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In this paper we report on a search for short-duration gravitational wave bursts in the frequency
range 64Hz–1792Hz associated with gamma-ray bursts (GRBs), using data from GEO600 and
one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyse
GRB events with large sky localisation uncertainties, for example the localisations provided by the
Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be
computationally intensive when the GRB sky position is not well-localised, due to the corrections
required for the difference in arrival time between detectors. Using a linear search grid we are able
to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore,
we demonstrate that our analysis pipeline can improve upon the sky localisation of GRBs detected
by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of
the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray
experiments between 2006 and 2011. The GRBs in our sample had not been previously analysed
for GW counterparts. A fraction of our GRB events are analysed using data from GEO600 while
the detector was using squeezed-light states to improve its sensitivity; this is the first search for
GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW
signals, either with any individual GRB in this sample or with the population as a whole. For each
GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GW
emission energy of 10−2 M�c

2, with a median exclusion distance of 0.8Mpc for emission at 500Hz
and 0.3Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will
enable rapid searches for GWs associated with Fermi GBM events once the Advanced LIGO and
Virgo detectors begin operation.

I. INTRODUCTION

Gamma-ray bursts (GRBs) are intense flashes of high-
energy photons which are observed approximately once
per day and are distributed isotropically on the sky [1].
Since their public discovery in 1973 [2], it has been found
that most GRBs occur at extra-galactic distances, and
there is growing evidence that they emit gamma-rays in
tightly beamed relativistic jets [3, 4]. GRBs are grouped
into two broad classes based on their spectral hardness
and the duration of the initial gamma-ray flash [5]. The
progenitors of long-soft GRBs are generally accepted to
be core-collapse supernovae (CCSN) in massive, rapidly
rotating stars [6–8]. The progenitors of short-hard GRBs

have yet to be definitively constrained by observation,
but are widely thought to be associated with the mergers
of binary neutron star or neutron star-black hole systems.
Events of this sort are referred to as compact binary co-
alescences (CBCs) [9–15]. Both the CCSN and CBC sce-
narios result in the formation of a stellar-mass black hole
or magnetar with an accretion disk. CBCs are expected
to be bright sources of gravitational waves (GWs), while
the GW emission by CCSN is more speculative.

Although it is expected that most GRB progenitors
will be at distances too large for any counterpart GW
signals to be detectable by the current generation of ob-
servatories, it is possible that a few GRBs could be lo-
cated nearby. The non-detection of GW counterparts
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to GRB051103 [16] and GRB070201 [17], which were
short-duration GRBs with error boxes overlapping the
M81 galaxy (at 3.6Mpc) and the Andromeda galaxy (at
770 kpc) respectively, ruled out CBC progenitors in M81
or M31 with high confidence. Studies of long GRBs indi-
cate the existence of a local population of under-luminous
events with an observed rate density approximately 103

times that of the high-luminosity population [18–23]. Ap-
proximately ∼85% of the GRBs in our sample do not
have measured redshifts, so it is possible that one or more
events could be much closer than the typical ∼Gpc dis-
tances of GRBs.

Previously, searches for GWs associated with GRBs
were performed on approximately 500 GRBs which oc-
curred during times when at least two of the LIGO and
Virgo detectors were collecting data [16, 17, 24–26]. Re-
lated analyses have searched for extended-duration GW
signals associated with long GRBs [27], and for GWs
arising from the oscillation of neutron star f -modes in
magnetars and soft gamma-ray repeaters [28–30]. Most
recently, data from the fifth and sixth LIGO science runs
(S5, S6) and the first, second and third Virgo science
runs (VSR1, 2 and 3) were searched for short-duration
GW bursts and for signals from CBCs, using GRB events
detected by the InterPlanetary Network (IPN) [31]. No
evidence for a signal was found in these searches.

The GEO600 detector has its best sensitivity at fre-
quencies greater than 500Hz, and because of its limited
sensitivity at low frequencies it was not included in pre-
vious searches. However, the high duty cycle of GEO600
yields a substantial number of GRBs which occurred dur-
ing times of joint observation with one of the LIGO/Virgo
detectors. It is these GRBs which we consider here.

The central engines of GRBs are expected to emit GWs
at frequencies above 500Hz through a variety of mech-
anisms, although the amplitude of this emission is not
well constrained by simulation. Coherent searches for
high-frequency signals from GRBs can be computation-
ally challenging when the uncertainty in the GRB sky
location is very large, due to the shift in the arrival time
of GW signals at widely-separated detectors as the sky
position varies across the error box. Previous searches for
GWs associated with poorly-localised GRBs have used a
search band of 64-500Hz, which preserves the detection
efficiency of the search for the frequencies with the best
detector sensitivity.

In this paper, we present the methods and results of a
search for generic GW burst signals associated with 129
GRBs which were detected by satellite-based gamma-ray
experiments between February 4th 2006 and November
3rd 2011, and occurred when GEO600 and one other
km-scale GW observatory were taking data. The search
targets GW signals with durations . 1 s and frequen-
cies between 64Hz and 1792Hz. Unlike previous GW
searches that analysed GRBs with large sky location un-
certainty, we do not repeat the search across the entire
GRB uncertainty region. Instead, we use a linear grid of
search points to cover the uncertainty region in the direc-

tion of the maximum gradient of the time delay between
the detectors. For a search using data from two widely-
separated GW observatories, this technique is sufficient
to preserve the sensitivity of the analysis while reduc-
ing the computational cost of analysing each GRB by a
factor of ten or more.

This paper is organised in the following way. In Sec. II,
we discuss possible GW signals associated with GRBs
that are detectable given our analysis parameters. In
Sec. III we describe the GW observatories whose data
are used in the search. Sec. IV describes the methods
of the search and the analysis procedure for GW signals,
and in Sec. V we describe the sample of GRBs included
in our search and present the results. Finally, in Sec. VI
we summarize the analysis and discuss the application
of these methods to searches in the era of advanced GW
detectors.

II. MODELS FOR GW SIGNALS FROM GRB
PROGENITORS

The progenitors of GRBs are expected to have char-
acteristic GW signatures [32] depending on the physics
of the GRB central engine. In this section we describe
plausible models for GW emission from these systems, es-
pecially at high frequencies (> 500Hz) where this search
is most sensitive.

Short GRBs are believed to be associated with the
merger of a neutron star either with another neutron star
or a black hole. The inspiral phase of these mergers is
expected to be a bright source of gravitational radiation
[33]. While most of the GW energy flux from the inspi-
ral occurs at frequencies below 500Hz, numerical simu-
lations of binary neutron star mergers have shown that
substantial GW emission can occur at frequencies greater
than 1 kHz [34, 35]. Binary neutron star mergers may re-
sult in the formation of a hyper-massive neutron star,
which can produce strong GW emission as it collapses to
a black hole [36, 37].

Short GRBs with unknown red shifts could also be
produced by giant flares from a local population of soft
gamma-ray repeaters [38–41]. Sources of this kind are
expected to produce some GW energy (. 10−8 M�c

2) in
the 1 kHz–2 kHz range [42–45].

The progenitors of long GRBs are CCSN in rapidly
rotating massive stars. Simulations of CCSN indicate
several methods for GW emission at frequencies of several
hundred Hz to 1 kHz, but the amplitude of the emission
is highly uncertain [46]. The most optimistic emission
models arise from the pulsations of a proto-neutron star
core, which may release 10−7 M�c

2 in GWs in a narrow
frequency band around 1 kHz [47, 48].

Both types of GRBs are expected to result in a com-
pact object (a neutron star or black hole) with an accre-
tion disk. Instabilities in the accretion disk can emit sig-
nificant energy in GWs. Various semi-analytical scenar-
ios have been proposed which release up to 10−2 M�c

2–
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10−1 M�c
2 in GWs, all of which correspond to the de-

velopment of rotational instabilities in the accretion disk
or central engine. Bar mode instabilities, in the l = 2,
m = 2 non-axisymmetric mode, are optimistic models for
GW emission in CCSN; typical frequencies are between
500Hz and 2 kHz [49, 50]. If the deformation remains co-
herent for ∼ 100ms, EGW ∼ 0.1M�c

2 could be emitted
at 1 kHz. An accretion disk that cools rapidly enough to
become self-gravitating may fragment into one or more
smaller bodies and generate an inspiral-like signal that
persists to higher frequencies [51]. The in fall of mat-
ter from a rapidly-rotating accretion disk could generate
non-axisymmetric instabilities in a neutron star and pro-
duce GWs in the ∼ 700Hz–2.4 kHz band for many sec-
onds following the merger [52]. Instead of an accretion
disk, a torus may form around the black hole and con-
vert the spin energy of the black hole into GWs in the
1 kHz–2 kHz band [53, 54]. Numerical simulations have
produced similar signals [34, 55].

Finally, the oscillation of quasi-normal modes of a
hyper-massive neutron star or perturbed black hole can
emit GWs with large amplitudes [56–58], although the
peak emission is typically outside the search band used
in this analysis.

III. GW OBSERVATORIES

The GEO600 detector (G1), located near Hannover,
Germany, is a dual-recycled Michelson interferometer
with single-folded arms 600m in length [59, 60]. GEO600
implements a number of advanced interferometric tech-
niques such as signal recycling and squeezed light to im-
prove sensitivity at frequencies above a few hundred Hz
[61, 62]. The LIGO [63] and Virgo [64] observatories
are power-recycled interferometers of similar design, with
Fabry-Perot cavities in the arms to increase the effective
arm length and improve the sensitivity to GWs. There
are two LIGO observatories, located in Hanford, WA,
USA and Livingston, LA, USA [63]. The Hanford site
housed two interferometers, one with 4 km long arms,
which is referred to as H1, and another with 2 km long
arms which is referred to as H2. The H2 instrument
ceased data-taking operations in July 2009. The Liv-
ingston observatory has a single interferometer with 4 km
long arms, referred to as L1. The Virgo detector, known
as V1, has 3 km long arms and is located in Cascina, Italy
[64].

The GEO600 detector has been operated with high
duty cycle since 2006, with occasional short breaks for in-
vasive configuration changes and instrumental upgrades.
The LIGO and Virgo observatories have taken data in a
series of science runs, during which the detector is kept in
its most sensitive state, separated by periods of intense
commissioning activity.

The fifth LIGO science run (S5) started on November
1st 2005 and ended on October 1st 2007. During S5,
the H1, H2, and L1 interferometers operated near their

FIG. 1. Strain sensitivity for the detectors used in this anal-
ysis. GEO600 is shown at two epochs from the S5 and S6
science runs. (A colour version of this figure is available on-
line.)

design sensitivity, with duty cycles of approximately 70%.
The H2 interferometer continued to collect science data
on an opportunistic basis from October 1st 2007 to June
1st 2009, during a period of instrumental upgrades to
the H1 and L1 detectors. The sixth LIGO science run
(S6) was held from July 7th 2009 to October 20th 2010.
In S6, the H1 and L1 were operated with duty cycles
of 52% and 47% respectively, and both surpassed their
sensitivities from S5.

The first Virgo science run (VSR1) started on May
18th 2007 and ended on October 1st 2007. The second
Virgo science run (VSR2) was held from July 7th 2009 to
January 8th 2010, and the third Virgo science run (VSR3)
was held from August 11th 2010 to October 19th 2010.
The fourth Virgo science run (VSR4) was held from May
20th 2011 to September 5th 2011, followed by a period
of opportunistic data collection that ended on November
3rd 2011. Virgo’s duty cycle was 71% for VSR2-4.

Fig. 1 shows representative sensitivity curves, in terms
of amplitude spectral density, of the GEO600, LIGO,
and Virgo interferometers during these science runs.

IV. SEARCH METHODS

The coherent analysis algorithm used in this search is
X-Pipeline [65], and the overall search procedure fol-
lows that used in previous searches for generic GW sig-
nals during the S5-VSR1 [25] and S6-VSR2,3 [26] science
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runs 1. Following the method of the S6-VSR2,3 search,
we employ a circularly polarised GW signal model; this
is motivated by our expectation that the rotation axis
of the GRB central engine is likely pointed at the ob-
server, to within ∼ 10◦. In this section we give a brief
description of the analysis pipeline and introduce new
techniques to accommodate the high frequency sensitiv-
ity of the GEO600 detector and the sky localisation un-
certainties of the Fermi GBM [66].

A. Analysis Procedure

Data from GW detectors surrounding the time of a
GRB are divided into an off-source window, which is
used to characterise the background of transient signals
around the time of the GRB, and an on-source window,
which is searched for GW signals. To allow for possible
GW precursors from, for example, the CCSN associated
with long GRBs, the on-source window is [-600,+60] s
around the onset time of the GRB event. For very long-
lasting GRBs, the on-source window is extended to in-
clude the entire T90 time of the event, defined as the
time interval over which 90% of the total background-
subtracted photon counts are observed. The standard
off-source window is ±1.5 hours around the time of the
GRB trigger, excluding the on-source window.

In the analysis, the time-series data from each detec-
tor are whitened using linear predictor error filters; this
removes periodic signals (for example from mechanical
resonances in the detector) which are present over long
time scales. The detector data streams are time-shifted
to synchronise the arrival time of a GW signal incident
from the sky position of the GRB. Discrete Fourier trans-
forms are performed for various time resolutions, rang-
ing from 1/4 s to 1/256 s, to maximise the search sen-
sitivity to GW bursts of different duration. For each
detector data stream, and each resolution, the time-
frequency maps generated by the DFT are weighted by
the sensitivity of the detector to the plus and cross po-
larisations of GWs incident from the GRB sky location.
X-Pipeline then constructs linear combinations of the
time-frequency maps of the detector data, and a cluster-
ing algorithm is used to search for groups of loud pix-
els in the combined map. For clusters with significent
excess energy, the signal strength in the N -dimensional
space of detector data streams is projected along direc-
tions that are parallel and perpendicular to the projec-
tion of a true GW signal from the GRB sky location. A

1 The most recent searches for short-duration GWs associated with
GRBs have included a modelled search for CBC signals (either
NS-NS or NS-BH) on the short GRBs included in the sample
[26, 31]. Due to the sensitivity of the GEO600 detector at low
frequencies (where most of the power of a CBC waveform is emit-
ted) we did not perform a dedicated search for CBCs as part of
our analysis.

cluster whose signal energy lies in a direction orthogonal
to a true GW signal (for example, with larger amplitude
in the least sensitive detector) is rejected by the analysis;
these coherent consistency checks are described in detail
in [65, 67]. Clusters (now referred to as events) that sur-
vive the consistency checks are ranked by their likelihood
to be a circularly polarised GW signal, measured using
a Bayesian detection statistic described in [67, 68]. Be-
fore considering the events found in the on-source region,
the off-source results are examined for data quality issues
and sensitivity to simulated GW waveforms.

To estimate the rate of background events, the analysis
of the off-source data is repeated many hundreds of times,
with unphysical time-slides of > 3 s applied to the time-
series from one of the detectors. This technique robustly
estimates the frequency at which random noise fluctua-
tions in the detectors may appear to be a true GW signal
with large amplitude in the on-source window. A typical
search with X-Pipeline will perform O(103) time-slides
on the data in the off-source window, enough to quantify
the rate of background events to a false-alarm rate (FAR)
below 10−6 Hz. Repeating the analysis for hundreds of
time-slides is the most computationally intensive portion
of the search.

To determine if a GW is present in the data, the loud-
est on-source event is compared to the distribution of
off-source events. The false-alarm probability (FAP), or
p-value of this event is defined as the fraction of off-source
events with equal or greater significance; this is an empir-
ical measure of the probability of obtaining such an event
in the on-source, under the null hypothesis. Events with
p < 0.01 are followed up with detailed investigations to
determine if the events can be associated with non-GW
noise artefacts in the detectors.

B. Sky Location Uncertainty

The sky localisations of GRBs detected by the Fermi
GBM can have uncertainty regions covering hundreds of
square degrees, depending on the gamma-ray flux and
energy spectrum [69]. In a coherent search for GWs as-
sociated with GRBs, performing the analysis using an
incorrect sky location can reduce the significance of a
GW signal in two ways.

First, the analysis will incorrectly estimate the sensi-
tivity of each detector to GWs from the sky location of
the GRB. This can result in loss of coherent signal en-
ergy when the time-frequency maps from each detector
are combined. Over most of the sky, the antenna factors
for GW observatories change slowly as a function of sky
location, usually a few percent over a few degrees. We
have performed empirical tests of the robustness of our
coherent detection statistic to variations in sky localisa-
tion of several degrees, and for the majority of positions
on the sky the loss of signal is of order a few percent. We
conclude that this effect is not large enough to alter the
results of our search.
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Second, and more significantly, an error in the sky lo-
cation will lead to an erroneous time-shift of the detector
data vectors when synchronising the arrival time of a GW
signal across detectors. For pairs of ground-based detec-
tors the difference in arrival times is O(10) milliseconds,
and an error in the sky location of a few degrees could
introduce incorrect synchronisations of a millisecond or
more. This results in the misalignment of a GW signal
by several periods for waveforms with frequency content
above 1 kHz, and when the data vectors are combined the
coherent signal energy will be diminished. In the worst
case, the waveform will be shifted by a half-period be-
tween the detectors, and the signal will cancel entirely in
the coherent summation.

The standard solution in coherent GW searches is to
repeat the analysis over a discrete grid of sky positions
covering most of the uncertainty region. The grid step
is chosen so that the timing synchronisation error be-
tween any position in the sky localisation error box and
the nearest analysis grid point is less than 25% of the
period for the highest-frequency GW signals included in
the search. For simplicity, the step size is held constant
across the search area; for uncertainty regions with radii
of O(10) degrees the variation in the magnitude of the
time-of-arrival correction does not change enough to war-
rant a variable grid spacing.

Previous searches have used regular grids of concentric
circles around the best estimate of the source location,
covering at least 95% of the sky location probability dis-
tribution. For the Fermi GBM, the 68% containment ra-
dius is typically 2◦–3◦ due to statistical effects, and the
localisations have additional systematic errors of several
degrees. As a result, the 95% containment region can
cover hundreds of square degrees, and a search for GW
signals with frequencies larger than a few hundred Hz
would require tiling the search area with many hundreds
of search points. At each grid point the coherent signal
combination will have to be re-computed using the new
time-of-arrival corrections. The background estimation
for a search grid of this size will typically require O(104)
CPU hours, depending on the size of the GRB uncer-
tainty region, the sky location, and the GW detectors
included in the search. Even on computing clusters with
thousands of CPU cores 2, the analysis for a single GBM
event can take several hours to several days to complete.

Our solution is to cover the search region with a lin-
ear grid, arranged parallel to the maximum gradient of
change in the relative time-of-arrival between detectors.
In the case of a 2-detector network, we find that such
a pattern is sufficient to capture the dominant source of
coherent energy variability as the likelihood is calculated
across the GRB uncertainty region. A comparison of
the circular and linear search grids for the Fermi event
GRB080906B is shown in Fig. 2.

2 LIGO Data Grid,
https://www.lsc-group.phys.uwm.edu/lscdatagrid/

FIG. 2. Example linear (blue circles) and circular (black
crosses) grids for a search for GW signals up to 1792Hz. The
localisation for the Fermi GBM event GRB080906B is shown.
The linear search grid contains 41 sky positions, arranged in
the direction of the gradient of the time shift been the H2
and G1 detectors. The circular grid contains 1324 sky posi-
tions and would require several days to analyse on a massively
parallel computing cluster. Both search grids cover the 95%
containment region for the GBM sky location probability dis-
tribution. The GBM statistical error for this event is 1.6◦.

For two detectors separated by a distance d, the differ-
ence in time of arrival for a GW is

t =
d cos θ

c
(1)

where θ is the angle between the inter-detector baseline
and the line-of-sight to the GRB, and c is the speed of
light. For a maximum time-delay error tolerance of dt ≤
α, the corresponding spacing dθ between grid points is

|dθ| ≤ 2c

d sin θ
α (2)

For our search band of 64Hz–1792Hz 3, we choose
α = 0.14ms, equal to 25% of a cycle at 1792Hz. The ex-
tent of the linear grid is determined by the 95% contain-
ment radius for the given GRB localisation. For events
localised by the Swift BAT [70], we use a search grid of a
single point. For events localised by the Fermi GBM [66],
we use 1.65σstat+sys, where σstat is the GBM statistical
error for the GRB (typically 2◦–3◦), and σsys is a 7.5◦

systematic error. The 1.65σstat+sys uncertainty radius

3 The low frequency limit was chosen to match previous analy-
ses for which the data conditioning has been well tested. The
high-frequency limit is the Nyquist frequency of the detector
data (2048Hz) minus the widest frequency resolution used in
the search (256Hz).

https://www.lsc-group.phys.uwm.edu/lscdatagrid/
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corresponds to 95% containment for a von Mises-Fisher
distribution on a sphere [69, 71–73].

For a handful of GRBs, direct comparisons were made
between the linear grid and the full circular tiling, by
calculating the sensitivity of the search to simulated GW
signals with sky positions distributed across the 95% con-
tainment region. The results for the two methods were
nearly identical. Using the linear grid, the signal ampli-
tudes required for detection were within a few percent
of those obtained by the same analysis using the circular
grid. Furthermore, the analysis using the linear grid was
completed in a fraction of the time required for the cir-
cular grid, and typically required O(103) or fewer CPU
hours, depending on the detectors used in the analysis.
Using computing clusters with thousands of CPU cores,
it was possible to analyse some GRBs localised by the
GBM in less than three hours.

C. Sky Localisation Using the Linear Grid

One of the primary goals of GW searches is the prompt
localisation of the source sky location, for follow-ups by
electromagnetic (EM) astronomers. Currently, very few
GRBs detected by the Fermi GBM are examined for opti-
cal counterparts, due to the resources necessary to search
an uncertainty region of hundreds of square degrees. The
detection of a GW signal associated with a GRB will be
of tremendous interest to the astronomical community,
and any improvement of the GBM localisation will in-
crease the chances that astronomers could detect an op-
tical, radio, or X-ray counterpart to the gamma-ray and
GW signal.

If a GW signal is detected in the on-source window,
X-Pipeline can localise the source to within a few de-
grees along the axis of the linear grid, depending on the
frequency content of the signal and its duration; this is il-
lustrated in Fig. 3. The sky location of the event is chosen
as the point on the search grid that maximises the coher-
ent energy in the detected GW signal. For a search using
data from two widely-separated detectors, the localisa-
tion from the GW signal is limited to an annulus on the
sky, encircling the line connecting the two detectors [74];
in principle, this localisation cannot be improved upon
in the direction perpendicular to the search grid. For
searches using data from three or more widely-separated
detectors, a GW signal can be localised in both dimen-
sions, and in this case the computational cost of the full
circular tiling may be worthwhile for event follow-ups.
Efforts to characterise X-Pipeline’s ability to localise
signals using three or more detectors are ongoing.

As a demonstration of the localisation accuracy, the
observed errors for 600 simulated short-duration GW sig-
nals with central frequencies of 150Hz and 1.5 kHz are
shown in a cumulative histogram in Fig. 4. The localisa-
tion of the high-frequency signals is superior to that of the
low-frequency signals due to the greater phase sensitivity
to variations in sky position. For signals at 1.5 kHz, 95%

FIG. 3. Sky localisation using the linear search grid. The
X-Pipeline analysis will localise a detected GW signal to
the point on the linear grid closest to the true injected sig-
nal, within errors due to noise fluctuations. The containment
distance is a function of the frequency and duration of the
GW signal, and can be empirically measured for each GRB
as part of the GW analysis pipeline; no additional processing
time is required. In this example, the 2σ containment dis-
tance is about 2.5◦. The coordinates of the shaded region can
be disseminated to EM astronomers for follow-up by wide-
field telescopes.

of the simulations were reconstructed to less than 2.5◦

along the axis of the linear grid; this provides an empiri-
cal measurement of the 2σ uncertainty in X-Pipeline’s
localisation.

V. GRB SAMPLE & SEARCH RESULTS

We have applied this technique in a search for GW
signals associated with GRBs, using data from the
GEO600, LIGO, and Virgo observatories. The GRB
events were obtained from the gamma-ray burst coor-
dinates network (GCN) [75], supplemented by the Swift
and Fermi on-line catalogues 4, as well as the published
Fermi four-year catalogue [76]. Most of the GRBs were
detected by Swift and Fermi but a handful of GRBs were
detected by other space borne experiments such as IN-
TEGRAL [77], AGILE [78], or MAXI [79].

We analyse GRBs which were observed when GEO600
plus one other observatory was taking science-quality
data. For the LIGO and Virgo interferometers, “science-
mode” is a rigorous definition, and identifies times when
the detector configuration is stable and the interferom-
eter is operating in a resonant, low-noise state. Unbro-
ken intervals of “science mode” operation are referred to

4 http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html,
http://swift.gsfc.nasa.gov/archive/grb_table

http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html
http://swift.gsfc.nasa.gov/archive/grb_table
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FIG. 4. Errors in sky localisation reconstruction, for a sim-
ulated GBM event in real GW detector data with the H1-
V1 detector network. For each frequency, six hundred sine-
Gaussian waveforms with quality factor Q = 9 were analysed
using a linear grid covering a 16.5◦ uncertainty region with 59
grid points. The sky location of each simulation was jittered
following a Fisher distribution with σ = 10◦, and the ampli-
tude was chosen to correspond to the 90% detection threshold.
The one-dimensional error in the reconstructed location was
measured along the axis of the search grid. High-frequency
waveforms provide greater sensitivity to the time-of-arrival
correction across the search grid.

as “science segments”; these may last from several min-
utes to many hours, depending on the environmental
conditions and the schedule of instrument upgrades. In-
cremental configuration changes are sometimes made in
the periods between science segments. GEO600 has no
strictly-defined “science mode”, and collects data on an
opportunistic basis between commissioning activities. In
this so-called “Astrowatch” operation, efforts are made
to collect as much calibrated data as possible given the
constraints of commissioning and improvements to the
detector.

In our search, no distinction is made between short
GRBs and long GRBs, and the analysis is performed
without regard to the observed GRB fluence or redshift
(if known). Data segments from GW detectors which are
flagged as being of poor quality are excluded from the
analysis, and GRBs for which there is insufficient data
surrounding the GRB event time are not analysed. We
discard the analysis results of GRBs that are determined
to have exceptionally high rates of background events or
exceptionally poor sensitivity to GWs from the sky lo-
cation of the GRB; this can result from, for example,
sources of environmental or instrumental noise at the
time of the GRB [80–84], or a GRB sky location that
includes one of the sensitivity null points of the detec-
tors. Finally, the sensitivity of the GEO600 detector
can change by 20% or more at frequencies > 1 kHz, de-
pending on whether or not squeezed light states are be-
ing injected. A change in sensitivity of this magnitude

may bias the background estimation if it occurs partway
through the off-source window around a GRB. In this
analysis, no GRB off-source (or on-source) windows in-
clude times when GEO600 changed from a squeezing to
non-squeezing state, or vice versa.

In the epoch considered for our search (Feb 4th 2006
to Nov 3rd 2011), there were 152 GRBs with sufficient
science data to analyse. For 130 GRBs the results of the
background estimation demonstrated good sensitivity to
potential GW signals, and for each of these GRBs we cal-
culate the p-value for the loudest event in the on-source.
Three GRBs in our sample had on-source events with
p < 0.01:

• GRB060502A, a Swift BAT detection with T90 =
28.4 s and an observed redshift of z = 1.51 [85],
was analysed using data from the L1 and G1 de-
tectors. There were three significant events in the
on-source window. An examination of the data
quality around the time of the GRB revealed non-
stationary noise in the L1 detector, associated with
increased ground motion due to a magnitude 5.0
earthquake in Costa Rica. All three on-source
events occurred during a segment of time that was
identified as likely to experience an increased rate
of transient signals, due to larger than normal seis-
mic vibrations. Since 35% of the on-source window
for this GRB was flagged as having elevated ground
motion, we veto the three events and do not include
this GRB in the cumulative results.

• GRB080816A, a Fermi GBM detection with T90 =
4.6 s, was analysed using data from the H2 and
G1 detectors. There was one significant on-source
event, with p = 0.001. A signal processing algo-
rithm revealed multiple instrumental channels in
the H2 detector with non-stationary noise at the
time of the event. The nature of the instrumental
noise is not understood, but the signal in the GW
channel is unlikely to be of astrophysical origin. No
redshift observations are available for this GRB.

• GRB090712A, a Swift BAT detection with T90 =
145 s, was analysed using data from the G1 and
V1 detectors. There was one significant on-source
event, with p = 0.003. While we find no plausible
instrumental or environmental cause for the event,
the observed p-value for this GRB is not significant
in a data set containing 129 GRBs. No redshift
observations are available for this GRB.

The distribution of p-values values for the most signif-
icant event found in the on-source window for each of the
129 GRBs is shown in Fig. 5. To test the sample of GRBs
for a population of sub-threshold GW signals, we use a
weighted binomial test to check that the distribution of
p-values is compatible with the uniform distribution ex-
pected from the null hypothesis (see Appendix. A of [26]
for details). The test yields a background probability of
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FIG. 5. Cumulative p-value distribution from the analysis of
129 GRBs. The dashed line gives the expected distribution
under the null hypothesis. The most significant on-source
event, with p = 0.001, is associated with GRB080816A; a
study of detector data at the time of the event yields poten-
tial instrumental causes for the signal in the GW channel. The
probability that our cumulative distribution is due to back-
ground is 19.3%, which indicates that the data is consistent
with no sub-threshold GW events being present.

19.3%, which indicates that the distribution is consistent
with no GW events being present.

As part of the analysis, we measured the sensitivity of
the search to simulated GW signals, as a function of am-
plitude. For this search, we simulate GWs from GRBs us-
ing circularly polarised sine-Gaussians (SGs) with quality
factor Q = 9. These ad hoc waveforms model the GW
emission of a rigidly rotating quadrupolar mass moment
with a Gaussian-shaped amplitude evolution in time, and
are the standard examples used for estimating the sen-
sitivity of GW analyses to unmodelled, short-duration
signals. We marginalise over systematic errors in sen-
sitivity and phase between detectors by “jittering” the
simulated waveforms in amplitude and central time be-
fore adding them to the detector data; the magnitude of
the jitter is Gaussian-distributed with a width propor-
tional to the calibration errors of each detector. Further-
more, for GRBs detected by the GBM, the sky positions
of the simulated waveforms are distributed according to
the systematic uncertainties of the GBM detector [73].
This sky position jittering is performed across the entire
uncertainty region, and is not restricted to the axis of the
linear search grid.

For each GRB we calculate the total amplitude in
GW-induced strain that would result in a detection for
90% of the simulated signals; these 90% upper limits
are given in Tab. I. In terms of GW strain amplitude,
the median 90% upper limit for our GRB sample was

FIG. 6. Exclusion distances for 500Hz and 1 kHz CSG wave-
forms for 129 GRBs. An optimistic total emitted energy of
10−2 M�c

2 is assumed.

2.8× 10−21 Hz−1/2 for circularly-polarised SG signals at
500Hz and 3.4 × 10−21 Hz−1/2 at 1 kHz. Signals with
frequencies below 300Hz were typically only detectable
at very large amplitude; this is due to the sensitivity of
the GEO600 detector, and to the choice of coherent cut
thresholds, which were tuned to minimise the effect of
nonstationary noise in GEO at low frequencies.

For a fixed GW emission energy, we calculate the lower
limit on the distance to the GRB using:

Dexcl =

√
5

2

√
G

π2 c3

√
EGW

f0 hrss
(3)

where EGW is the energy released by the GRB central
engine in GWs, G is Newton’s constant, f0 is the central
frequency of the rigid rotator model, and hrss is the strain
amplitude upper limit observed by the search. The factor
of

√
5/2 arises from the beamed GW emission from a

rotating quadrupolar system, viewed on-axis [86].
The distribution of exclusion distances for waveforms

with central frequencies of 500Hz and 1 kHz for the
129 GRBs in this search is shown in Sec. 6. The me-
dian exclusion distance for the 500Hz and 1 kHz wave-
forms are 0.8Mpc and 0.3Mpc respectively, where we
have assumed the GRB central engine releases EGW =
10−2 M�c

2 total energy in GWs. For other emission en-
ergies, EGW , the distance limits scale as E1/2

GW . For ex-
ample, assuming EGW = 10−8 M�c

2 gives a median ex-
clusion distance of 0.8 kpc at 500Hz.

VI. SUMMARY AND FUTURE WORK

We have reported the results of a search for short-
duration GW signals associated with 129 GRBs using
data from the GEO600, LIGO and Virgo detectors.
The search covered the frequency range 64Hz–1792Hz,
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and employed a new technique to analyse the large-
uncertainty GRB sky localisations from the Fermi GBM.
This search is the first to analyse GBM events for GW
signals at frequencies above 500Hz. We find no evidence
for a GW candidate associated with any of the GRBs in
this sample, and a statistical analysis shows no sign of a
collective signature of sub-threshold GW events.

The LIGO and Virgo detectors are currently under-
going a major upgrade, implementing new techniques to
greatly increase their sensitivity, and are expected to be-
gin operations in 2015. An improvement on the upper
limits presented here of a factor of twenty or more is likely
once the advanced detectors reach their design sensitiv-
ity. Various population studies of GRBs with redshift
measurements have predicted that the rate of coincident
detection in GW observatories and gamma-ray observa-
tories will be O(1) per year once advanced LIGO and
Virgo reach their design sensitivities [87–91].

Our analysis demonstrates the potential for extending
the search frequency band for GWs associated with GBM
events above 1 kHz, and the reduced computational cost
of this method will be useful for rapid triggered analyses
of GBM events in the era of advanced GW detectors. In
the event of a GW detection with signal content above
1 kHz, our search method can provide improved localisa-
tion for GRBs with large uncertainties in sky location,
which can be passed on to EM astronomers for follow-up
using wide-field telescopes.
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TABLE OF GRB RESULTS

GRB UTC 90% ULs (×10−21 Hz−1/2) γ-Ray
name Time RA Dec. Network 500Hz 1 kHz Detector

060424 04:16:19 0h29m26s 36◦47
′

G1L1 1.46 3.01 BAT
060512 23:13:20 13h02m58s 41◦13

′
G1L1 1.48 2.53 BAT

060522 02:11:18 21h31m49s 2◦53
′

G1L1 1.93 2.35 BAT
060602A 21:32:12 9h58m19s 0◦18

′
G1L1 2.55 4.39 BAT

060604 18:19:00 22h28m54s −10◦56
′

G1L1 1.37 2.58 BAT
060708 12:15:59 0h31m17s −33◦45

′
G1L1 1.61 2.88 BAT

060801 12:16:15 14h11m56s 16◦59
′

G1L1 3.95 3.37 BAT
060929 19:55:01 17h32m35s 29◦50

′
H2G1 2.22 4.93 BAT

061110B† 21:58:45 21h35m38s 6◦52
′

G1L1 2.91 7.42 BAT
070328 03:53:53 4h20m27s −34◦04

′
G1L1 1.42 2.21 BAT

070406 00:50:38 13h15m52s 16◦28
′

G1L1 1.37 2.31 BAT
070509 02:48:27 15h51m35s −78◦39

′
G1L1 1.49 2.13 BAT

070517 11:20:58 18h30m14s −62◦18
′

H2G1 2.60 4.12 BAT
070925 15:52:32 16h52m52s −22◦02

′
G1V1 3.01 3.98 IBIS

080207† 21:30:21 13h50m03s 7◦29
′

G1V1 4.09 11.1 BAT
080229A 17:04:59 15h12m52s −14◦41

′
H2G1 2.21 4.10 BAT

080303† 09:10:35 7h28m11s −70◦13
′

H2G1 3.07 7.78 BAT
080319A 05:45:42 13h45m22s 44◦04

′
H2G1 2.07 4.02 BAT

080319B 06:12:49 14h31m40s 36◦17
′

H2G1 2.17 3.13 BAT
080319C 12:25:56 17h16m01s 55◦23

′
H2G1 NaN 3.09 BAT

080328 08:03:04 5h21m58s 47◦31
′

H2G1 2.63 4.28 BAT
080330 03:41:16 11h17m05s 30◦36

′
G1V1 5.72 30.6 BAT

080405 09:18:55 10h50m23s −4◦15
′

H2G1 1.95 3.07 BAT
080411 21:15:32 2h31m50s −71◦17

′
H2G1 2.07 3.15 BAT

080514B 09:55:56 21h31m16s 0◦44
′

H2G1 3.02 15.8 AGILE
080515 06:01:13 0h12m36s 32◦34

′
H2G1 3.16 5.38 BAT

080524 04:13:00 17h54m04s 80◦08
′

H2G1 2.03 2.81 BAT
080603A 11:18:15 18h37m37s 62◦44

′
H2G1 2.38 3.14 IBIS

080702A 11:50:43 20h52m14s 72◦16
′

H2G1 3.18 4.18 BAT
080703 19:00:13 6h47m16s −63◦12

′
H2G1 2.53 3.77 BAT

080717A 13:02:35 9h49m12s −70◦00
′

H2G1 1.78 2.98 GBM
080816A 12:04:18 10h24m48s 42◦36

′
H2G1 3.01 4.97 GBM

080830A 08:50:16 10h40m23s 30◦48
′

H2G1 4.34 25.9 GBM
080905A 11:58:55 19h10m40s −18◦51

′
H2G1 2.26 4.73 BAT

080905C 13:41:29 6h27m35s −69◦48
′

H2G1 2.99 5.04 GBM
080906B 05:05:11 12h11m12s −6◦24

′
H2G1 4.20 10.6 GBM

080916A 09:45:21 22h25m08s −57◦01
′

H2G1 2.73 3.93 BAT
081003A 13:46:12 17h29m30s 16◦33

′
H2G1 2.81 4.22 IBIS

081007 05:23:52 22h39m50s −40◦08
′

H2G1 3.76 6.22 BAT
081009A 03:20:58 16h41m59s 18◦23

′
H2G1 2.58 4.11 GBM

081016A 06:51:31 17h02m17s −23◦19
′

H2G1 2.77 6.22 IBIS
081017B 11:22:37 7h15m59s −15◦12

′
H2G1 3.03 4.30 GBM

081021A 09:33:28 12h41m12s −25◦36
′

H2G1 2.59 3.43 GBM
081028B 12:55:08 1h03m59s −27◦12

′
H2G1 2.52 3.71 GBM

081101 11:46:32 6h23m20s −0◦06
′

H2G1 2.02 3.15 BAT
081115A 21:22:28 12h42m23s 63◦17

′
H2G1 17.0 8.23 GBM

081119A 04:25:27 23h6m00s 30◦00
′

H2G1 2.92 3.88 GBM
081129A 03:52:04 4h12m48s −54◦54

′
H2G1 3.23 5.22 GBM

081203A 13:57:11 15h32m17s 63◦30
′

H2G1 2.05 2.91 BAT
081203B 13:51:59 15h15m09s 44◦25

′
H2G1 2.26 3.86 BAT

081204B 12:24:25 10h03m12s 30◦30
′

H2G1 5.81 7.15 GBM
081206C 23:41:50 3h37m11s −8◦36

′
H2G1 7.47 NaN GBM

081224A 21:17:55 13h26m47s 75◦05
′

H2G1 3.53 4.37 GBM
081228 01:17:40 2h37m54s 30◦50

′
H2G1 2.55 4.23 BAT

090123 07:51:56 0h27m10s −23◦30
′

H2G1 2.90 6.70 BAT
090201 17:47:02 6h08m12s −46◦36

′
H2G1 3.50 3.11 BAT

090213A 05:39:25 22h02m24s −55◦00
′

H2G1 2.03 3.02 GBM
090222A 04:17:09 7h54m23s 45◦00

′
H2G1 2.59 3.90 GBM

090305A 05:19:51 16h07m03s −31◦34
′

H2G1 3.44 5.02 BAT
090306C 05:52:05 9h07m59s 57◦00

′
H2G1 2.63 3.35 GBM

Continued on next page
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TABLE I continued
GRB UTC 90% ULs (×10−21 Hz−1/2) γ-Ray
name Time RA Dec. Network 500Hz 1 kHz Detector

090307A 03:46:37 16h19m55s −28◦38
′

H2G1 2.12 2.93 BAT
090307B 03:59:57 11h30m48s −23◦54

′
H2G1 8.70 NaN GBM

090413A 02:55:57 17h45m59s −9◦12
′

H2G1 2.43 3.17 GBM
090417A 13:17:23 2h19m58s −7◦08

′
H2G1 3.08 5.37 BAT

090418B 09:00:21 15h03m38s 17◦13
′

H2G1 3.01 4.00 BAT
090712A 03:51:05 4h40m22s 22◦31

′
G1V1 2.21 3.31 BAT

090713A 00:29:28 18h59m11s −3◦19
′

G1V1 2.85 3.41 GBM
090715B 21:03:15 16h45m21s 44◦50

′
G1V1 1.59 1.64 BAT

090718B 18:17:43 18h16m24s −36◦23
′

G1H1 0.85 1.58 GBM
090804B 22:33:20 8h41m36s −11◦18

′
G1V1 1.43 1.95 GBM

090807B 19:57:59 21h47m35s 7◦13
′

G1V1 2.94 5.34 GBM
090810A 18:44:44 7h45m43s −17◦28

′
G1V1 2.19 3.99 GBM

100131A 17:30:58 8h01m36s 16◦23
′

L1G1 3.18 7.57 GBM
100331A 00:30:22 17h24m14s −58◦56

′
L1G1 2.39 2.58 IBIS

100417A 03:59:44 17h25m12s 50◦23
′

G1L1 26.7 7.05 GBM
100510A 19:27:07 23h43m12s −35◦36

′
L1G1 2.91 3.76 MAXI

100511A 00:49:56 7h17m12s −4◦39
′

L1G1 5.66 8.70 GBM
100528A 01:48:01 20h44m24s 27◦48

′
L1G1 2.20 2.43 AGILE

100625A 18:32:28 1h03m11s −39◦05
′

L1G1 2.56 3.90 BAT
100703A 17:43:37 0h38m05s −25◦42

′
L1G1 3.13 3.89 IBIS

100704A 03:35:08 8h54m33s −24◦12
′

H1G1 2.60 3.73 BAT
100719C 19:48:08 15h25m38s 18◦33

′
H1G1 65.3 17.0 GBM

100805A 04:12:42 19h59m23s 52◦37
′

L1G1 2.23 2.39 BAT
100807A 09:13:13 3h41m07s 67◦39

′
L1G1 2.04 1.60 BAT

100814B 08:25:26 8h11m16s 18◦29
′

L1G1 3.63 10.0 GBM
100901A 13:34:10 1h49m00s 22◦45

′
G1V1 7.36 6.16 BAT

100906A 13:49:27 1h54m47s 55◦38
′

H1G1 1.16 1.16 BAT
100907A 18:01:12 11h49m09s −40◦37

′
G1V1 6.40 6.15 GBM

100915B 05:49:38 5h41m34s 25◦05
′

L1G1 2.59 3.18 IBIS
101008A 16:43:15 21h55m31s 37◦03

′
G1V1 4.16 2.79 BAT

101017B 14:51:29 1h49m52s −26◦33
′

G1V1 4.37 3.37 GBM
110604A 14:49:46 18h04m00s 18◦28

′
G1V1 4.70 3.18 BAT

110605A 04:23:32 0h59m47s 52◦27
′

G1V1 1.82 1.49 GBM
110610A 15:21:32 20h32m49s 74◦49

′
G1V1 2.12 1.93 BAT

110616A 15:33:25 18h17m48s −34◦01
′

G1V1 2.17 1.60 GBM
110618A 08:47:36 11h47m13s −71◦41

′
G1V1 2.11 1.61 GBM

110624A 21:44:26 4h20m04s −15◦57
′

G1V1 2.12 1.79 GBM
110625A 21:08:28 19h07m00s 6◦45

′
G1V1 2.96 2.15 BAT

110626A 10:44:54 8h47m38s 5◦33
′

G1V1 3.24 2.32 GBM
110629A 04:09:58 4h37m28s 25◦00

′
G1V1 3.09 2.86 GBM

110702A 04:29:29 0h22m28s −37◦39
′

G1V1 5.70 6.70 GBM
110706A 04:51:04 6h40m19s 6◦08

′
G1V1 5.94 5.64 GBM

110709A 15:24:29 15h55m34s 40◦55
′

G1V1 2.60 2.07 BAT
110709B 21:32:39 10h58m40s −23◦28

′
G1V1 3.96 3.18 BAT

110709C 11:06:53 10h21m31s 23◦07
′

G1V1 2.59 2.02 GBM
110709D 20:40:50 10h24m50s −41◦47

′
G1V1 3.07 2.87 GBM

110710A 22:53:51 15h16m21s 48◦23
′

G1V1 1.92 1.61 GBM
110716A 00:25:20 21h58m43s −76◦58

′
G1V1 2.86 2.48 GBM

110722A 16:39:17 14h20m14s 5◦00
′

G1V1 2.76 2.03 GBM
110729A 03:25:06 23h33m33s 4◦58

′
G1V1 2.04 1.64 GBM

110730B 15:50:44 22h20m24s −2◦53
′

G1V1 2.86 2.19 GBM
110731A 11:09:30 18h42m03s −28◦32

′
G1V1 1.98 1.51 BAT

110801A 19:49:42 5h57m39s 80◦57
′

G1V1 2.17 1.99 BAT
110803A 18:47:25 20h01m40s −11◦26

′
G1V1 6.02 4.13 GBM

110809A 11:03:34 11h28m40s −13◦55
′

G1V1 3.91 3.48 GBM
110817A 04:35:12 22h24m09s −45◦50

′
G1V1 3.47 2.77 GBM

110818A 20:37:49 21h09m29s −63◦58
′

G1V1 3.55 3.01 BAT
110825B 06:22:11 16h45m14s −80◦16

′
G1V1 2.35 2.14 GBM

110827A 00:01:52 10h56m14s 53◦49
′

G1V1 4.11 3.41 BAT
110828A 13:48:15 7h22m19s −23◦48

′
G1V1 4.45 4.91 GBM

110831A 06:45:27 23h29m24s 33◦39
′

G1V1 5.34 3.70 GBM
110903A 02:39:55 13h08m14s 58◦59

′
G1V1 3.02 2.96 BAT

Continued on next page
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TABLE I continued
GRB UTC 90% ULs (×10−21 Hz−1/2) γ-Ray
name Time RA Dec. Network 500Hz 1 kHz Detector

110903B 00:13:06 10h56m50s 42◦04
′

G1V1 18.8 5.62 GBM
110904A 02:58:16 23h58m45s 35◦53

′
G1V1 1.86 1.53 GBM

110904C 12:44:19 21h34m57s 23◦56
′

G1V1 14.3 8.70 GBM
111008B 23:49:01 14h43m00s −5◦40

′
G1V1 3.35 4.31 GBM

111022A 16:07:04 18h23m29s −23◦40
′

G1V1 3.88 3.03 BAT
111022B 17:13:04 7h15m42s 49◦39

′
G1V1 4.29 3.14 BAT

111103C 22:45:06 13h26m19s −43◦09
′

G1V1 1.58 1.59 GBM
TABLE I: Information and limits on associated GW emission for each of the anal-
ysed GRBs. The first four columns are: the GRB name in YYMMDD format; the
trigger time; and the sky position used for the GW search (right ascension and
declination). The fifth column gives the GW detector network used in the analysis.
Columns six and seven display the upper limits from each GRB: the 90% confidence
upper limits on the strain amplitude for circularly polarised 500Hz and 1 kHz sine-
Gaussian waveforms, in units of 10−21 Hz−1/2. The last column gives the γ-ray
detector that provided the event time, sky location, sky position uncertainty, and
T90 used for the search (Swift BAT, Fermi GBM, INTEGRAL IBIS, SuperAGILE,
or MAXI ). For three GRBs marked with a †, narrowband non-stationary noise in
the GEO600 detector at frequencies above 1 kHz may have reduced our sensitivity
to GW signals.
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