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Abstract

The nonlinear gyrokinetic equations describe plasma turbulence in laboratory and astrophysical plasmas. To solve these equations,
massively parallel codes are developed and run on present-day supercomputers. The goal of this paper is to improve the efficiency of
such computations, thereby allowing for physically more comprehensive studies. Explicit Runge-Kutta schemes are considered to
be well suited for time-stepping. Although the numerical algorithms are often highly optimized, performance can still be improved
by a suitable choice of the time-stepping scheme, based on spectral analysis of the underlying operator. Here, an operator splitting
technique is introduced to combine first-order Runge-Kutta-Chebychev schemes for the collision term with fourth-order schemes for
the remaining terms. In the nonlinear regime, based on the observation of eigenvalue shifts due to the (generalized) E X B advection
term, an accurate and robust estimate for the nonlinear timestep is developed. The presented techniques can reduce simulation
times by factors of up to three in realistic cases. This substantial speedup encourages the use of similar timestep optimized explicit
schemes not only for the gyrokinetic equation, but also for other applications with comparable properties.
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1. Introduction

Gyrokinetic simulation codes are a common tool for obtain-
ing ab-initio predictions of turbulence properties in strongly
magnetized high-temperature plasmas.[1, 2] Such plasmas are
present in magnetic confinement fusion devices, but also in
astrophysics. Gyrokinetic theory describes the time evolu-
tion of each species’ particle distribution function f in five-
dimensional phase space (one velocity space variable, the gyro-
angle, is averaged out). Obtaining a solution of this nonlin-
ear partial integro-differential equation generally requires high-
performance computing. In the past decades, gyrokinetic codes
have become substantially more realistic by applying higher
numerical resolution and by moving to more comprehensive
physics models. For example, collisions are formally weak in
dilute high-temperature plasmas and thus have often been ne-
glected. Today, one realizes that including a suitable collision
operator in gyrokinetic turbulence is not only required for a
physically correct entropy balance,[3] but can also greatly in-
fluence the turbulence level-through damping of zonal flows—
or even change the turbulence regime by modifying the growth
rate of certain types of microinstabilities.[4, 5, 6, 7, 8] Since
more realistic physics models require increased computational
effort, progress is enabled by the availability of more powerful
computers and by the use of advanced algorithms, the impor-
tance of the latter often being underestimated.
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Three classes of gyrokinetic turbulence codes (particle-in-
cell, semi-Lagrangian, and Eulerian) exist. Here, the Eulerian
approach, which became popular approximately fifteen years
ago, is considered. Several major code projects exist in this
area, for instance GENE [9, 10, 11, 12], GS2 [13, 14], GYRO
[15, 16], GKW [17], and AstroGK [18]. The common basic
procedure is the so-called method of lines: After discretizing
phase space on a fixed grid, the resulting large system of or-
dinary differential equations is evolved with a time integration
scheme. However, the choice of algorithms can differ substan-
tially. Besides various possible choices for phase space grids
and the representation of derivatives on those grids, time dis-
cretization is performed in several ways, a useful overview is
also found in Ref. [19]. Operator splitting techniques for the
collisional term are applied in GYRO, GS2 and AstroGK. Some
codes (like GS2) even choose to split off the nonlinear term
from linear dynamics, while others avoid splitting to treat these
terms on an equal level. Moreover, implicit, as well as explicit
schemes are applied. While GS2 (and AstroGK) treat all linear
terms implicitly, the GYRO algorithm splits off fast linear terms
(the parallel electron dynamics) in an implicit-explicit (IMEX)
fashion. Here, we focus on fully explicit time integration, as
employed in GENE and GKW, for example. Explicit meth-
ods offer the advantages of an excellent performance on mas-
sively parallel systems and the straightforward implementation
of nonlinear terms. The drawback is a strict stability limit that
is set on the timestep Az, which depends on the fastest dynamics
in the system. A major advance in gyrokinetic theory is to ana-
lytically remove extremely fast timescales (like compressional
Alfvén waves or particle gyromotion), leaving only relevant dy-
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namics and enabling an explicit treatment. One of the fastest
remaining terms is then given by the (generalized) nonlinear
drift velocity v, = E, X B that combines electric and magnetic
field fluctuations. When this nonlinaer advection indeed lim-
its the timestep according to a Courant-Friedrichs-Lewy (CFL)
relation At < Ax/v,, [20] fully explicit schemes are likely to
be the more efficient choice (particularly in view of increasing
problem size).[9]

It is sometimes stated that collisions require an implicit treat-
ment, since the explicit diffusive timestep limit would be too
strict.[21] However, we find severe restrictions only for rather
large collision frequencies (in the tokamak edge, for example)
or for very high velocity resolution. In this work, we introduce
a splitting scheme involving Runge-Kutta-Chebychev (RKC)
schemes with extended real stability boundary,[22, 23] which
enables an explicit treatment of a sophisticated collision opera-
tor even in these extreme cases. Partitioned RKC schemes have
recently been evolved to be stable also for advective terms, in-
volving, however, a larger number of operator evaluations per
step.[24, 25]

In principle, accuracy limits can also be implied on the
timestep. In this context, we note that the overall numerical
accuracy of gyrokinetic simulations is generally strongly re-
stricted by the grid resolution in five-dimensional phase space.
A relative error tolerance of approximately 1073 is already con-
sidered to be sufficient, even for linear simulations. Nonlin-
ear simulations are subject to statistical errors of the order of
10%, underlining the fact that long simulation times rather than
highly accurate steps are needed. In consequence, the use of
low-order time integration schemes is well justified to speed up
computations.

In this paper, a detailed analysis of the spectral properties of
the discretized system allows us to identify a class of highly ef-
ficient first-order explicit schemes (with largely extended stabil-
ity boundaries), which we apply to the gyrokinetic code GENE.
The remainder of this paper is organized as follows. The rele-
vant equations are summarized in Section 2 and some timestep
limiting physics is discussed. In Section 3 we introduce rele-
vant explicit RK schemes and review their stability conditions.
In Section 4, the efficiency and accuracy of splitting techniques
are discussed, which allow to apply well-suited time-stepping
schemes to the individual parts of the operator. Finally, in Sec-
tion 5 we address the timestep restrictions in nonlinear simula-
tions. We show that the £, X B advection shifts the eigenvalues
along the immaginary axis, which is relevant for the stability
limit. This observation forms the basis of a greatly improved
estimate of the nonlinear timestep. Overall, these two methods
of (i) operator splitting and (ii) an improved timestep estimate
enhance the code efficiency by up to a factor of three in real-
istic cases. In view of an already highly optimized code, this
speedup is significant.

2. The gyrokinetic equations
The gyrokinetic equation

0,8 = Glt, gl = N[y, gl + Llg] + Clg] (D

describes the time evolution of the (modified) perturbed gyro-
center distribution g for each plasma species in {x,y,z, vy, 1}
phase space. The notation

X =¢—vAy+uBy  f=g+vAyFo
no

Fy= m exp [(Vﬁ + MB()) /T()] .

introduces the fluctuating potential y, consisting of electrostatic
perturbations ¢; and magnetic perturbations Ay and By, where
the overbar denotes a gyroaverage. The gyrocenter distribution
is split into a background (Maxwellian) distribution F and a
small fluctuating part f. The background magnetic field is By
and the background density ng, temperature 7, thermal veloc-
ity v/ = (2Ty/m)"/* and particle mass m are given for each
plasma species. The gyrokinetic version of Maxwell’s equa-
tions is used to compute a self-consistent fluctuating potential
from g, which closes the system of equations. We refer to
Refs. [2, 10, 12] for a detailed description and derivation.

Eq. (1) is symbolically written as the sum of three integro-
differential operators whose physical meaning is briefly dis-
cussed in the following. The linear terms L[g] contain paral-
lel advection along the magnetic field lines, as well as perpen-
dicular drifts such as curvature and VB drifts, and temperature
and density gradient terms. Defining the generalized fluctuating
field as E, = —Vj, the nonlinear term N[y, g] describes perpen-
dicular E, X B advection and leads to turbulent re-distribution
of free energy. Finally, the linearized Landau-Boltzmann colli-
sion operator C[g] describes diffusion and dynamical friction in
velocity space, including back-reaction terms that ensure con-
servation of particles, momentum, and energy. Details on the
implementation of the collision operator in GENE can be found
in Refs. [26, 27].

For the numerical solution, Eq. (1) is discretized on a fixed
grid in phase space, where common techniques from compu-
tational fluid dynamics, such as spectral methods, finite differ-
encing, finite element, and finite volume schemes can be used.
This results in a large system of ordinary differential equa-
tions for the time evolution of the state vector g. When non-
dissipative differencing schemes are employed, as is the case
of the GENE code, it may be necessary to add hyperdiffusion
terms to L[g] that remove unphysical grid-size oscillations in
some phase space directions.[28, 29]

One way of solving this space-discretized system is to per-
form initial value computations, for which we consider Runge-
Kutta (RK) schemes here. In the nonlinear case, one desires
to find a statistically stationary turbulent state. Linear initial
value computations yield the fastest growing solution (some-
times referred to as a mode), which constitute the driving force
for plasma turbulence and are thus of great interest. Typi-
cal growth rates and frequencies are of the order of c¢y/Ly,
where ¢, = (T./m;)"/* denotes the ion sound speed and L.
is a typical macroscopic scale length, often set to the toka-
mak major radius. Additionally, the linearized system can be
formulated as an eigenvalue problem. In this context, GENE
features the use of optimized iterative algorithms provided by
the SLEPc package,[30, 31, 32, 33, 34] which select a subset



of eigenvector-eigenvalue pairs {g;, 4;} that fulfill some user-
specified criteria. For convenience, we split the complex eigen-
value 1 = y + iw into a growth rate y and a frequency w. The
eigenvalues of largest magnitude |4;| are quickly found (for ex-
ample by Krylov-Schur subspace iteration), which proves ex-
tremely useful for the exact computation of the maximum sta-
ble timestep for initial value simulations. Due to the shape
of the spectrum, obtaining the fastest growing solution with
SLEPc is more cumbersome, but can still be faster than a cor-
responding initial value simulation. Importantly, subdominant
and marginally stable solutions become only accessible by such
eigenvalue computations. Finally, GENE can also compute the
full spectrum (using ScaLAPACK routines), but this is only fea-
sible for small problems.

As we will see in Sec. 3, the maximum stable timestep for
Runge-Kutta methods is determined by the spectral proper-
ties of the underlying operator. Focussing on the linear case
first, either the fastest oscillating wpax or the most damped
Ymin =min[Re(1)] solutions are typically most restrictive. Let
us briefly summarize physical mechanisms behind these ex-
treme eigenvalues. Importantly, the gyrokinetic system has
integro-differential character (y is computed from g integrals
and y derivatives occur), which allows a simple CFL approach
of the form Ap,x = v - kmax only in limiting cases. Here, v
is an advection velocity and ky,x is the largest wavenumber in
the system. A popular example for the origin of very high-
frequency (and timestep limiting) solutions are kinetic shear
Alfvén waves. In simplified slab geometry (and in the relevant
low-f, limit), the dispersion relation reads

2 1 2.2

Wisa = kop)? + B ke » ()
where k, is a perpendicular wavenumber and k; is a paral-
lel wavenumber.[35, 36] Here, the electron to ion mass ratio
He = me/m;, the electron beta B, = 4mn.Te/B], the ion
sound gyroradius p; = ¢;/€; and the ion cyclotron frequency
Q; = (eBy)/(m;c) are introduced. The B, parameter controls
the response in Ampere’s law, whereas electrostatic models
use B, = 0. We observe that as 8, approaches zero, the fre-
quency wgsa ~ kj/(kyps) can become very large. Indeed, set-
ting KymaxLret ~ 7/Az ~ 10, kyps ~ 0.05, p, = 1/3600 and
B. = 0 we obtain wgsa ~ 4000 (c,/Leet), about four orders of
magnitude larger than the typical values for growth or damp-
ing rates. Fortunately, even small values of 5, prevent the di-
vergence of wksa, so that it can be beneficial to include elec-
tromagnetic effects for kinetic electron simulations, even if the
dominant physics is of electrostatic nature. In the opposite limit
of B./u. 2 (k Lp&)z, which is more relevant to actual fusion plas-
mas, Eq. (2) transitions into the classical Alfvén wave disper-
sion relation wi = vikﬁ with va = ¢; /B;/ 2 denoting the Alfvén
velocity. Also the parallel streaming of electrons is often rel-
evant, even if field-aligned coordinates are used. The charac-
teristic frequency is given as wy ~ kjvj., which can be linked
to a CFL condition. In typical fusion experiments, the electron
thermal velocity is larger or comparable to the Alfvén velocity
Vle/VA ~ Vie/va ~ (Be/te)"? 2 1), so that the CFL condition
for kinetic electrons is usually more restrictive than the limit
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Figure 1: (a) Spectrum of the collisionless, linearized gyrokinetic operator L,
scaled with Afrk4 and (parts of) the stability boundary of the RK4 scheme. Note
that Im(2) > Re(A). (b) Spectrum of the collision operator, scaled with Afrkcs
and stability boundaries of the RK4 and RKC4 schemes (for At = Afrkca).
Here, the eigenvalues have a dominating real part, where the RKC4 stability
region has a much larger extent. (c) Stability boundaries of the RK2, the RK4
and the RK4M schemes. (d) First-order RKC stability boundaries up to four
stages.

due to Alfvén waves.

A third notable source of high frequency solutions is linked
to magnetic curvature and VB drifts, which are (roughly) pro-
portional to particle energy € = mv?/2 and perpendicular
wavenumber k,. Thus, if either highly energetic particles or
very high wavenumbers are involved, these drifts are expected
to play a relevant role.

Of course, the above considerations are based on simplified
versions of the gyrokinetic equation, or even on single terms.
In the general, more comprehensive case, all these terms are
coupled and one has to numerically compute the spectrum.
The result (using ScaLAPACK) is shown in Fig. 1(a) for the
discretized, collisionless linear gyrokinetic operator. Indeed,
the eigenvalue spectrum is stretched along the imaginary axis.
One generally finds the highest frequency either at smallest or
largest wavenumber k,, which is consistent with the phenomena
discussed above. In the appropriate limits, the magnitude of the
numerically computed frequency scales as expected. While hy-
perdiffusion terms can be necessary to stabilize spurious grid-
size oscillations, their effect on the eigenvalue spectrum is just
a comparably small shift along the negative real axis, which
has no big impact on stability considerations. It is important to
note that upwind (or other dissipative) discretization methods
can strongly distort the spectrum, and that dissipation on low



k, potential fluctuations ¢ can cause large negative eigenvalues
and should thus be avoided.[36]

In the flux-tube limit, collisional diffusion (a sink of fluctu-
ation entropy) provides the only physically motivated damping
in the gyrokinetic system.[37] The numerically computed spec-
trum of the collision operator is shown in Fig. 1(b); the eigen-
values are distributed along the negative real axis.! The maxi-
mum damping rate is proportional to the collision frequency v,
and roughly proportional to Avﬂz, which reflects the diffusive
character of this term. Since the velocity-dependent collision
rate diverges for v = 0, it is essential to distribute v grid points
symmetrically around vy = 0, with no grid point at the ori-
gin. Even if this is done, collisions can dominate the timestep,
particularly towards the edge of tokamak devices (like ASDEX
Upgrade [38]), where the collisionality is larger compared to
core plasmas, and stronger flux-surface shaping can require a
finer velocity grid.

Finally, including the nonlinear E, X B term

¢ B
NI, gl = = —

Cor By

= ;0,8 + v, 0,8

(0y%0.8 - Ddyg) 3)

prohibits a direct eigenvalue computation, since the advec-
tion velocities v, and v, are computed self-consistently from
g. Nevertheless, the total stability limit will be determined by
some combination of linear and nonlinear terms. Due to the ad-
vective character of N[y, g], a frequency shift along the imagi-
nary axis is expected. Details are given in Section 5.

3. Stability properties of relevant explicit Runge-Kutta
methods

The gyrokinetic equation d,¢ = G[t, g], Eq. (1), involves the
nonlinear, time-dependent operator G. This section describes
explicit RK methods for time evolution of g, at time £, to g,
at time #,,,| with the timestep At = 7,1 —t,. We focus on explicit
RK schemes of the diagonal form

gnet = &u+ A1) bk @)
j=1

kj =G [tn + ajAt,gn + Atajk_,-_l]

where s is the number of stages and the coefficients fulfill

j;l b; = 1 as well as a; = 0. In this simplified scheme,
only k;_; is used for computing k;, while in general, all k; with
J' < j can be allowed to contribute. Obviously, this procedure
is memory efficient, since only up to three additional vectors of
the size of g have to be stored. The order of consistency p is

'Imaginary parts that arise from discretization and boundary conditions are
negligible.

determined by comparing Eq. (4) with a Taylor expansion
J

N
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of g about ¢,, where the {c;} can be computed from the coef-
ficients {aj, b;} in Eq. (4). The required order of consistency
p < s thus imposes constraints on the {a;, b;}. For the linear
problem, one inserts the eigenvalue equation d,g = Ag into the
Eq. (5) to obtain the stability polynomial

PiAAD =1+ ) c¢;(AAty,

1

R

J

allowing to write down the RK stability condition
|Ps(AAD)] < 1 (6)

that must be fulfilled for all A in the left complex half-plane
(y < 0) to ensure that these actually stable or damped solutions
are not artificially destabilized by the explicit scheme. Thus,
a sufficiently small timestep must be chosen. We define Binag
(Breal) to be the extent of the stability boundary along the imagi-
nary (negative real) axis, i.e. |Ps(—Breal)l = |Ps(iBimag)l = 1. For
instance, in the case of a simple advection problem 9,g = vd.g
the eigenvalues A = ik,v = iw are imaginary, and the maximum
timestep is At = Bimag /Wmax. For maximum time order schemes
(p = s), the total stability region is completely determined by
the number of stages. Increasing the number of stages above p
requires additional evaluations of G[g], but adds free parame-
ters for shaping the stability polynomial to lower timestep con-
straints and reduce the overall computational cost.

Internal stability is found to become increasingly important
at a large number of stages.[22, 23] Since we use diagonal
methods with no more than six stages, no restrictions are found
in practice.

Among other choices, GENE features the use of standard
s = p second-order (RK2) and fourth-order (RK4) schemes,
as well as an optimized fourth-order scheme (RK4M) with six
stages, following Ref. [39]. The corresponding coefficients
are given in Tab. 1 and the stability boundaries are depicted
in Fig. 1(c). Additionally, a class of s-stage Runge-Kutta-
Chebychev (RKCs) schemes is considered, which are uncondi-
tionally unstable for (undamped) waves, but are powerful in the
case of the real spectrum of the collision operator. The Cheby-
chev polynomials are defined as

To(x) =1 Ti(x)=x
Tj(x) =2xTj1(x) = Tj2(x), j=2.

Restricting ourselves to first order of consistency p = 1, shifted
Chebychev polynomials possess the optimal stability along the
negative real axis with Sy = 2s2. In order to stabilize small



aj a a3 a4 as de
RK2 0 0.8
RK4 0 0.5 0.5 1.0
RK4M 0 0.16791847  0.4829844  0.7054607  0.0929587  0.7621008
by by b3 by bs bg
RK2 0.375 0.625
RK4 1/6 1/3 1/3 1/6
RK4M  -0.15108371  0.7538468  —0.3601660  0.5269677 0.0 0.2304351

Table 1: Coefficients for a two stage RK2, a four stage RK4 and a six stage RK4M method.

ai az as as

RKC1 0 1

RKC2 0 0.1706953512

RKC3 0 0.03569626261 0.1377742151

RKC4 0 0.03221719644 —1.987635269  0.03221719644
by by b3 In

RKC1 1

RKC2 0.2497313672 0.7502686328

RKC3 0.1115050079 —-0.2891490316 1.177644024

RKC4 0.001610859822  0.11936272179  —-0.2816076282 1.160634047

Table 2: Coefficients for the various (diagonal) first-order Runge-Kutta-Chebychev methods implemented in the GENE code.

imaginary parts of the {4;}, the damped shifted Chebychev poly-
nomials

T(wo + wiz)

Prics(z) = T w

_ Ty(wp)
' Ti(w))

(N

have been introduced.[23, 22] Here, the damping parameter
wo = 1 + €/s2, with e = 0.05 is chosen, which yields a sta-
bility boundary of Brea(s) =~ 1.93s%. The first-order RKC co-
efficients implemented in GENE are summarized in Tab. 2 and
the stability boundaries are shown in Fig. 1(b) and (d). One rec-
ognizes the RKC1 scheme to be identical to the explicit Euler
scheme. The remaining RKC schemes deviate from the ones
described in Ref. [23]. While our (diagonal) approach is more
memory efficient, we lose the opportunity of recursively defin-
ing internally stable schemes for an arbitrary number of stages.
However, we observe in the following sections that at most four
stages are necessary in our case.

4. Timestep optimization with an operator splitting tech-
nique

In the previous sections, we have introduced various explicit
RK schemes and discussed properties of the three operators
L[gl, Nli,g] and C[g] of Eq. (1) that determine the stability
of these schemes. In the following, we attempt to find efficient
RK schemes for the individual operators. In Sec. 2 it has been
shown that for the collisionless part (N + L) an extended stabil-
ity Bimag along the imaginary axis is required. If accuracy con-
straints can be ignored, computational efficiency can be charac-
terized by the ratio B(s)/s, as B(s) sets the maximum timestep
and s measures the cost per step. Interestingly, among all 4-
stage methods the fourth order (RK4) scheme with B, = 2 \2

is optimal in that respect. The (RK4M) s = 6 scheme has
Bimag = 4.90 and thus is about 15% more efficient than (RK4)
and about 7% more efficient than the (RK4(3)5[2R+]C) scheme
referred to in Ref. [15]. To our knowledge, only a theoretical
upper bound of SBimae < s exists for (even) s > 4, and (RK4M)
is only 18% lower than that.[40]

The eigenvalues of the collision operator C[g], on the other
hand, extend along the negative real axis. In this case, the RKC
methods discussed in Sec. 3 possess a near-optimal stability
polynomial with a computational efficiency Brea/s = 1.93s that
increases linearly in the number of stages.

Although it is possible to include the collision operator in L
and perform time integration with a RK4 method, the strong
benefits of RKC methods can only be exploited when an opera-
tor splitting technique is applied. In exponential notation, it can
easily be shown that the symmetric (Strang) splitting

Gnal = eAtC/ZeAt(N+L)eAtC/2gn

— eAt [C+N+L]g” + O(AIS)

is second-order accurate in At.[41] In contrast, the non-
symmetric splitting

gnel = A C AT (NHL) gn = PAICHN+L] gn + O( Atz)

is formally only first-order accurate. However, when the prop-
agation of g with the first operator (C) does not change the sec-
ond operator (N + L), the second half-step can be combined
with the first half-step of the next time iteration. In this case,
both of the above splitting schemes are of second order.[42] In
gyrokinetics, this argument holds for linear computations only.
In the nonlinear case, applying collisions on g does generally
alter the self-consistent potentials computed with Maxwell’s
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Figure 2: The frequency error Aw/w of various explicit RK schemes is shown
as a function of the timestep. The order of convergence in At is illustrated by
straight lines in the double logarithmic plot. As expected, the error of the RK4
scheme (blue triangles) is O(Ar*). The error of the operator splitting method
Eq. (8) is found to be O(Af?), as can be observed when second or higher-order
individual schemes are used (magenta squares). Choosing first-order RKCs
schemes (red dots s = 1, green crosses s = 4), the convergence order reduces
to O(Af), but the small prefactor (~ 1072) ensures acceptable accuracy.

equations, which in turn changes the nonlinear operator N. In
consequence, second-order accuracy in nonlinear simulations
is expected only for the symmetric splitting. Since the RKC
schemes that we consider here are only first-order accurate any-
way, we can choose the simple approach

gL, = R {LIg,] + Nliu gal, At}
gue1 = gy + RKC[Clg ). Arf ®

n+l

of alternating propagation with the collisionless (Vlasov) op-
erator (L + N) and the collision operator C, using a com-
mon timestep. The time-stepping schemes RK“'{-, Az} and
RK{-, At} can now be chosen individually. Scanning the
timestep for different choices with the GENE code, Fig. 2 con-
firms the above considerations on a simple test case of an ion
temperature gradient driven (ITG) mode, with kinetic electrons
and B, = 0.1%. The frequency error Aw = @ — Wcopy. COM-
pared to the converged RK4 result is measured with a precision
of 5x 10713 in this example. For an understanding of the results
it is important to note that a pth-order scheme has an O(A#"*!)
error for computing g,+; from g,. Since the eigenvalue is basi-
cally determined by fitting an exponential as

8n+l —8&n t O(AIIHI)

A+Adl=
8nlAt

5

we expect pth-order convergence for the frequency error Aw.
As a side note, also the global error for reaching a fixed sim-
ulation time ¢ is O(A#”), since choosing a smaller value for A¢
requires an accordingly larger number of timesteps to be com-
puted. In summary, using RKC schemes for collisions brings us
back to first-order in time, as expected. However, the observed
prefactor of the order of 1072 in Fig. 2 is relatively small, so
that an acceptable accuracy of at least 10 is obtained. Thus,
in practice, no effect on the accuracy of the physically relevant
solutions is visible with respect to higher-order methods, which
has been confirmed for a large number of linear and nonlinear
cases.

Two main advantages of applying this operator splitting
are identified: (i) In cases of moderate collisionality, the
one stage RKCI1 scheme is sufficient for collisions, which
saves three(five) calls of C[g], compared to including it in the
RK4(RK4M) scheme. This remains valid in nonlinear compu-
tations, although the total fraction of CPU time spent to com-
pute collisions will be smaller. (ii) In strongly collisional cases,
the timestep is restricted by strongly damped collisional eigen-
values. Computation time can then be saved by adding RKC
stages, which allows larger timesteps. In nonlinear simulations
the timestep is rarely dominated by collisions, even if it is in the
corresponding linear case.

Thus, it is reasonable to determine the optimal number of
RKC stages dynamically, so that the maximum stable RKC
timestep Afgrkc is always somewhat larger than Afgk4, the max-
imum stable RK4 timestep. In this way, collisions never re-
strict the timestep. This makes sense, as long as evaluating the
collisionless part dominates the computational cost, which is
generally the case. For evaluating Afggs and Afggc, a small
set of most restrictive eigenvalues of L and C, A; and A¢ are
pre-computed with fast largest-magnitude SLEPc algorithms.
When multiple Fourier modes k, are present, we make use of
the fact that L and C are block-diagonal in this dimension. In
this way, only a very low percentage of the following initial
value computation ($ 1% of a linear run) is needed for this
step.

We note, however, that the equations implemented in GENE
require the computation of f (and j) before every call of C,
because these fields have to be kept consistent with g. This
produces an additional overhead of the splitting scheme. In
rare cases, the computation of f and y is found to be relatively
costly, but in general this is easily over-compensated by the gain
in timestep or the less frequent calls of C itself. A positive side-
effect is related to the fact that in the GENE code the velocity
space dimension y is stored in the last index of g and therefore
is widely spread in the system memory. Since only collisions
require ghost-cells in this dimension, which are exchanged via
the message passing interface library, less calls of C improve
the parallelization efficiency.

The efficiency of the adaptive RKC operator splitting meth-
ods in combination with RK4 and RK4M is demonstrated in
the following. To that aim we first focus on linear physics
and compute the fastest growing solution with the initial value
solver. Two typical cases that are sensitive to collisions are cho-
sen. One is a trapped electron mode problem (TEM) in circular
model geometry. The other is a microtearing mode problem
(MTM) for physics parameters of the ASDEX Upgrade dis-
charge 27963 at the radial position py,; = 0.85. The eigenval-
ues computed by the GENE code are yrgym = 0.2610 ¢/ Ly,
wrtem = —0.6380c¢/L.s for the TEM case, and ymtm =
0.181 ¢/ Lief, wmtm = —1.332 ¢/ Lyes for the MTM case. They
coincide for all used schemes up to the given convergence ac-
curacy of 1073, Table 3 summarizes the results on the code
efficiency. In both cases, operator splitting leads to a strong in-
crease of the efficiency. In the TEM case with v,;/w = 0.38, the
timestep is not limited by collisions. Here, less frequent calls
of the collision operator lead to shorter runtime and thus RKC1



MTM At X 100(R/cs) time/s  speedup
RK4 0.107 1181 1
+RKC1 0.0772 1099 1.1
+RKC2 0.246 440 2.7
+RKC3 0.246 529 2.2
+RKC4 0.246 620 1.9
RK4M 0.124 1534 0.8
+RKC1 0.0772 1490 0.8
+RKC2 0.301 459 2.6
+RKC3 0.426 376 3.1
+RKC4 0.426 432 2.7

TEM At X 100(R/c;) time/s  speedup
RK4 0.149 246 1
+RKCl1 0.148 152 1.6
+RKC2 0.148 207 1.2
+RKC3 0.148 266 0.9
+RKC4 0.148 309 0.8
RK4M 0.257 212 1.2
+RKC1 0.257 113 2.2
+RKC2 0.257 146 1.7
+RKC3 0.257 179 1.4
+RKC4 0.257 212 1.2

Table 3: Test cases for the use of operator splitting with the adaptive RKC method combined with the RK4 and RK4M schemes. Compared to the RK4 case without
splitting, the code efficiency is enhanced by up to a factor of three, depending on the problem. Simulation times are determined on 64 CPUs of the HELIOS system.

is most efficient. In the MTM case, the collisionality is larger
(vei/w = 1.2), so that adding up to two or three RKC stages
increases efficiency due to a gain in timestep. Interestingly, the
RKCI1 splitting method requires a smaller timestep (which is
explained by the lower stability boundary) but still is slightly
more efficient due to the reduced number of calls of the colli-
sion operator. As expected, for both cases the runtime increases
as soon as the optimal number of RKC stages is exceeded.

The benefits of operator splitting with RKC schemes become
even more striking when replacing the RK4 method with the op-
timized six-stage RK4M method that is more efficient for large
imaginary eigenvalues. Again, this is attributed to the use of
a larger timestep, which also results in less overall evaluations
of the collision operator. In consequence, the combination of
RK4M and RKCI leads to the lowest runtime for these linear
runs. Compared to the standard RK4 scheme, the speedup is a
factor of two to three, depending on the parameter set. This is
significant when comprehensive physics models are employed
to perform large (multidimensional) parameter studies, as is
routinely done in quasilinear transport predictions for fusion
plasmas (see [11, 43, 44, 45], for example).

Additionally, we have compared the time traces of a non-
linear simulation of the TEM case with and without operator
splitting using up to two stages. The simulation times are given
in Tab. 4. Here, the timestep is set by linear physics of the
high wavenumbers even in the nonlinear simulation. Due to re-
duced computational time per step, the RKC1 operator splitting
method in combination with the RK4M time scheme has the
largest speedup with respect to the RK4 scheme without op-
erator splitting. We note that the physical results are identical
within the statistical error bars inherent to nonlinear turbulence
simulations. For the present MTM case the nonlinear terms
dominate the timestep limit, as shown in the next Section, sim-
ilarly to previously published MTM simulations in a slightly
different parameter regime.[46] In such cases, the RKC1 colli-
sion scheme is most efficient.

5. Timestep optimization in nonlinear simulations

This section addresses the modification of the maximum sta-
ble timestep by the nonlinear term Eq. (3). For simplicity, in the

(At) x 10°(R/c,)  CPU time/step[s] speedup
RK4 1.74 1.08 1
+RKCl1 1.74 0.74 1.45
+RKC2 1.74 0.96 1.12
RK4M 3.01 1.59 1.17
+RKCl1 3.01 0.99 1.87
+RKC2 3.01 1.23 1.51

Table 4: Nonlinear simulation times for the TEM test case, measured on 512
CPUs of the HELIOS system. Since the timestep is dynamically adapted, (At)
is time-averaged.
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Figure 3: This figure demonstrates that the eigenvalues with linearized v, terms
are meaningful for stability of the RK4 scheme. As an example, an elec-
tromagnetic ITG/TEM simulation in ASDEX Upgrade outer core geometry
is chosen. The timesteps At; and Afye, are computed by inserting A; and
Anley into the stability condition Eq. (6), respectively. The linear timestep is
Atp = 0.00518 Lyf/cs in this case. While the simulation is stable when the
timestep is just below Atyjey, @ numerical instability is detected in two other
simulations (marked by dashed lines ending in red crosses), when Atgpn, ex-
ceeds Atyley.
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the figure in cases (b) and (c), which demonstrates the improvement of Eq. (10).

present section we will include collisions in the linear operator
L, unless C is separated from the RK4 scheme, as described in
the previous section. In this sense, we denote Az, the timestep
obtained by considering only the linear terms. The nonlinear
term will be analysed in a linearized form N[jo, g], which is
obtained by freezing the potential to a snapshot of yo = ¥(#,)
taken at the current time #,. This procedure allows to access the
largest magnitude eigenvalues Ay, of the combined operator
L[g] + Nlko, gl, from which the maximum timestep Aty can
be computed exactly from Eq. (6). Since the drift velocities vy
and v)v( do not change much during one step, Atyey is expected to
accurately describe the stability limit of the RK scheme in the
nonlinear regime. We test our hypothesis by performing three
simulations with fixed timestep and identical initial condition.
As illustrated in Fig. 3, the scheme becomes unstable, when
Atyev Sinks below the simulation timestep. Up to this point the
time-traces of physical quantities are identical, reflecting the
fact that the results are converged with respect to the timestep.

Thus, it seems that we have a powerful tool at hand to ex-
actly compute the maximum stable timestep, even in nonlin-
ear simulations. However, performing this kind of “nonlinear
eigenvalue computation” is not feasible at every timestep. In
the following, we develop a fast method for approximating the
influence of the nonlinear term on the eigenvalue spectrum. The
nonlinearity itself constitutes a pure advection problem. We
thus expect the eigenvalues to spread along the imaginary axis.
Also the timestep restrictions for the linear operator stem from
eigenvalues with a dominating imaginary part. Simply adding
the eigenvalues is tempting, but of course the eigenvalues of
the sum of two operators can not be obtained as the sum of the
eigenvalues of the two separate operators, unless they are diag-
onalized by the same unitary transform.

Nevertheless, for combining linear and nonlinear effects, we

replace Eq. (3) by

NI[¥, 8l = Nmaxlgl = i/l)(,maxg,
/l,y,max = (|V;,max|kx,max + |V;,max|ky,max) )

where the real number A, .« maximizes the advection veloc-
ity over {x,y, z, u} phase space as well as species and uses the
largest wave-vectors k, and k, present in the simulation. Fortu-
nately, 4, max can be computed at every timestep with negligi-
ble effort. Because we are now dealing with a constant advec-
tion, the resulting total equation d,g = L[g] + Nmax[g] indeed is
solved by the Ansatz g(t) = goexplidf] with 4 = A; + A, max-
The combined timestep Afcomy is defined by finding the roots
of |Ps[(ALmax + AX,maX)Atcombﬂ = 1 with Ay .« being a set of
most restrictive eigenvalues of L that are pre-computed before
the time-stepping starts. Defining Aty max = Bimag/Ay,max. the
combined timestep is also well captured by setting

Ateomp = 1/(A + AL Y.

'X-max

(10)

For completeness we note that, in the GENE code, too frequent
timestep changes are avoided by using a threshold of about 5
per cent. For At to be adapted, the current estimate must devi-
ate from the present value by more than this threshold. Addi-
tionally, successive timestep increments are only allowed after
a minimum of 200 steps. The presented scheme is indeed robust
under the following two conditions. (i) A, is dominantly imagi-
nary. (ii) The shift of A; is along the imaginary axis. (iii) A, max
overestimates the nonlinear shift by more than the above men-
tioned threshold value. The first condition (i) is justified by the
use of non-dissipative differencing (plus a negligible real part
caused by hyperdiffusion). On the second condition (ii) we note
that the time-average of N can be modelled as a diffusive term
that balances linear growth.[47] This would intuitively imply an
eigenvalue shift along the negative real axis. Indeed, nonlinear
E, X B advection mediates dissipation by transporting fluctu-
ation energy from driven phase space regions into dissipative
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regions. While this mechanism is important for the formation
of a statistically stationary turbulent state, N is purely advective
at each point in time, which is relevant for the stability of time
integration. The third condition (iii) holds, because A, max is a
global maximum over phase space and thus overestimates the
actual stability restriction of the nonlinear term. Also the inter-
play with linear terms has been observed to lower the stability
constraint in some cases. However, the theoretical maximum
can closely be reached (cases with dominant Ay fluctuations
and fine k, resolution show this behavior). Nevertheless, we al-
low At, max to be multiplied with a user specified constant cq,
which can be set larger than unity in most cases. Robustness
for the general case is obtained for c.s = 0.95 to compensate
the threshold mentioned above. It should be noted that a non-
spectral treatment of the x (y) dimension demands a correction
factor to k, (k,) in Eq. (9), which can be computed from the
corresponding differencing scheme.

The shift of the eigenvalues due to the nonlinearity as well as
our model are illustrated in Fig. 4 for three distinct cases with
increasing nonlinear contribution. The linear eigenvalues are
shifted along the imaginary axis, as expected from the advective
character of N. Using the same three parameter sets, we show
in Fig. 5 that the sum of the maximum linear eigenvalue and the
maximum nonlinear shift A; + A, max is indeed always overesti-
mating the exact result Aye,. In the third case, the exact result is
only overestimated by about 20% and also other cases showed
almost no difference between modeled and real timestep limits.
As mentioned above, other cases allow a c.q prefactor to Aty max
to be set larger than one. While this increases the efficiency,
general robustness is lost. A less strict, yet robust automatic
adaptation scheme would of course be desirable, but this seems
to be impossible to find without performing actual expensive
eigenvalue computations.

However, we want to point out that the presented estimate of
Eq. (10) is already superior to the previously used CFL method

Ateq = min(Aty, ceq X Aty max) - (1

that uses the timestep Aty .« multiplied with a CFL constant
cet ~ 0.3 — 0.5 and never exceeds the linear timestep. Impor-
tantly, Eq.(11) requires c.q to be set smaller than one in order
to stabilize cases of weak (but non-negligible) nonlinear influ-

ence. In the opposite limit of dominating nonlinear dynamics,
Eq. (11) produces unnecessarily small timesteps. Combining
the maximum eigenvalues according to Eq. (10), naturally cap-
tures both limits in a satisfactory way.

Coming back to our exemplary cases of Figs. 4 and 5, we
observe that in case (a), which is am ITG/TEM case in circular
geometry, the nonlinear term has only a weak influence and the
improved estimate yields about the same timestep as Eq. (11)
with c.q = 0.3 would provide. However, the latter becomes un-
stable for larger c.q factors, suggesting to set c.g = 0.3 by de-
fault. In the second example (b), which is a realistic [TG/TEM
setup, Afcomp 1S about a factor or two larger than Az (with
¢t = 0.3). Example (c) is a realistic ITG/MTM mixed case, in
which the nonlinear timestep limit is even stronger, so that the
linear terms play almost no role. In such cases, any c.q < 1 will
reduce the code efficiency by about the same factor. In future
high-temperature devices like ITER, the normalized fluctuation
amplitude (v, ) is expected to be smaller. However, the impact
on the timestep is also determined by resolution settings. Be-
yond the examples given here, many other realistic gyrokinetic
simulations show a significant nonlinear timestep restriction.
Thus, our improved estimate can save a substantial amount (up
to two thirds) of computation time.

6. Conclusions

In summary, we presented two methods for increasing the
efficiency of gyrokinetic simulations and applied these to the
plasma turbulence code GENE. First, we matched individual
explicit Runge-Kutta schemes to the properties of individual
parts of the equation by applying an operator splitting tech-
nique. For the collisionless part we chose classical and ad-
vanced fourth-order schemes. For collisions, we restricted our-
selves to first-order Runge-Kutta-Chebychev schemes, since
they possess optimal stability properties, while higher-order
schemes offer much smaller efficiency gains. Thereby, we
reached an increased timestep and/or less evaluations of the
collision operator, resulting in a speedup by a factor of up to
three both in strongly and weakly collisional cases. A possible
application is given by extremely large (multidimensional) pa-
rameter studies, which are, for example, needed in quasilinear



transport modeling of tokamak plasmas. Time savings due to
our method are striking especially in the tokamak edge, where
the collisionality is increased.

Second, we investigated the impact of nonlinear advection on
the timestep. Based on the observation of a frequency-shift in
the eigenvalue spectrum due to the E, X B advection velocity
(which is an interesting topic in itself), we developed an im-
proved and robust timestep estimate for nonlinear simulations.
Beyond the examples shown in this paper, the new adaptation
scheme has been successfully applied to a large number of sim-
ulations. Avoiding unnecessarily small timesteps, a speedup
of up to a factor of two to three is realized for realistic prob-
lems. This is particularly important for large simulations in-
cluding comprehensive physics, experimental plasma shaping,
kinetic electrons, multiple scales, and possibly also profile vari-
ations. Constituting the high-end of fusion plasma modeling,
such simulations yield the most accurate description of plasma
turbulence currently available, but they are expensive: one run
can consume millions of CPU hours on present-day supercom-
puters.

Since the choice of algorithms and their implementation are
already highly optimized in GENE (as in other state-of-the-art
codes), this further increase of efficiency is really significant.
The techniques discussed in this work can prove extremely
useful, also for other simulation codes with similar numerical
schemes.
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