~s}, 6 \mathrm{H}) ;-0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ,
CDCl_{3}): $\delta=170.0$ (Cquat); 167.8 (Cquat); $134.1(\mathrm{CH}) ; 133.7$ (Cquat); $132.1(\mathrm{CH}) ; 129.1(\mathrm{CH}) ;$ $128.6(\mathrm{CH}) ; 127.7(\mathrm{CH}) ; 127.5(\mathrm{CH}) ; 127.4(\mathrm{CH}) ; 78.7(\mathrm{C} \equiv) ; 76.5(\mathrm{CHOH}) ; 75.7(\mathrm{CHOH}) ; 75.5$ $(\mathrm{CHOH}) ; 74.5(\mathrm{CHOH}) ; 73.1(\mathrm{CHOH}) ; 70.4(\mathrm{CH} \equiv) ; 52.4(\mathrm{CH}) ; 50.3(\mathrm{CH}) ; 44.1(\mathrm{CH}) ; 25.9$ $\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 24.5\left(\mathrm{CH}_{2}\right) ; 20.6\left(\mathrm{CH}_{2}+\mathrm{CH}_{3}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $14.2\left(\mathrm{CH}_{3}\right) ;-4.5$ $\left(\mathrm{CH}_{3}\right) ;-4.6\left(\mathrm{CH}_{3}\right) ;-4.7\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$.
11a $R_{f}=0.34\left(8 / 2:\right.$ Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=+16\left(\mathrm{c}=2, \mathrm{CHCl}_{3}\right)$; IR (neat) : $v=3314(\mathrm{C} \equiv \mathrm{C})$; $1748(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45-7.43(\mathrm{~m}, 2 \mathrm{H}) ; 7.36-7.33(\mathrm{~m}, 3 \mathrm{H}) ; 5.92(\mathrm{~s}$, $1 \mathrm{H}) ; 5.44-5.25(\mathrm{~m}, 4 \mathrm{H}) ; 5.22-5.14(\mathrm{~m}, 1 \mathrm{H}) ; 3.72-3.66(\mathrm{~m}, 2 \mathrm{H}) ; 2.54-2.48(\mathrm{~m}, 3 \mathrm{H}) ; 2.24-2.15(\mathrm{~m}$, $4 \mathrm{H}) ; 2.01-1.87(\mathrm{~m}, 5 \mathrm{H}) ; 1.68-1.63(\mathrm{~m}, 1 \mathrm{H}) ; 1.45\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$; $0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.81(\mathrm{~s}, 9 \mathrm{H}) ; 0.01(\mathrm{~s}, 3 \mathrm{H}) ; 0.00(\mathrm{~s}, 3 \mathrm{H}) ;-0.05(\mathrm{~s}, 3 \mathrm{H}) ;$ -0.07 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.2$ (Cquat); 167.7 (Cquat); 133.9 (CH); 132.7 (Cquat); $129.1(\mathrm{CH}) ; 128.7(\mathrm{CH}) ; 127.7(2 \mathrm{x} \mathrm{CH}) ; 127.6(\mathrm{CH}) ; 127.4(\mathrm{CH}) ; 78.9(\mathrm{C} \equiv) ; 75.7$ $(\mathrm{CHOH}) ; 75.5(\mathrm{CHOH}) ; 74.4(\mathrm{CHOH}) ; 73.1(\mathrm{CHOH}) ; 70.7(\mathrm{CH} \equiv) ; 52.3(\mathrm{CH}) ; 50.4(\mathrm{CH}) ; 44.1$ (CH); $25.9\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 24.7\left(\mathrm{CH}_{2}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 20.5\left(\mathrm{CH}_{3}\right) ; 17.9(2 \times \mathrm{Cquat}) ; 14.2\left(\mathrm{CH}_{3}\right)$; -4.4 ($\left.\mathrm{CH}_{3}\right)$; -4.6 $\left(\mathrm{CH}_{3}\right) ;-4.7\left(\mathrm{CH}_{3}\right) ;$-4.8 $\left(\mathrm{CH}_{3}\right)$.

11a

11b

Determination of the absolute configuration and $\Delta \delta$ values for the (S) and (R)-MTPA ester derivatives of 11a and 11b $\left(\Delta \mathrm{d}=\delta_{S}-\delta_{R}\right)$.
((1R,3S,4S,5R)-4-((S,E)-3-(tert-butyldimethylsilyloxy)hex-1-en-5-ynyl)-5-((Z)-pent-2-enyl)cyclopentane-1,3-diyl)bis(oxy)bis(tert-butyldimethylsilane): 13a.
To a solution of $\mathbf{1 1 a}(752 \mathrm{mg}, 1.12 \mathrm{mmol}, 1 \mathrm{eq})$, in $\mathrm{MeOH}(25 \mathrm{~mL})$, was added $\mathrm{K}_{2} \mathrm{CO}_{3}(466 \mathrm{mg}$, $3.37 \mathrm{mmol}, 3 \mathrm{eq}$). After 1 hour, 100 mL of brine was added. The aqueous layer was extracted with $3 \times 100 \mathrm{~mL}$ of a mixture of pentane/ $\mathrm{Et}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}: 1 / 1)$. The combined organic layers were washed with $2 \times 50 \mathrm{~mL}$ of brine, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude of the reaction was used directly.

To a solution of the allylic alcohol ($1.12 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, were successively added TBSCl ($210 \mathrm{mg}, 1.40 \mathrm{mmol}, 1.25 \mathrm{eq}$), imidazole ($190 \mathrm{mg}, 2.8 \mathrm{mmol}, 2.5 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. After 1 night, 50 mL of a saturated solution of NaHCO_{3} was added. The mixture was then extracted with $3 \times 50 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $2 \times 30 \mathrm{~mL}$ of a saturated solution of NaHCO_{3} and 30 mL of brine, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude of the reaction was purified by silica gel chromatography (99/1: Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) and the silylated ether 13a was obtained as a colourless oil ($537 \mathrm{mg}, 79 \%$). $R_{f}=$ 0.70 (9/1: Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=-1.2\left(\mathrm{c}=5, \mathrm{CHCl}_{3}\right)$; IR (neat) : $\mathrm{v}=3316(\mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.52-5.43(\mathrm{~m}, 2 \mathrm{H}) ; 5.35-5.31(\mathrm{~m}, 2 \mathrm{H}) ; 4.21\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}) ; 3.91\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.79\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.65-5.68(\mathrm{~m}, 1 \mathrm{H})$; 2.40-2.24 (m, 3H); 2.09-1.88 (m, 6H); 1.55-1.47 (m, 1H); $0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.88(\mathrm{~s}$, $9 \mathrm{H}) ; 0.87(\mathrm{~s}, 9 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.06(\mathrm{~s}, 3 \mathrm{H}) ; 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~m}, 6 \mathrm{H}) ;-0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.6(\mathrm{CH}) ; 131.9(\mathrm{CH}) ; 129.6(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 81.4$ (Cquat); 75.92 $(\mathrm{CHOH}) ; 75.88(\mathrm{CHOH}) ; 72.0(\mathrm{CHOH}) ; 69.7(\mathrm{CH} \equiv) ; 52.0(\mathrm{CH}) ; 50.0(\mathrm{CH}) ; 44.5\left(\mathrm{CH}_{2}\right) ; 28.6$ $\left(\mathrm{CH}_{2}\right) ; 26.0(\mathrm{CH} 2) ; 25.8\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 18.1$ (Cquat); 17.9 (Cquat); $14.1\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right)$; $4.6\left(\mathrm{CH}_{3}\right)$; $-4.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI $)$ calculated for $\mathrm{C}_{34} \mathrm{H}_{67} \mathrm{O}_{3} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 607.4398$, found 607.4392
((1R,3S,4S,5R)-4-((R,E)-3-(tert-butyldimethylsilyloxy)hex-1-en-5-ynyl)-5-((Z)-pent-2-enyl)cyclopentane-1,3-diyl)bis(oxy)bis(tert-butyldimethylsilane): 13b.
In the same way, the silylated ether 13b was obtained as colourless oil ($672 \mathrm{mg}, 81 \%$). $R_{f}=0.70$ (9/1 : Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=-24.8\left(\mathrm{c}=5, \mathrm{CHCl}_{3}\right)$; IR (neat) : $\mathrm{v}=3315(\mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.45\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7,16.9 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.36\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.2,16.9 \mathrm{~Hz}\right)$; 5.33-5.22 (m, 2H); $4.22\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.92\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.78(\mathrm{q}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.63-2.56(\mathrm{~m}, 1 \mathrm{H}) ; 2.54-2.22(\mathrm{~m}, 3 \mathrm{H}) ; 2.11-1.86(\mathrm{~m}, 6 \mathrm{H}) ; 1.56-1.48(\mathrm{~m}$, $1 \mathrm{H}) ; 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.87(\mathrm{~s}, 9 \mathrm{H}) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.07(\mathrm{~s}, 3 \mathrm{H}) ; 0.04(\mathrm{~s}$, $3 \mathrm{H}) ; 0.01-0.01(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.7(\mathrm{CH}) ; 131.9(\mathrm{CH}) ; 129.1(\mathrm{CH}) ;$ $127.8(\mathrm{CH}) ; 81.3$ (Cquat); $75.94(\mathrm{CHOH}) ; 75.91(\mathrm{CHOH}) ; 71.8(\mathrm{CHOH}) ; 69.8(\mathrm{CH} \equiv) ; 52.3$ (CH); $50.1(\mathrm{CH}) ; 44.2\left(\mathrm{CH}_{2}\right) ; 28.7\left(\mathrm{CH}_{2}\right) ; 26.0(\mathrm{CH} 2) ; 25.8\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 18.1$ (Cquat); 17.9 (Cquat); $14.1\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right)$; -4.6 $\left(\mathrm{CH}_{3}\right)$; -4.7 $\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI $)$ calculated for $\mathrm{C}_{34} \mathrm{H}_{67} \mathrm{O}_{3} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+}$607.4398, found 607.4396.

For the determination of the configuration of allylic alcohol, 11a, after saponification, was treated with (R)-acetyl phenyl acetic acid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.45(\mathrm{~m}, 2 \mathrm{H}) ; 7.35-7.34$
$(\mathrm{m}, 3 \mathrm{H}) ; 5.90(\mathrm{~s}, 1 \mathrm{H}) ; 5.65-5.49(\mathrm{~m}, 2 \mathrm{H}) ; 5.37-5.24(\mathrm{~m}, 3 \mathrm{H}) ; 3.89-3.86(\mathrm{~m}, 1 \mathrm{H}) ; 3.82-3.77(\mathrm{~m}$, $1 \mathrm{H}) ; 2.67-2.61(\mathrm{~m}, 1 \mathrm{H}) ; 2.39-2.37(\mathrm{~m}, 2 \mathrm{H}) ; 2.30\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ;$ $2.16(\mathrm{~s}, 3 \mathrm{H}) ; 2.04-1.96(\mathrm{~m}, 4 \mathrm{H}) ; 1.88-1.76(\mathrm{~m}, 2 \mathrm{H}) ; 1.51(\mathrm{~m}, ~, 1 \mathrm{H}) ; 0.94\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}\right.$, $3 \mathrm{H}) ; 0.87(\mathrm{~s}, 9 \mathrm{H}) ; 0.84(\mathrm{~s}, 9 \mathrm{H}) ; 0.01(\mathrm{~s}, 6 \mathrm{H}) ;-0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0$ (Cquat); 167.8 (Cquat); 134.5 (CH); 133.7 (Cquat); 132.1 (CH); $129.0(\mathrm{CH}) ; 128.6$ (CH); 127.7 $(\mathrm{CH}) ; 127.5(\mathrm{CH}) ; 127.4(\mathrm{CH}) ; 78.7(\mathrm{C} \equiv) ; 76.5(\mathrm{CHOH}) ; 75.7(\mathrm{CHOH}) ; 75.5(\mathrm{CHOH}) ; 74.5$ $(\mathrm{CHOH}) ; 73.1(\mathrm{CHOH}) ; 70.4(\mathrm{CH} \equiv) ; 52.4(\mathrm{CH}) ; 50.4(\mathrm{CH}) ; 44.2(\mathrm{CH}) ; 25.9\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right)$; $24.5\left(\mathrm{CH}_{2}\right) ; 20.6\left(\mathrm{CH}_{2}+\mathrm{CH}_{3}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $14.2\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ;-4.6(2 \mathrm{x}$ $\left.\mathrm{CH}_{3}\right)$; -4.8 $\left(\mathrm{CH}_{3}\right)$.

For the same reason and the same way, 11b, after saponification, was treated with (R)-acetyl phenyl acetic acid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.43(\mathrm{~m}, 2 \mathrm{H}) ; 7.36-7.33(\mathrm{~m}, 3 \mathrm{H}) ; 5.92$ (s, 1H); 5.42-5.18 (m, 5H); 3.75-3.65 (m, 2H); 2.54-2.48 (m, 3H); 2.24-2.17 (m, 4H); 1.99-1.86 $(\mathrm{m}, 5 \mathrm{H}) ; 1.74-1.61(\mathrm{~m}, 1 \mathrm{H}) ; 1.45\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})\right.$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.81(\mathrm{~s}, 9 \mathrm{H}) ; 0.00(\mathrm{~s}, 6 \mathrm{H}) ;-0.06(\mathrm{~s}, 3 \mathrm{H}) ;-0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.2$ (Cquat); 167.7 (Cquat); 133.6 (CH); 132.0 (Cquat); 129.1 (CH); 128.7 (CH); 127.6 ($2 \times \mathrm{CH}$); $127.4(\mathrm{CH}) ; 78.9(\mathrm{C} \equiv) ; 75.7(\mathrm{CHOH}) ; 75.5(\mathrm{CHOH}) ; 74.4(\mathrm{CHOH}) ; 73.3$ $(\mathrm{CHOH}) ; 70.8(\mathrm{CH} \equiv) ; 52.3(\mathrm{CH}) ; 50.4(\mathrm{CH}) ; 44.1(\mathrm{CH}) ; 25.9\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 24.8\left(\mathrm{CH}_{2}\right)$; $20.6\left(\mathrm{CH}_{2}\right) ; 20.5\left(\mathrm{CH}_{3}\right) ; 17.8\left(2 \times\right.$ Cquat); $14.2\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.6\left(2 \times \mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$.

Methyl 6-bromohex-4-ynoate: 15.

To a solution of the 4-pentynol ($10 \mathrm{~g}, 119 \mathrm{mmol}, 1 \mathrm{eq}$) and p-toluene sulfonic acid ($565 \mathrm{mg}, 2.9$ mmol, 0.025 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL}$), 2, 4 dihydropyran ($12.35 \mathrm{~mL}, 243 \mathrm{mmol}, 1.2 \mathrm{eq}$) diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added dropwise at room temperature. The mixture was stirred all the night and 150 mL of saturated solution of NaHCO_{3} was added. The mixture was stirred 15 min and the layers were separated. The aqueous one was extracted with $2 \times 200 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with 100 mL of saturated solution of NaHCO_{3} and $2 \times 100 \mathrm{~mL}$ of brine, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude of the reaction was purified under silica gel chromatography ($95 / 5$: Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) and the protected alcohol ($18.9 \mathrm{~g}, 95 \%$) was obtained. $R_{f}=0.5\left(8 / 2:\right.$ Cyclohexane $/ \operatorname{AcOEt}^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=4.54\left(\mathrm{lt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.84-3.73(\mathrm{~m}, 2 \mathrm{H}) ; 3.48-3.38(\mathrm{~m}, 2 \mathrm{H}) ; 2.24$ (dt, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.2,11.2 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 1.88\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 1.78$ (quint, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$; 1.71-1.73 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=98.6\left(\mathrm{CH}(\mathrm{O}-)_{2}\right) ; 83.8(\mathrm{C} \equiv) ; 68.3(\mathrm{HC} \equiv) ; 65.4$ $\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 62.0\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 30.5\left(\mathrm{CH}_{2}\right) ; 28.6\left(\mathrm{CH}_{2}\right) ; 25.4\left(\mathrm{CH}_{2}\right) ; 19.4\left(\mathrm{CH}_{2}\right) ; 15.2\left(\mathrm{CH}_{2}\right)$.

At room temperature, a commercial solution of methyl magnesium bromide ($3 \mathrm{M} \mathrm{in}^{\mathrm{Et}} \mathrm{I}_{2} \mathrm{O}, 42 \mathrm{~mL}$, $127 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added dropwise in a solution of alkyne ($10.7 \mathrm{~g}, 63.6 \mathrm{mmol}, 1 \mathrm{eq}$) in anhydrous THF $(60 \mathrm{~mL})$. The solution was refluxed 1.5 hour. The solution was cooled $\left(0^{\circ} \mathrm{C}\right)$ and p-formaldehyde $(2.86 \mathrm{~g}, 95 \mathrm{mmol}, 1.5 \mathrm{eq})$. The reaction was refluxed two hours and p formaldehyde ($2.4 \mathrm{~g}, 80 \mathrm{mmol}, 1.5 \mathrm{eq}$) more was added. After refluxing overnight, the solution was cooled at $0^{\circ} \mathrm{C}$, and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$, saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ were added dropwise. Celite ${ }^{\circledR}(50 \mathrm{~mL})$ was added and the mixture was filtered. The solid was washed with $\mathrm{Et}_{2} \mathrm{O}(4 \times 100 \mathrm{~mL})$. The layers were separated. The aqueous one was extracted with $2 \times 100 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $2 \times 100 \mathrm{~mL}$ of brine and 50 mL of saturated solution of NaHCO_{3}, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude of the reaction was purified under silica gel chromatography ($8 / 2$ to 1/1: Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) and the alcohol ($9.65 \mathrm{~g}, 79 \%$) was obtained. $R_{f}=0.5$ (5/5 : Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.55\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 4.17(\mathrm{dt}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 3.82-3.73(\mathrm{~m}, 2 \mathrm{H}) ; 3.48-3.39(\mathrm{~m}, 2 \mathrm{H}) ; 2.46\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$; $2.8\left(\mathrm{tt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 1.74$ (quint, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 1.67-1.45(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=98.7(\mathrm{CH}(\mathrm{O}-) 2) ; 85.4(\mathrm{C} \equiv) ; 78.8(\mathrm{C} \equiv) ; 65.8\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 62.1\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $51.0\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 30.5\left(\mathrm{CH}_{2}\right) ; 28.6\left(\mathrm{CH}_{2}\right) ; 25.3\left(\mathrm{CH}_{2}\right) ; 19.4\left(\mathrm{CH}_{2}\right) ; 15.6\left(\mathrm{CH}_{2}\right)$.
To a solution of the propargyl alcohol $(7.5 \mathrm{~g}, 39 \mathrm{mmol}, 1 \mathrm{eq})$, triphenylphosphine ($17.2 \mathrm{~g}, 58.5$ mmol, 1.5 eq), triethylamine ($0.54 \mathrm{~mL}, 3.9 \mathrm{mmol}, 0.1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Br}_{2}(35 \mathrm{~mL})$, at $-10^{\circ} \mathrm{C}$, was added a solution of $\mathrm{CBr} 4(19.4 \mathrm{~g}, 58.5 \mathrm{mmol}, 1.5 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Br}_{2}(35 \mathrm{~mL})$. The mixture was stirred 3 hours at room temperature. The mixture was then quenched with 100 mL of a 10% solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and 100 mL of a saturated solution of NaHCO_{3}. The layers separated. The aqueous one was extracted with $3 \times 250 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were extracted with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$, brine (20 mL) and dried over MgSO_{4}, filtered and the solvents were removed. The crude was diluted in a mixture of Pentane $/ \mathrm{Et}_{2} \mathrm{O} 4 / 1(250 \mathrm{~mL})$ and filtered. After evaporation, the crude of the reaction was purified under silica gel chromatography (100/0 to $80 / 20$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) and compound ($4.2 \mathrm{~g}, 41 \%$) was obtained. $R_{f}=0.7(5 / 5$: Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.56\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.88(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 3.82-3.75(\mathrm{~m}, 2 \mathrm{H}) ; 3.49-3.41(\mathrm{~m}, 2 \mathrm{H}) ; 2.36-2.30(\mathrm{~m}, 2 \mathrm{H}) ; 1.76$ (quint, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 1.68-1.46(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=98.7\left(\mathrm{CH}(\mathrm{O}-)_{2}\right) ; 87.4$ $(\mathrm{C} \equiv) ; 75.5(\mathrm{C} \equiv) ; 65.7\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 62.1\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 30.6\left(\mathrm{CH}_{2}\right) ; 28.5\left(\mathrm{CH}_{2}\right) ; 25.4\left(\mathrm{CH}_{2}\right) ; 19.4\left(\mathrm{CH}_{2}\right)$; $15.8\left(\mathrm{CH}_{2}\right) ; 15.5\left(\mathrm{CH}_{2} \mathrm{O}\right)$.
To the solution of protected alcohol ($4.2 \mathrm{~g}, 16 \mathrm{mmol}, 1 \mathrm{eq}$) in acetone (320 mL) was added dropwise at $0^{\circ} \mathrm{C}$, a Jones' solution ($2.17 \mathrm{M}, 37 \mathrm{~mL}, 80 \mathrm{mmol}, 5.0 \mathrm{eq}$). The solution was stirred 3
hours at $0^{\circ} \mathrm{C}$ and 2 hours at room temperature. Isopropanol (45 mL) was slowly added. The mixture was filtered over Celite and rinsed with pentane/Et $\mathrm{E}_{2} \mathrm{O} / 1(3 \times 500 \mathrm{~mL}$). The organic layer was washed with $4 \times 250 \mathrm{~mL}$ of acidified brine, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude was diluted in anhydrous $\mathrm{MeOH}(65 \mathrm{~mL}$) and $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(510 \mu \mathrm{l}, 4 \mathrm{mmol}, 0.25 \mathrm{eq})$ was added. The solution was refluxed 1 H and 250 mL of a saturated solution of NaHCO_{3} was added. The mixture was extracted with $3 \times 250 \mathrm{~mL}$ of pentane $/ \mathrm{Et}_{2} \mathrm{O} 1 / 1$. The organic layers were washed with $3 \times 100 \mathrm{~mL}$ of brine, dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified under silica gel chromatography (95/5: Pentane/ $\mathrm{Et}_{2} \mathrm{O}$) and $15(2.65 \mathrm{~g}, 80 \%)$ was obtained. $R_{f}=0.5$ ($8 / 2$: Cyclohexane/AcOEt); IR (neat) : $\mathrm{v}=1733(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.85(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.1 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 3.65(\mathrm{~s}, 3 \mathrm{H}) ; 2.56-2.49(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0$ (Cquat); 85.7 (Cquat); 76.0 (Cquat); $51.7\left(\mathrm{CH}_{3}\right) ; 32.9\left(\mathrm{CH}_{2}\right) ; 15.0\left(\mathrm{CH}_{2}\right) ; 14.8\left(\mathrm{CH}_{2}\right) ;$ HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2 \mathrm{Br}}[\mathrm{M}+\mathrm{H}]^{+}$204.9864, found 204.9866.
(S,E)-methyl
12-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)-10-(tert-butyldimethylsilyloxy)dodeca-11-en-4,7-diynoate: 16a.

At room temperature, to a solution of 13a ($75 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathbf{1 5}(44 \mathrm{mg}, 0.21 \mathrm{mmol}$, 1.75 eq) in DMF (4 mL) were added successively CsCO_{3} ($120 \mathrm{mg}, 0.28 \mathrm{mmol}, 3 \mathrm{eq}$), $\mathrm{NaI}(55 \mathrm{mg}$, $0.38 \mathrm{mmol}, 3 \mathrm{eq}), \mathrm{CuI}(58 \mathrm{mg}, 0.31 \mathrm{mmol}, 2.5 \mathrm{eq})$. The reaction was stirred 2 days. A solution of $\mathrm{NH}_{4} \mathrm{Cl} 10 \%(25 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{OH}(0.5 \mathrm{~mL})$ were added. The mixture was extracted with 3×25 mL of $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with $2 \times 25 \mathrm{~mL}$ of brine, dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified under silica gel $(30 \mathrm{~nm}$, spherical) with pentane $/ \mathrm{Et}_{2} \mathrm{O}(98 / 3$ in presence of BHT) and 13a was obtained ($46 \mathrm{mg}, 56 \%$) in presence of allene. $R_{f}=0.4$ ($8 / 2$: Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.55-$ $5.45(\mathrm{~m}, 2 \mathrm{H}) ; 5.36-5.27(\mathrm{~m}, 2 \mathrm{H}) ; 4.18\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.88\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.3,6.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}) ; 3.79\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.67(\mathrm{~s}, 3 \mathrm{H}) ; 3.06\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 2.64-2.53(\mathrm{~m}$, $1 \mathrm{H}) ; 2.52-2.42(\mathrm{~m}, 4 \mathrm{H}) ; 2.38-2.21(\mathrm{~m}, 3 \mathrm{H}) ; 2.10-1.86(\mathrm{~m}, 5 \mathrm{H}) ; 1.50\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.0 \mathrm{~Hz}\right.$, $\left.{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.84(\mathrm{~s}, 9 \mathrm{H}) ;$ $0.07(\mathrm{~s}, 3 \mathrm{H}) ; 0.03(\mathrm{~s}, 3 \mathrm{H}) ; 0.01--0.01(12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0$ (Cquat); 1.33.0 (CH); $132.0(\mathrm{CH}) ; 129.1(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 78.3$ (Cquat); 77.7 (Cquat); 76.0 (CHO-); 75.9 (CHO-); 75.6 (Cquat); 75.5 (Cquat); 72.1 (CHO-); $52.1(\mathrm{CH}) ; 51.6\left(\mathrm{OCH}_{3}\right) ; 50.0(\mathrm{CH}) ; 44.2$ $\left(\mathrm{CH}_{2}\right) ; 33.3\left(\mathrm{CH}_{2}\right) ; 30.3\left(\mathrm{CH}_{2}\right) ; 28.9\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 18.1$ (Cquat); 17.9 (Cquat); $14.6\left(\mathrm{CH}_{3}\right) ; 9.7\left(\mathrm{CH}_{2}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ;-4.6\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{2}\right)$. enyl)cyclopentyl)-10-(tert-butyldimethylsilyloxy)dodeca-11-en-4,7-diynoate: 16b.
In the same way, the silylated ether $\mathbf{1 6 b}(71 \mathrm{mg}, 79 \%)$ was obtained with allene too. $R_{f}=0.4$ (8/2: Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.54-5.26(\mathrm{~m}, 4 \mathrm{H}) ; 4.19\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})\right.$ $=5.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.91-3.88(\mathrm{~m}, 1 \mathrm{H}) ; 3.77\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.67(\mathrm{~s}, 3 \mathrm{H}) ; 3.07-3.02(\mathrm{~m}$, $2 \mathrm{H}) ; 2.78-2.44(\mathrm{~m}, 5 \mathrm{H}) ; 2.39-2.19(\mathrm{~m}, 3 \mathrm{H}) ; 2.11-1.85(\mathrm{~m}, 5 \mathrm{H}) ; 1.51\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.4 \mathrm{~Hz}\right.$, $\left.{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.87(\mathrm{~s}, 9 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ;$ $0.07(\mathrm{~s}, 3 \mathrm{H}) ; 0.04(\mathrm{~s}, 3 \mathrm{H}) ; 0.01--0.01(12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0$ (Cquat); 134.1(CH); $132.0(\mathrm{CH}) ; 128.8(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 78.3$ (Cquat); 77.7 (Cquat); 75.9 (2 x CHO-); 75.7 (Cquat); 75.6 (Cquat); 72.0 (CHO-); $52.3(\mathrm{CH}) ; 51.6\left(\mathrm{OCH}_{3}\right) ; 50.1(\mathrm{CH}) ; 44.2\left(\mathrm{CH}_{2}\right) ; 33.3$ $\left(\mathrm{CH}_{2}\right) ; 30.2\left(\mathrm{CH}_{2}\right) ; 29.0\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 18.1$ (Cquat); 17.9 (Cquat); $14.6\left(\mathrm{CH}_{3}\right) ; 9.6\left(\mathrm{CH}_{2}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.6\left(\mathrm{CH}_{3}\right) ;-4.7\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{2}\right)$.
(S,4Z,7Z,11E)-methyl 12-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)-10-(tert-butyldimethylsilyloxy)dodeca-4,7,11-trienoate: 17a.
To a suspension of $\mathrm{Ni}(\mathrm{OAc})_{2} .4 \mathrm{H}_{2} \mathrm{O}(9.6 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.33 \mathrm{eq})$, in ethanol with 0.01% BHT (3 mL) was added under H_{2} atmosphere, NaBH_{4}, in ethanol ($0.5 \mathrm{M}, 139 \mu \mathrm{~L}, 0.07 \mathrm{mmol}, 0.6 \mathrm{eq}$). After 10 minutes was added under the black suspension, the ethylenediamine in solution in ethanol, ($0.5 \mathrm{M}, 348 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 1.5 \mathrm{eq}$). After 10 minutes, skipped diyne $16 \mathrm{a}(85 \mathrm{mg}, 0.12$ mmol, 1.0 eq) in ethanol with 0.01% BHT (4 mL) was added. Before and after each addition, three cycles vacuum $/ \mathrm{H}_{2}$ were realized. The reaction was then stirred during 4 hours under H_{2} atmosphere (GC control). The mixture was then quenched with 20 mL of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred 30 min . The layers were extracted with $3 \times 25 \mathrm{~mL}$ of Pentane $/ \mathrm{Et}_{2} \mathrm{O} 1 / 1$. The combined organic layers were washed with water (10 mL), brine ($2 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}, filtered and the solvents were removed. Compound $\mathbf{1 7 a}$ with allene, overreduction byproducts and some solvents traces (98 mg) was obtained and used directly. $R_{f}=0.4$ (9/1 : Cyclohexane/AcOEt).
(R,4Z,7Z,11E)-methyl 12-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)-10-(tert-butyldimethylsilyloxy)dodeca-4,7,11-trienoate: 17b.

In the same way and the same quantities, the tetraene 17b. was obtained (87 mg) with allene, overreduction by-products some solvents traces.

10-F 4t $^{-N e u r o P: ~ 1 a . ~}$

At room temperature, a solution of $\mathrm{HCl}(0.5 \mathrm{M}$ in $\mathrm{MeOH}, 2.32 \mathrm{~mL}, 1.16 \mathrm{mmol}, 10 \mathrm{eq})$ was added to the crude of $\mathbf{1 7 a}(0.12 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{MeOH} / \mathrm{THF}(10 \mathrm{~mL} / 16 \mathrm{~mL})$. The mixture was stirred 2 hours and NaHCO_{3} solid was added. After 15 min , Celite ${ }^{\circledR}$ was added and the crude was filtered on Silica gel pad with AcOEt. The deprotected crude was directly used.
The solution of crude (0.116 mmol) in THF (5.8 mL) was stirred 2 hours with LiOH (0.5 M in $\left.\mathrm{H}_{2} \mathrm{O}, 5.8 \mathrm{~mL}, 2.4 \mathrm{mmol}, 25 \mathrm{eq}\right)$. The base was neutralized with a solution of $\mathrm{NaHSO}_{4}\left(1 \mathrm{M} \mathrm{in} \mathrm{H}_{2} \mathrm{O}\right.$, $2.4 \mathrm{~mL}, 2.4 \mathrm{mmol}, 25 \mathrm{eq})$ and NaCl solid was added. The mixture was stirred 2 hours more. The crude was extracted with $3 \times 20 \mathrm{~mL}$ of AcOEt. The organic layers were washed with $2 \times 10 \mathrm{~mL}$ of brine, dried over MgSO_{4}, filtered and the solvents removed. The crude was purified by flash chromatography $\left(98 / 2 \mathrm{AcOEt} / \mathrm{HCO}_{2} \mathrm{H}\right)$. To eliminated overreduction products and allene, the mixture was purified by semipreparative HPLC ($250 \times 8 \mathrm{~mm}$ C18 column, $2.5 \mathrm{~mL} . \mathrm{min}^{-1}$, (ACN/MeOH $95 / 5$ with $0.1 \% \mathrm{HCO}_{2} \mathrm{H}$)/ H 2 O with $0.1 \% \mathrm{HCO}_{2} \mathrm{H}: 35 / 65, \lambda=205 \mathrm{~nm}$), a total of ($21.4 \mathrm{mg}, 48 \%$) of $10-\mathrm{F}_{4 \mathrm{t}}$-NeuroP $\mathbf{1 a}$ was collected.
$\mathrm{Tr}=27.5 \mathrm{~min}\left(250 \times 4 \mathrm{~mm}\right.$ C18 Nucleodur, $0.4 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$, (ACN/MeOH $95 / 5$ with 0.1% $\left.\mathrm{HCO}_{2} \mathrm{H}\right) / \mathrm{H}_{2} \mathrm{O}$ with $\left.0.1 \% \mathrm{HCO}_{2} \mathrm{H}: 35 / 65, \lambda=205 \mathrm{~nm}\right) ; ~ ;[\alpha]_{\mathrm{D}}{ }^{20}=-6(\mathrm{c}=1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=5.60-5.57(\mathrm{~m}, 2 \mathrm{H}) ; 5.47-5.41(\mathrm{~m}, 6 \mathrm{H}) ; 4.1\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 4.0$ $\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}) ; 2.87\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.5 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 2.76-2.69(\mathrm{~m}$, $1 \mathrm{H}) ; 2.50\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.44-2.29(\mathrm{~m}, 6 \mathrm{H}) ; 2.16-2.04(\mathrm{~m}, 5 \mathrm{H}) ;$ $1.56\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.99\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{MeOD}): ~ \delta=177.2$ (Cquat); 133.0 (CH); 130.3 (CH); 127.7 (CH); 127.2 (CH); 127.1 (CH); $126.3(\mathrm{CH}) ; 125.8(\mathrm{CH}) ; 123.9(\mathrm{CH}) ; 73.2(2 \mathrm{xHCOH}) ; 70.2(\mathrm{HCOH}) ; 50.5(\mathrm{CH}) ; 48.5(\mathrm{CH}) ; 40.7$ $\left(\mathrm{CH}_{2}\right) ; 33.4\left(\mathrm{CH}_{2}\right) ; 24.2\left(2 \mathrm{xCH}_{2}\right) ; 23.8\left(\mathrm{CH}_{2}\right) ; 21.1\left(\mathrm{CH}_{2}\right) ; 18.7\left(\mathrm{CH}_{2}\right) ; 11.7\left(\mathrm{CH}_{3}\right) ;$; ; HRMS (ESI^{+}) calculated for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$401.2304, found 401.2308..

10-epi-10-F $\mathbf{4 t}_{\mathbf{t}}$-NeuroP: 1b.

In the same way and with $\mathbf{1 7 b}(87 \mathrm{mg})$, 10-epi-10-F $\mathrm{F}_{4 \mathrm{t}}$-NeuroP 1b was obtained ($35 \mathrm{mg} ; 79 \%$). Tr $=30.1 \mathrm{~min}\left(250 x 4 \mathrm{~mm}\right.$ C18 Nucleodur, $0.4 \mathrm{~mL}^{2} \mathrm{~min}^{-}$, (ACN/MeOH $95 / 5$ with 0.1% $\left.\mathrm{HCO}_{2} \mathrm{H}\right) / \mathrm{H}_{2} \mathrm{O}$ with $\left.0.1 \% \mathrm{HCO}_{2} \mathrm{H}: 35 / 65, \lambda=205 \mathrm{~nm}\right) ; ~ ; ~[\alpha]_{\mathrm{D}}{ }^{20}=-8(\mathrm{c}=1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=5.66-5.49(\mathrm{~m}, 2 \mathrm{H}) ; 5.46-5.36(\mathrm{~m}, 6 \mathrm{H}) ; 4.09\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$; 4.02-3.97 (m, 1H); 3.93-3.87 (m, 1H); 2.91-2.80 (m, 2H); 2.78-2.68 (m, 1H); 2.51 (quint, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})$ $=7.1 \mathrm{~Hz} ; 1 \mathrm{H}) ; 2.45-2.24(\mathrm{~m}, 6 \mathrm{H}) ; 2.17-2.02(\mathrm{~m}, 5 \mathrm{H}) ; 1.56\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz} ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.1\right.$ $\mathrm{Hz} ; 0.99\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=177.2$ (Cquat); 133.2(CH); $130.2(\mathrm{CH}) ; 127.8(2 \mathrm{xCH}) ; 127.1(\mathrm{CH}) ; 126.3(\mathrm{CH}) ; 125.8(\mathrm{CH}) ; 123.8(\mathrm{CH}) ; 73.4(\mathrm{HCOH}) ;$ $73.3(\mathrm{HCOH}) ; 70.6(\mathrm{HCOH}) ; 50.8(\mathrm{CH}) ; 48.5(\mathrm{CH}) ; 40.6\left(\mathrm{CH}_{2}\right) ; 33.4\left(\mathrm{CH}_{2}\right) ; 24.3\left(2 \mathrm{xCH}_{2}\right) ; 23.8$
$\left(\mathrm{CH}_{2}\right) ; 21.1\left(\mathrm{CH}_{2}\right) ; 18.7\left(\mathrm{CH}_{2}\right) ; 11.6\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O} 5 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 401.2303, found 401.2304.

4,5,7,8 $\quad \mathbf{d}_{4}$-(S,4Z,7Z,11E)-methyl \quad 12-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)-10-(tert-butyldimethylsilyloxy)dodeca-4,7,11-trienoate: 18a. To a suspension of $\mathrm{Ni}(\mathrm{OAc})_{2} .4 \mathrm{H}_{2} \mathrm{O}(9.6 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.33 \mathrm{eq})$, in ethanol with 0.01% BHT (3 mL) was added under D_{2} atmosphere, NaBH_{4}, in ethanol ($0.5 \mathrm{M}, 139 \mu \mathrm{~L}, 0.07 \mathrm{mmole}, 0.6 \mathrm{eq}$). After 10 minutes was added under the black suspension, the ethylenediamine in solution in ethanol, ($0.5 \mathrm{M}, 348 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 1.5 \mathrm{eq}$). After 10 minutes, skipped diyne $16 \mathrm{a}(85 \mathrm{mg}, 0.12$ $\mathrm{mmol}, 1.0 \mathrm{eq})$ in ethanol with 0.01% BHT (4 mL) was added. Before and after each addition, three cycles vacuum $/ D_{2}$ were realized. The reaction was then stirred during 4 hours under D_{2} atmosphere (GC control). The mixture was then quenched with 20 mL of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred 30 min . The layers were extracted with $3 \times 25 \mathrm{~mL}$ of Pentane $/ \mathrm{Et}_{2} \mathrm{O} 1 / 1$. The combined organic layers were washed with water (10 mL), brine ($2 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}, filtered and the solvents were removed. Compound 18a with allene, overreduction byproducts and some solvents traces (77 mg) was obtained and used directly. $R_{f}=0.4$ (9/1 : Cyclohexane/AcOEt).

4,5,7,8 $\quad \mathbf{d}_{4}$-(R,4Z,7Z,11E)-methyl 12-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)-10-(tert-butyldimethylsilyloxy)dodeca-4,7,11-trienoate: 18b.

In the same way and the same quantities, the tetraene $\mathbf{1 8 b}$. was obtained (104 mg) with allene, overreduction by-products some solvents traces.

4,5,7,8 $\mathbf{d}_{\mathbf{4}} \mathbf{- 1 0 - F _ { 4 t }}$-NeuroP: $\mathbf{2 a}$.

At room temperature, a solution of $\mathrm{HCl}(0.5 \mathrm{M}$ in $\mathrm{MeOH}, 2.32 \mathrm{~mL}, 1.16 \mathrm{mmol}, 10 \mathrm{eq})$ was added to the crude of $\mathbf{1 7 a}(0.13 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{MeOH} / \mathrm{THF}(10 \mathrm{~mL} / 16 \mathrm{~mL})$. The mixture was stirred 2 hours and NaHCO_{3} solid was added. After 15 min , Celite ${ }^{\circledR}$ was added and the crude was filtered on Silica gel pad with AcOEt. The deprotected crude was directly used.

The solution of crude $(0.12 \mathrm{mmol})$ in THF $(5.8 \mathrm{~mL})$ was stirred 2 hours with $\mathrm{LiOH}(0.5 \mathrm{M}$ in $\left.\mathrm{H}_{2} \mathrm{O}, 5.8 \mathrm{~mL}, 2.4 \mathrm{mmol}, 25 \mathrm{eq}\right)$. The base was neutralized with a solution of $\mathrm{NaHSO}_{4}(1 \mathrm{M}$ in $\left.\mathrm{H}_{2} \mathrm{O}, 2.4 \mathrm{~mL}, 2.4 \mathrm{mmol}, 25 \mathrm{eq}\right)$ and NaCl solid was added and the mixture was stirred 2 hours more. The crude was extracted with $3 \times 20 \mathrm{~mL}$ of AcOEt. The organic layers were washed with 2 x 10 mL of brine, dried over MgSO_{4}, filtered and the solvents removed. The crude was purified by flash chromatography ($98 / 2 \mathrm{AcOEt} / \mathrm{HCO}_{2} \mathrm{H}$). To eliminated overreduction products and allene, the crude was purified by semipreparative HPLC (250 x 8 mm C18 column, $2.5 \mathrm{~mL} . \mathrm{min}^{-1}$,
($\mathrm{ACN} / \mathrm{MeOH} 95 / 5$ with $0.1 \% \mathrm{HCO}_{2} \mathrm{H}$)/ H 2 O with $0.1 \% \mathrm{HCO}_{2} \mathrm{H}: 35 / 65, \lambda=205 \mathrm{~nm}$), a total of ($22.3 \mathrm{mg}, 50 \%$) of $4,5,7,8 \mathrm{~d}_{4}-10-\mathrm{F}_{4 \mathrm{t}}$-NeuroP 2a was collected. $\mathrm{Tr}=27.0 \mathrm{~min}(250 \mathrm{x} 4 \mathrm{~mm} \mathrm{C} 18$ Nucleodur, $0.4 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$, $\left(\mathrm{ACN} / \mathrm{MeOH} 95 / 5\right.$ with $\left.0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right) / \mathrm{H} 2 \mathrm{O}$ with $0.1 \% \mathrm{HCO}_{2} \mathrm{H}$: $35 / 65, \lambda=205 \mathrm{~nm}) ;$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=5.66-5.52(\mathrm{~m}, 2 \mathrm{H}) ; 5.47-5.37(\mathrm{~m}, 2 \mathrm{H})$; $4.10\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 4.03-3.98(\mathrm{~m}, 1 \mathrm{H}) ; 3.94-3.85(\mathrm{~m}, 1 \mathrm{H}) ; 2.86(\mathrm{sl}, 2 \mathrm{H}) ; 2.78-2.67(\mathrm{~m}$, $1 \mathrm{H}) ; 2.50\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.42-2.28(\mathrm{~m}, 6 \mathrm{H}) ; 2.14-2.04(\mathrm{~m}, 5 \mathrm{H}) ;$ $1.56\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.8 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.99\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{MeOD}): ~ \delta=177.4$ (Cquat); $133.0(\mathrm{CH}) ; 130.3(\mathrm{CH}) ; 127.1(\mathrm{CH}) ; 125.9(\mathrm{CH}) ; 73.2$ (2 xHCOH); $70.2(\mathrm{HCOH}) ; 50.5(\mathrm{CH}) ; 48.5(\mathrm{CH}) ; 40.7\left(\mathrm{CH}_{2}\right) ; 33.3\left(\mathrm{CH}_{2}\right) ; 24.2\left(2 \mathrm{xCH}_{2}\right) ; 23.5$ $\left(\mathrm{CH}_{2}\right) ; 20.9\left(\mathrm{CH}_{2}\right) ; 18.7\left(\mathrm{CH}_{2}\right) ; 11.7\left(\mathrm{CH}_{3}\right) ;$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{D}_{4} \mathrm{O}_{5} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 405.2555$, found 405.2553 .

4,5,7,8 d $\mathbf{4}_{4}$-10-epi-10-F $\mathbf{4 t}_{\mathbf{t}}$-NeuroP: $\mathbf{2 b}$.

In the same way and with 2b. $(87 \mathrm{mg}), 4,5,7,8 \mathrm{~d}_{4}-10$-epi-10-F $\mathrm{F}_{4 \mathrm{t}}$-NeuroP 2b was obtained (31 mg ; $70 \%) . \operatorname{tr}=29.7 \mathrm{~min}\left(250 \times 4 \mathrm{~mm}\right.$ C18 Nucleodur, $0.4 \mathrm{~mL} \cdot \mathrm{~min}^{-},(\mathrm{ACN} / \mathrm{MeOH} 95 / 5$ with 0.1% $\mathrm{HCO}_{2} \mathrm{H}$)/H2O with $0.1 \% \mathrm{HCO}_{2} \mathrm{H}: 35 / 65, \lambda=205 \mathrm{~nm}$); ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=5.63-$ $5.49(\mathrm{~m}, 2 \mathrm{H}) ; 5.46-5.34(\mathrm{~m}, 6 \mathrm{H}) ; 4.09\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}) ; 3.92-3.87(\mathrm{~m}$, $1 \mathrm{H}) ; 2.86(\mathrm{sl}, 2 \mathrm{H}) ; 2.76-2.67(\mathrm{~m}, 1 \mathrm{H}) ; 2.51\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz} ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz} ; 1 \mathrm{H}\right) ; 2.43-$ $2.26(\mathrm{~m}, 6 \mathrm{H}) ; 2.17-2.03(\mathrm{~m}, 5 \mathrm{H}) ; 1.56\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz} ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz} ; 0.99\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.\right.$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=177.3$ (Cquat); 133.2(CH); 130.2 (CH); 127.8 $(\mathrm{CH}) ; 125.8(\mathrm{CH}) ; 73.4(\mathrm{HCOH}) ; 73.3(\mathrm{HCOH}) ; 70.6(\mathrm{HCOH}) ; 50.8(\mathrm{CH}) ; 48.5(\mathrm{CH}) ; 40.6$ $\left(\mathrm{CH}_{2}\right) ; 33.3\left(\mathrm{CH}_{2}\right) ; 24.3\left(2 \mathrm{xCH}_{2}\right) ; 23.5\left(\mathrm{CH}_{2}\right) ; 20.9\left(\mathrm{CH}_{2}\right) ; 18.7\left(\mathrm{CH}_{2}\right) ; 11.7\left(\mathrm{CH}_{3}\right) ;$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{D}_{4} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 405.2555$, found 405.2557.
(E)-1-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)hept-1-en-5-yn-3-ol: $20 \quad$; (E)-1-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)hepta-1,4,5-trien-3-ol 19.
To a solution of the aldehyde $9(1.1 \mathrm{~g}, 2.45 \mathrm{mmol}, 1 \mathrm{eq})$, in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, was added a freshly prepared solution of but-2-ynyl magnesium bromide (0.5 M in $\mathrm{Et}_{2} \mathrm{O}, 9.8 \mathrm{~mL}, 4.9 \mathrm{mmol}, 2 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. After 40 min at the same temperature, $\mathrm{HCl}(0.1 \mathrm{M}, 100 \mathrm{~mL})$ was added and the mixture was stirred 15 min . The layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50$ $\mathrm{mL})$. The organic layers were washed with a saturated solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (2 x 50 mL), dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified by flash chromatography ($98 / 2$ to $95 / 5$ Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) and the propargyl alcohol 19 (161
$\mathrm{mg}, 13 \%$) and allenic alcool $20(550 \mathrm{mg}, 44 \%)$ were obtained. $20: R_{f}=0.41(9 / 1$: Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.53-5.49(\mathrm{~m}, 2 \mathrm{H}) ; 5.34-5.28(\mathrm{~m}, 2 \mathrm{H}) ;$ 4.80-4.75 (m, 2H); $4.44(\mathrm{sl}, 1 \mathrm{H}) ; 3.95-3.89(\mathrm{~m}, 1 \mathrm{H}) ; 3.79\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.69-2.60(\mathrm{~m}$, $1 \mathrm{H}) ; 2.31\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.06-1.90(\mathrm{~m}, 5 \mathrm{H}) ; 1.76-1.73(\mathrm{~m}, 1 \mathrm{H})$; $1.66\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.0 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 1.51\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.92(\mathrm{dt}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.6,7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.84(\mathrm{~s}, 9 \mathrm{H}) ; 0.83(\mathrm{~s}, 9 \mathrm{H}) ; 0.00-0.02(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=132.3(\mathrm{CH}) ; 132.2(\mathrm{CH}) ; 132.1(\mathrm{CH}) ; 131.1(\mathrm{CH}) ; 131.0(\mathrm{CH}) ; 127.7(\mathrm{CH}) ; 77.4$ (CH); $76.5(\mathrm{CH}) ; 76.0$ (HCO-); 75.8 (HCO-); 75.7 (HCO-); 73.3 (HCO-); 73.1 (HCO-); 52.4 $(\mathrm{CH}) ; 52.2(\mathrm{CH}) ; 50.3(\mathrm{CH}) ; 50.2(\mathrm{CH}) ; 44.2\left(\mathrm{CH}_{2}\right) ; 26.1\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 25.7$ $\left(\mathrm{CH}_{2}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 17.9$ (Cquat); 17.8 (Cquat); $14.6\left(\mathrm{CH}_{3}\right) ; 14.5\left(\mathrm{CH}_{3}\right) ; 14.1\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right)$; $4.6\left(\mathrm{CH}_{3}\right) ;-4.8(\mathrm{CH}) ; 19: R_{f}=0.38\left(9 / 1:\right.$ Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 5.56-5.50 (m, 2H); 5.34-5.28 (m, 2H); 4.18-4.13 (m, 1H); 3.92-3.86 (m, 1H); $3.78(\mathrm{q}, 6.0 \mathrm{~Hz}$, $1 \mathrm{H}) ; 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}) ; 2.37-2.26(\mathrm{~m}, 3 \mathrm{H}) ; 2.05-1.88(\mathrm{~m}, 6 \mathrm{H}) ; 1.76\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$; $1.50\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz} ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.92\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.2,7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.85(\mathrm{~s}$, $9 \mathrm{H}) ; 0.84(\mathrm{~s}, 9 \mathrm{H}) ; 0.02--0.02(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.2(\mathrm{CH}) ; 132.0$ $(\mathrm{CH}) ; 131.9(\mathrm{CH}) ; 130.7(\mathrm{CH}) ; 130.6(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 78.4$ (Cquat); 78.3 (Cquat); 75.7 (HCO); 75.7 (HCO-); 75.6 (CHO-); 74.9 (Cquat); 74.8 (Cquat); 70.8 ((HCO-); 70.7 (HCO-); 52.3 $(\mathrm{CH}) ; 52.2(\mathrm{CH}) ; 50.2(\mathrm{CH}) ; 44.2\left(\mathrm{CH}_{2}\right) ; 28.0\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.7\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 17.9$ (Cquat); 17.8 (Cquat); $14.1\left(\mathrm{CH}_{3}\right) ; 3.4\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ;-4.6\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$.
((1R,3S,4S,5R)-4-((S,E)-3-(1-ethoxyethoxy)hept-1-en-5-ynyl)-5-((Z)-pent-2-enyl)cyclopentane-1,3-diyl)bis(oxy)bis(tert-butyldimethylsilane) 21a:
At room temperature, pyridinium p-toluene sulfonate ($14 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.015 \mathrm{eq}$) was added to 12a ($550 \mathrm{mg}, 1.12 \mathrm{mmol}, 1 \mathrm{eq}$) in a mixture of ethylvinyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1 / 1(10 \mathrm{~mL})$. The reaction was stirred 5 hours, NaHCO_{3} powder $(100 \mathrm{mg})$ was added, and the solution was stirred 10 min more. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and saturated NaHCO_{3} solution $(25 \mathrm{~mL})$ were added. The layers were separated. The aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The organic layers were washed with brine ($2 \times 25 \mathrm{~mL}$), dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified by flash chromatography pre-treated by $\mathrm{Et}_{3} \mathrm{~N}\left(95 / 5 \mathrm{Pentane}^{2} / \mathrm{Et}_{2} \mathrm{O}\right)$ to obtain protected alkyne ($487 \mathrm{mg}, 77 \%$). $R_{f}=0.53$ ($9 / 1:$ Cyclohexane/AcOEt); IR (neat) : $v=$ $3313 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.56-5.50(\mathrm{~m}, 2 \mathrm{H}) ; 5.41-5.56(\mathrm{~m}, 2 \mathrm{H}) ; 4.77(\mathrm{q}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4 \mathrm{~Hz}, 0.5 \mathrm{H}\right) ; 4.71\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=0.5 \mathrm{H}\right) ; 4.15\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.8 \mathrm{~Hz}, 0.5 \mathrm{H}\right) ; 4.11-4.07(\mathrm{~m}$, $0.5 \mathrm{H}) ; 3.95-3.90(\mathrm{~m}, 1 \mathrm{H}) ; 3.81-3.77(\mathrm{~m}, 1 \mathrm{H}) ; 3.72-3.36(\mathrm{~m}, 2 \mathrm{H}) ; 2.79-2.63(\mathrm{~m}, 1 \mathrm{H}) ; 2.52-2.34(\mathrm{~m}$, $2 \mathrm{H}) ; 2.31\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.08-1.88(\mathrm{~m}, 6 \mathrm{H}) ; 1.54-1.49(\mathrm{~m}, 1 \mathrm{H}) ;$
$1.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.0 \mathrm{~Hz}, 1.5 \mathrm{H}\right) ; 1.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.0 \mathrm{~Hz}, 1.5 \mathrm{H}\right) ; 1.20-1.14(\mathrm{~m}, 3 \mathrm{H}) ; 0.94(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.6 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.01-0.00(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=133.5(\mathrm{CH}) ; 132.2(\mathrm{CH}) ; 132.1(\mathrm{CH}), 131.8(\mathrm{CH}) ; 131.7(\mathrm{CH}) ; 130.8(\mathrm{CH}) ; 127.7$ (CH); $127.6(\mathrm{CH}), 98.8\left(\mathrm{HC}(\mathrm{O}-)_{2}\right) ; 97.1\left(\mathrm{HC}(\mathrm{O}-)_{2}\right) ; 81.0(\mathrm{C} \equiv) ; 80.9(\mathrm{C} \equiv) ; 75.9(\mathrm{HCO}) ; 75.8$ (HCO-); 75.7 (HCO-); 75.0 (HCO-); 74.4 (HCO-); 70.0 (HC \equiv); 69.8 (HC \equiv); 61.1($\mathrm{H}_{2} \mathrm{CO}$) ; 59.1 $\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 52.3(\mathrm{CH}) ; 52.2(\mathrm{CH}) ; 50.2(\mathrm{CH}) ; 50.1(\mathrm{CH}) ; 44.3\left(\mathrm{CH}_{2}\right) ; 26.2\left(\mathrm{CH}_{2}\right) ; 26.1\left(\mathrm{CH}_{2}\right) ; 25.8$ $\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 20.4\left(\mathrm{CH}_{2}\right) ; 20.2\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $15.4\left(\mathrm{CH}_{3}\right) ; 15.2\left(\mathrm{CH}_{3}\right)$; $14.2\left(\mathrm{CH}_{3}\right)$; $-4.4\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ; 4.6\left(\mathrm{CH}_{3}\right) ;-4.7\left(\mathrm{CH}_{3}\right)$.
At- $78^{\circ} \mathrm{C}$, LDA was prepared with diisopopyl amine ($212 \mu \mathrm{l}, 1.5 \mathrm{mmol}, 2.3 \mathrm{eq}$) and $\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $900 \mu \mathrm{l}, 1.44 \mathrm{mmol}, 2.2 \mathrm{eq})$ in THF (15 mL). After 15 min , LDA was added to a solution of alkyne ($370 \mathrm{mg}, 0.65 \mathrm{mmol}, 1 \mathrm{eq}$) in THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred 1 hour at the same temperature and DMPU ($160 \mu \mathrm{l}, 1.3 \mathrm{mmol}, 2 \mathrm{eq}$) and MeI ($61 \mu \mathrm{l}, 0.98 \mathrm{mmol}$, 1.5 eq) was added. The reaction was stirred overnight. Brine (25 mL) with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (2.5 $\mathrm{mL})$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic one were washed with brine ($2 \times 10 \mathrm{~mL}$), dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified by flash chromatography pre-treated by $\mathrm{Et}_{3} \mathrm{~N}\left(95 / 5\right.$ Pentane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to obtain 21a ($269 \mathrm{mg}, 71 \%$). $R_{f}=0.5$ ($9 / 1:$ Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.52-$ 5.47 (m, 2H); 5.40-5.30 (m, 2H); 4.78-4.75 (m, 0.5H); 4.72-4.70 (m, 0.5H); 4.17-4.01 (m, 1H); 3.95-3.89 (m, 1H); 3.81-3.76 (m, 1H); 3.72-3.65 (m, 0.5H); 3.62-3.52 (m, 1H); 3.43-3.67 (m, $0.5 \mathrm{H}) ; 2.69-2.63(\mathrm{~m}, 1 \mathrm{H}) ; 2.53-2.29(\mathrm{~m}, 4 \mathrm{H}) ; 2.09-1.85(\mathrm{~m}, 5 \mathrm{H}) ; 1.74-1.73(\mathrm{~m}, 3 \mathrm{H}) ; 1.53-1.47(\mathrm{~m}$, $\left.1 \mathrm{H}) ; 1.31-1.14(\mathrm{~m}, 6 \mathrm{H}) ; 0.94 \mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.01(\mathrm{~s}, 6 \mathrm{H}) ;$ $0.00(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.5(\mathrm{CH}) ; 132.2(\mathrm{CH}) ; 132.1(\mathrm{CH}) ; 131.8(\mathrm{CH})$; $131.7(\mathrm{CH}) ; 130.9(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 127.7(\mathrm{CH}) ; 98.9\left(\mathrm{HC}(\mathrm{O}-)_{2}\right) ; 97.1\left(\mathrm{HC}(\mathrm{O}-)_{2}\right) ; 81.0(\mathrm{C} \equiv) ;$ 80.9 (C \equiv); 76.0 (HCO-); 75.9 (HCO-); 75.8 (HCO-); 75.7 ($\mathrm{C} \equiv$); 75.6 (C \equiv); 70.0 (HCO-); 69.8 (HCO-); $59.1\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 59.0\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 52.3(\mathrm{CH}) ; 52.2(\mathrm{CH}) ; 50.2(\mathrm{CH}) ; 50.1(\mathrm{CH}) ; 44.3\left(\mathrm{CH}_{2}\right)$; $26.5\left(\mathrm{CH}_{2}\right) ; 26.4\left(\mathrm{CH}_{2}\right) ; 26.6\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 20.5\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $15.4\left(\mathrm{CH}_{3}\right) ; 15.2\left(\mathrm{CH}_{3}\right) ; 14.2\left(\mathrm{CH}_{3}\right) ; 14.0\left(\mathrm{CH}_{3}\right) ; 3.5\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right)$.
((1R,3S,4S,5R)-4-((R,E)-3-(1-ethoxyethoxy)hept-1-en-5-ynyl)-5-((Z)-pent-2-enyl)cyclopentane-1,3-diyl)bis(oxy)bis(tert-butyldimethylsilane) 21b :
In the same way, with the other diastereoisomer $\mathbf{1 2 b}(665 \mathrm{mg}, 1.35 \mathrm{mmol}, 1 \mathrm{eq})$, the protected alkyne was obtained ($672 \mathrm{mg}, 88 \%$). $R_{f}=0.53$ ($9 / 1$: Cyclohexane/AcOEt); IR (neat) : $v=3313$ $\mathrm{cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.56-5.47(\mathrm{~m}, 2 \mathrm{H}) ; 5.45-5.27(\mathrm{~m}, 2 \mathrm{H}) ; 4.80-4.70$ (m,1H); 4.18-4.08 (m, 1H); 3.96-3.90 (m, 1H); 3.81-3.75 (m, 1H); 3.73-3.32 (m, 2H); 2.68-2.62
(m, 1H); 2.52-2.29 (m, 3H); 2.10-1.85 (m, 6H); 1.56-1.49 (m, 1H); 1.31-1.26 (m, 3H); 1.31-1.26 $(\mathrm{m}, 3 \mathrm{H}) ; 1.21-1.15(\mathrm{~m}, 4 \mathrm{H}) ; 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.6 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.01-0.00$ (m, 12 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.3(\mathrm{CH}) ; 132.1(\mathrm{CH}) ; 132.0(\mathrm{CH}), 131.8(\mathrm{CH})$; $131.5(\mathrm{CH}) ; 131.0(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 127.7(\mathrm{CH}), 98.8\left(\mathrm{HC}(\mathrm{O}-)_{2}\right) ; 97.1\left(\mathrm{HC}(\mathrm{O}-)_{2}\right) ; 80.9(\mathrm{C} \equiv) ;$ 80.8 (C \equiv); 76.0 (HCO-); 75.9 (HCO-); 75.8 (HCO-); 75.7 (HCO-); 75.0 (HCO-); 74.2 (HCO-); $70.0(\mathrm{HC} \equiv) ; 69.8(\mathrm{HC} \equiv) ; 61.2\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 59.0\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 52.5(\mathrm{CH}) ; 50.2(\mathrm{CH}) ; 50.3(\mathrm{CH}) ;$ 44.3($\left.\mathrm{CH}_{2}\right) ; 26.2\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 20.5\left(\mathrm{CH}_{2}\right) ; 20.2\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); $15.4\left(\mathrm{CH}_{3}\right) ; 15.2\left(\mathrm{CH}_{3}\right) ; 14.2\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right)$.
In the same way, the other diastereoisomer ($660 \mathrm{mg}, 1.17 \mathrm{mmol}, 1 \mathrm{eq}$), 21b was obtained (481 $\mathrm{mg}, 87 \%$). $R_{f}=0.5$ ($9 / 1:$ Cyclohexane/ AcOEt); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.54-5.41(\mathrm{~m}$, 2H); 5.38-5.31 (m, 2H); 4.76-4.71 (m, 1H); 4.11-4.01 (m, 1H); 3.96-3.88 (m, 1H); 3.80-3.76 (m, $1 \mathrm{H}) ; 3.71-3.28(\mathrm{~m}, 2 \mathrm{H}) ; 2.67-2.59(\mathrm{~m}, 1 \mathrm{H}) ; 2.52-2.26(\mathrm{~m}, 4 \mathrm{H}) ; 2.10-1.85(\mathrm{~m}, 5 \mathrm{H}) ; 1.72(\mathrm{sl}, 3 \mathrm{H}) ;$ $\left.1.54-1.49(\mathrm{~m}, 1 \mathrm{H}) ; 1.30-1.15(\mathrm{~m}, 6 \mathrm{H}) ; 0.93 \mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.84(\mathrm{~s}, 9 \mathrm{H}) ;$ $0.01--0.01(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=132.9(\mathrm{CH}) ; 132.3(\mathrm{CH}) ; 132.1(\mathrm{CH}) ;$ $131.6(\mathrm{CH}) ; 131.1(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 127.7(\mathrm{CH}) ; 98.8\left(\mathrm{HC}(\mathrm{O}-)_{2}\right) ; 97.1\left(\mathrm{HC}(\mathrm{O}-)_{2}\right) ; 77.2(\mathrm{C} \equiv) ;$ 77.0 (C \equiv); 76.1 (HCO-); 76.0 (HCO-); 75.9 (HCO-); 75.8 ($\mathrm{C} \equiv$); 75.7 (C \equiv); 75.6 (HCO-); 75.0 (HCO-); $61.1\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 58.9\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 52.6(\mathrm{CH}) ; 52.5(\mathrm{CH}) ; 50.4(\mathrm{CH}) ; 44.4\left(\mathrm{CH}_{2}\right) ; 44.3\left(\mathrm{CH}_{2}\right)$; $26.6\left(\mathrm{CH}_{2}\right) ; 26.5\left(\mathrm{CH}_{2}\right) ; 26.1\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 20.5\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $15.4\left(\mathrm{CH}_{3}\right) ; 15.2\left(\mathrm{CH}_{3}\right) ; 14.2\left(\mathrm{CH}_{3}\right) ; 13.9\left(\mathrm{CH}_{3}\right) ; 3.5\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right)$; $4.5\left(\mathrm{CH}_{3}\right) ;-4.6\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$.
(S,E)-1-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)hept-1-en-5-yn-3-ol 19a :

At room temperature, 21a ($232 \mathrm{mg}, 0.4 \mathrm{mmol}, 1 \mathrm{eq}$), and pyridinium p-toluene sulfonate (50 mg , $0.2 \mathrm{mmol}, 0.5 \mathrm{eq})$ in a solution of propanol$/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 6 / 1(26 \mathrm{~mL})$ were stirred 4 hours. $\mathrm{NaHCO} \mathrm{H}_{3}$ powder was added, the solvent were removed and the crude was purified by flash chromatography ($95 / 5$ to $90 / 10$ Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to obtain 19a ($145 \mathrm{mg}, 71 \%$). $R_{f}=0.26$ (9/1 : Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=-16.5\left(\mathrm{c}=10, \mathrm{CHCl}_{3}\right)$; IR (neat) : $\mathrm{v}=3360 \mathrm{~cm}^{-1}(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.62-5.52(\mathrm{~m}, 2 \mathrm{H}) ; 5.42-5.29(\mathrm{~m}, 2 \mathrm{H}) ; 4.23-4.18(\mathrm{~m}, 1 \mathrm{H}) ; 3.92$ (dt, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.95-3.80(\mathrm{~m}, 1 \mathrm{H}) ; 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}) ; 2.47-2.30(\mathrm{~m}, 3 \mathrm{H}) ; 2.12-1.91$ $(\mathrm{m}, 6 \mathrm{H}) ; 1.80\left(\mathrm{t},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 1.54\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.96$ $\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.89(\mathrm{~s}, 9 \mathrm{H}) ; 0.87(\mathrm{~s}, 9 \mathrm{H}) ; 0.04-0.02(\mathrm{~m}, 12 \mathrm{H})$; NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=133.2(\mathrm{CH}) ; 132.1(\mathrm{CH}) ; 130.8(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 78.5(\mathrm{C} \equiv) ; 76.0(\mathrm{HCO}) ; 75.7$ (C \equiv); $74.8(\mathrm{HCO}-) ; 70.8(\mathrm{HCO}-) ; 52.2(\mathrm{CH}) ; 50.3(\mathrm{CH}) ; 44.3\left(\mathrm{CH}_{2}\right) ; 28.1\left(\mathrm{CH}_{2}\right) ; 26.1\left(\mathrm{CH}_{2}\right)$;
$25.8\left(\mathrm{CH}_{3}\right) ; 20.7\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $14.2\left(\mathrm{CH}_{3}\right) ; 3.5\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.6$ $\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 507.3690$, found 507.3684.

(R,E)-1-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-

 enyl)cyclopentyl)hept-1-en-5-yn-3-ol 19b :In the same way, with 21b ($480 \mathrm{mg}, 0.83 \mathrm{mmol}, 1 \mathrm{eq}$), deprotected alcohol 19b was obtain (241 $\mathrm{mg}, 57 \%) . R_{f}=0.26$ (9/1:Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=-6.9$ (c=10, CHCl_{3}); IR (neat) : $\mathrm{v}=3360$ $\mathrm{cm}^{-1}(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.61-5.49(\mathrm{~m}, 2 \mathrm{H}) ; 5.39-5.30(\mathrm{~m}, 2 \mathrm{H}) ; 4.20(\mathrm{q}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.8 \mathrm{~Hz} ; 1 \mathrm{H}\right) ; 3.94\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 3.84-3.79(\mathrm{~m}, 1 \mathrm{H}) ; 3.68-3.63(\mathrm{~m}$, $1 \mathrm{H}) ; 2.45-2.30(\mathrm{~m}, 3 \mathrm{H}) ; 2.11-1.88(\mathrm{~m}, 6 \mathrm{H}) ; 1.80\left(\mathrm{t},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 1.54\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.2\right.$ $\left.\mathrm{Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.96\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.87(\mathrm{~s}, 9 \mathrm{H}) ; 0.04-0.02$ (m, 12H); NMR (100 MHz, CDCl_{3}): $\delta=133.2(\mathrm{CH}) ; 132.1(\mathrm{CH}) ; 130.7(\mathrm{CH}) ; 127.8(\mathrm{CH}) ; 78.4$ (C \equiv); 76.0 (HCO-); 75.8 ($\mathrm{C} \equiv$); 74.9 (HCO-); 70.9 ($\mathrm{HCO}-) ; 52.4(\mathrm{CH}) ; 50.3(\mathrm{CH}) ; 44.2\left(\mathrm{CH}_{2}\right)$; $28.1\left(\mathrm{CH}_{2}\right) ; 26.1\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $14.2\left(\mathrm{CH}_{3}\right) ; 3.5$ $\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.6\left(\mathrm{CH}_{3}\right) ;-4.7\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{O}_{3} \mathrm{Si}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 507.3690$, found 507.3685 .

4-hydroxybutyl hept-5-ynoate : 23 .
At- $78^{\circ} \mathrm{C}$, LDA was prepared with diisopopylamine ($8.65 \mathrm{~mL}, 61.5 \mathrm{mmol}, 2.3 \mathrm{eq}$) and BuLi (1.6 M in hexane, $36.7 \mathrm{~mL}, 58.8 \mathrm{mmol}, 2.2 \mathrm{eq}$) in THF (250 mL). After 15 min , LDA was added to a solution of 5-hexynoïc acid ($3 \mathrm{~g}, 26.7 \mathrm{mmol}, 1 \mathrm{eq}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred 1 hour at the same temperature and DMPU ($6.47 \mathrm{~mL}, 53.5 \mathrm{mmol}, 2 \mathrm{eq}$) and MeI ($2.5 \mathrm{~mL}, 40.1 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added. The reaction was stirred overnight. A solution of $\mathrm{HCl} 1 \mathrm{M}(150 \mathrm{~mL})$ was added and saturated with NaCl powder. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The organic one were washed with brine ($2 \times 150 \mathrm{~mL}$), dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified by flash chromatography (69/29/2 Pentane/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{HCO}_{2} \mathrm{H}$) to obtain hept-5-ynoic acid ($3.27 \mathrm{~g}, 97 \%$). $R_{f}=0.45$ ($1 / 1:$ Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.6(\mathrm{ls}, 1 \mathrm{H}) ; 2.46\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 2.27-2.15(\mathrm{~m}, 2 \mathrm{H}) ; 1.86-1.73(\mathrm{~m}$, $5 \mathrm{H})$; NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=179.6(\mathrm{C}=\mathrm{O}) ; 77.6(\mathrm{C} \equiv) ; 76.3(\mathrm{C} \equiv) ; 32.7\left(\mathrm{CH}_{2}\right) ; 23.8\left(\mathrm{CH}_{2}\right)$; $18.0\left(\mathrm{CH}_{2}\right)$; $3.3\left(\mathrm{CH}_{3}\right)$.
Hept-5-ynoic acid (3g, $23.7 \mathrm{mmol}, 1 \mathrm{eq}$), 1,4 butan-diol ($10.5 \mathrm{~mL}, 119 \mathrm{mmol}, 5 \mathrm{eq}$) and ptoluenesulfonyl acid ($113 \mathrm{mg}, 0.6 \mathrm{mmol}, 0.025 \mathrm{eq}$) in heptane $(250 \mathrm{~mL})$ were refluxed 1 hour with Dean-Stark apparatus. The reaction was cooled and brine (200 mL) was added. The layers were separated. The aqueous one was extracted with $3 \times 200 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with brine ($3 \times 100 \mathrm{~mL}$), dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified by flash chromatography ($8 / 2$ to $4 / 6$ Pentane/ $\mathrm{Et}_{2} \mathrm{O}$) to obtain 23
$(4.3 \mathrm{~g}, 91 \%) . R_{f}=0.27$ (1/1: Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.07(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.3 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 3.63\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.3 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 2.38\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 2.11-2.18$ $(\mathrm{m}, 2 \mathrm{H}) ; 1.77-1.59(\mathrm{~m}, 10 \mathrm{H}) ; \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.3(\mathrm{C}=\mathrm{O}) ; 77.8(\mathrm{C} \equiv) ; 76.3(\mathrm{C} \equiv) ;$ $64.1\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 62.2\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 33.1\left(\mathrm{CH}_{2}\right) ; 29.0\left(\mathrm{CH}_{2}\right) ; 25.0\left(\mathrm{CH}_{2}\right) ; 24.1\left(\mathrm{CH}_{2}\right) ; 18.1\left(\mathrm{CH}_{2}\right) ; 3.3$ $\left(\mathrm{CH}_{3}\right)$.
4-(hept-5-ynoyloxy)butanoic acid: 22.
At $-60^{\circ} \mathrm{C}$, DMSO ($3.84 \mathrm{~mL}, 54.2 \mathrm{mmol}, 2.5 \mathrm{eq}$) was added to a solution of oxalyl chloride (2.35 $\mathrm{mL}, 27.1 \mathrm{mmol}, 1.25 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The reaction was stirred 10 min and $23(4.3 \mathrm{~g}$, 21.7 mmol , 1 eq) diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was added. After 10 min more, $\mathrm{Et}_{3} \mathrm{~N}(16.6 \mathrm{~mL}, 119.3$ $\mathrm{mmol}, 5.5 \mathrm{eq})$ was added. The reaction mixture was allowed to reach $0^{\circ} \mathrm{C}$. Brine (100 mL) and water (100 mL) were added. The layers were separated. The aqueous one was extracted with 3 x 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with brine ($3 \times 100 \mathrm{~mL}$), dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified by flash chromatography ($9 / 1$ to $7 / 3$ Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to obtain 4-oxobutyl hept-5-ynoate ($4.19 \mathrm{~g}, 98 \%$). $R_{f}=$ 0.24 (3/1: Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.72(\mathrm{ls}, 1 \mathrm{H}) ; 4.04\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$, $6.3 \mathrm{~Hz}, 2 \mathrm{H}) ; 2.47\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 2.34\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 2.09-2.16(\mathrm{~m}, 2 \mathrm{H})$; 1.90 (quint, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 1.73-1.68(\mathrm{~m}, 5 \mathrm{H}) ;$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.9(\mathrm{C}=\mathrm{O})$; $173.0(\mathrm{C}=\mathrm{O}) ; 77.7(\mathrm{C} \equiv) ; 76.3(\mathrm{C} \equiv) ; 63.1\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 40.3\left(\mathrm{CH}_{2}\right) ; 32.9\left(\mathrm{CH}_{2}\right) ; 24.0\left(\mathrm{CH}_{2}\right) ; 21.3$ $\left(\mathrm{CH}_{2}\right) ; 18.1\left(\mathrm{CH}_{2}\right) ; 3.3\left(\mathrm{CH}_{3}\right)$.

At room temperature, Sodium Chlorite ($2.11 \mathrm{~g}, 23.3 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added by portion to a solution of aldehyde ($4.19 \mathrm{~g}, 21.3 \mathrm{mmol}, 1 \mathrm{eq}$), 2 methyl butene ($3.48 \mathrm{~mL}, 32.9 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{KH}_{2} \mathrm{PO}_{4}(450 \mathrm{mg}, 3.29 \mathrm{mmol}, 0.15 \mathrm{eq})$ in a mixture of $\mathrm{H}_{2} \mathrm{O} /{ }^{t} \mathrm{BuOH} 1 / 4(40 \mathrm{~mL})$. The mixture was stirred 1 hour and was acidified to $\mathrm{pH}=1$ with a solution of HCl 1 M . The solution was extracted with $3 \times 100 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $2 \times 100 \mathrm{~mL}$ of brine, dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified by flash chromatography ($3 / 1$ to $1 / 1$ Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to obtain 22 ($3.6 \mathrm{~g}, 78 \%$). $R_{f}=0.3$ ($1 / 1$: Cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.09\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.3 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 2.44-2.36$ (m, 4H); 2.17-2.11 (m, 2H); 1.94 (quint, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 1.78-1.69(\mathrm{~m}, 5 \mathrm{H})$; NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.8(\mathrm{C}=\mathrm{O}) ; 173.2(\mathrm{C}=\mathrm{O}) ; 77.7(\mathrm{C} \equiv) ; 76.4(\mathrm{C} \equiv) ; 63.1\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 32.9\left(\mathrm{CH}_{2}\right)$; $30.4\left(\mathrm{CH}_{2}\right) ; 24.0\left(\mathrm{CH}_{2}\right) ; 23.7\left(\mathrm{CH}_{2}\right) ; 18.1\left(\mathrm{CH}_{2}\right) ; 3.3\left(\mathrm{CH}_{3}\right)$.

4-((S,E)-1-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)hept-1-en-5-yn-3-yloxy)-4-oxobutyl hept-5-ynoate: 24a .

At room temperature, alcohol 19a ($145 \mathrm{mg}, 0.28 \mathrm{mmol}, 1 \mathrm{eq}$), acid $22(121 \mathrm{mg}, 0.57 \mathrm{mmol}, 2 \mathrm{eq})$, EDCI ($109 \mathrm{mg}, 0.57 \mathrm{mmol}, 2 \mathrm{eq}$), DMAP ($14 \mathrm{mg}, 0.114 \mathrm{mmol}, 0.4 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were
stirred overnight. Brine (10 mL) and water (5 mL) were added. The reaction mixture was extracted with $3 \times 20 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with $3 \times 10 \mathrm{~mL}$ of brine, dried over MgSO_{4}, filtered and the solvents removed. The crude of the reaction was purified by flash chromatography ($97 / 3$ Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to obtain 24a (191 mg, 95%). $R_{f}=0.34$ (9/1: Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=-17.6\left(\mathrm{c}=10, \mathrm{CHCl}_{3}\right)$; IR (neat) : $v=1737 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.63\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.2,15.4 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.54\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.9,15.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}) ; 5.39-5.30(\mathrm{~m}, 3 \mathrm{H}) ; 4.11\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 3.95-3.89(\mathrm{~m}, 1 \mathrm{H}) ; 3.81\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}) ; 2.70-2.64(\mathrm{~m}, 1 \mathrm{H}) ; 2.46-2.17(\mathrm{~m}, 7 \mathrm{H}) ; 2.21-2.17(\mathrm{~m}, 2 \mathrm{H}) ; 2.08-1.85(\mathrm{~m}, 8 \mathrm{H}) ; 1.83-1.75$ $(\mathrm{m}, 7 \mathrm{H}) ; 1.54\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.95\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.88$ (s, 9H); $0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.03-0.01(\mathrm{~m}, 12 \mathrm{H}) ;$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2(\mathrm{C}=\mathrm{O}) ; 171.8$ (C=O); $134.1(\mathrm{CH}) ; 132.2(\mathrm{CH}) ; 128.8$; (CH) $127.7(\mathrm{CH}) ; 77.9(\mathrm{C} \equiv) ; 77.8(\mathrm{C} \equiv) ; 76.4(\mathrm{C} \equiv) ; 75.8$ (C \equiv); 75.6 (HCO-); 74.2 (HCO-); $73.0(\mathrm{HCO}-) ; 63.3\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 52.2(\mathrm{CH}) ; 50.4(\mathrm{CH}) ; 44.3\left(\mathrm{CH}_{2}\right)$; $33.1\left(\mathrm{CH}_{2}\right) ; 31.0\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 25.1\left(\mathrm{CH}_{2}\right) ; 24.2\left(\mathrm{CH}_{2}\right) ; 24.1\left(\mathrm{CH}_{2}\right) ; 20.6\left(\mathrm{CH}_{2}\right)$; $18.2\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $14.2\left(\mathrm{CH}_{3}\right) ; 3.5\left(\mathrm{CH}_{3}\right) ; 3.4\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right)$; -4.6 $\left(\mathrm{CH}_{3}\right)$; -4.7 $\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{40} \mathrm{H}_{69} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 701.4633$, found 701.4632.

4-((R,E)-1-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyloxy)-2-((Z)-pent-2-enyl)cyclopentyl)hept-1-en-5-yn-3-yloxy)-4-oxobutyl hept-5-ynoate: 24a .

In the same way and with $\mathbf{1 9 b}$. $(166 \mathrm{mg}), \mathbf{2 4 b}$ was obtained $(174 \mathrm{mg} ; 76 \%) . R_{f}=0.34(9 / 1$: Cyclohexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=+3.0\left(\mathrm{c}=10, \mathrm{CHCl}_{3}\right)$; IR (neat) : $\mathrm{v}=1739 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.58\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.4,15.3 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.48\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.1,15.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}) ; 5.35-5.25(\mathrm{~m}, 3 \mathrm{H}) ; 4.09\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}) ; 3.76\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}) ; 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}) ; 2.44-2.22(\mathrm{~m}, 7 \mathrm{H}) ; 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}) ; 2.02-1.82(\mathrm{~m}, 8 \mathrm{H}) ; 1.80-1.71$ $(\mathrm{m}, 7 \mathrm{H}) ; 1.51\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.2 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.85$ (s, 9H); $0.83(\mathrm{~s}, 9 \mathrm{H}) ; 0.00(\mathrm{~s}, 6 \mathrm{H}) ;-0.02(\mathrm{~s}, 3 \mathrm{H}) ;-0.03(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $173.2(\mathrm{C}=\mathrm{O})$; $171.7(\mathrm{C}=\mathrm{O}) ; 134.1(\mathrm{CH}) ; 132.2(\mathrm{CH}) ; 128.9(\mathrm{CH}) ; 127.7(\mathrm{CH}) ; 77.9(2 \times \mathrm{C} \equiv) ;$ 76.4 (C \equiv); 75.8 ($\mathrm{C} \equiv$); 75.6 (HCO-); 74.2 (HCO-); 73.1 (HCO-); 63.3 ($\left.\mathrm{H}_{2} \mathrm{CO}-\right) ; 52.4(\mathrm{CH}) ; 50.5$ (CH); $44.3\left(\mathrm{CH}_{2}\right) ; 33.1\left(\mathrm{CH}_{2}\right) ; 31.0\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 25.6\left(\mathrm{CH}_{2}\right) ; 24.2\left(\mathrm{CH}_{2}\right) ; 24.1$ $\left(\mathrm{CH}_{2}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 18.2\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $14.2\left(\mathrm{CH}_{3}\right) ; 3.4\left(2 \mathrm{x} \mathrm{CH}_{3}\right) ;-4.4$ $\left(\mathrm{CH}_{3}\right)$; -4.6 $\left(\mathrm{CH}_{3}\right)$; -4.7 $\left(\mathrm{CH}_{3}\right) ;-4.8\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{40} \mathrm{H}_{69} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 701.4633, found 701.4630.
(S,E)-10-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyl)-2-((Z)-pent-2-enyl)cyclopentyl)-8-(4-hydroxybutanoyloxy)dec-9-en-5-ynoate: 26a.
MnCl_{2} was dried under vacuum at $150^{\circ} \mathrm{C}$ overnight, $5 \AA$ molecular sieves powder was dried under vacuum at $400{ }^{\circ} \mathrm{C}$ during 30 min . 24Fehler! Verweisquelle konnte nicht gefunden werden.a was dried by azeotropic evaporation with toluene.
Catalyst 25Fehler! Verweisquelle konnte nicht gefunden werden. ($50 \mathrm{mg}, 0.04 \mathrm{mmol}, 15 \% \mathrm{~mol}$), $\mathrm{MnCl}_{2}(10.3 \mathrm{mg}, 0.08 \mathrm{mmol}, 30 \% \mathrm{~mol})$ and molecular sieves powder ($5 \AA, 1 \mathrm{~g}$) in toluene $(5 \mathrm{~mL})$ were heated at $80^{\circ} \mathrm{C}$ during 30 min . 24Fehler! Verweisquelle konnte nicht gefunden werden. \mathbf{a} ($191 \mathrm{mg}, 0.27 \mathrm{mmol}, 1 \mathrm{eq}$) in toluene (10 mL) was added and the resulting reaction mixture heated 6 hours at $80^{\circ} \mathrm{C}$ and stirred overnight at room temperature. For work up, the molecular sieves were filtered off through a short pad of silica, the filtrate was evaporated and the residue purified by flash chromatography ($97 / 3$ to $90 / 10$, pentane/ $\mathrm{Et}_{2} \mathrm{O}$) to obtain Fehler! Verweisquelle konnte nicht gefunden werden.a colorless syrup $\mathbf{2 6 a}$ ($126 \mathrm{mg}, 69 \%$ with traces of silanol impurities). $R_{f}=0.21$ ($9 / 1$: cyclohexane $/ \mathrm{AcOEt}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.64$ (dd, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.5,14.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.49-5.28(\mathrm{~m}, 4 \mathrm{H}) ; 4.19-4.07(\mathrm{~m}, 2 \mathrm{H}) ; 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}) ; 3.83-3.78$ $(\mathrm{m}, 1 \mathrm{H}) ; 2.68-2.57(\mathrm{~m}, 2 \mathrm{H}) ; 2.47-2.24(\mathrm{~m}, 9 \mathrm{H}) ; 2.06-1.81(\mathrm{~m}, 7 \mathrm{H}) ; 1.74-1.65(\mathrm{~m}, 1 \mathrm{H}) ; 1.53(\mathrm{dt}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.96\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.86(\mathrm{~s}$, $9 \mathrm{H}) ; 0.03(\mathrm{~s}, 6 \mathrm{H}) ; 0.01(\mathrm{~s}, 3 \mathrm{H}) ; 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3(\mathrm{C}=\mathrm{O})$; 172.2 (C=O); $134.3(\mathrm{CH}) ; 132.2(\mathrm{CH}) ; 129.2$; (CH) $127.7(\mathrm{CH}) ; 79.8(\mathrm{C} \equiv) ; 78.0(\mathrm{C} \equiv) ; 75.8$ (HCO-); 75.5 (HCO-); 73.3 (HCO-); $63.9\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 52.2(\mathrm{CH}) ; 50.6(\mathrm{CH}) ; 44.2\left(\mathrm{CH}_{2}\right) ; 31.9$ $\left(\mathrm{CH}_{2}\right) ; 31.6\left(\mathrm{CH}_{2}\right) ; 26.0\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 25.1\left(\mathrm{CH}_{2}\right) ; 23.3\left(\mathrm{CH}_{2}\right) ; 22.1\left(\mathrm{CH}_{2}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 18.0$ $\left(\mathrm{CH}_{2}\right) ; 17.9$ (Cquat); 17.6 (Cquat); $14.2\left(\mathrm{CH}_{3}\right)$; -4.4 $\left(\mathrm{CH}_{3}\right)$; -4.5 $\left(\mathrm{CH}_{3}\right)$; -4.6 $\left(\mathrm{CH}_{3}\right)$; -4.7 $\left(\mathrm{CH}_{3}\right)$; HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$647.4163, found 647.4154.

(R,E)-10-((1S,2R,3R,5S)-3,5-bis(tert-butyldimethylsilyl)-2-((Z)-pent-2-enyl)cyclopentyl)-8-

 (4-hydroxybutanoyloxy)dec-9-en-5-ynoate: 26b.Prepared analogously from 24Fehler! Verweisquelle konnte nicht gefunden werden.b (174 mg); product 26Fehler! Verweisquelle konnte nicht gefunden werden.b was obtained as a colorless syrup ($110 \mathrm{mg} ; 66 \%$). $R_{f}=0.21$ ($9 / 1$: cyclohexane/AcOEt); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $5.61\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.6,14.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.47-5.25(\mathrm{~m}, 4 \mathrm{H}) ; 4.19-4.06(\mathrm{~m}, 2 \mathrm{H}) ; 3.92-3.87(\mathrm{~m}, 1 \mathrm{H})$; 3.80-3.76 (m, 1H); 2.62-2.55 (m, 2H); 2.44-2.18 (m, 9H); 2.05-1.80 (m, 7H); 1.74-1.65 (m, 1H); $1.52\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.95\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.87(\mathrm{~s}, 9 \mathrm{H}) ;$ $0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.02(\mathrm{~s}, 6 \mathrm{H}) ; 0.00(\mathrm{~s}, 3 \mathrm{H}) ;-0.01(\mathrm{~s}, 3 \mathrm{H})$; NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3$ $(\mathrm{C}=\mathrm{O}) ; 172.2(\mathrm{C}=\mathrm{O}) ; 134.0(\mathrm{CH}) ; 132.3(\mathrm{CH}) ; 129.3(\mathrm{CH}) ; 127.6(\mathrm{CH}) ; 79.8(\mathrm{C} \equiv) ; 78.0(\mathrm{C} \equiv) ;$ 75.7 (HCO-); 75.5 (HCO-); 73.2 (HCO-); $63.8\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 52.3(\mathrm{CH}) ; 50.5(\mathrm{CH}) ; 44.2\left(\mathrm{CH}_{2}\right) ; 32.0$ $\left(\mathrm{CH}_{2}\right) ; 31.7\left(\mathrm{CH}_{2}\right) ; 26.1\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 25.2\left(\mathrm{CH}_{2}\right) ; 23.3\left(\mathrm{CH}_{2}\right) ; 22.2\left(\mathrm{CH}_{2}\right) ; 20.7\left(\mathrm{CH}_{2}\right) ; 18.0$
$\left(\mathrm{CH}_{2}\right) ; 17.9\left(2 \times\right.$ Cquat); $14.2\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.6\left(2 \times \mathrm{CH}_{3}\right) ;-4.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI $\left.{ }^{+}\right)$ calculated for $\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$647.4163, found 647.4146 .

8-F $\mathbf{F}_{3 \mathrm{t}}-\mathrm{IsoP}$: 3a.

To a suspension of $\mathrm{Ni}(\mathrm{OAc})_{2} .4 \mathrm{H}_{2} \mathrm{O}(23.5 \mathrm{mg}, 0.09 \mathrm{mmol}, 0.5 \mathrm{eq})$, in ethanol with 0.01% BHT (5 mL) was added under H_{2} atmosphere, NaBH_{4}, in ethanol ($0.5 \mathrm{M}, 339 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 0.9 \mathrm{eq}$). After 10 minutes was added under the black suspension, the ethylenediamine in solution in ethanol, ($0.5 \mathrm{M}, 1.7 \mathrm{~mL}, 0.85 \mathrm{mmol}, 4.5 \mathrm{eq}$). After 10 minutes, $26 \mathrm{a}(126 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0 \mathrm{eq})$ in ethanol with 0.01% BHT (10 mL) was added. Before and after each addition, three cycles vacuum $/ \mathrm{H}_{2}$ were realized. The reaction was then stirred during 48 hours under H_{2} atmosphere (GC control). The mixture was then quenched with 20 mL of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred 30 min . The layers were extracted with $3 \times 20 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine ($3 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}, filtered and the solvents were removed. The crude of the reaction was purified by flash chromatography ($97 / 3$ Pentane/ $\mathrm{Et}_{2} \mathrm{O}$) to obtain ethylenic compound ($88.3 \mathrm{mg}, 70 \%$). $R_{f}=0.29$ (9/1: Cyclohexane $/ \mathrm{AcOEt}$); $[\alpha]_{\mathrm{D}}{ }^{20}=-50.5$ $\left(\mathrm{c}=10, \mathrm{CHCl}_{3}\right) ; v=1737 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.58-5.56(\mathrm{~m}, 2 \mathrm{H}) ; 5.45-$ $5.27(\mathrm{~m}, 5 \mathrm{H}) ; 4.20\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4 ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=11 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 4.03\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.6 ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=11\right.$ $\mathrm{Hz} ; 1 \mathrm{H})$; 3.93-3.89 (m, 1H); $3.81\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.6 \mathrm{~Hz} ; 1 \mathrm{H}\right) ; 2.69-2.65(\mathrm{~m}, 1 \mathrm{H}) ; 2.54$ (ddd, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4,11.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.48-2.25(\mathrm{~m}, 6 \mathrm{H}) ; 2.12-1.88(\mathrm{~m}, 9 \mathrm{H}) ; 1.79$ (quint, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.54\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.96\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 3 \mathrm{H}\right)$; $0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.03(\mathrm{~s}, 6 \mathrm{H}) ; 0.02(\mathrm{~s}, 3 \mathrm{H}) ; 0.01(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $173.7(\mathrm{C}=\mathrm{O}) ; 172.0(\mathrm{C}=\mathrm{O}) ; 132.8(\mathrm{CH}) ; 132.2(\mathrm{CH}) ; 131.8(\mathrm{CH}) ; 129.6$; (CH) $127.7(\mathrm{CH})$; 124.8 (CH); 75.9 (HCO-); 75.5 (HCO-); 73.7 (HCO-); 62.1 (H2CO-); $52.4(\mathrm{CH}) ; 50.5(\mathrm{CH}) ; 44.2$ $\left(\mathrm{CH}_{2}\right) ; 33.7\left(\mathrm{CH}_{2}\right) ; 32.8\left(\mathrm{CH}_{2}\right) ; 30.3\left(\mathrm{CH}_{2}\right) ; 26.4\left(\mathrm{CH}_{2}\right) ; 26.1\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 24.9\left(\mathrm{CH}_{2}\right) ; 23.3$ $\left(\mathrm{CH}_{2}\right) ; 20.6\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); 17.9 (Cquat); $14.2\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.5\left(\mathrm{CH}_{3}\right) ;-4.6\left(\mathrm{CH}_{3}\right)$; $4.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI^{+}) calculated for $\mathrm{C}_{36} \mathrm{H}_{65} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 649.4320$, found 649.4333.

At room temperature, a HCl solution (0.5 M in $\mathrm{MeOH}, 2.46 \mathrm{~mL}, 1.23 \mathrm{mmol}, 10 \mathrm{eq}$) was added to a solution of protected compound ($83 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$) in THF/MeOH ($17 \mathrm{~mL} / 9 \mathrm{~mL}$). The reaction was stirred 2 hours and NaHCO_{3} powder was added. After 5 min of agitation, celite ${ }^{\circledR}$ was added and the solvent were evaporated. The crude of the reaction was purified by flash chromatography ($95 / 5$ to $90 / 10$ Pentane $/ \mathrm{Et}_{2} \mathrm{O}$) to obtain free hydroxyl compound ($44 \mathrm{mg}, 84 \%$). $R_{f}=0.3(\mathrm{AcOEt}) ;[\alpha]_{\mathrm{D}}{ }^{20}=-51.9\left(\mathrm{c}=10, \mathrm{CHCl}_{3}\right) ; \mathrm{v}=3389(\mathrm{OH}) ; 1732 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.61\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=16 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.53\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.8 \mathrm{~Hz}\right.$, $\left.{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=16 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.45-5.31(\mathrm{~m}, 5 \mathrm{H}) ; 4.19\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.6 ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 4.07-$ $3.95(\mathrm{~m}, 3 \mathrm{H}) ; 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}) ; 2.54\left(\mathrm{ddd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.5,11.1,15.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.46-2.37(\mathrm{~m}$,
$4 \mathrm{H}) ; 3.31-2.24(\mathrm{~m}, 2 \mathrm{H}) ; 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}) ; 2.12-1.90(\mathrm{~m}, 8 \mathrm{H}) ; 1.78$ (quint, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.7 \mathrm{~Hz}$, $2 \mathrm{H}) ; 1.66\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.6 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.96\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$; NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.7(\mathrm{C}=\mathrm{O}) ; 172.2(\mathrm{C}=\mathrm{O}) ; 133.1(\mathrm{CH}) ; 132.0(\mathrm{CH}) ; 131.2(\mathrm{CH}) ; 130.5$; (CH) $127.2(\mathrm{CH}) ; 124.6(\mathrm{CH}) ; 76.4(\mathrm{HCOH}) ; 76.2(\mathrm{HCOH}) ; 73.6(\mathrm{HCO}-) ; 62.2\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 53.6$ (CH); $50.9(\mathrm{CH}) ; 42.3\left(\mathrm{CH}_{2}\right) ; 33.6\left(\mathrm{CH}_{2}\right) ; 32.8\left(\mathrm{CH}_{2}\right) ; 30.4\left(\mathrm{CH}_{2}\right) ; 26.9\left(\mathrm{CH}_{2}\right) ; 26.4\left(\mathrm{CH}_{2}\right) ; 24.7$ $\left(\mathrm{CH}_{3}\right) ; 23.4\left(\mathrm{CH}_{2}\right) ; 20.7\left(\mathrm{CH}_{2}\right) ; 14.2\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 421.2590 , found 421.2588.

At room temperature, a solution of $\mathrm{LiOH}(0.5 \mathrm{M}, 5 \mathrm{~mL}, 2.5 \mathrm{mmol}, 25 \mathrm{eq})$ was added to a solution of lactone ($44 \mathrm{mg}, 0.1 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (5 mL). The reaction was stirred 4 hours and was acidified with a solution of $\mathrm{NaHSO}_{4}(1 \mathrm{M})$ until $\mathrm{pH}=2$. The mixture was extracted with 3×20 mL of AcOEt. The combined organic layers were washed with brine ($2 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}, filtered and the solvents were removed. The crude of the reaction was purified by flash chromatography ($100 / 0$ to $98 / 2 \mathrm{AcOEt} / \mathrm{HCO}_{2} \mathrm{H}$) to obtain 3a ($34.8 \mathrm{mg}, 94 \%$). $R_{f}=0.27$ ($\mathrm{AcOEt} / \mathrm{HCO}_{2} \mathrm{H} 95 / 5$); $[\alpha]_{\mathrm{D}}{ }^{20}=-8.0(\mathrm{c}=5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{MeOD}\right): \delta=5.59-5.57$ $(\mathrm{m}, 2 \mathrm{H}) ; 5.51-5.45(\mathrm{~m}, 2 \mathrm{H}) ; 5.43-5.40(\mathrm{~m}, 2 \mathrm{H}) ; 4.09\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 4.03-3.97(\mathrm{~m}$, $1 \mathrm{H}) ; 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}) ; 2.74-2.69(\mathrm{~m}, 1 \mathrm{H}) ; 2.50\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$; 2.35-2.29 (m, 4H); 2.17-2.06 (m, 7H); 1.69 (quint, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 1.56\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.9\right.$ $\left.\mathrm{Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.99\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$; NMR ($75 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=175.0$ $(\mathrm{C}=\mathrm{O}) ; 133.0(\mathrm{CH}) ; 130.3(\mathrm{CH}) ; 128.7(\mathrm{CH}) ; 127.2(\mathrm{CH}) ; 125.8(\mathrm{CH}) ; 124.5(\mathrm{CH}) ; 73.2(2 \mathrm{x}$ $\mathrm{HCOH}) ; 70.3(\mathrm{HCOH}) ; 50.5(\mathrm{CH}) ; 48.5(\mathrm{CH}) ; 40.6\left(\mathrm{CH}_{2}\right) ; 33.4\left(\mathrm{CH}_{2}\right) ; 31.7\left(\mathrm{CH}_{2}\right) ; 24.7\left(\mathrm{CH}_{3}\right)$; $24.2\left(\mathrm{CH}_{2}\right) ; 23.1\left(\mathrm{CH}_{2}\right) ; 18.7\left(\mathrm{CH}_{2}\right) ; 11.7\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 375.2147 , found 375.2150 .

8-epi-8-F $\mathbf{F}_{3 t}$-IsoP: 3b.

In the same way and with 26b. $(110 \mathrm{mg})$, ethylenic compound was obtained ($58.4 \mathrm{mg} ; 53 \%) . R_{f}=$ 0.29 (9/1: Cyclohexane/AcOEt);); [$\alpha]_{\mathrm{D}}{ }^{20}=-50.5\left(\mathrm{c}=10, \mathrm{CHCl}_{3}\right) ; \nu=1737 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.55-5.54(\mathrm{~m}, 2 \mathrm{H}) ; 5.44-5.24(\mathrm{~m}, 5 \mathrm{H}) ; 4.20\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.3 ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $11 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.00\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.6 ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=11 \mathrm{~Hz} ; 1 \mathrm{H}\right) ; 3.92-3.89(\mathrm{~m}, 1 \mathrm{H}) ; 3.79\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $6.7 \mathrm{~Hz} ; 1 \mathrm{H}) ; 2.68-2.68(\mathrm{~m}, 1 \mathrm{H}) ; 2.53\left(\mathrm{ddd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.3,11.1,15.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.44-2.26(\mathrm{~m}, 6 \mathrm{H})$; 2.10-1.84 (m, 9H); 1.78 (quint, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 1.53\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.6 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}) ; 0.95\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 3 \mathrm{H}\right) ; 0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.02(\mathrm{~s}, 6 \mathrm{H}) ; 0.00(\mathrm{~s}, 3 \mathrm{H}) ;-$ $0.01(\mathrm{~s}, 3 \mathrm{H})$; NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.6(\mathrm{C}=\mathrm{O}) ; 171.9(\mathrm{C}=\mathrm{O}) ; 132.6(\mathrm{CH}) ; 132.2(\mathrm{CH}) ;$ 131.7 (CH); 129.7 (CH); 127.7 (CH); 125.0 (CH); 75.9 (HCO-); 75.7 (HCO-); 73.6 (HCO-); 62.1 $\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 52.4(\mathrm{CH}) ; 50.5(\mathrm{CH}) ; 44.3\left(\mathrm{CH}_{2}\right) ; 33.6\left(\mathrm{CH}_{2}\right) ; 32.9\left(\mathrm{CH}_{2}\right) ; 30.4\left(\mathrm{CH}_{2}\right) ; 26.4\left(\mathrm{CH}_{2}\right)$; $26.2\left(\mathrm{CH}_{2}\right) ; 25.8\left(\mathrm{CH}_{3}\right) ; 24.8\left(\mathrm{CH}_{2}\right) ; 23.4\left(\mathrm{CH}_{2}\right) ; 20.7\left(\mathrm{CH}_{2}\right) ; 18.0$ (Cquat); 17.9 (Cquat); 14.2
$\left(\mathrm{CH}_{3}\right) ;-4.4\left(\mathrm{CH}_{3}\right) ;-4.6\left(2 \times \mathrm{CH}_{3}\right) ;-4.7\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{36} \mathrm{H}_{65} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 649.4320 , found 649.4332 .

The ethylenic compound was desilylated to obtain free hydroxyl compound ($25.1 \mathrm{mg}, 71 \%$). $R_{f}=$ 0.3 (AcOEt); $[\alpha]_{\mathrm{D}}{ }^{20}=+62.8\left(\mathrm{c}=10, \mathrm{CHCl}_{3}\right) ; \mathrm{v}=3393(\mathrm{OH}) ; 1730 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.61\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=15.4 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.53\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.9 \mathrm{~Hz}\right.$, $\left.{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=15.4 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 5.45-5.32(\mathrm{~m}, 5 \mathrm{H}) ; 4.20\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.3 ;{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 4.05-$ $3.97(\mathrm{~m}, 3 \mathrm{H}) ; 2.81-2.78(\mathrm{~m}, 1 \mathrm{H}) ; 2.54\left(\mathrm{ddd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.5,11.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.46-2.38(\mathrm{~m}$, $4 \mathrm{H}) ; 3.32-2.24(\mathrm{~m}, 2 \mathrm{H}) ; 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}) ; 2.12-1.91(\mathrm{~m}, 8 \mathrm{H}) ; 1.78$ (quint, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.6 \mathrm{~Hz}$, $2 \mathrm{H}) ; 1.66\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 0.96\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$; NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=173.6(\mathrm{C}=\mathrm{O}) ; 172.1(\mathrm{C}=\mathrm{O}) ; 133.1(\mathrm{CH}) ; 132.0(\mathrm{CH}) ; 131.3(\mathrm{CH}) ; 130.4$ $(\mathrm{CH}) ; 127.2(\mathrm{CH}) ; 124.6(\mathrm{CH}) ; 76.5(\mathrm{HCOH}) ; 76.3(\mathrm{HCOH}) ; 73.4(\mathrm{HCO}-) ; 62.1\left(\mathrm{H}_{2} \mathrm{CO}-\right) ; 53.6$ (CH); $50.9(\mathrm{CH}) ; 42.4\left(\mathrm{CH}_{2}\right) ; 33.6\left(\mathrm{CH}_{2}\right) ; 32.6\left(\mathrm{CH}_{2}\right) ; 30.4\left(\mathrm{CH}_{2}\right) ; 26.9\left(\mathrm{CH}_{2}\right) ; 26.4\left(\mathrm{CH}_{2}\right) ; 24.8$ $\left(\mathrm{CH}_{3}\right) ; 23.4\left(\mathrm{CH}_{2}\right) ; 20.7\left(\mathrm{CH}_{2}\right) ; 14.3\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 421.2590 , found 421.2588 .

The last compound was saponified to obtain 3b (19 mg, 90%). $R_{f}=0.27$ ($\mathrm{AcOEt} / \mathrm{HCO}_{2} \mathrm{H} 95 / 5$); $[\alpha]_{\mathrm{D}}{ }^{20}=-24.0(\mathrm{c}=5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{MeOD}\right): \delta=5.57-5.54(\mathrm{~m}, 2 \mathrm{H}) ; 5.51-5.44(\mathrm{~m}$, $2 \mathrm{H}) ; 5.42-5.39(\mathrm{~m}, 2 \mathrm{H}) ; 4.07\left(\mathrm{q},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}) ; 3.92-3.87(\mathrm{~m}, 1 \mathrm{H}) ;$ 2.73-2.68 (m, 1H); $2.50\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 2.38-2.27(\mathrm{~m}, 4 \mathrm{H}) ; 2.17-$ $2.05(\mathrm{~m}, 7 \mathrm{H}) ; 1.69$ (quint, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; 1.56\left(\mathrm{dt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.0 \mathrm{~Hz},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=14.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}) ; 0.99\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$; NMR ($75 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=175.0(\mathrm{C}=\mathrm{O}) ; 133.2(\mathrm{CH}) ; 130.2$ $(\mathrm{CH}) ; 128.9(\mathrm{CH}) ; 127.7(\mathrm{CH}) ; 125.8(\mathrm{CH}) ; 124.3(\mathrm{CH}) ; 73.4(\mathrm{HCOH}) ; 73.3(\mathrm{HCOH}) ; 70.6$ $(\mathrm{HCOH}) ; 50.8(\mathrm{CH}) ; 48.5(\mathrm{CH}) ; 40.6\left(\mathrm{CH}_{2}\right) ; 33.4\left(\mathrm{CH}_{2}\right) ; 32.3\left(\mathrm{CH}_{2}\right) ; 25.0\left(\mathrm{CH}_{3}\right) ; 24.3\left(\mathrm{CH}_{2}\right)$; $23.3\left(\mathrm{CH}_{2}\right) ; 18.7\left(\mathrm{CH}_{2}\right) ; 11.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI $)$ calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$375.2147, found 375.2169 .

