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Abstract: 

The paper gives a short introduction to the process modeling tool ProMoT and the simulation tool 
Diana. Both are open-source programs intended for the dynamic analysis of chemical engineering 
and biological systems. They support the implementation and analysis of large nonlinear differential 
algebraic systems. An overview is given on the functionality of ProMoT and Diana. The use of the 
tools is illustrated by their application to an innovative fluidized bed crystallization process. 
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1 Introduction 
Dynamic simulation of chemical processes and chemical production plants has been widely accepted 
as a useful tool for process design. Dynamic simulation is applicable to the design of control 
strategies, to the development of start-up and shut-down procedures, to the stability analysis of 
desired operation points, or to the analysis and design of dynamic operation modes like batch 
operation, to name but a few examples. Consequently, there are a large number of commercial and 
non-commercial software tools available that support the numerical solution of systems of 
differential or differential algebraic equations, as they typically arise from the modeling of chemical 
plants. On the one hand, there are general purpose numerical programming environments like 
Matlab [1], GNU Octave [2], or Scilab [3]. These tools offer a wide range of numerical methods and 
visualization techniques. However, their numerical algorithms are not tailored specifically to the 
needs of chemical plant models, which typically are characterized by strong nonlinearities, a 
comparatively high system order (several thousand differential equations) and Jacobians without 
nice exploitable structural properties apart from sparsity. When implementing a complex plant 
model in one of these tools, the user may either have to accept quite slow numerical solution, or he 
may have to invest a lot of effort to increase efficiency by providing symbolic Jacobians, providing 
sparse matrix patterns etc. On the other hand, there are dedicated dynamic flowsheet simulators like 
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gPROMS [4], Aspen Plus Dynamics [5], or Dymola/Modelica [6] with strong modeling capabilities and 
specialized numerical solution techniques. As a drawback, the details of the algorithms inside these 
closed-source tools are usually hidden from the user. This makes it hard to debug the code in cases 
when a user defined model does not behave as expected or when its numerical solution fails. 
Further, it is often quite difficult or even impossible to add new numerical algorithms to a closed-
source simulator. However, this may be desirable for experienced users who would like e.g. to test 
other equation solvers or to apply non-standard numerical approaches like continuation methods, 
novel experimental design methods etc. 

Motivated by the shortcomings of existent simulation tools, we have developed an open modeling 
and simulation environment whose roots go back to earlier activities at the University of Stuttgart. 
The environment consists of a pair of two tools, ProMoT and Diana. The process modeling tool 
ProMoT [7-9] supports the implementation of structured and hierarchical modeling libraries. It 
translates symbolic model information into simulation code for a number of numerical simulation 
programs, one of which is Diana. Diana [10-12] is a platform for the dynamic simulation and 
nonlinear analysis of differential algebraic systems. A schematic overview on the use of the tools is 
given in Figure 1 and will be discussed in more detail in the subsequent sections. 

<Figure 1> 

In the last years, the ProMoT/Diana system has proven useful for various challenging modeling tasks, 
e.g. in the area of chemical engineering systems [13,14], energy systems [15] and biological systems 
[16,17]. 

ProMoT and Diana are free open-source software. They can be downloaded from the web page of 
the Max Planck Institute for Complex Dynamical Systems under http://www.mpi-
magdeburg.mpg.de/projects/promot/ and http://www.mpi-magdeburg.mpg.de/projects/diana/ . 
ProMoT is available in form of binaries for Linux and Windows and as a source distribution. Diana can 
be built from sources on any recent Linux system. 

The following two sections are introducing ProMoT and Diana in more detail. The use of the tools is 
then illustrated by the modeling and simulation of a fluidized bed crystallization plant, which is part 
of an ongoing research project. 

2 Process Modeling Tool ProMoT 
ProMoT is a modeling tool written in Common Lisp with a graphical user interface written in Java 
[7,8]. ProMoT supports the structured implementation of dynamic models described by systems of 
nonlinear implicit differential algebraic equations of the form 

 𝑩(𝒙,𝒖,𝒑, 𝑡) 𝑑𝒙
𝑑𝑡

 = 𝒇(𝒙,𝒖,𝒑, 𝑡)  (1) 
  𝒚  = 𝒉(𝒙,𝒖,𝒑, 𝑡) ,  

where 𝒖 denotes the input vector, 𝒙 denotes the state vector, 𝒚 is the output vector, 𝒑 is a vector of 
constant model parameters, and 𝑡 is the simulation time; 𝒇 and 𝒉 are arbitrary nonlinear function 
vectors; 𝑩 is a – possibly singular – mass matrix, zero rows indicating implicit algebraic equations. 
𝑩,𝒇 and 𝒉 may change during a simulation due to implicit switching events. In this way, it is possible 
to define models with discontinuities in ProMoT, e.g. caused by phase changes, reversal of fluid flow 
direction, opening and closing of valves etc. ProMoT itself is a purely symbolic modeling tool and 



hence has no restrictions with respect to numerical properties of the models like stiffness, 
differential index.  Of course, such limitations occur when a numerical solution of the model is 
attempted and depend on the numerical algorithms employed. Limitations resulting from the use of 
Diana will be discussed in the next Section. However, on the ProMoT level the idea is to keep the 
model formulation separate from numerical requirements. ProMoT provides a rather general 
modeling language and outputs to different numerical solution tools.  From these tools the user may 
choose the one that is most appropriate for his needs. 

The modeler defines equation systems like (1) either by selecting predefined model building blocks 
from a graphical user interface or by using the text based model definition language MDL (see Figure 
1). A simple example of MDL code is given in Figure 2. Switching events are described by Petri nets, 
with another simple example shown in Figure 3. 

<Figure 2> 

<Figure 3> 

ProMoT offers two mechanisms for the structuring of complex models. First, inputs and outputs of 
several models of the form (1) may be connected via the graphical user interface of ProMoT, similar 
to classical flowsheet simulators. For an example see Figure 7, which is discussed in detail in Section 
5. Second, ProMoT allows aggregation of modules to a composite modeling entity and multiple 
inheritance of one modeling entity from other modules. Each modeling entity in ProMoT inherits 
properties from a super-class. The class “simple_ode” in Figure 2 e.g. inherits from a general super-
class “module”.  Using the object oriented mechanisms of aggregation and inheritance, a modeler 
can build up hierarchically structured model libraries. This will be illustrated by the application 
example in Section 4. 

After implementation of a model, ProMoT performs a structural analysis of the model. ProMoT tries 
to detect explicit algebraic equations.  If there are no cyclic dependencies in the corresponding 
algebraic variables, then these variables are eliminated in order to reduce the number of unknowns 
for the numerical solution. Further ProMoT performs some simple structural solvability analysis of 
the model and issues an error message, if the model system is obviously not solvable, because e.g. 
the number of equations does not match the number of unknowns, or if a declared state variable 
does not appear in any equation.  A visual editor [9] gives further insight in the internal dependencies 
of the model. ProMoT generates analytical Jacobians via an interface to the computer algebra system 
Maxima [18]. Analytical derivatives of arbitrary order with respect to the states and the model 
parameters can be generated, as they are required for sensitivity analysis, optimization, and 
singularity analysis. 

As a final step, ProMoT converts the model information into simulation code for various numerical 
simulation tools. Currently, it is possible to export models to Diva [19], Matlab and Diana. 
Furthermore, model exchange (import and export) is possible via the Systems Biology Markup 
Language SBML [20]. 

3 Numerical Analysis Tool Diana 
Diana [10-12] is a simulation tool for the solution and nonlinear analysis of differential algebraic 
systems, as they typically result from first principle modeling of chemical engineering systems and 



biochemical systems. The numerical core of Diana is written in C++ in order to ensure fast and 
efficient numerical solutions. Model equations also have to be implemented in C++ as an equation 
set object (ESO) using CAPE-OPEN [21] standard interfaces. However, a user of Diana never gets into 
immediate contact with C++ and is not required to write his own C++ code. Instead, the user may 
generate an ESO of his model with the help of ProMoT as explained above and illustrated in Figure 1.  
For the numerical analysis, the modeler accesses Diana via scripts written in the scripting language 
Python [22]. The advantage is that Python is very easy to learn and to program. Further, in Python 
there are powerful numerical and graphical libraries available the Diana user has full access to. Using 
these libraries, the Diana user can easily extend the functionality of Diana or post-process and 
visualize the numerical results obtained from Diana.  For example, the NumPy library lets the user 
apply linear algebra methods from BLAS [23] and LAPACK [24] to the simulation results. Finally, 
Python scripts may be used to define and execute complex simulation scenarios like simulation of 
control recipes for chemical plants.  Figure 4 shows a most simple example of a Python script with a 
call to Diana. 

<Figure 4> 

The numerical methods implemented in Diana are tailored to the needs of typical chemical plant 
models. The initial value problem solvers are able to handle stiff differential algebraic systems with a 
differential index of zero or one.  The Jacobians should preferably be sparse, but apart from that no 
special structural properties are required. For best efficiency, the system order should lie 
approximately between 101 and 104. The lower limit results from the use of sparse numeric routines, 
which cause an additional computational burden for very small systems; the reason for the upper 
limit is that direct methods are used for solving the underlying linear algebra problems, whereas 
iterative methods may be more efficient for very large systems. 

The numerical core libraries used in Diana are BLAS [23], LAPACK [24], UMFPACK [25], and ARPACK 
[26] for basic linear algebra algorithms, SUNDIALS/Ida [27] and DASPK [28] for the solution of 
differential algebraic initial value problems, ODESSA [29] for the solution of ODE initial value 
problems, SUNDIALS/Kinsol and NLEQ1S [30] for the solution of nonlinear algebraic equations; for 
further details see [12].  

For the solution of optimization problems, Diana offers the interior point optimizer IPOPT [31], an 
implementation of the Nelder-Mead downhill simplex method [32], and genetic algorithms from the 
packages DIRECT [33] and GMFL [34]. 

Diana contains powerful methods for parameter continuation and bifurcation analysis of equilibrium 
points states, steady state singularities and periodic solutions [11,12].  A predictor corrector 
algorithm with step size control is used for continuation; the user can choose between a chord 
predictor and a tangent predictor for the prediction step, and between local parameterization and 
pseudo-arc length parameterization for the corrector step [12]. Diana permits the detection and 
parameter continuation of singularities up to codimension 3 (limit points, isolas , hysteresises, 
pitchforks, winged cusps) and of Hopf bifurcations. In combination with the analytical Jacobians 
provided by ProMoT, Diana generates the required augmented equation systems automatically. For 
the direct computation of stable and unstable periodic orbits, a single shooting algorithm has been 
implemented, which uses the Recursive Projection Method [35,36] for an efficient treatment of high-
dimensional systems. 



 

 

4 Application Example Fluidized Bed Crystallizer 
The intention of the following Section is to illustrate the workflow of ProMoT/Diana. While toy 
examples can be found in the user documentation of the tools, a more serious application from 
recent research work is chosen here. The example is a plant model of a fluidized bed crystallizer 
system whose complexity is quite typical for the systems analyzed in ProMoT/Diana. 

Fluidized bed crystallizers are an innovative method to continuously produce crystals with high purity 
[37].  Recently, fluidized bed crystallizers have been proposed for the continuous separation of 
enantiomers [38-40], which is a challenging problem e.g. in pharmaceutical industry.   

In the following, the fluidized bed crystallization process sketched in Figure 5 will be considered. A 
supersaturated liquid solution comes from the feed tank and enters the bottom of the crystallizer.  In 
the crystallizer, the fluid flow goes from bottom to top. The conditions in the crystallizer are chosen 
such that crystal growth occurs, but hardly nucleation. Small crystals are dragged upwards with the 
fluid. Larger crystals sink to the bottom due to gravity. They are fed into an ultrasonic (US) 
attenuator, crushed and recycled as seeding crystals into the crystallizer. A product flow is withdrawn 
at the side of the crystallizer. It goes through a sieve, where the product crystals are collected. The 
filtrate and the fluid outflow at the top of the crystallizer are fed back to the feed tank. The described 
process is a simplified version of the set-up suggested in [40], as it contains only one crystallizer 
instead of two. Therefore, it permits only the production of one type of crystals, e.g. of one 
enantiomer, while the counter-enantiomer remains in the liquid phase.  

<Figure 5> 

The objective of the process is to generate product crystals of a desired purity and size. The design 
variables are the temperatures and flow rates in the devices, as well as the shape of the crystallizer 
and the position of the product outlet. As a first step of the analysis in ProMoT/Diana a mathematical 
process model has to be formulated. A suitable model is presented in the next section.  

4.1 Mathematical Process Model 

4.1.1 Model of the fluidized bed crystallizer 
The model of the fluidized bed crystallizer is adapted from [41]. It describes the particle size 
distribution as a function of time, of a space coordinate 𝑥 in the direction of the fluid flow and of a 
property coordinate 𝐿 for the characteristic crystal size. It is assumed that particles move inside the 
fluid flow with a velocity 𝑣𝑃 in 𝑥 direction that depends on the fluid flow velocity and the particle 
size. Particles grow with a growth rate 𝐺(𝑐), which is a function of the concentration 𝑐 of the solute 
in the liquid phase. Nucleation, aggregation and attrition of particles are considered as negligible. A 
mass balance for the particles leads to the following population balance equation: 

 

𝐴(𝑥)
𝜕𝑛
𝜕𝑡�𝑥,𝐿,𝑡

= −𝐴(𝑥)𝐺(𝑐)
𝜕𝑛
𝜕𝐿�𝑥,𝐿,𝑡

−
𝜕
𝜕𝑥 �

𝐴(𝑥)𝑣𝑝(𝑥, 𝐿, 𝑡)𝑛(𝑥, 𝐿, 𝑡) − 𝐷 𝐴(𝑥) 
𝜕𝑛
𝜕𝑥�𝑥,𝐿,𝑡

� (2) 



 −�̇�𝑈𝑆,𝑜𝑢𝑡(𝐿, 𝑡) 𝛿�𝑥 − 𝑥𝑈𝑆,𝑜𝑢𝑡� + �̇�𝑈𝑆,𝑖𝑛(𝐿, 𝑡) 𝛿�𝑥 − 𝑥𝑈𝑆,𝑖𝑛� 

(𝐿 > 0, 0 < 𝑥 < ℎ) 
 

In (2), 𝑛(𝑥, 𝐿, 𝑡) is the number size density, i.e. the number of particles of a certain size per volume; 
𝐴(𝑥)  is the cross section of the crystallizer; 𝐷  is a dispersion coefficient; �̇�𝑈𝑆,𝑜𝑢𝑡(𝐿, 𝑡)  and 
�̇�𝑈𝑆,𝑖𝑛(𝐿, 𝑡)  denote the particle flow to the ultrasonic attenuator at point  
𝑥𝑈𝑆,𝑜𝑢𝑡  and from the ultrasonic attenuator at point  𝑥𝑈𝑆,𝑖𝑛 respectively; 𝛿 is the Dirac delta function; 
ℎ is the total height of the crystallizer.  The kinetic expression for the growth rate 𝐺(𝑐) is taken from 
[41]. 

A Dirichlet boundary condition is used for the 𝐿 coordinate, and Danckwerts boundary conditions are 
used for the 𝑥 coordinate: 

𝑛(𝑥, 0, 𝑡) = 0 (3) 

𝑣𝑃(0,𝐿, 𝑡)�𝑛(0, 𝐿, 𝑡) − 𝑛𝑖𝑛(𝐿, 𝑡)� − 𝐷 
𝜕𝑛
𝜕𝑥�0,𝐿,𝑡

= 0, (4) 

𝑣𝑃(ℎ, 𝐿, 𝑡)�𝑛(ℎ, 𝐿, 𝑡) − 𝑛𝑜𝑢𝑡(𝐿, 𝑡)� − 𝐷 
𝜕𝑛
𝜕𝑥�ℎ,𝐿,𝑡

= 0, (5) 

where 𝑛𝑖𝑛(𝐿, 𝑡) is the size distribution of the particles entering at the bottom of the crystallizer, and 
𝑛𝑜𝑢𝑡(𝐿, 𝑡) is the size distribution above the top of crystallizer, which is given as 

𝑛𝑜𝑢𝑡(𝐿, 𝑡) = �
𝑛(ℎ, 𝐿, 𝑡) 𝑖𝑓 𝑣𝑃(ℎ, 𝐿, 𝑡) > 0

0 𝑖𝑓 𝑣𝑃(ℎ, 𝐿, 𝑡) < 0  (6) 

A formula for the particle velocity can be derived from a quasi-stationary momentum balance for the 
particles, assuming equilibrium between gravity force, buoyancy force and drag force [41]. The 
resulting relation reads for spherical particles with radius 𝐿: 

𝑣𝑃(𝑥, 𝐿, 𝑡) = 𝑣𝐹(𝑥, 𝑡) −�
8
3

 
𝐿 𝑔

𝑐𝑊(𝑣𝐹)  
𝜌𝑃 − 𝜌𝐹
𝜌𝐹

, (7) 

where 𝑣𝐹 is the flow velocity of the liquid, 𝑔 is the gravity constant, 𝜌𝐹 and 𝜌𝑃 are fluid and particle 
density, respectively. The drag coefficient 𝑐𝑊is computed from the relation given in [41].  

The flow velocity 𝑣𝐹 of the incompressible liquid follows immediately from the volume flow �̇�and the 
free cross sectional area 𝐴𝑒𝑓𝑓: 

𝑣𝐹(𝑥, 𝑡) =
�̇�(𝑡)

𝐴𝑒𝑓𝑓(𝑥, 𝑡)
, (8) 

 

where 

𝐴𝑒𝑓𝑓(𝑥, 𝑡) = 𝐴(𝑥)�1 −�
𝜋
6

∞

0
 𝐿3 𝑛(𝑥, 𝐿, 𝑡) 𝑑𝐿� (9) 

 

The mass balance of the liquid phase gives 



𝜕
𝜕𝑡 �

𝐴𝑒𝑓𝑓(𝑥, 𝑡) 𝑐(𝑥, 𝑡)� = −
𝜕
𝜕𝑥

�𝐴𝑒𝑓𝑓(𝑥, 𝑡) 𝑣𝐹(𝑥, 𝑡)𝑐(𝑥, 𝑡)� +
𝜕
𝜕𝑥 �

𝐴𝑒𝑓𝑓(𝑥, 𝑡) 𝐷𝑒𝑓𝑓  
𝜕𝑐
𝜕𝑥�𝑥,𝑡

� 
(10) 

 
+ 𝐴(𝑥) 

4
3
𝜋 
𝜌𝑃
𝜌𝐹

 � 𝐿3𝐺(𝑐)
𝜕𝑛
𝜕𝐿�𝑥,𝐿,𝑡

𝑑𝐿
∞

0
 

( 0 < 𝑥 < ℎ)  

 

The three terms on the right hand side account for convective transport, dispersive transport with 
dispersion coefficient 𝐷𝑒𝑓𝑓 and consumption of solute due to crystal growth. The corresponding 
Danckwerts boundary conditions read 

𝑣𝐹(0, 𝑡)(𝑐(0, 𝑡) − 𝑐𝑖𝑛(𝑡)) − 𝐷 
𝜕𝑐
𝜕𝑥�0,𝑡

= 0, 
𝜕𝑐
𝜕𝑥�ℎ,𝑡

= 0, (11) 

 

𝑐𝑖𝑛 being the inlet concentration of the solute at the bottom of the crystallizer.  

 

4.1.2 Model of the ultrasonic attenuator 
The US attenuator is described by the simple model suggested in [41]. It is assumed that the 
attenuator has negligible hold-up, i.e. the volume flow �̇�𝑈𝑆 from the crystallizer to the US attenuator 
is identical to that from the US attenuator back to the crystallizer, and the total particle mass flows 
from and to the attenuator are identical, as well. Further, it is assumed that the particles leaving the 
US attenuator always have the same size distribution 𝑛𝑈𝑆(𝐿). Under these assumptions, the particle 
flows �̇�𝑈𝑆,𝑜𝑢𝑡 and �̇�𝑈𝑆,𝑖𝑛 in (2) may be written as 

�̇�𝑈𝑆,𝑜𝑢𝑡(𝐿, 𝑡) =  �̇�𝑈𝑆 𝑛�𝑥𝑈𝑆,𝑜𝑢𝑡,𝐿, 𝑡� (12) 

�̇�𝑈𝑆,𝑖𝑛(𝐿, 𝑡) =  �̇�𝑈𝑆 𝐾𝑈𝑆𝑛𝑈𝑆(𝐿) (13) 
 

𝐾𝑈𝑆 in (13) is a scaling constant that follows from the mass conservation condition 

� �̇�𝑈𝑆,𝑜𝑢𝑡(𝐿, 𝑡) 𝐿3 𝑑𝐿 = 
∞

0
� �̇�𝑈𝑆,𝑖𝑛(𝐿, 𝑡) 𝐿3 𝑑𝐿
∞

0
 (14) 

 

4.1.3 Model of the product sieve 
It is assumed that the product sieve works perfectly in the sense that the liquid flow rate and liquid 
composition at its inlet and its outlet are identical, and that the outlet flow contains no particles. 

4.1.4 Model of the feed tank 
For simplicity, the feed tank is assumed to be sufficiently large that it may be considered as a 
reservoir with constant composition of the liquid phase. Due to this idealization, the system is able to 
reach a steady state or stable periodic oscillation.  A more realistic feed tank model with a finite hold-
up would cause the system to be permanently in a transient state, because the amount of solute in 
the system would deplete constantly.  This situation has also been studied in ProMoT/Diana, but is 
not discussed here, as it would distract from the main subject of this paper, which is the presentation 
of the tools.  



4.2 Implementation in ProMoT 
The process model from Section 4.1 is not yet ready for implementation in ProMoT, because 
currently ProMoT expects differential algebraic equations systems of type (1). Therefore, in a first 
step presented in 4.2.1 the partial differential equations (2) and (10) have to be approximated by a 
set of ordinary differential equations. The implementation of this set of equations using the modeling 
language MDL and the ProMoT GUI is described in 4.2.2. 

4.2.1 Spatial discretization 
The method of lines is used to convert the partial differential equations into sets of differential 
algebraic equations that can be solved by Diana. A finite volume scheme is applied with volume 
elements as shown in Figure 6.  

<Figure 6> 

An equidistant grid is used in 𝑥 direction, and a logarithmic distribution of grid points in 𝐿 direction. 
The discretization is largely straight-forward. Only the treatment of the convective transport term in 
the population balance equation (2) requires some care, because the particle velocity 𝑣𝑃 may change 
its sign along the 𝑥 and the 𝐿 coordinate and a discretization scheme is needed that provides 
numerical stability and preserves mass conservation under these circumstances.  

An appropriate discretization scheme is derived in the following. Integration of (2) over a volume 
element gives 
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𝜕𝑛
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𝜕
𝜕𝑥 �

𝐴(𝑥)𝑣𝑝(𝑥, 𝐿, 𝑡)𝑛(𝑥, 𝐿, 𝑡)�

𝑥
𝑖+ 12

𝑥
𝑖− 12

𝐿
𝑗+ 12

𝐿
𝑗− 12

 𝑑𝑥 𝑑𝐿 + ⋯ 
(18) 

(Only the critical convective term is shown on the right-hand side of (18), the other terms are 
omitted for brevity).  

The integral on the left-hand side of (18) is approximated by 

� � 𝐴(𝑥)
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𝑑𝑡

 ∆𝑥𝑖 ∆𝐿𝑗 (19) 

 

The integral on the right-hand side of (18) is first solved in 𝑥 direction and averaged in 𝐿 direction: 

� � −
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𝑖− 12

𝑥
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Then, the remaining terms are approximated by 
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𝐴
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𝑣𝑝,𝑖−1,𝑗 𝑛𝑖−1,𝑗  if 𝑣𝑝,𝑖−1,𝑗 > 0  

𝐴
𝑖−12

𝑣𝑝,𝑖−1,𝑗 𝑛𝑖𝑗 if 𝑣𝑝,𝑖−1,𝑗 < 0  (21) 
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𝐴
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𝐴
𝑖+12

𝑣𝑝,𝑖𝑗 𝑛𝑖+1,𝑗 if 𝑣𝑝,𝑖𝑗 < 0  (22) 

(𝐴𝑖+12
  is the cross section area at the right border of volume element 𝑖.)  

By this approximation, it can be guaranteed that exactly the same amount of mass, as leaves one 
finite volume, enters another finite volume, independent of sign changes of 𝑣𝑃. 

4.2.2 Model representation in ProMoT 
As mentioned in Section 2, ProMoT offers two possibilities to structure a process model, in a 
“horizontal” way on one level of hierarchy, and in a “vertical way” by introducing different 
hierarchical levels. The horizontal structuring is achieved by defining model building blocks with 
inputs and outputs and by connecting these inputs and outputs graphically by the ProMoT GUI.  For 
the example of the crystallizer process a very obvious approach is to represent each of the devices in 
the plant by one building block and to represent the piping between the devices by input-output 
connections.  As a result one obtains an implementation of the crystallizer process model as is shown 
in the ProMoT screenshot in Figure 7. 

<Figure 7> 

The model structured displayed by the visual model editor on the right-hand side of Figure 7 is very 
close to the plant structure shown in Figure 4. It should also be note that the connections between 
input and output terminals in ProMoT are vectorial, i.e. each link may transport a vector of arbitrary 
length, containing e.g. the number size densities along the 𝐿 coordinate at the crystallizer outlet and 
the corresponding liquid phase composition. 

The “vertical” structuring method is also employed in the crystallizer example. This can be seen from 
the class browser shown on the left-hand side of Figure 7. One may recognize a module “grid”, which 
is a super-class of the modules “crystallizer”, “feed_tank”, “filter”, and “us” representing models of 
the devices in the plant. The module “grid” just contains a discretization of the property coordinate, 
i.e. the number and position of the grid points in 𝐿. By defining all modules which make use of the 
property coordinate as sub-classes of “grid” automatically ensures a consistent and redundancy free 
model implementation in the sense that all modules use the same property grid and modifications of 
the grid only have to be made at one point in the model. Of course, this is a very simple example of 
inheritance. More extensive use of aggregation and inheritance mechanisms in ProMoT has been 
made in [42,43]. In the present example, one could further use inheritance to fork different versions 
of the crystallizer model by putting the common model parts into one super-class and implementing 
model variants, e.g. different spatial discretization techniques, in sub-classes. 

ProMoT automatically translates the generated plant model into C++ code for Diana. In this example, 
124 grid points are chosen in 𝑥 direction and 50 grid points are chosen in 𝐿 direction, resulting in a 
equation system of 6324 differential equations and 353 algebraic equations. After a compilation 
step, this equation system is ready for numerical analysis in Diana. 

 

4.3 Simulation Results in Diana 



In a first step, dynamic simulation in Diana is used to study the start-up behavior of the crystallizer 
process. It is assumed that at the beginning of the simulation a seeding population of rather large 
crystals is placed in the upper half of the crystallizer. The feed flow rate, the product flow rate, and 
the flow rate to and from the US attenuator are kept constant. The solver DASPK is chosen for the 
integration of the differential algebraic model system. The simulation is carried out over 100000 s of 
simulation time, requiring 1020 s of CPU time on a laptop computer with 2.50 GHz processor and 
occupying about 670 MB of computer memory. 

Figure 8 shows the resulting dynamic evolution of the crystal population. The seeding crystals grow 
due to the super-saturation of the liquid phase and gradually sink to the bottom of the crystallizer. 
When reaching the crystallizer’s outlet to the ultrasonic attenuator, they are sucked out of the 
crystallizer, crushed and recycled as small crystals into the crystallizer.  Hence, a population of 
smaller crystals forms at the bottom (time 500 s in Figure 8). This population grows in particle size 
and rises with the liquid flow (time 10000 s and 20000 s in Figure 8).  The supply of fresh small 
particles at the crystallizer bottom slows down, when most of the large particles have been 
consumed in the US attenuator (time 30000 s in Figure 8). It takes a little time, until new large 
particles have formed and sunk to the ground (time 40000 s in Figure 8). Then the process repeats. 
By looking at the total mass in the crystallizer in Figure 9 one can see the periodic nature of the 
dynamic behavior more clearly (a simulation over a longer time horizon confirms that the system 
actually settles on a strictly periodic orbit). The physical explanation for the found behavior may be 
the selective removal of large particles from the crystallizer in combination with the crystal growth 
rate, which has been identified as a source of instabilities in other particle systems [44,45]. 

<Figure 8> 

<Figure 9> 

From an application point of view, the periodic oscillations are usually undesired, and the question 
arises what operational or constructive modifications could be made to stabilize the system. Tools for 
bifurcation and singularity analysis may help to solve this problem. As an example, the dependence 
of the system behavior on the feed flow rate is shown in the bifurcation diagram in Figure 10.  One 
can see that the periodic oscillations occur over a quite large range of values for the feed flow rate. 
Actually, it is possible to suppress the oscillations by choosing a feed flow rate above the value of 
9.35 l/h given by the Hopf bifurcation in Figure 10. 

<Figure 10> 

5 Conclusions and Outlook 
ProMoT and Diana are a pair of free open-source tools for the dynamical modeling and numerical 
analysis of differential algebraic systems.  ProMoT offers a powerful object oriented modeling 
language and a graphical user interface.  It converts symbolic model information into simulation code 
for various simulation tools. One of the supported tools is Diana. Diana contains a collection of state-
of-the-art numerical algorithms for steady state solution, integration, optimization, and singularity 
analysis of differential algebraic systems, as they typically result from the modeling of chemical and 
biochemical processes.  Diana has a text based user interface via Python scripts and grants access to 
the complete functionality of the Python scripting language. This allows an effortless formulation of 
complex simulation tasks. 



The application example of a fluidized bed crystallizer in Section 4 documents that ProMoT and Diana 
are able to support the implementation and numerical analysis of challenging models of chemical 
engineering systems and that their use provides insight in the dynamic behavior of state-of –the-art 
chemical processes. 

Future work will simplify the implementation of models with partial differential equations. Further, 
ProMoT will be extended to support additional simulation tools.  
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8 Figure Legends 
 

Figure 1: Schematic structure and usage of ProMoT and Diana (adapted from [12])  

Figure 2: Implementation of the differential equation  𝑑𝑥
𝑑𝑡

= −𝑥, 𝑥(0) = 1  in the model definition 

language MDL provided by ProMoT. 

Figure 3: A very simple Petri net and its implementation in MDL: A system is initially in a state 
‘not_full’ and goes to a state ‘full’, when a switching function ℎ𝑚𝑎𝑥 − ℎ becomes negative. 

Figure 4: A simple example of the Python scripting language used to control the simulator Diana. A 
model named “Crystallizer” is loaded; the integrator DASPK is chosen for numerical solution; then 
dynamic simulation is executed until end time 1000. 

Figure 5: Scheme of a fluidized bed crystallizer setup, consisting of a feed tank, the crystallizer, an 
ultrasonic attenuator and a sieve for product removal. 

Figure 6: volume element for the spatial discretization of the crystallizer model. 

Figure 7: Screen-shot showing the ProMoT implementation of the fluidized bed crystallizer system. 

Figure 8: Dynamic simulation of the fluidized bed crystallizer system – contour plots of the number 
density function 𝑛(𝑥, 𝐿, 𝑡). 

Figure 9: Dynamic simulation of the fluidized bed crystallizer system – total particle mass in the 
crystallizer. 

Figure 10: Bifurcation diagram with feed flow rate as bifurcation parameter; solid line = stable steady 
state; dashed line = unstable steady state; filled square = Hopf bifurcation; filled circles = minima and 
maxima of the total particle mass on the periodic orbits; dotted line = time average of total particle 
mass on the periodic orbits. 
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