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It is shown that magnetically confined electron-positron plasmas can enjoy remarkable

stability properties. Many of the microinstabilities driving turbulence and transport in

electron-ion plasmas are absent if the density is so low that the Debye length is signif-

icantly larger than the gyroradius. In some magnetic configurations, almost complete

linear stability may be attainable in large parts of parameter space.
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Electron-positron plasmas are of great importance in astrophysics and constitute

the simplest kind of plasma imaginable, the “hydrogen atom of plasma physics” so to

speak. Such an object has not yet been created on Earth, but efforts are underway to do

so by accumulating enough positrons from a powerful source and injectng these into a

magnetic field, so that a stationary, quasineutral electron-positron laboratory plasma is

formed [1]. In such an experiment, a number of important theoretical predictions could

be tested experimentally, such as the absence of Faraday rotation, drift waves and sound

waves [2]. In the present Letter, we point out that, in addition, such a plasma could

enjoy remarkable stability properties quite unlike those of other laboratory plasmas.

The common drift-wave and electrostatic interchange instabilities driving turbulence

and spoiling confinement in tokamaks and other magnetic-confinement fusion devices

should largely be absent, in particular if the magnetic geometry is chosen judiciously.

Positrons can be produced in a number of ways, for example by beta-decay of Na-22

or by pair production from MeV gamma rays created by nuclear capture of thermal

neutrons. These can then be moderated to sub-eV kinetic energies (see eg. [3] or [4]);

relatively intense cold positron beams can be extracted [5], and the cold positrons

subsequently trapped [6]. In a first laboratory electron-positron plasma, the aim is to

produce a (positron = electron) density in the range 1012 m−3 < n < 1013 m−3 and a

temperature T between 1 and 10 eV. The Debye length λD = (ǫ0T/2ne
2)1/2 is then a

few mm and exceeds the gyroradius by two to three orders of magnitude if the magnetic

field is about 1 T. The system qualifies as a plasma if its macroscopic dimension L

exceeds the Debye length by a large factor. The gyroradius is thus very much smaller

than L, and any microinstabilities are expected to be well described by conventional

gyrokinetic theory. The collision frequency νe is much larger than the inverse of the

expected confinement time, so the plasma will be in local thermodynamic equilibrium,

but at the same time νe is smaller than the frequency of typical microinstabilities, so

these can be treated as being collisionless.

We use gyrokinetic theory to analyze the stability of such an electron-positron

plasma confined by a magnetic field B = ∇ψ×∇α, where ψ denotes the magnetic flux

inside a surface of constant pressure and the coordinate α labels the different field lines

on such a magnetic surface. We thus write the distribution function of the two species
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(a = e and p, respectively) as

fa = fa0

(

1 − eaφ

Ta

)

+ ga,

where fa0(ψ) is Maxwellian, φ denotes the perturbed electrostatic potential, and ga

satisfies the linear gyrokinetic equation in the electrostatic approximation [7, 8],

iv‖∇‖ga + (ω − ωda)ga =
eaφ

Ta
J0

(

k⊥v⊥
Ωa

)

(

ω − ωT∗a

)

fa0. (1)

Here Ωa = eaB/ma denotes the gyrofrequency, k⊥ = kψ∇ψ + kα∇α the perpendicular

wave vector, ωT∗a = ω∗a
[

1 + ηa
(

mav
2/2T − 3/2

)]

with ηa = d lnTa/d lnna and ω∗a =

(Takα/ea)d lnna/dψ the diamagnetic frequency, and ωda = k⊥ · vda the magnetic drift

frequency. Within factors of order unity (depending on the magnetic geometry) these

frequencies are of order ωd ∼ ω∗ ∼ (k⊥ρ)vT /L, where vT denotes the thermal speed

and ρ the gyroradius. The electrostatic potential, finally, is determined by Poisson’s

law, which for a pure electron-positron plasma becomes

(

1 + k2

⊥λ
2

D

)

φ =
T

2ne

∫

(gp − ge) J0d
3v. (2)

The first notable prediction of these equations is obtained by considering a straight

magnetic field by taking ωda = 0 and setting ∇‖ = ik‖ in equation (1), giving

ga =
ω − ωT∗a
ω − k‖v‖

eaJ0φ

T
fa0.

When this solution is substituted into equation (2), the terms involving ωT∗a cancel and

one merely finds a Landau-damped sound wave. Thus, as is well known, there are no

drift waves in a pure electron-positron plasma. Perhaps more surprisingly, there is no

possiblity of instability: what in an electron-ion plasma are known as the slab branches

of the ion- and electron-temperature-gradient modes are stable [9]. In other words, any

instability must involve magnetic curvature.

In order to analyse curvature-driven modes, we first take the high-frequency limit,

k‖vT ≪ ω, in equation (1). The solution becomes

ga =
ω − ωT∗a
ω − ωda

eaJ0φ

T
fa0,

and the dispersion relation from equation (2)

1 − I0(b)e
−b + k2

⊥λ
2

D =
1

n

∫

ωd(ωd − ωT∗ )

ω2 − ω2

d

J2

0f0d
3v,
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where b = k2

⊥T/mΩ2 and I0 denotes a modified Bessel function. Here and henceforth,

a subscript a = p is understood where appropriate. Because ωd and ω∗ are comparable,

the right-hand-side of this equation is at most of order unity, and any instability must

therefore have a perpendicular wavelength comparable to the Debye length, k⊥λD =

O(1). Since this would contradict the assumption k‖vT ≪ ω when ρ≪ λD, we conclude

that no high-frequency modes are possible.

We are thus led to the opposite limit, ω ≪ k‖vT , in which the solution of equation (1)

instead becomes

ga =
ω − ωT∗a
ω − ωda

eaφ

T
fao,

where an overhead bar denotes an orbit average. Substituting this solution into Pois-

son’s law (2) now gives an integral equation for the mode structure,

(

1 + k2

⊥λ
2

D

)

φ =
1

n

∫

φ

(

1 +
ωd(ωd − ωT∗ )

ω2 − ω2

d

)

f0d
3v, (3)

which again implies k⊥λD<∼O(1). Whatever magnetic geometry is used, we thus expect

that instabilities with k⊥ρ = O(1) do not exist. This is in stark contrast to electron-

ion plasmas, where such instabilities are dominant and drive the observed turbulent

transport.

Any remaining longer-wavelength-instabilities predicted by the eigenvalue problem

(3) would however cause turbulence and transport, which could be similar to that in

conventional plasmas except that the wavelength is of order λD instead of ρ. There

is, however, an important difference. Since ω ≪ k‖vT , the action integral for trapped

orbits,

J =

∫

mv‖dl,

is conserved. This integral is taken along the magnetic field (the arc length is denoted

by l) between points where v‖ vanishes, and is adiabatically invariant under slow per-

turbations. The derivatives of J are related to the orbit-averaged drift velocity [10, 11],

vd · ∇ψ =
1

eaτb

∂J

∂α
,

vd · ∇α = − 1

eaτb

∂J

∂ψ
,

where

τb =

∫

dl

v‖
=

∫

dl

v
√

1 − λB
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denotes the bounce time in magnetic trapping wells between two points of equal mag-

netic field strength and λ = v2

⊥/(v
2B). These wells are defined by the condition λB < 1,

and the integration along the field is carried out between points where λB = 1. A

perfectly confining, so-called omnigenous, magnetic field is one where the average drift

velocity has no component in the ψ-direction [12]. Such magnetic configurations, where

thus ∂J/∂α = 0, are sought in stellarator and magnetic-mirror research, and can be

found to a good approximation, but not exactly [13].

Already in 1968, Rosenbluth [14] suggested that magnetic configurations should be

stable to low-frequency interchange modes if J decreases away from the centre of the

plasma. His argument for the stability in such so called maximum-J configurations was

recently extended and applied to stellarators [15, 16]. In the present context, it can be

obtained by multiplying equation (3) by φ∗/B and integrating over velocity space and

along the magnetic field. This gives the quadratic form

∫

(

1 + k2

⊥λ
2

D

)

|φ|2dl
B

− 1

2

∫

∑

j

|φj |2τbjdλ

=
1

n

∫ ∞

0

f02πv
3dv

∫

∑

j

|φj |2τbj
ωd(ωd − ωT∗ )

ω2 − ω2

d

dλ, (4)

where the sum over j is taken over all magnetic wells along the field line, and τbj

denotes the bounce time in the j:th well. The imaginary part of this equation implies

that ω2 is real, so that the eigenmodes are either purely oscillatory or exponentially

growing/damped. It thus follows from the real part of equation (4) that, if an instability

exists, then the product ωT∗ ωd cannot be negative everywhere. However, this product

is equal to

ωT∗ ωd = − k2
αT

e2τbj

d lnn

dψ

(

∂J

∂ψ
− kψ
kα

∂J

∂α

)

[

1 + η

(

mv2

2T
− 3

2

)]

,

where in a well-optimized magnetic configuration ∂J/∂α is small in comparison with

∂J/∂ψ. In an omnigenous device, ∂J/∂α = 0 and the product ωT∗ ωd is negative for

all orbits if the magnetic field satisfies the maximum-J condition, 0 < η < 2/3, and

the density peaks in the centre of the plasma. The right-hand side of equation (4)

can then only be positive if ω2 > 0, and we arrive at the remarkable conclusion that

there is no instability, regardless of how large the density gradient is made (within the

orderings assumed). Thus, whereas in electon-ion plasmas the maximum-J condition
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merely suppresses certain types of instabilities (the low-frequency end of the spectrum),

it apparently leads to complete stability against electrostatic modes in an electron-

positron plasma with ρ ≪ λD and 0 < η < 2/3, if the magnetic field is perfectly

omnigenous. If it is only approximately so, the only instabilities possible are those

with very large radial mode numbers, kψ∂J/∂α > kα∂J/∂ψ. At least according to

quasilinear theory, such instabilities should not lead to large transport.

The simplest electron-positron experiment to build would not be a maximum-J

configuration but something less complicated. The very simplest alternative is perhaps

a magnetic dipole field, created either by a mechanically suspended permanent magnet

or by a levitated circular coil. A plasma confined by a dipole field has the peculiar

property of being stable to low-frequency modes if the equilibrium distribution func-

tion only depends on the adiabatic invariants µ and J but not on the flux-surface label

ψ [17]. However, such a distribution function cannot be Maxwellian and therefore does

not apply to a plasma where the collision frequency exceeds the inverse confinement

time. If f0 is Maxwellian, the threshold for instabilities with ω ≪ k‖vT satisfies equa-

tion (4) with ω = 0, and can be obtained to a good approximation by taking ωd to

be independent of λ [18]. In this approximation, the eigenfunction φ becomes constant

along the magnetic field and the stability boundary for electrostatic modes becomes

d lnn

d lnU
=

1

3(η − 1)
,

where U(ψ) = V ′(ψ) and V (ψ) denotes the volume enclosed by the magnetic surface

labelled by ψ. For a dipole field, ψ is proportional to sin2 θ/r in spherical coordinates,

V ′(ψ) ∝ ψ−4, and the stability criterion can be written as

d ln(n/T )

d lnψ
<

4

3
. (5)

The calculation leading to this result is similar to that in a conventional ion-electron

plasma considered in Ref. [18] and is therefore not repeated here, but we note that the

result is much stronger in the present context. Because the Debye length is much larger

than the gyroradius, high-frequency modes (ω of order k‖vT or larger) are guaranteed

to be stable and there is no need to make an explicit assumption about low frequency.

It is interesting to note that the temperature gradient is stabilizing for these modes.

The achievable plasma pressure can also be limited by electromagnetic instabili-

ties, which should behave very differently in the case of a maximum-J device and a
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magnetic dipole. The former tend to have a magnetic well [19] and are therefore sta-

ble against magnetohydrodynamic (MHD) modes up to a finite normalized pressure

β = 2µ0p/B
2, where p = 2nT . Since β is exceedingly small for the electron-positron

plasma parameters mentioned above, unstable MHD interchanges or ballooning modes

are not expected. In a dipole, however, the magnetic curvature is unfavourable, and

such modes are unstable if

d(pU5/3)

d lnψ
> 0 ⇒ d ln(nT )

d lnψ
>

20

3
. (6)

An arbitrarily small pressure gradient can thus be MHD unstable if the pressure itself is

small enough. On the other hand, the marginally stable pressure profile is very steep, as

emphasized by Hasegawa, Chen and Mauel [17]. The stability diagram corresponding

to equations (5) and (6) is shown in Fig. 1.

In summary, it has been found that the electrostatic instabilities causing turbu-

lence and transport in magnetically confined electron-ion plasmas are largely absent in

low-density electron-positron plasmas. Only low-frequency interchange modes can be

unstable, and in some magnetic configurations almost complete linear stability may be

attainable. It should be emphasized that two requirements are essential for these con-

clusions: the absence of ions removes the slab ion- and electron-temperature-gradient

modes, and the very low density expected in electron-positron plasmas causes the De-

bye length to be large enough to stabilize short-wavelength modes. Neither of these

conditions is satisfied in fusion experiments.
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Figure 1: Stability diagram of an electron-positron plasma in a dipole magnetic field.

Regions A and B are stable to electrostatic modes, whilst regions B and D are unstable

to MHD interchanges.
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