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A numerical approach for 3D Tokamak simulations using a flux surface independent grid is presented. The
grid consists of few poloidal planes with a Cartesian Isotropic grid within each poloidal plane. Perpendicular
operators can be discretised within a poloidal plane using standard second order finite difference methods.
The discretisation of parallel operators is achieved with a field line following map and an interpolation. The
application of the support operator method to the parallel diffusion operator conserves the self-adjointness of
the operator on the discrete level and keeps the numerical decay rate at a low level. The developed numerical
methods can be applied to geometries where an X-point is present.
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1 Introduction

Turbulent cross field transport of heat and particles in the scrape-off layer (SOL) of Tokamaks is to a large extent
still an open issue [1, 2]. The presence of many temporal-spatial scales simultaneously makes turbulence in the
SOL more complex in contrast to core turbulence and requires a sophisticated set of equations. The geometry in
presence of an X-point constitutes another complexity. Turbulent structures tend to have long wave lengths (∼ m)
along the magnetic field line and very small (∼ mm) perpendicular structures. This property is usually exploited
by aligning the coordinate system and the numerical grid to the magnetic field. However, at the separatrix the
safety factor q approaches infinity, which makes the use of such field aligned coordinate systems impossible [3].
In this paper a numerical approach is presented which can cope with geometries where an X-point is present.
The main emphasis is on the discretisation of the parallel diffusion operator. In section 2 the construction of
the numerical grid and the discretisation of the operators is presented. In section 3 the numerical convergence
properties are discussed. The main result is that the numerical decay can be kept at very low levels, by maintaining
the self-adjointness of the parallel diffusion operator on the discrete level.

2 Numerical Approach

2.1 Grid and Perpendicular Operators

The problems of numerical grids constructed with straight field line coordinates can be seen in fig. 1. Since
q → ∞ at the X-point the contours of the straight poloidal angle are sucked into the X-point. Moreover, the
flux surfaces are stretched apart close to the X-point and squeezed at the outboard midplane. On the contrary
turbulent structures tend to be isotropic in planes perpendicular to the magnetic field. The structures are thus
better represented on an isotropic cartesian grid independent from flux surfaces.
As a grid few poloidal planes are chosen as cuts at different toroidal angles ϕk (see fig. 2a). Within these poloidal
planes the cartesian isotropic grid is bounded by two extreme flux surfaces (see fig. 2b). The flute mode character
(k‖ � k⊥) of the turbulent structures will be exploited by choosing a low resolution in the toroidal direction and
a field line following discretisation of parallel operators. Due to the independence from flux surfaces - except for
the limiting flux surfaces - a separatrix can be treated easily. This approach is similar to the one described in [5].
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Fig. 1 Numerical
grid constructed with
straight field line
coordinates [4].

Fig. 2 Numerical grid. a: View of tokamak from above with
cuts at 4 different toroidal angles are taken. b: Within each poidal
plane the grid is Cartesian isotropic bounded by two extrem flux
surfaces.

Due to the strong guiding toroidal field, operators which describe dynamics perpendicular to magnetic field lines
(e.g. ∇2

⊥) can be approximated with a stencil within a poloidal plane. Derivatives with respect to ϕ can be
neglected against derivatives in R or Z direction (kR, kZ � kϕ). Derivatives with respect to R and Z can be
discretized with standard second order finite difference methods (e.g. [6]).

2.2 Parallel Gradient

Parallel operators connect information between neighbouring poloidal planes. Due to the low resolution in the
toroidal direction also the magnetic field line structure between the poloidal planes must be accounted for at the
discretisation of parallel operators. For each grid point (i, j, k) a field line tracing along the magnetic field line
is performed. The penetration points Rα,βijk , Z

α,β
ijk at the neighbouring poloidal planes and lengths along the field

lines ∆sα,βijk are computed with a field line tracing procedure, where α/β denotes co/counter-direction of the
magnetic field line (see fig 3).
Since the penetration points in general do not coincide with a grid point the value of the considered quantity at
the penetration point is obtained by interpolation. Results for a bilinear interpolation (bilinear) involving 4 points
and a 3rd order polynomial interpolation (polynomial3) involving 16 points will be shown in sec. 3. The parallel
gradients between the poloidal plane can then be approximated with the interpolated values by a finite difference:

∇α‖uijk =
u(Rαijk, Z

α
ijk)− uijk

∆sαijk
, ∇β‖uijk =

uijk − u(Rβijk, Z
β
ijk)

∆sβijk
. (1)

The parallel gradient at the considered grid point could be obtained via a further interpolation along the magnetic
field line with these two values to the grid point, but this shall not be discussed here (see also [5]). The bilin-
ear/polynomial3 interpolation schemes are linear in the grid values which allows to write the parallel gradient as
linear transformation

(
uijk → u, ∇α,β‖ uijk → qα,β , qα,β = Qα,βu

)
.

2.3 Parallel Diffusion

2.3.1 Naive Discretisation

By simply neglecting ∇ · b, the parallel diffusion operator could be approximated as twice application of the
parallel gradient. A finite difference of the parallel gradient can then be applied further:

Du := ∇ ·
[
(∇‖u)b

]
≈ ∇2

‖u→
∇α‖uijk −∇

β
‖uijk

(∆sαijk + ∆sβijk)/2
. (2)

However, we will see that this discretisation scheme has bad convergence properties and comparably high nu-
merical decay rates.
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Fig. 3 Sketch of discretisation for parallel gradient. Blue
points represent the points involved in the computation
for the parallel gradient (bilinear stencil).

Fig. 4 Sketch for discretisation of scalar products
for node grid quantities (NG, blue) and flux quan-
tities (CV α, red)

2.3.2 Support Operator Method

The way to achieve a scheme with better convergence properties and a lower level of numerical damping was
lead by the thought to maintain or mimic ’good’ properties of the parallel diffsuion operator on the discrete level.
The self-adjointness or the property that the parallel divergence is the negative adjoint of the parallel gradient is
obvious:

〈v,Du〉 = 〈Dv, u〉 , ∇ · [b◦] =−∇†‖. (3)

for arbitrary functions u, v, which are zero at the boundaries. The brackets denote integration over the whole
volume and D is the parallel diffusion operator as defined in eq. 2.
With the method of support operatos [7] a finite difference scheme is constructed, which mimics the relations 3 on
the discrete level. This method was also applied in [8]. The parallel gradient is chosen as the prime operator and
is discretised according to eq. 1. In the following we present the discretisation of the parallel diffusion operator
with the α-discretisation (∇‖α). The β-discretisation can be obtained analogously.
Scalar quantities u, v are represented on the node grid (NG), fluxes qα, pα are represented with cell volumes
between the poloidal planes (CV α). Thus the discrete parallel gradient maps from (NG) to (CV α). The scalar
product at the discrete level is mimiced for scalar quantities and for fluxes according to:

〈v, u〉NG =
∑
l

vlul∆Vl, 〈pα, qα〉CV α =
∑
m

pαmq
α
m∆Vαm. (4)

where ∆Vl and ∆Vαm are flux box volumes around the considered magnetic field line. The definition and con-
struction of these volumes can be deduced from fig. 4 and is also described at the end of this section. Both
discretisations of the scalar products mimic an integration over the same whole simulation domain. From the
discretisation of the parallel gradient, the discretised scalar products and the requirements of eqs. 3 follows the
discretized parallel divergence as the derived operator. The discretised parallel diffusion operator is:

Du→ (Dαu)l = −
∑
m,j

Qα
lmQα

mj

∆Vαm
∆Vl

uj (5)

There is a last subtle point. At the beginning we chose for the parallel gradient the α discretisation. The same
derivation with the β discretisation will end up in a slightly different scheme in general. Both ways are consistent
and converge towards the continuous parallel diffusion operator. However, on the discrete level a preservation of
the toroidal symmetry of the operator (ϕ→ −ϕ) is desirable and achieved by simply taking the average of both
schemes ( D =

(
Dα + Dβ

)
/2) ).

Based on the frozen flux theorem of ideal MHD, the flux box volumes can be computed during the field line
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a) b) c)

Fig. 5 a: Sketch of minimum nontrivial problem. b: Stencil for inner grid point with naive scheme. c: Stencil with support
scheme.

tracing procedure according to:

∆V (ϕ) =

ϕ∫
0

Btor0 A0

Btor(s)

eϕ
|eϕ|

· ds(ϕ), (6)

where s is the path along the magnetic field line, Btor0 is the toroidal field strength and A0 = dR · dZ the area
(spanned perpendicular to eϕ) at the start of the path.

2.4 Minimum nontrivial problem (2D)

Expressions 2 (naive) and 5 (support) are general expressions of the discrete parallel diffusion operator, which
are valid for quite arbitrary geometries and interpolation techniques. In order to shed some more light on these
expressions, a minimum nontrivial 2D model problem is considered here. It consists of a 9 point regular grid
illustrated in fig. 5a. The magnetic field is uniform but slightly inclined with respect to the grid expressed with
the factor f . Since we are only interested in the discretisation of an inner grid point (here only point (2, 2))
effects from outside the domain are not important (u = 0 at exterior ghost points). Using a linear interpolation
to compute the value of the considered quantity at the penetration points the discrete parallel gradient in matrix
form is (u = (u1,1, u2,1, u3,1, u1,2, . . . u3,3)

T
):

Qα =
1

∆s


−1 1−f f
−1 1−f f
−1 1−f
−1 1−f f

−1 1−f f
−1 1−f

−1
−1

−1

 , Qβ =
1

∆s


1

1
1

f−1 1
−f f−1 1

−f f−1 1
f−1 1
−f f−1 1

−f f−1 1


(7)

In this simplified case the discrete volumes are all equal ∆Vik = ∆Vα,βik = h · ds. The stencil of the discrete
parallel diffusion operator for an inner grid point is shown in fig. 5b,c. If the penetration points coincide with grid
points (f = 0 or f = 1), the standard second order finite difference expression is obtained for both schemes. The
stencil of the naive scheme only involves the considered grid point itself and grid points at neighbouring poloidal
planes (k − 1 and k + 1) which contribute to the interpolation. The support scheme involves additionally also
grid points which are located in the same plane as the considered grid point.

3 Test of Numerical Scheme

3.1 Convergence

The convergence properties of the parallel diffusion operator is investigated with a parallel diffusion equation. For
the case of an axial periodic cylinder (x, y, z, with z ∈ [0, 2π] periodic, ρ =

√
x2 + y2, safety factor q = q(ρ))

an analytic solution is available. Let the initial state be characterised by a poloidal and toroidal mode number
(m,n) and an arbitrary radial structure f(ρ). The analytic solution is given by:

uan(t) = f(ρ) exp(−γ(ρ)t) with γ(ρ) =
1

1 + ρ2/q(ρ)2

(
m

q(ρ)
+ n

)2

. (8)
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Fig. 6 Numerical error of the parallel diffusion equation in dependence on the number of poloidal planes (toroidal resolution)
for two different resolutions within the poloidal plane (a: low h = 8E − 3, b: high h = 4E − 3
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Fig. 7 Numerical decay rate a: in dependence on radial mode resolution kρh for fixed number of poloidal planes (npol = 2),
b: in dependence on toroidal resolution for fixed poloidal resolution h = 6E − 3

For the test reported here a constant safety factor of q(ρ) = 3.4 was choosen. The flux shell is limited by two
flux surfaces with ρmin = 0.1 and ρmax = 0.2. The initial state is given by a (m = 3, n = 1) mode with a radial
structure of f(ρ) = sin(π(ρ− ρmin)/(ρmax − ρmin)).
In fig. 6 the error δ2 = ||uan − unum||2/||uan||2 at the time te = γ−1((ρmax + ρmin)/2) ≈ 0.3 is plotted
for the different schemes in dependence on the number of poloidal planes npol, i.e. the toroidal resolution. The
error is plotted for two different resolutions within the poloidal plane. At low toroidal resolution the error decays
like npol−2 for all schemes, which shows the second order accuracy. At a higher number of poloidal planes the
error due to the interpolation begins to dominate and increases with npol. The convergence along the npol−2 line
extends for the support schemes to a higher toroidal resolution than for the naive scheme.

3.2 Numerical Decay

To investigate the scheme with respect to its numerical decay rate the same setup as in sec. 3.1 is chosen with
q = 3. The initial state is given by u(t = 0) = sin

(
πr ρ−ρmin

ρmax−ρmin

)
, where r is a radial mode number. This

initial state has a vanishing parallel gradient and the damping of this mode is a purely numerical effect. In
fig. 7a the numerical decay rate γnum is plotted in dependence on the radial resolution of the mode and in fig.
7b in dependence on the toroidal resolution for a fixed poloidal resolution. Let p be the order of the error of
the interpolation scheme. From the graphs can be deduced (except at high poloidal resolutions for the support
scheme, where the error is dominated by effects close to the radial boundary):

γnum ∝C1 npol
2(kρh)p for naive scheme (9)

γnum ∝C2 npol
2(kρh)2p for support scheme (10)

where C1 is larger then C2. Additional tests showed that this result is independent on shear. The strong de-
pendence of the numerical decay rate with (kρh)8 makes the support-polynomial3 scheme robust for already
moderate resolutions.
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Fig. 8 Temporal evolu-
tion of a blob situated on
the X-point at ϕ = 0.
(npol = 48, h = 5E −
4[R0])

3.3 Application to Separatrix

To show the applicability of the numerical scheme to equilibria where an X-point is present the parallel diffusion
equation is solved with Dirichlet boundary conditions (u = 0) at the intersection points of the magnetic field
lines with the plates. The initial state is a toroidally and poloidally limited gaussian blob at the X-point. The
temporal evolution of the system is shown in fig. 8. In the open field line region the blob is diffused away to the
plates. In the closed field line region the quantity equilibrates along the magnetic field lines and the flux surfaces
become apparent.

4 Conclusions and Outlook

A numerical approach suitable for X-point geometries is presented which works with a flux surface independent
grid. A discretisation scheme for the parallel diffusion operator which maintains the self-adjointness on the
discrete level is constructed. The numerical decay rate for this scheme is at very low levels already for moderate
resolutions.
The next step is to apply these methods to a simple turbulence model (e.g. Hasegawa Wakatani [9]) and investigate
its dynamics close to the X-point.
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