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Abstract

This work presents an analysis of a two-dimensional model of a liquid chromatographic

column. Constant flow rates and linear adsorption isotherms are assumed. Different sets

of boundary conditions are considered, including injections through inner and outer regions

of the column inlet cross section. The finite Hankel transform technique in combination

with the Laplace transform method is applied to solve the model equations. The devel-

oped analytical solutions illustrate the influence and quantify the magnitude of the solute

transport in radial direction. Comparing Dirichlet and Danckwerts boundary conditions,

the predicted elution profiles differ significantly for large axial dispersion coefficients. For

further analysis of the solute transport behavior, the temporal moments up to the fourth

order are derived from the Laplace-transformed solutions. The analytical solutions for the

concentration profiles and the moments are in good agreement with the numerical solutions

of a high resolution flux limiting finite volume scheme. Results of different case studies
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are presented and discussed covering a wide range of mass transfer characteristics. The

derived analytical solutions provide useful tools to quantify jointly occurring longitudinal

and radial dispersion effects.

Key words: Liquid chromatography, two-dimensional model, finite Hankel and Laplace

transformations, analytical solutions, moments analysis, dynamic simulation.

1. Introduction

Liquid chromatography applying cylindrical chromatographic columns is one of the most

versatile separation techniques. It is widely used for analysis and purification in several

important areas, e.g. in the pharmaceuticals, food, and fine chemical industries. The

concept is successfully applied to realize difficult separation processes, as for instance the

separation of enantiomers and the isolation of specific proteins from fermentation broths.

In a chromatographic separation process a mobile phase percolates through a cylindrical

column filled with fixed porous particles. This mobile phase carries the mixture components

to be separated through the column. Components interacting more strongly with the

particles will be transported slower compared to components with weaker interactions.

Consequently, each component is characterized by an own concentration profile, which

moves with a specific velocity. Provided the columns is long enough and transport processes

do not destroy the separation, it is possible to collect at the outlet of the column in certain

time periods pure fractions.

Different mathematical models with different degrees of complexity are available in the liter-

ature for describing the development of concentration profiles in chromatographic columns.
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Important and successful models are the general rate model (GRM), the lumped kinetic

model (LKM) and the equilibrium dispersion model (EDM), see e.g. Carta (1988); Guio-

chon (2002); Guiochon and Lin (2003); Guiochon et al. (2006); Ruthven (1984). All these

model need an important input information regarding the thermodynamic equilibrium of

the distribution of the components between the mobile and stationary phases. They dif-

fer essentially regarding the consideration of unavoidable mass transfer processes, which

cause undesired band broadening. Generally, only the most relevant concentration gra-

dients occurring along the column axis are considered within the one-dimensional (1D)

models. Gradients along the radial coordinate of the columns requiring the solution of

two-dimensional (2D) models are typically neglected.

The models for chromatographic columns account for convection, adsorption, rate of ex-

change between the phases, intraparticle diffusion, film diffusion and dispersion. They

consist of partial differential equations. Typically, solutions of the model equations can be

only derived numerically due to the nonlinearity of the equilibrium functions.

A number of analytical solutions for one-, two- and three-dimensional advection-dispersion

equations (ADEs) have been developed for predicting the transport of various contami-

nants in the subsurface. For example van Genuchten (1981) formulated several analytical

solutions of the one-dimensional ADE subject to various initial and boundary conditions.

Batu (1989, 1993) and Coimbra et al. (2003) presented analytical solutions of the two-

dimensional ADE with various source boundary conditions. Leij et al. (1991) and Park

and Zhan (2001) derived analytical solutions for three-dimensional ADE. However, these

models were mostly limited to ADE in Cartesian coordinates with steady uniform flow, see
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e.g. Park and Zhan (2001). Analytical solutions for two-dimensional ADE in cylindrical

coordinates are particularly useful for analyzing problems of the two-dimensional solute

transport in a porous medium system with steady uniform flow, see for example Chen et

al. (2011a,b); Massab et al. (2011); Massabó et al. (2006); Park and Zhan (2001); Zhang

et al. (2006).

Analytical solutions of models for column chromatography can be derived if linear adsorp-

tion isotherm can be assumed, see e.g. Carta (1988); Guiochon et al. (2006); Javeed et al.

(2013); Li et al. (2003, 2004, 2011); Qamar et al. (2013). These solutions help tremendously

to understand and analyze without extensive experiments the dynamics of concentration

fronts moving through chromatographic columns. The availability of such solutions further

provides useful tools to determine free transport parameters of the corresponding models.

Finally, the solutions are most helpful for the validation of numerical methods needed to

solve more general cases.

Provided analytical solutions of the column mass balances are available, condensed in-

formation in the form of moments of the outlet profiles can be easily obtained. Moment

analysis has been comprehensively discussed in the literature, see for instance Antos (2003);

Guiochon et al. (2006); Kubin (1964, 1965); Kucera (1965); Lenhoff (1987); Miyabe et al.

(2000, 2003, 2007, 2009); Ruthven (1984); Schneider and Smith (1968); Suzuki (1973);

Wolff et al. (1979, 1980). Recently, Javeed et al. (2013) and Qamar et al. (2013, 2014)

used the Laplace transformation to derive analytical solutions of the equilibrium disper-

sive, the lumped kinetic and general rate models. Moreover, the authors also derived the

moments of Laplace transformed solutions for different sets of boundary conditions (BCs).
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The Hankel transforms are the two-dimensional Fourier transforms of circularly symmet-

ric functions, see for eaxmple Carslaw and Jaeger (1953); Sneddon (1972); Crank (1975).

These are integral transformations whose kernels are Bessel functions and, thus, some-

times referred to as Bessel transforms. Solutions that are casted in term of Bessel functions

arise frequently in boundary-value problems that involve radial and cylindrical coordinates.

Therefore, Hankel transform is a practical technique for solving the boundary value prob-

lems expressed in cylindrical coordinates, allowing the radial coordinate to be eliminated.

The purpose of this study is to extend the available knowledge by deriving analytical solu-

tions for two-dimensional chromatographic models considering also the possibility of radial

dispersion. An accordingly extended equilibrium dispersion model is applied subject to

different boundary conditions. Specific injection profiles are assumed to amplify the effect

of possible rate limitations of the mass transfer in the radial direction. Furthermore, both

Dirichlet and Robin (Danckwerts) BCs are evaluated. The finite Hankel transform tech-

nique is applied to eliminate the radial coordinate. This technique provides a systematic,

efficient and straightforward approach for obtaining analytical solutions for both transient

and steady flow transport problems with a radial geometry. To derive exact analytical

solutions of the model equations, the finite Hankel transform technique is coupled with

the widely applied Laplace transform method, see for instance Carslaw and Jaeger (1953);

Crank (1975); Chen et al. (2011a,b). The correctness of the derived solutions is proven

in this paper by comparisons with numerical solutions generated with the high resolution

flux-limiting finite volume scheme, see for example Javeed et al. (2011). Furthermore,

temporal moments are derived as condensed information from the Laplace-transformed so-
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lutions, see e.g. Javeed et al. (2013); Qamar et al. (2013). Several case studies are carried

out to illustrate the effect of the axial and radial dispersion coefficients on the effluent

concentration profiles and the corresponding moments.

2. Mathematical Model

This study considers the transport of a solute in a two-dimensional chromatographic column

of radial geometry as illustrated schematically in Figure 1. The injected solute migrates

in the z-direction by advection and axial dispersion, whereas it spreads in the r-direction

by radial dispersion. We neglect in this study flow rate variations and keep the interstitial

velocity u as constant. It is further assumed that the adsorption isotherm is linear with a

Henry constant a. To trigger and amplify the effect of possible rate limitations of the mass

transfer in the radial direction, the following specific injection conditions are assumed.

By introducing a parameter r̃ the inlet cross section of the column is divided into an

inner cylindrical core and an outer annular ring (see Figure 1). The injection profile is

formulated in a general way allowing for injection either through an inner core, an outer

ring or through the whole cross section. The latter case results if r̃ is set equal to the

radius of the column denoted by R. Since in the latter case no initial radial gradients are

provided, the solutions should converge into the solution of the simpler one-dimensional

model which will be illustrated in the numerical test problems. It should be mentioned

that the case of injecting the sample through the outer annular ring has some similarity

with process of annular chromatography, see for example Thiele et al. (1973). However,

during annular chromatography the column rotates.
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A two-dimensional equilibrium dispersive model of linear chromatography can be described

by the following mass balance formulated in cylindrical coordinates

(1 + a
1 − ǫ

ǫ
)
∂c

∂t
= −u∂c

∂z
+Dz

∂2c

∂z2
+Dr

(

∂2c

∂r2
+

1

r

∂c

∂r

)

. (1)

Here, c(r, z, t) denotes concentration of the solute, t is time, and Dz and Dr represent the

longitudinal and radial dispersion coefficients, respectively. Moreover, ǫ is the external

porosity following ǫ ∈ (0, 1).

To simplify the analysis, let us define some dimensionless variables

x =
z

L
, ρ =

r

R
, τ =

t
L
u
(1 + a1−ǫ

ǫ
)
, P ez =

Lu

Dz

, P er =
R2u

DrL
, (2)

where L denotes length of the column. Inserting these variables into Eq. (1) yields

∂c

∂τ
= − ∂c

∂x
+

1

Pez

∂2c

∂x2
+

1

Per

(

∂2c

∂ρ2
+

1

ρ

∂c

∂ρ

)

. (3)

The initial condition for a uniformly pre-equilibrated column are given as

c(ρ, x, τ = 0) = cinit , 0 ≤ x ≤ 1 , 0 < ρ ≤ 1 , (4)

where cinit is the initial concentration of the solute in the column. The above equation is

also subjected to the boundary conditions. The following boundary conditions at ρ = 0

and ρ = 1 are assumed

∂c(ρ = 0, x, τ)

∂ρ
= 0 ,

∂c(ρ = 1, x, τ)

∂ρ
= 0 . (5)

The first boundary condition corresponds to the symmetry of radial profile, while the

second condition represents the impermeability of the column wall. Moreover, two sets of
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boundary conditions are considered at the column inlet and outlet which are summarized

below.

Case 1: Concentration pulse of finite width is injected as Dirichlet inlet BCs:

For injection in the inner circular region, it is expressed as

c(ρ, x = 0, τ) =















cinj , if 0 ≤ ρ ≤ ρ̃ and 0 ≤ τ ≤ τinj ,

0 , if ρ̃ < ρ ≤ 1 or τ > τinj ,

(6)

while, for injection in the outer annular zone, it is described as

c(ρ, x = 0, τ) =















cinj , if ρ̃ < ρ ≤ 1 and 0 ≤ τ ≤ τinj ,

0 , if 0 ≤ ρ ≤ ρ̃ or τ > τinj .

(7)

The symbol cinj represents the concentration of injected solute solution and

ρ̃ = r̃/R . (8)

For injection over the whole inlet cross section of the column, either ρ̃ = 1 in Eq. (6) or

ρ̃ = 0 in Eq. (7).

A Neumann boundary condition is considered at the outlet for a column of hypothetically

infinite length, x = ∞,

∂c

∂x

∣

∣

∣

∣

x=∞

= 0 . (9)

Case 2: Concentration pulse of finite width injected as Danckwerts inlet BCs :

For the inner zone injection, this boundary condition is expressed as

c(ρ, x = 0, τ) − 1

Pez

∂c(ρ, x = 0, τ)

∂x
=















cinj , if 0 ≤ ρ ≤ ρ̃ and 0 ≤ τ ≤ τinj ,

0 , ρ̃ < ρ ≤ 1 or τ > τinj ,

(10)
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while, for the injection through outer annular zone it is given as

c(ρ, x = 0, τ) − 1

Pez

∂c(ρ, x = 0, τ)

∂x
=















cinj , if ρ̃ < ρ ≤ 1 and 0 ≤ τ ≤ τinj ,

0 , 0 ≤ ρ ≤ ρ̃ or τ > τinj ,

(11)

together with the Neumann condition at the outlet of a finite length column

∂c

∂x

∣

∣

∣

∣

x=1

= 0 . (12)

3. Derivation of analytical solution

The chromatographic model in Eq. (3) and its associated initial and boundary conditions

are analytically solved by successive implementation of the finite Hankel transform and the

Laplace transform, see for example Chen et al. (2011a,b). The Hankel Transformation of

Eq. (3) with respect to ρ gives

∂cH
∂τ

= −∂cH
∂x

+
1

Pez

∂2cH
∂x2

− 1

Per

λ2
ncH , (13)

where λn is the finite Hankel transform parameter as determined by the transcendental

equation dJ0(λn)
dρ

= −J1(λn) = 0. Here, J0(.) and J1(.) are the zeroth and first order Bessel

functions of the first kind and cH(λn, x, τ) is the the zeroth-order finite Hankel transform of

c(ρ, x, τ) as defined below (c.f. Carslaw and Jaeger (1953); Sneddon (1972); Crank (1975);

Chen et al. (2011a,b))

cH(λn, x, τ) = H [c(ρ, x, τ)] =

1
∫

0

c(ρ, x, τ)J0 (λnρ) ρdρ . (14)

The inverse Hankel transform is given as

c(ρ, x, τ) = 2cH(λn = 0, x, τ) + 2
∞
∑

n=1

cH(λn, x, τ)
J0(λnρ)

|J0(λn)|2 . (15)
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Accordingly, the initial condition in Eq. (4) after taking the Hankel transform becomes

cH(λn, x, τ = 0) = cinitF (λn) . (16)

For injection at the inner cylindrical core, F (λn) is given as

F (λn) =















ρ̃2

2
, if λn = 0 ,

ρ̃

λn
J1 (λnρ̃) , if λn 6= 0 ,

(17)

while for injection at the outer annular ring, it becomes

F (λn) =















(

1
2
− ρ̃2

2

)

, if λn = 0 ,

− ρ̃

λn
J1 (λnρ̃) , if λn 6= 0 .

(18)

Here, ρ̃ is given by Eq. (8).

By applying the Laplace transformation on Eq. (13) with respect to τ , we get

1

Pez

∂2c̄H
∂x2

− ∂c̄H
∂x

−
(

1

Per

λ2
n + s

)

c̄H = −cinitF (λn) . (19)

The general solution of this equation is given as

c̄H = A0e
m1x + B0e

m2x +
cinitF (λn)

s+ 1
Per

λ2
n

, (20)

where

m1,2 =
Pez

2
±

√

(

Pez

2

)2

+
Pez

Per

λ2
n + Pezs , (21)

and A0 and B0 are constant to be determined from the given boundary conditions. In Eq.

(21), the plus sign (upper case) is selected for calculating m1 and the minus sign (lower

case) is considered for calculating m2.

Case 1: Concentration pulse of finite width is injected as Dirichlet inlet BCs:

10



The Hankel transformations of Eqs. (6) (or Eqs. (7)) and (9) are given as

cH(λn, x = 0, t) =















cinjF (λn) , if 0 ≤ τ ≤ τinj ,

0 , if τ > τinj ,

(22)

∂cH(λn, x, τ)

∂x

∣

∣

∣

∣

x=∞

= 0 . (23)

Here, F (λn) is given by Eq. (17) for inner injection and by Eq. (18) for outer annular

injection.

After applying the Laplace transformation on boundary conditions in Eqs. (22) and (23),

we obtain

c̄H(λn, x = 0, s) =
cinjF (λn)

s

(

1 − e−sτinj
)

,
∂c̄H
∂x

∣

∣

∣

∣

x=∞

= 0 . (24)

Now using Eq. (24) in Eq. (20), we obtain

A0 = 0 , Bo =

(

cinj (1 − e−sτinj)

s
− cinit

s+ 1
Per

λ2
n

)

F (λn) . (25)

Thus, the solution in Eq. (20) takes the form

c̄H(λn, x, s) =

(

cinj (1 − e−sτinj)

s
− cinit

s+ 1
Per

λ2
n

)

F (λn)e
m2x +

cinitF (λn)

s+ 1
Per

λ2
n

, (26)

where m2 is given by Eq. (21) for lower negative sign.

Using the inverse Laplace transformation on Eq. (26), the solution in actual time domain

is given as (c.f. van Genuchten (1981))

cH(λn, x, τ) =















A(λn, x, τ) , if 0 ≤ τ ≤ τinj ,

A(λn, x, τ) − A(λn, x, τ − τinj) , if τ > τinj .

(27)
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Letting

v =

√

(Pez)2 + 4
Pez

Per

λ2
n , (28)

then

A(λn, x, τ) =
cinjF (λn)

2

[

e
(Pez−v)x

2 erfc

(

Pezx− vτ

2
√
Pezτ

)

+ e
(Pez+v)x

2 erfc

(

Pezx+ vτ

2
√
Pezτ

)]

(29)

− cinitF (λn)e
−

λ
2
nτ

Per

2

[

erfc

(

x− τ

2
√

τ/Pez

)

+ ePezxerfc

(

x+ τ

2
√

τ/Pez

)

− 2

]

.

Using Eq. (15), the final solution is

c(ρ, x, τ) =



































2A(λn = 0, x, τ) + 2
∞
∑

n=1

A(λn, x, τ)
J0(λnρ)
|J0(λn)|2

, if 0 ≤ τ ≤ τinj ,

2
[

A(λn = 0, x, τ) − A(λn = 0, x, τ − τinj)
]

+2
∞
∑

n=1

[

A(λn, x, τ) − A(λn, x, τ − τinj)
]

J0(λnρ)
|J0(λn)|2

, if τ > τinj .

(30)

Case 2: Concentration pulse of finite width injected as Danckwerts inlet BCs :

The Hankel transformations of Eqs. (10) (or Eqs. (11)) and (12) are given as

cH(λn, x = 0, τ) − 1

Pez

∂cH(λn, x = 0, τ)

∂x
=















cinjF (λn) , if 0 ≤ τ ≤ τinj ,

0 , if τ > τinj ,

(31)

together with the Neumann condition at the outlet of the column

∂cH(λn, x, τ)

∂x

∣

∣

∣

∣

x=1

= 0 . (32)

Once again, F (λn) is given by Eq. (17) for the inner injection and by Eq. (18) for the outer

annular injection.

After applying the Laplace transformation on these boundary conditions, we get

c̄H(λn, x = 0, s) − 1

Pez

∂c̄H(λn, x = 0, s)

∂x
=
cinjF (λn)

s

(

1 − e−sτinj
)

, (33)
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and

∂c̄H
∂x

∣

∣

∣

∣

x=1

= 0 . (34)

Now using Eqs. (33) and (34) in Eq. (20), we obtain

A0 =

m2e
m2

(

cinjF (λn)

s
(1 − e−sτinj) − cinitF (λn)

s+ 1
Per

λ2
n

)

m2em2

(

1 − m1

Pez

)

−m1em1

(

1 − m2

Pez

) , (35)

and

B0 = −
m1e

m1

(

cinjF (λn)

s
(1 − e−sτinj) − cinitF (λn)

s+ 1
Per

λ2
n

)

m2em2

(

1 − m1

Pez

)

−m1em1

(

1 − m2

Pez

) . (36)

Thus, the solution in Eq. (20) takes the form

c̄H(λn, x, s) =

F (λn) [m2e
m2+m1x −m1e

m1+m2x]

[

cinj

s
(1 − e−sτinj) − cinit

s+ 1
Per

λ2
n

]

m2em2

(

1 − m1

Pez

)

−m1em1

(

1 − m2

Pez

) +
cinitF (λn)

s+ 1
Per

λ2
n

.

(37)

Using the inverse Laplace transformation on Eq. (37), the solution in actual time domain

is given as (c.f. Chen et al. (2011b); van Genuchten (1981))

cH(λn, x, τ) =















B(λn, x, τ) , if 0 ≤ τ ≤ τinj ,

B(λn, x, τ) − B(λn, x, τ − τinj) , if τ > τinj ,

(38)

where

B(λn, x, τ) =cinjF (λn)

[

1 −
∞
∑

m=1

ϕ(ϑm, x) · ψ(λn, ϑm, x, τ)

]

+ cinitF (λn)e
−

λ
2
nτ

Per

[

∞
∑

m=1

ϕ(ϑm, x) · ψ(λn = 0, ϑm, x, τ)

]

. (39)
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Moreover

ϕ(ϑm, x) =
2Pezϑm

[

Pez

2
sin(ϑmx) + ϑm cos(ϑmx)

]

(

Pe2
z

4
+ Pez + ϑ2

m

)(

Pe2
z

4
+ ϑ2

m

) , (40)

ψ(λn, ϑm, x, τ) =
Pez

Per
λ2

ne
Pez

2
x + (ϑ2

m +
Pe2

L

4
) exp(Pez

2
x− Pez

4
τ − λ2

n

Per
τ − ϑ2

m

Pez
τ)

ϑ2
m +

Pe2
L

4
+ Pez

Per
λ2

n

, (41)

and the eigenvalues ϑm are the positive roots of the following equation

Pez cot(ϑm) =
ϑ2

m − Pe2
z

4

ϑm

. (42)

Then final solution is given as (c.f. Eq. (15))

c(ρ, x, τ) =



































2B(λn = 0, x, τ) + 2
∞
∑

n=1

B(λn, x, τ)
J0(λnρ)
|J0(λn)|2

, if 0 ≤ τ ≤ τinj ,

2
[

B(λn = 0, x, τ) − B(λn = 0, x, τ − τinj)
]

+2
∞
∑

n=1

[

B(λn, x, τ) − B(λn, x, τ − τinj)
]

J0(λnρ)
|J0(λn)|2

, if τ > τinj .

(43)

4. Moment Analysis

Moment analysis is known to be an effective method for deducing important information

about the retention equilibrium and mass transfer kinetics in a chromatographic column.

A set of statistical temporal moments can define the appearance of the plotted elution

profile. For example, the appropriate forms of the first, second, third and fourth moments

will describe the mean, spread, skew, and kurtosis, respectively, of the distribution. The

experiential values measured for these moments can be compared with their theoretical

expressions to estimate dispersion and other mass transfer coefficients.

Normalized averaged i-th moments of the band profile at any position in the column can
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be obtained through the following expression

µi,av =

∫∞

0
cav(x, τ) τ

idτ

µ0,av
, i = 1, 2, 3, · · · , (44)

where

cav(x, τ) = 2

1
∫

0

c(ρ, x, τ)ρdρ , (45)

and for the the zeroth moment (mass balance) holds

µ0,av =

∫ ∞

0

cav(x, τ)dτ . (46)

Due to mass balance considerations for this zeroth moment holds

µ0,av = cinj,avτinj , (47)

where cinj,av = cinjρ̃
2 for the inner circular zone injection and cinj,av = cinj(1 − ρ̃2) for the

outer annular zone injection. Moreover, according to Eq. (2), τinj =
tinj

L

u
(1+a 1−ǫ

ǫ
)

.

When mass transfer in the radial direction is assumed hypothetically to be infinitely fast,

cav(x, τ) = c(ρ, x, τ), that corresponds to the 1D case presented in Qamar et al. (2013).

Due to its moment generating properties the Laplace transformation can be used as a basic

tool to derive analytical expressions for the moments. In this study, analytical temporal

moments are derived as functions of radial coordinate ρ at the outlet of the column (x = 1)

considering cinit = 0 . Afterwards, these moments are used to obtain the aforementioned

averaged moments by integrating over ρ. The following property of the Laplace transform

was used to determine the analytical moments from the Laplace and Hankel transformed

concentration c̄H in Eq. (26) or Eq. (37):

µi,H = (−1)i lim
s→0

di(c̄H(λn, x, s))

dsi
, i = 0, 1, 2, · · · . (48)
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The actual moments µi(ρ) are generated from Eq. (15) by taking moments of the concen-

trations on both sides of that relation. On multiplying both sides of Eq. (15) with τ i and

integrating over tau from 0 to ∞, we obtain

µi(ρ) = 2µi,H(λn = 0) + 2
∞
∑

n=1

µi,H(λn)
J0(λnρ)

|J0(λn)|2
. (49)

From the above moments, the averaged non-normalized temporal moments Mi,av can be

calculated as

Mi,av = 2

1
∫

0

µi(ρ)ρdρ , i = 0, 1, 2, · · · . (50)

Finally, the normalized averaged temporal moments (c.f. Eq. (44)) which are widely used

in chemical engineering (Guiochon et al. (2006)) are available as

µi,av =
Mi,av

µ0,av
, µ0,av = M0,av, i = 1, 2, 3, · · · . (51)

For evaluation of the solute transport behavior, the above averaged temporal moments

µi,av up to the fourth order are derived. These moments can be used to get finally also the

first three averaged central moments defined below (e.g. Guiochon et al. (2006)):

µ′
2,av = µ2,av − µ2

1,av . (52)

µ′
3,av = µ3,av − 3µ1,avµ2,av + 2µ3

1,av . (53)

µ′
4,av = µ4,av − 4µ1,avµ3,av + 6µ2

1,avµ2,av − 3µ4
1,av . (54)

The corresponding i-th central moments of the band profile at the outlet of a column of

length x = 1 are numerically obtained using the expression

µ
′

i,av =

∫∞

0
cav(x = 1, τ) (τ − µ1)

idτ

µ0,av
, i = 2, 3, 4, · · · , (55)
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where, µ0,av for x = 1 is given by Eq. (46). The trapezoidal rule is applied to numerically

approximate the integrals in Eqs. (44)-(46) and (55). The central moments are well known

in chemical engineering due to their physical meanings, see e.g. Guiochon et al. (2006).

Hereby the zeroth moment corresponds to mass balance (peak areas), the first to mean

retention times, the second to variance around the mean resentence time, the third to peak

asymmetry (skewness) and the forth to kurtosis. The values of these moments should be

in agreement with those provided by Qamar et al. (2013) based on an analysis of the 1D

case, in which Dz has an effect on their values.

Case 1: Concentration pulse of finite width injected as Dirichlet inlet BCs (Eq.

(22) and (23)).

The moments of c̄H in Eq. (26) are obtained through Eq. (48) which are summarized below.

The zeroth moment: It is obtained from Eqs. (26) and (48) for i = 0:

µ0,H = τinjcinjF (λn) exp

(

Pez − v

2

)

, (56)

where v is given by Eq. (28). Moreover, F (λn) is given by Eq. (17) for inner zone injection

and by Eq. (18) for outer annular zone injection.

First moment: It is calculated from Eqs. (26) and (48) for i = 1:

µ1,H =

[

τinj

2
+
Pez

v

]

µ0,H . (57)

Second moment: It is derived from Eqs. (26) and (48) for i = 2:

µ2,H =

[

τ 2
inj

3
+
τinjPez

v
+

2Pe2z + Pe2zv

v3

]

µ0,H . (58)
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Third moment: The third temporal moment based on Eqs. (26) and (48) for i = 3:

µ3,H =

[

τ 3
inj

4
+
τ 2
injPez

v
+

3τinj

2

(2Pe4z + Pe2zv
3)

v5
+

12Pe3z + Pe3zv
2 + 6Pe3zv

v5

]

µ0,H . (59)

Fourth moment: The fourth moment is obtained as (c.f. Eq. (48) for i = 4)

µ4,H =

[

τ 4
inj

5
+
Pezτ

3
inj

v
+

2τ 2
inj (2Pe

2
z + Pe2zv)

v3
+

2τinj (12Pe3z + Pe3zv
2 + 6Pe3zv)

v5

+
Pe4L[120 + 12v2 + (v2 + 60) v]

v7

]

µ0,H . (60)

The above moments correctly reduce to the 1D case for λn = 0. In that case F (λn = 0) = 1.

Case 2: Concentration pulse of finite width injected as Danckwerts inlet BCs

(Eqs. (10) and (12)).

Here, the temporal moments of concentration profile given by Eq. (37) are calculated.

The zeroth moment: The zeroth moment is calculated by using Eqs. (37) and (48). Let

us define

α =

√

1 +
4λ2

n

PezPer

. (61)

Then, it is given as

µ0,H =
4τinjcinjαF (λn)e

Pez

(α + 1)2 e
Pez (α+1)

2 − (α− 1)2 e−
Pez(α−1)

2

. (62)

First moment:

The first temporal moment is calculated from Eqs. (37) and (48) for i = 1. Let us define

α1 = −4 + Pezα
4τinj + (4 + (τinj + 4)Pez)α

2 , α2 = 2Pez(1 + τinj)α
3 + 2Pezα. (63)
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Then, it comes out to be

µ1,H =
1

2α2Pez

[

(α1 + α2)e
Pez(α+1)

2 − (α1 − α2) e
−

Pez(α−1)
2

(α+ 1)2 e
Pez(α+1)

2 − (α− 1)2 e−
Pez (α−1)

2

]

µ0,H . (64)

Second moment: Let us define

α3 = τ 2
injα

5Pe2z + Pez[(3 + 6τinj + τ 2
inj)Pez + 6τinj]α

3 + (3Pe2z + 24 − 6τinjPez)α , (65)

α4 = −2τinj

(

τinj +
3

2

)

Pe2zα
4 − [(3τinj + 6)Pe2z + 12Pez]α

2 + 48 + 12Pez , (66)

α5 = α2Pez − 2 , α6 = (Pez + 2)α , α7 = 12α5 − 12α , (67)

α8 =
{

τ 2
injα

6Pe2z + [(−9 − 2τ 2
inj)Pe

2
z + 6τinjPez]α

4 + [24 + (τ 2
inj + 18)Pe2z + 72Pez]α

2

−72 − 9Pe2z + (−72 − 6τinj)Pez

}

α3 . (68)

α9 =
1

3α6Pe2z

[

(α + 1)2 e
Pez (α+1)

2 − (α− 1)2 e−
Pez(α−1)

2

]2 . (69)

Then, it is expressed as

µ2,H =α9

{

[

(α3 + α4)α
3 − 6α2(α5 − α6)(α− 1)

]

(

e−
Pez(α−1)

2

)2

(α− 1)2 − 2α(α7 + α8)e
Pez

+
[

(α3 − α4)α
3 + 6α2(α5 + α6)(α+ 1)

]

(

e
Pez(α+1)

2

)2

(α+ 1)2

}

µ0,H . (70)

Similarly, we can find the third and fourth moments. However, due to their lengthy ex-

pressions, only plots of these moments are presented in this manuscript.

5. Numerical Test Problems

In this section, the analytical solutions presented above are validated by considering several

test problems. A second-order accurate finite volume scheme (FVS) is chosen to approx-

imate Eqs. (3)-(12) for verifying the analytical results, see e.g. Javeed et al. (2011). All

parameters used in the test problems are given in Table 1.
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Note that, we are working in this study mainly with dimensionless quantities in the model

equations. Thus, the general trends identified and discussed below will be valid also for

larger column dimensions and additional calculations for a large scale would not bring

additional insight.

Rectangular concentration profiles

In a first series of calculations, influences of boundary conditions, dispersion coefficients

and the type of injection are analyzed on the concentration profiles. The sample is either

injected through the inner cylindrical core or the outer annular ring. In the calculations

described here, the radius of inner cylindrical core r̃ is chosen in such a manner that the

inner and outer annular zones have the same areas. Thus, for a column of radius R = 0.2

the inner zone radius comes out to be r̃ = 0.1414 (or ρ̃ = 0.707).

A comparison between the analytical solutions for the two types of axial inlet boundary

conditions (Dirichlet, Eq. (6), vs. Danckwerts, Eq. (10)) is given in Figure 2 at x =

1 for the case that the sample is injected at x = 0 through the inner cylindrical core.

For the considered selected transport coefficients, Dr = 0.03 cm2/min (or Per = 0.5)

and Dz = 0.3 cm2/min (or Pez = 20), the two solutions are rather similar. The radial

transport is relatively fast. The sample elutes over the complete cross with no visible

radial concentration dependence. The local elution profile in the center (ρ = 0) and the

averaged concentration profiles (Eq. (45)) are also plotted in Figure 2. Due to the rapid

radial transport these profiles are almost identical. For the relatively large axial dispersion

coefficient assumed, there is a clear difference between the profiles obtained using the

Dirichlet or Danckwerts boundary conditions. The more realistic Danckwerts conditions

20



quantify the unavoidable back mixing at the column inlet and predict broader profiles.

Figures 3 compares the results shown for injecting the sample through the inner core (Figure

2) with predictions for injecting the same overall amount through the outer annular ring.

Due to the rapid elimination of radial concentration gradients the profiles become identical

at x = 1. The plotted temporal profiles of the averaged concentrations depend just on the

boundary conditions used.

Figures 4 and 5 provide a comparison of the analytical solutions for injections through

the inner and outer zones for less axial back mixing (Dz = 0.01 cm2/min or Pez = 600)

and slower radial transport (Dr = 0.001 cm2/min or Per = 15). Now significant radial

transport limitations lead to still visible influence of the injection conditions at the column

outlet (x = 1). Also the local (ρ = 0) and averaged concentration profiles differ significantly

at the outlet. However, for the rather high Pez-number both Dirichlet and Danckwerts

BCs give now the same results. The averaged concentrations of both injection cases agree

as depicted in Figure 6.

In the above examples limited inlet sections were used for the injection. Figure 7 pro-

vides a comparison of the derived 2D solutions with the simpler conventional 1D solutions

(obtained using the model in Qamar et al. (2013)), which is included as a special case as-

suming r̃ = R (or ρ̃ = 1). Then there are no radial concentration gradients introduced into

the column at the inlet. Due to the assumed constant velocities also no gradients can form

internally and both solutions should overlap. For two different sets of transport coefficients

the averaged outlet concentration profiles were found to be indeed almost identical.

The results shown in Figure 8 return to the case that the sample is either injected through
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the inner core or the outer ring using ρ̃ = 0.707. Presented are radial concentration

profiles in the middle of the column (x = 0.5) for τ = 1 assuming different values of the

Perato = R2

L2
Dz

Dr
. Hereby, Dz was fixed at 0.3 cm2/min and Dr was varied in the interval

Dr = [10−3, 10−2, 10−1] cm2/min. Inner (upper plot) and outer (lower plot) injections are

compared. It can be seen that the imposed step profiles deteriorate faster for larger values

of the radial transport coefficients. The two limiting cases corresponding to conservation

or elimination of the injection profiles are clearly visible.

Figure 9 gives the comparison of analytical and numerical solutions obtained by finite

volume scheme for both sets of boundary conditions. Good agreements can be seen in all

solutions.

Analytical solutions for a small radial dispersion coefficient, Dr = 0.0003 cm2/min, are

given in Figures 10 and 11 at different positions of the radial coordinate ρ and at the

outlet of the column x = 1. Both inner and outer zone injections are considered for com-

ponents 1 and 2 characterized by a1 = 1 and a2 = 3, respectively. Due to linear adsorption

isotherm, the model equations of both components are decoupled. Therefore, we performed

simulations independently by solving the single component equation for each adsorption

coefficient. Moreover, Dz = 0.3 cm2/min, v = 1.0 cm/min, and cinj,1 = 1 g/l = cinj,2. One

can observe from the figures that there are considerable variations in the concentrations of

both components along the radial coordinate of the column. If the injection is introduced

through the inner core the highest concentrations appear at the outlet and at the center

of the column. For the first component the relative concentration reaches here a value of

roughly 0.12 (Figure 10). The trends are similar for both components. For the conditions
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considered severe radial profiles develop. In case of injecting through the outer zone only

very low concentrations are observed in the column center at the outlet (Figure 11). The

maximum relative concentration is found at the column wall as roughly 0.1, thus lower

than in the case of the inner injection. The averaged concentration profile, averaged over

the radial coordinate, are identical for both types of injection (Figures 10 and 11) as could

be expected for the assumptions made, i.e. the constancy of the linear velocity and the

linearity of the isotherms.

Moments of the solution profiles

In this study, plots of moments using the Danckwerts BCs are presented. The Dirichlet

BCs produced similar results which are therefore omitted.

Figure 12 displays the local moments µi(ρ) (c.f. Eq. (49)) plotted along the radial coor-

dinate of the column. The effect of radial dispersion coefficient on the first second, third

and fourth moments can be clearly seen. Here, Dz = 0.3 cm2/min and u = 1.5 cm/min

were kept fixed and varied was the ratio Peratio = R2Dz

L2Dr
which corresponds to Dr =

[10−3, 10−2, 10−1]. The plots of this figure show that moments approach to constant values

along the radial coordinate for smallest value of Peratio or largest Dr. For the smallest

value of Peratio = 0.075, the results correspond to the 1D results presented in Appendix A

of Qamar et al. (2013). Since the concentration is injected via the inner cylindrical core, all

moments do not change close to the column center. The changes clearly occur in the outer

section. Although the trends look similar, on inspecting closer the y-axis, the magnitudes

reveal that higher moment change more significantly with changing the Pe-ratio. Similar
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trends were also observed in the case of injection through outer zone.

Figure 13 illustrates the effect of axial dispersion coefficient (or Pez) on the first, second,

third and fourth averaged moments (c.f. Eq. (51)). One can see the well-known fact that the

first moment, corresponding to the retention time, is not affected by the axial dispersion

coefficient. Moreover, all these averaged moments are not affected by the values of Dr.

They correspond to moments in the 1D case presented in Appendix A of Qamar et al.

(2013). At 1/Pez = 0.5 (or Dz = 0.3), the results given in Figure 13 agree with the results

of Figure 12 for the smallest value of Peratio.

Figure 14 gives the plots of averaged central moments as functions of flow rate. These

averaged moments are obtained using the relations in Eqs. (52)-(55). The concentration

was injected though inner zone. It was also found that both inner and outer zones injections

produce the same results provided the same areas of injection are used. In all cases good

agreements can be observed between analytically and numerically determined moments.

Moreover, the results again agree with the those of 1D moments presented in Appendix A

of Qamar et al. (2013).

6. Conclusion

This article presented the analytical solutions and moment analysis of a two-dimensional

chromatographic model in cylindrical geometry. Constant flow rates and linear adsorption

isotherms were considered. Two sets of boundary conditions were considered, including

injections through inner and outer regions of the column inlet cross section. The finite Han-

kel transform technique in combination with the Laplace transform method were applied
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to solve the model equations. The developed analytical solutions illustrate the influence

and quantify the magnitude of the solute transport in radial direction. A comparison

of Dirichlet and Danckwerts boundary conditions verified that the predicted elution pro-

files differ significantly for large dispersion coefficients. For further analysis of the solute

transport behavior, the temporal moments up to the fourth order were derived from the

Laplace-transformed solutions. The analytical solutions were compared for validation with

numerical solutions using a high resolution flux limiting finite volume scheme. Good agree-

ments were observed in the analytically and numerically determined concentration profiles

and moments. Results of different case studies were presented and discussed covering a

wide range of mass transfer characteristics. The derived analytical solutions provide useful

tools to determine longitudinal and radial dispersion coefficients from moments determined

experimentally based on integrating recorded elution profiles.

Work is in progress on the extension of the model to variable flow rates and non-isothermal

reactive chromatography.

References

Antos, D., Kaczmarski, K., Wojciecha, P., Seidel-Morgenstern, A., 2003. Concentration de-

pendence of lumped mass transfer coefficients: Linear versus non-linear chromatography

and isocratic versus gradient operation. J. Chromatogr. A 1006, 61-76.

Batu, V., 1989. A generalized two-dimensional analytical solution for hydrodynamic dis-

persion in bounded media with the first-type boundary condition at the source. Water

Resour. Res. 25, 1125-1132.

25



Batu V., 1993. A generalized two-dimensional analytical solute transport model in bounded

media for flux-type finite multiple sources. Water Resour. Res. 29, 288192.

Carslaw, H.S., Jaeger, J.C., 1953. Operational methods in applied mathematics, Oxford

University Press, Oxford.

Carta, G., 1988. Exact analytical solution of a mathematical model for chromatographic

operations. Chem. Eng. Sci. 43, 2877-2883.

Chalbi, M., 1987. Heat transfer parameters in fixed bed exchangers. Chem. Eng. J. 34,

89-97.

Chen, J.-S., Liu, Y.-H., Liang, C.-P., Liu, C.-W., Lin, C.-W., 2011. Exact analytical

solutions for two-dimensional advectiondispersion equation in cylindrical coordinates

subject to third-type inlet boundary conditions. Adv. Water Resour. 34, 365-374.

Chen, J.-S., Liu, Y.-H., Liang, C.-P., Liu, C.-W., Lin, C.-W., 2011. Analytical solutions to

two-dimensional advectiondispersion equation in cylindrical coordinates in finite domain

subject to first- and third-type inlet boundary conditions. J. Hydrol. 405, 522-531.

Coimbra, M.C., Sereno, C., Rodrigues, A., 2003. A moving finite element method for the

solution of two-dimensional time-dependent models. Appl. Num. Math. 44, 449-469.

Crank, J., 1975. The mathematics of diffusion, 2nd ed. Clarendon Press, Oxford.

van Genuchten, M.Th., Alves, W.J., 1982. Analytical solutions of the one-dimensional

26



convectivedispersive solute transport equation. US Department of Agriculture, Technical

Bulletin No. 1661, 151-300.

Guiochon, G., 2002. Preparative liquid chromatography. J. Chromatogr. A, 965, 129-161.

Guiochon, G., Lin, B., 2003. Modeling for preparative chromatography, Academic Press.

Guiochon, G., Felinger, A., Shirazi, D.G., Katti, A.M., 2006. Fundamentals of preparative

and nonlinear chromatography, 2nd ed. ELsevier Academic press, New York.

Javeed, S., Qamar, S., Seidel-Morgenstern, A., Warnecke, G., 2011. Efficient and accurate

numerical simulation of nonlinear chromatographic processes. Comput. & Chem. Eng.

35, 2294-2305.

Javeed, S., Qamar, S., Ashraf, W., Seidel-Morgenstern, A., Warnecke, G., 2013. Analysis

and numerical investigation of two dynamic models for liquid chromatography. Chem.

Eng. Sci. 90, 17-31.

Kubin, M., 1965. Beitrag zur Theorie der Chromatographie. Collect. Czech. Chem. Com-

mun. 30, 1104-1118.

Kubin, M., 1965. Beitrag zur Theorie der Chromatographie. 11. Einfluss der Diffusion

Ausserhalb und der Adsorption Innerhalb des Sorbens-Korns. Collect. Czech. Chem.

Commun. 30, 2900-2907.

Kucera, E., 1965. Contribution to the theory of chromatography: Linear non-equilibrium

elution chromatography. J. Chromatogr. A 19, 237-248.

27



Leij, F.J., Skaggs, T.H., van Genuchten M.Th., 1991. Analytical solution for solute trans-

port in three-dimensional semi-infinite porous media. Water Resour. Res. 27, 271933.

Lenhoff, A.M., 1987. Significance and estimation of chromatographic parameters. J. Chro-

matogr. A 384, 285-299.

Li, P., Xiu, G., Rodrigues, A.E., 2003. Analytical solutions for breakthrough curves in a

fixed bed of shell-core adsorbent”, AIChE J. 49, 2974-2979.

Li, P., Xiu, G., Rodrigues, A.E., 2003. Modeling breakthrough and elution curves in a

fixed bed of shell-core adsorbent for separation of proteins-exact analytical solution and

approximate solutions. Chem. Eng. Sci. 59, 3091-3103.

Li, P., Yu, J., Xiu, G., Rodrigues, A.E., 2011. Perturbation chromatography with inert core

adsorbent: Moment solution for two-component nonlinear adsorption isotherm. Chem.

Eng. Sci. 66, 4555-4560.
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Nomenclature

a linear adsorption constant (Henry constant ) (−)

c concentration (kmol/m3)

c̄ Laplace transformed concentration (kmol/m3)

cav averaged concentration (kmol/m3)

cH Hankel transformed concentration (kmol/m3)

cinit initial concentration (kmol/m3)

cinj injected concentration (kmol/m3)

Dr radial dispersion coefficient (m2/s)

Dz axial dispersion coefficient (m2/s)

Ji i-th order Bessel function (−)

L column length (m)

Mi,av i-th non-normalized averaged moment (−)

Per radial Peclet number (−)

Pez axial Peclet number (−)

R column radius (m)

r radial coordinate (m)

r̃ radius of inner cylindrical core (m)

s Laplace domain parameter (−)

t time coordinate (s)

tinj time of injection (s)
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Nomenclature (continued)

u linear velocity (m/s)

x dimensionless axial coordinate (−)

z axial coordinate (m)

Greek symbols

ǫ external porosity

λn final Hankel transform parameter (−)

µi,av i-th averaged moment

µi,av i-th averaged moment

µi,H i-th moment in Hankel domain

µ′
i,av i-th averaged central moment

ρ dimensionless radial coordinate (−)

ρ̃ dimensionless radius of inner cylindrical core (−)

τ dimensionless time coordinate (−)

τinj dimensionless time of injection (−)
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Table 1: Parameters used in the considered test problems.

Parameters values

Column length L = 4 cm

Column radius R = 0.2 cm

Radius of inner zone r̃ = 0.1414 cm

Porosity ǫ = 0.4

Interstitial velocity u = 1.5 cm/min

Axial dispersion coefficient Dz = [0.01, 0.3] cm2/min, Pez = [20, 600]

or Dz = [1.67 × 10−8, 5.0 × 10−7] m2/s

Radial dispersion coefficient Dr = [0.001, 0.03] cm2/min, Per = [0.5, 15]

or Dr = [1.67 × 10−9, 5.0 × 10−8] m2/s

Injection time tinj = 1 min

Initial concentration cinit = 0 g/l

Concentration at inlet cinj = 1 g/l

Adsorption equilibrium constant a = 1

Note that: Peratio = R2

L2
Dz

Dr
= Per/Pez = 0.025 for Dz

Dr
= 10.
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Figure 1: Schematic representation of a chromatographic column of cylindrical geometry. It is assumed

that solute can be injected either through inner cylindrical core or through outer annular ring.
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Figure 2: Injection through inner zone of radius ρ̃: Comparison of solutions for Dirichlet and Danckwerts

BCs. Here, Dz = 0.3 cm2/min (or Pez = 20), Dr = 0.03 cm2/min (or Per = 0.5) and other parameters

are given in Table 1.
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Figure 3: Comparison of averaged concentration profiles obtained from inner and outer zones injections.

Here, Dz = 0.3 cm2/min (or Pez = 20), Dr = 0.03 cm2/min (or Per = 0.5) and other parameters are

given in Table 1.
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Figure 4: Injection through inner zone of radius ρ̃: Comparison of solutions for Dirichlet and Danckwerts

BCs for Dz = 0.01 cm2/min (or Pez = 600) and Dr = 0.001 cm2/min (or Per = 15). Other parameters

are given in Table 1.
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Figure 5: Injection through outer (annular) zone: Comparison of solutions for Dirichlet and Danckwerts

BCs for Dz = 0.01 cm2/min (or Pez = 600) and Dr = 0.001 cm2/min (or Per = 15). Other parameters

are given in Table 1.
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Figure 6: Comparison of averaged profiles obtained from inner and outer zones injections for Dz =

0.01 cm2/min (or Pez = 600) and Dr = 0.001 cm2/min (or Per = 15). Other parameters are given

in Table 1.
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Figure 7: Comparison of 1D and 2D solutions when ρ̃ = R. All other parameters are given in Table 1.
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Figure 8: Comparison of solution profiles obtained at x = 1/2 and τ = 1 for different values of Dr and
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.
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Figure 9: Comparison of analytical and finite volume scheme solutions obtained for different values of

dispersion coefficients. Both inner and outer zones injections are considered.
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Figure 10: Two-component problem with inner cylindrical core injection: Dz = 0.3 cm2/min, Dr =

0.0003 cm2/min, v = 1.0 cm/min, a1 = 1, a2 = 3.0, and all other parameters are given in Table 1.

41



0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5
x 10

−3

t [min]

c/
c in

j [−
]

ρ=0

 

 

component 1
component 2

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7
x 10

−3

t [min]

c/
c in

j [−
]

ρ=1/4

 

 

component 1
component 2

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

t [min]

c/
c in

j [−
]

ρ=1/2

 

 

component 1
component 2

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12
ρ=1

t [min]

c/
c in

j [−
]

 

 

component 1
component 2

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t [min]

c/
c in

j [−
]

averaged concentrations

 

 

component 1
component 2

Figure 11: Two-component problem with outer annular zone injection: Dz = 0.3 cm2/min, Dr =

0.0003 cm2/min, v = 1.0 cm/min, a1 = 1, a2 = 3.0, and all other parameters are given in Table 1.
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Figure 12: Inner zone injection: Effect of Dr on the local moments µi(ρ) (c.f. Eq. (49)) for fixed Dz =

0.3 cm2/min (1/Pez = 0.5) and u = 1.5 cm/min. Varied is the ratio Peratio = R
2

L2

Dz

Dr

. Other parameters

are given in Table 1. For the smallest value of Peratio(= 0.075), the results correspond to the 1D case

analyzed in Qamar et al. (2013).
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Figure 13: Inner zone injection: Effect of Dz (i.e. Pez) on the averaged moments (c.f. Eq. (51)) for

u = 1.5 cm/min. All other parameters are given in Table 1. These moments are the same as in the 1D

case.
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Figure 14: Inner zone injection: Comparison of analytical and numerical averaged central moments (c.f.

Eqs. (52)-(55)) for Dz = 0.3 cm2/min (1/Pez = 0.5). All other parameters are given in Table 1. These

moments are the same as in the 1D case.
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