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JÖRG SCHWINGER,* JERRY F. TJIPUTRA,1 CHRISTOPH HEINZE,# LAURENT BOPP,@

JAMES R. CHRISTIAN,& MARION GEHLEN,@ TATIANA ILYINA,** CHRIS D. JONES,11
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ABSTRACT

Carbon cycle feedbacks are usually categorized into carbon–concentration and carbon–climate feedbacks, which

arise owing to increasing atmospheric CO2 concentration and changing physical climate. Both feedbacks are often

assumed tooperate independently: that is, the total feedback canbe expressed as the sumof two independent carbon

fluxes that are functions of atmospheric CO2 and climate change, respectively. For phase 5 of the Coupled Model

Intercomparison Project (CMIP5), radiatively and biogeochemically coupled simulations have been undertaken to

better understand carbon cycle feedback processes. Results show that the sum of total ocean carbon uptake in the

radiatively and biogeochemically coupled experiments is consistently larger by 19–58 petagrams of carbon (Pg C)

than the uptake found in the fully coupledmodel runs. This nonlinearity is small compared to the total ocean carbon

uptake (533–676PgC), but it is of the same order as the carbon–climate feedback. The weakening of ocean cir-

culation andmixingwith climate changemakes the largest contribution to the nonlinear carbon cycle response since

carbon transport to depth is suppressed in the fully relative to the biogeochemically coupled simulations, while the

radiatively coupled experimentmainlymeasures the loss of near-surface carbon owing towarming of the ocean. Sea

ice retreat and seawater carbon chemistry contribute less to the simulated nonlinearity. The authors’ results indicate

that estimates of theocean carbon–climate feedbackderived from ‘‘warming only’’ (radiatively coupled) simulations

may underestimate the reduction of ocean carbon uptake in a warm climate high CO2 world.

1. Introduction

It is estimated that, at present, the world’s oceans take

up approximately 25% of anthropogenic CO2 emissions

(Le Qu�er�e et al. 2013), thereby reducing the atmospheric

CO2 burden. At the same time, climate change modifies

ocean circulation and the physical and chemical properties

of seawater, which in turn can alter CO2 uptake. These

CO2 and climate-driven effects are referred to as carbon–

concentration and carbon–climate feedback (Boer and

Arora 2009; Gregory et al. 2009). The first attempts to

quantify these feedbacks were made decades ago (e.g.,

Eriksson 1963; Siegenthaler and Oeschger 1978), and the

first three-dimensional atmosphere–ocean modeling ex-

periments including both the carbon–concentration and

the carbon–climate feedback were devised by Maier-

Reimer et al. (1996), Sarmiento andLeQu�er�e (1996), and
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Matear andHirst (1999).With the advent of earth system

models with fully coupled land and ocean carbon cycle

modules, it became possible to perform climate pro-

jections including these carbon cycle feedback mecha-

nisms in a fully consistent manner (Cox et al. 2000;

Dufresne et al. 2002; Friedlingstein et al. 2003). The first

coordinated effort to estimate the magnitude of the

carbon cycle feedbacks together with their uncertainties

based on multiple earth system models was the Coupled

Climate–Carbon Cycle Model Intercomparison Project

(C4MIP) by Friedlingstein et al. (2006) using seven

ocean–atmosphere general circulation models and four

earth systemmodels of intermediate complexity (EMICs).

Next to fully coupled climate–carbon cycle simulations

(COU), these studies employed biogeochemically coupled

model experiments (BGC) where the increasing CO2

concentration is not ‘‘seen’’ by the radiation code of the

model. Since there is little physical climate change in these

experiments, the carbon uptake is taken to represent the

carbon–concentration feedback. Further, by considering

the difference between the COU and BGC model runs, it

is possible to estimate the carbon–climate feedback.

Gregory et al. (2009), Tjiputra et al. (2010), Boer and

Arora (2013), and Arora et al. (2013) employ radiatively

coupled simulations (RAD) with constant preindustrial

CO2 concentration prescribed to the land and ocean

biogeochemistry modules while the model’s radiation

code sees rising atmospheric CO2. The change in carbon

uptake (actually a loss) from this type of simulation is an

alternative estimate of the carbon–climate feedback;

likewise, it is possible to derive the carbon–concentration

feedback by taking the difference from the fully coupled

simulation. Gregory et al. (2009) found that the accu-

mulated carbon fluxes simulated in the BGC and RAD

experiments do not add up to the carbon flux occurring in

the COU simulation in the third climate configuration of

the Met Office Unified Model in lower resolution with

carbon cycle (HadCM3LC). A similar result is found by

Zickfeld et al. (2011), who used an EMIC [the University

of Victoria (UVic) ESCM] to investigate the nonlinearity

of the carbon cycle feedback on a 500-yr time scale. For

the ocean, the latter authors found that the weakening of

ocean circulation and increased stratification under cli-

mate change is responsible for a large part of the simu-

lated nonlinearity since these changes have a different

effect on ocean carbon uptake depending on whether

atmospheric CO2 is rising. They also attributed a part of

the nonlinearity to sea ice retreat in the Southern Ocean.

In the framework of phase 5 of the Coupled Model

Intercomparison Project (CMIP5) (Taylor et al. 2012),

a set of fully, biogeochemically, and radiatively coupled

simulations has been performed with a number of earth

system models (see Table 1 for a list of the CMIP5

models). Authors of previous studies (Plattner et al.

2008; Gregory et al. 2009; Zickfeld et al. 2011) recom-

mended employing concentration-driven rather than

emission-driven scenarios for model intercomparison

studies of carbon cycle processes. Therefore, in contrast

to C4MIP, CMIP5 prioritizes concentration-driven sce-

narios for carbon cycle feedback experiments. A stan-

dard idealized experiment with a prescribed 1%yr21

increase of atmospheric CO2 (until quadrupling of at-

mospheric CO2 is reached after 140 yr) serves as a

baseline simulation (COU); correspondingly, a 1%yr21

increase of CO2 is only seen by the biogeochemistry

modules or the radiation code in the BGC and RAD

experiments, respectively. Technically, there is no car-

bon cycle feedback in concentration-driven simulations

since changes in the amount of carbon stored in the

ocean and on land do not influence the atmospheric CO2

concentration. Nevertheless, carbon cycle feedbacks can

be diagnosed from concentration-driven experiments by

analyzing the implied emissions or the changes in air–

sea and air–land carbon fluxes and associated changes in

carbon inventories. The feedback gain of the carbon

cycle can be derived from these diagnosed inventory

changes (Plattner et al. 2008; Gregory et al. 2009).

Carbon cycle feedbacks in CMIP5 earth system

models for the 1% CO2 scenario have been quantified by

Arora et al. (2013) for land and ocean. No attempt was

made by Arora et al., however, to exploit the available

experiments with regard to nonlinearities. The aim of this

study is to investigate and quantify the nonlinearity of

ocean carbon cycle feedbacks found in the CMIP5 earth

system models using the radiatively and biogeochemically

coupled simulations. This paper is organized as follows.

We employ the carbon cycle feedback metrics introduced

by Friedlingstein et al. (2003) to define linear and non-

linear carbon cycle feedbacks and to derive some basic

properties of the BGC, RAD, and COU experiments in

section 2. The experiments and our analysis methods are

described in section 3. Section 4 focuses on analyzing the

contributions of the nonlinear seawater carbon chemistry,

sea ice retreat, and reduced overturning and mixing to the

nonlinearity of ocean carbon cycle feedbacks. A summary

of results and conclusions can be found in section 5.

2. Linear and nonlinear carbon cycle feedbacks

The basic equation describing a linear carbon cycle

feedback (e.g., Friedlingstein et al. 2003, 2006; Gregory

et al. 2009) reads

DC5bDCO21 gDT , (1)

where DCO2 and DT denote atmospheric CO2 and near-

surface temperature deviations from the preindustrial
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state andDC is the resulting change in the carbon stock of

one compartment of the earth system (here, the ocean).

The feedback parameters b and g have units petagrams of

carbon per parts per million (Pg C ppm21) and petagrams

of carbon per kelvin (Pg C K21), respectively, and are

defined for land and ocean separately. Since we focus on

the ocean in this study, the coefficients b and g refer to

changes in the ocean carbon inventory in the following text.

According to (1), the carbon cycle feedback consists of

a carbon–concentration feedback bDCO2 and a carbon–

climate feedback gDT. The formulation of the carbon–

climate feedback is based on the assumption that a change

of the global mean near-surface temperature T is a simple

yet suitable proxy for climate change. We note that an

alternative feedback formulation was introduced by Boer

andArora (2009), which has the same form as (1) but links

the instantaneous carbon flux change (instead of the time-

integrated flux change DC) to DCO2 and DT through

feedback parameters B and G. None of these two feed-

back equations includes an explicit time dependence of

the system response: that is, the carbon stocks or fluxes are

assumed to balance immediately with new values of CO2

andT. Since, for our purposes, it is more convenient to use

integrated quantities, that is, changes in the total ocean

carbon stock, we stick to the Friedlingstein et al. (2006)

approach for this study. However, the considerations that

follow in this section also apply to the Boer and Arora

(2009) definition of feedback parameters.

The carbon cycle feedback in (1) can be derived based on

a Taylor series expansion using a number of simplifying

assumptions. The basic assumption is that the carbon stock

C in one compartment of the earth system (here, the ocean)

can be expressed as a function of climate system state

(characterized by global mean near-surface temperature)

and atmospheric carbondioxide concentration,C5 F(CO2,

T). Hence, deviations from the preindustrial state can be

approximated by expanding F into a Taylor series:

DC5F(CO2,01DCO2,T01DT)

5
›F

›CO2

����
0

DCO2 1
›F

›T

����
0

DT1
›2F

›CO2›T

����
0

DCO2DT

1
1

2

›2F

›CO2
2

�����
0

DCO2
21

1

2

›2F

›T2

����
0

DT21R3 .

(2)

TABLE 1. Participating CMIP5 earth system models.

Model acronym Model name Modeling group Reference

Ocean biogeochemistry

model

MPI-ESM-LR Max Planck Institute Earth

System Model, low

resolution

Max Planck Institute for

Meteorology

Giorgetta et al. (2013) Hamburg Oceanic Carbon

Cycle (HAMOCC; Ilyina

et al. 2013)

IPSL-CM5A-LR L’Institut Pierre-Simon

Laplace Coupled Model,

version 5A, low

resolution

L’Institut Pierre-Simon

Laplace

Dufresne et al. (2013) Pelagic Interaction Scheme

for Carbon and Ecosystem

Studies (PISCES; Aumont

and Bopp 2006)

NorESM1-ME Norwegian Earth System

Model, version 1

(intermediate resolution)

Norwegian Climate Centre Tjiputra et al. (2013) HAMOCC (Assmann et al.

2010; Ilyina et al. 2013)

HadGEM2-ES Hadley Centre Global

Environment Model,

version 2–Earth System

Met Office Hadley Centre Collins et al. (2011) Diatom version of the

Hadley Centre Ocean

CarbonCyclemodel (Diat-

HadOCC; I. Totterdell

and P. Halloran 2013,

unpublished manuscript;

Palmer and Totterdell

2001)

CanESM2 Second Generation Canadian

Earth System Model

Canadian Centre for

Climate Modelling and

Analysis

Arora et al. (2011) Canadian Model of Ocean

Carbon (CMOC; Zahariev

et al. 2008)

CESM1(BGC) Community Earth System

Model, version

1–Biogeochemistry

Community Earth System

Model Contributors

Long et al. (2013) Biogeochemical Elemental

Cycle (BEC; Moore et al.

2013)

CNRM-CM5.2 Centre National de Recherches

M�et�eorologiques Coupled
Global Climate Model,

version 5.2

Centre National de

Recherches

M�et�eorologiques/Centre

Europ�een de Recherche

et Formation Avanc�ee en

Calcul Scientifique

Voldoire et al. (2013) PISCES (Aumont and

Bopp 2006)
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Here, R3 is the remainder term containing third-order

and higher derivatives. The derivatives are taken at

the preindustrial values ofT and CO2 as indicated by the

subscript 0. An implicit assumption behind (2) is that

the carbon cycle is in equilibrium at preindustrial state,

which might not be the case for the model simulations

used in this study. Therefore, all model results presented

here are taken relative to a preindustrial control run.

If all second- or higher-order terms in (2) are small

enough to be neglected, the carbon cycle feedback is

linear, and we arrive at (1),

DC5DCCO2 1DCclim ,

where

DCCO2 5
›F

›CO2

����
0

DCO25bDCO2, and

DCclim 5
›F

›T

����
0

DT5gT .

As a simple consequence of linearity, carbon stock

changes in two experiments, E1 and E2, would add up to

the carbon stock change in a third simulation, E3, given

that DCOE3
2 5DCOE1

2 1DCOE2
2 and DTE3 5 TE1 1 TE2.

In the case of the COU, BGC, and RAD scenarios, we

have DCOCOU
2 5DCOBGC

2 and DCORAD
2 5 0 since these

simulations use prescribed atmospheric carbon dioxide

concentrations. Further, we will demonstrate below

(see section 4b) that the condition DTCOU 5DTBGC 1
DTRAD also holds for the simulations considered here.

Consequently, for linear carbon cycle feedbacks, we

would find

DCCOU5DCBGC 1DCRAD . (3)

We note the possibility that the basic assumption of

carbon stocks being exclusively dependent on atmo-

spheric CO2 and T may be inadequate, and this as-

sumption might be better replaced by C5 F(CO2, T,X)

with an additional climate variable X. As long as it is

possible to express X as a function of CO2 or T, that is,

X5 X(CO2, T), the general form of the feedback in (1)

remains unchanged, while only the expression for the

feedback parameters b and g is modified (see Boer and

Arora 2009). As an example, we mention export pro-

duction, which, although not directly dependent on T,

shows a clear relationship between SST and export

changes (Schneider et al. 2008). The most obvious

shortcoming of (1) and (2) is that no time dependence

of inventory changes is included. In fact, it has been

shown by Gregory et al. (2009) that considerably more

carbon is taken up by land and ocean for slower rates

of CO2 increase. For this study, we only have one set

of simulations using a rate of 1%yr21 CO2 increase

available; therefore, we analyze the nonlinearity of

carbon cycle feedbacks for this given rate of increase

only.

3. Experiment description and analysis methods

We analyze the CMIP5 simulations with prescribed 1%

yr21 increase in atmospheric CO2 (fully coupled simula-

tion COU) together with the two related simulations BGC

(biogeochemically coupled: only biogeochemistry code

sees rising CO2) and RAD (radiatively coupled: only ra-

diation code sees rising CO2). The preindustrial con-

trol simulation (CTR) is used to calculate changes

relative to the control climate. At the time of writing,

results from seven earth system models that have per-

formed all four experiments were available in the CMIP5

database (Table 1).

Although the CO2 concentration is fixed to the pre-

industrial value in the radiation code of the model in

experiment BGC, it is known that near-surface air

temperature usually increases somewhat in BGC-type

model runs (e.g., Gregory et al. 2009; Boer and Arora

2009). This temperature increase is primarily caused by

the physiological coupling of plant CO2 uptake and

evapotranspiration. An increasing stomatal closure un-

der high CO2 affects the balance of latent and sensible

heat fluxes from plant canopies and thereby (among

other effects) reduces the formation of low-level clouds

(Sellers et al. 1996; Doutriaux-Boucher et al. 2009;

de Arellano et al. 2012). Moreover, vegetation cover

changes and increasing leaf area due to CO2 fertilization

can lead to surface albedo modifications and changes in

dust mobilization (Zickfeld et al. 2011; Andrews et al.

2012). All of these processes change the radiative bal-

ance within the atmosphere and establish a radiative

forcing that leads to surface warming (Doutriaux-

Boucher et al. 2009). We call the warming due to this

mechanism ‘‘CO2 indirect warming’’ in the following

text. Owing to the absence of CO2 indirect warming in

the RAD experiment, the surface climate in these sim-

ulations is slightly cooler than in the COU simulations,

even though the same CO2 forcing is applied in the

models’ radiation schemes. We investigate the impact of

the CO2 indirect warming on the CMIP5 simulations in

section 4b. In all experiments the forcing due to non-CO2

greenhouse gases and aerosols has been kept at pre-

industrial level and land-use change has been omitted.

The biogeochemically, radiatively and fully coupled

simulations can be used in three combinations (COU–

BGC, COU–RAD, and BGC–RAD) to estimate the

carbon–concentration and carbon–climate feedbacks.

3872 JOURNAL OF CL IMATE VOLUME 27



This is exemplified in appendixA, where we derive three

pairs of b and g factors for the respective combinations

of runs (e.g., bCOU–BGC and gCOU–BGC are the feedback

factors derived from the COU and BGC experiments).

It turns out that the COU–RAD and BGC–RAD com-

binations result in the same estimate for the carbon–

climate feedback (the corresponding feedback factor is

denoted gRAD in the following text). Likewise, the COU–

BGC and BGC–RAD combinations give a very similar

carbon–concentration feedback estimate if DTBGC is

small [see (A3a) and (A3c) in appendix A]. Hence, only

two distinct pairs of estimates for the carbon cycle feed-

backs can be derived from the three simulations. In terms

of carbon stock changes, the estimates for the carbon–

climate feedback read DCCOU2 DCBGC and DCRAD and

the respective g factors can be obtained by dividing these

carbon stock changes by the appropriate temperature

increments [gCOU–BGC and gRAD, see (A3d) and (A3e)].

For the carbon–concentration feedback, the situation

is slightly more complex because DCBGC generally in-

cludes temperature contributions due to CO2 indirect

warming (DTBGC 6¼ 0), and because the CO2 indirect

forcing effect is absent in the RAD experiment (DTRAD,
DTCOU). Since, as discussed in section 4b, these tem-

perature differences are relatively small, we adopt the

somewhat simplified wording that DCBGC and DCCOU 2
DCRAD represent estimates of changes in carbon

stocks due to the carbon–concentration feedback

[which would be strictly true in the case DTBGC5 0 and

DTRAD 5 DTCOU, cf. (A3a) for bCOU–BGC and (A3b)

for bCOU–RAD].

We define DCnl, the nonlinear part of the carbon in-

ventory change, as the difference between the carbon

uptake in the fully coupled experiment and the sum of

the carbon uptake found in the biogeochemically and

radiatively coupled experiments; that is,

DCnl5DCCOU2 (DCBGC 1DCRAD), (4)

and similarly for other variables. Here DCnl can be de-

rived from the two estimates of the carbon–climate as well

as the two estimates of the carbon–concentration feed-

back since (DCCOU 2 DCBGC) 2DCRAD 5 (DCCOU 2
DCRAD) 2 DCBGC. Therefore, we focus the following

analysis mostly on the nonlinearity of the carbon–

climate feedback, keeping in mind that the nonlinearity

of the carbon–concentration feedback as defined above

is the same.

4. Results and discussion

a. Carbon fluxes

The cumulative ocean carbon uptake (calculated

from modeled air–sea CO2 fluxes) due to the carbon–

concentration feedback as estimated by the BGC ex-

periment DCBGC and as calculated by the difference

DCCOU 2 DCRAD is shown in Fig. 1 along with the

change in ocean carbon inventory at the end of the 140-yr

simulation period for the two cases. The carbon stock

is consistently larger for all models at the end of the

BGC simulation (compared to COU–RAD) by a range

of 19 (CanESM2) to 58 (CNRM-CM5.2)PgC. Hence,

the BGC and the RAD simulation do not add up linearly

to the carbon stock change of the COU experiment,

that is, DCCOU 6¼ DCBGC 1 DCRAD), and we find a

nonlinear contribution DCnl of 219 to 258PgC in the

CMIP5 models. Compared to the total carbon uptake

DCCOU, which ranges from 533 to 676PgC, this non-

linearity is relatively small (DCBGC 1 DCRAD is larger

than DCCOU by 3.6%–10.6%).

A summary of the carbon–climate feedback derived

from DCCOU 2 DCBGC and DCRAD is given in Fig. 2.

FIG. 1. Ocean carbon uptake (time-integrated air–sea carbon flux) due to the carbon–concentration feedback as derived from (a) the

BGC simulation and (b) the difference in carbon uptake between the COU and RAD experiments. The model mean is given by the black

dashed line. (c) The accumulated changes in ocean carbon stocks at the end of the simulations for both estimates, with the left (right) bar in

each pair of bars representing the BGC (COU2RAD)-derived estimate. The color code for the seven models is given in (a).

1 JUNE 2014 S CHW INGER ET AL . 3873



A reduction of the oceanic carbon stocks due to

the impact of climate change is observed in both cases

for all participating models: that is, DCclim is nega-

tive across all models, regardless of which of the two

estimates is used. While DCrad ranges from 27.7 to

248 PgC, the carbon–climate effect estimated by

DCCOU 2 DCBGC is 246 to 299 PgC. As mentioned

above, DCnl—that is, the 219 to 258 PgC discrepancy

between the two estimates of DCclim—is the same as

for the two estimates of DCCO2 by definition. How-

ever, owing to the much smaller overall ocean carbon–

climate feedback, this discrepancy results in DCclim

estimates, which are up to a factor of 6 apart.

A summary of these results in terms of b and g factors is

given in Table 2. If theCOU–BGCexperiment pair is used

to estimate the carbon cycle feedbacks (as in Friedlingstein

et al. 2006), themodel mean bCOU–BGC and gCOU–BGC are

0.8 PgC ppm21 and216.6 PgCK21, respectively, while

the corresponding COU–RAD-derived mean bCOU–RAD

and gRAD values are 0.75PgCppm21 and26.7 PgCK21.

We note that Arora et al. (2013) use the BGC and RAD

experiments to quantify the carbon cycle feedbacks. In

this approach, the g factor is identical to gRAD while

bBGC–RAD’bCOU–BGC forDTBGC’ 0 (see appendixA).

For the set of models considered here the difference be-

tween bBGC–RAD and bCOU–BGC as given in Table 2 is

small (,0.014). Arora et al. mention that, although

feedback parameters are generally dependent on the

scenario used, the ocean carbon–climate feedback de-

rived from the CMIP5 model ensemble is weaker com-

pared to the C4MIP results (the mean gCOU–BGC value

for the C4MIP models is 230.9PgCK21). One factor

explaining this discrepancy is the use of emission-driven

scenarios in C4MIP as opposed to concentration-driven

scenarios in Arora et al. (2013), since the former lead to

an overestimation of the magnitude of g (Gregory et al.

2009; Zickfeld et al. 2011). A second factor explaining

a substantial part of these differences is the approach

chosen to calculate the feedback parameters, as indicated

by our results above.

FIG. 2. Carbon release (time-integrated air–sea carbon flux) from the ocean due to the carbon–climate feedback as derived from (a) the

difference in carbon uptake between the COUand BGC experiments and (b) the carbon release in the RAD simulation. Themodel mean

is given by the black dashed line. (c) The changes in ocean carbon stocks at the end of the simulation period for both estimates, with the

first (third) bar in each group of bars representing the COU–BGC (RAD)-derived estimate of total carbon: that is, the time-integrated air

–sea carbon flux. The second (fourth) bar in each group of bars represents the changes in the total DIC inventory in the COU–BGC

(RAD) experiments. The color code for the seven models is displayed in (a).

TABLE 2. Values of b (PgCppm21) and g (PgCK21) factors derived from the COU–BGC, COU–RAD, and BGC–RAD pairs of

experiments. Note that gCOU–RAD 5 gBGC–RAD 5 gRAD (see appendix A).

Model bCOU–BGC bCOU–RAD bBGC–RAD gCOU–BGC gRAD

MPI-ESM-LR 0.862 0.803 0.858 219.0 28.7

IPSL-CM5A-LR 0.898 0.850 0.892 218.0 210.2

NorESM1-ME 0.878 0.822 0.876 218.1 25.9

HadGEM2-ES 0.816 0.741 0.802 221.9 210.3

CanESM2 0.695 0.674 0.695 211.2 27.8

CESM1(BGC) 0.734 0.689 0.732 211.9 22.3

CNRM-CM5.2 0.722 0.654 0.722 215.9 21.9

Model mean 0.801 0.748 0.797 216.6 26.7
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b. Summary of physical climate change in the
different experiments

As a starting point for further analysis, we examine

whether the nonlinearity of carbon cycle feedbacks de-

scribed above could be caused by nonlinearities in

physical climate in the different runs. That is, we in-

vestigate to what extent climate change due to CO2 in-

direct warming is affecting the experiment BGC and,

likewise, to what extent changes in the physical climate

system differ in the COU and RAD experiments.

In the BGC simulations, most models show a near-

surface air temperature increase of roughly 0.2–0.46K

toward the end of the 140-yr simulation period (Fig. 3a,

numbers are mean values over the last 10 years of the

simulations). The HadGEM2-ES responds considerably

stronger with an increase of 0.85 K. We note that

CNRM-CM5.2 does not employ a fully coupled land

carbon cycle. Hence, there is no reaction of the plant

canopy to elevated CO2 levels and, consequently, for

this model DTBGC 5 0. Compared to the temperature

response (difference with the control experiment) of

3.7–5.3K in the fully coupled simulation (Fig. 3a), the

response in the BGCexperiments remains below 10%of

these values, except forHadGEM2-ES, where it is found

to be 16%. A very similar picture emerges when eval-

uating DTCOU 2 DTRAD, and we find a maximum dif-

ference of 0.13K betweenDTCOU andDTBGC1DTRAD.

Using ag value of 20PgCK21, which is at the upper endof

values calculated for the set of CMIP5 models (Table 2),

this temperature nonlinearity translates into roughly

2.6 PgC uptake nonlinearity. Since this value is small in

FIG. 3. Response (change relative to control simulation) of (a) global average near-surface air temperature, (b) global average sea

surface temperature, (c) northernAtlantic/Nordic seas (defined here as the region 478–808N, 608W–208E)meanmonthly maximummixed

layer depth, (d) Atlantic meridional overturning circulation strength (northwardmass transport across 408N), (e) Arctic sea ice cover, and

(f) Antarctic sea ice cover. Values are displayed for the fully coupled simulationCOU (left group of bars), for the BGC simulation (middle

group of bars), and for the difference between the COU and RAD simulations (right group of bars). All values are mean values over the

last 10 yr of the simulation period, except for (d) where the average over the whole simulation is given. In (c)–(f) the left part of each

individual bar gives absolute values (left axis) while the right part of each bar shows fractional changes relative to the control simulation

(right axis). The color code for the seven models is indicated in (a).
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relation to the nonlinearity of 19–58PgC, we conclude

that, for the purpose of this study, DTCOU ’ DTBGC 1
DTRAD.

We further investigate whether changes in key vari-

ables for ocean carbon uptake are consistent with the

surface air temperature responses found in the COU,

BGC, and RAD simulations. That is, we check whether

the use of temperature as a proxy for climate change

could possibly be inadequate and thus (partly) re-

sponsible for the observed nonlinear carbon cycle

feedbacks. For example, it would be inconsistent with

the use of DT as a proxy for climate change if we would

find a significant increase in, for example, ocean circu-

lation strength in the BGC simulation, despite the fact

that DTBGC . 0. Likewise, it would be inconsistent if

circulation changes would be very different in the BGC

experiment compared to changes in the COU relative to

theRAD simulation (sinceDTBGC’DTCOU2DTRAD).

Global mean sea surface temperature (SST, Fig. 3b)

plays an important role for ocean carbon uptake since

the Revelle factor (or buffer factor) of seawater

(Revelle and Suess 1957; Zeebe and Wolf-Gladrow

2001) decreases with increasing temperature. SST also

influences carbon uptake indirectly by impacting ocean

circulation and stratification. The SST response in all

experiments closely resembles (but is smaller than) the

near-surface air temperature response, with values of

2.4–3.6K in the fully coupled simulation. SST changes

occurring in the BGC runs remain below 8% of these

values, again with the exception of HadGEM2-ES,

where the BGC SST response is 13% of the response in

the COU experiment. Likewise, the nonlinearity (dif-

ference between DSSTCOU and DSSTBGC 1 DSSTRAD;

maximum value of 0.09K) is consistent with the surface

air temperature nonlinearity. We note that the SST

nonlinearity can reach values up to 2K (mean over the

last 10 years of the experiments) regionally. These rel-

atively large regional discrepancies are caused by modes

of interannual- to decadal-scale variability, which evolve

slightly differently in BGC compared to COU–RAD

(not shown). Since the SST responses over the 140 years

are smaller than the amplitude of variability, we con-

clude that they are not significantly different for the

purpose of this study.

The northern Atlantic and Nordic seas (defined here

as the region between 478 and 808N, 608Wand 208E) are
the world’s most intense carbon uptake regions per unit

area (Takahashi et al. 2009). This uptake is sustained by

carbon transport to depth through deep-water forma-

tion and subsequent southward transport by theAtlantic

meridional overturning circulation (AMOC). There-

fore, changes in northern Atlantic/Nordic seas maxi-

mummixed layer depth (MMLD, Fig. 3c) and inAMOC

strength (Fig. 3d) are expected to influence carbon up-

take and sequestration. MMLD as well as AMOC

strength decrease clearly in the fully coupled simulations

for all models, and both quantities show considerably

weaker trends in the BGC simulation as well as in the

difference between the COU and RAD experiments.

Small inconsistencies with the temperature response can

be observed for some models. For example, MMLD

slightly increases for IPSL-CM5A-LR and CanESM2 in

the BGC experiment as well as in COU–RAD, despite

a global temperature increase. Likewise, MMLD and

AMOC strength reduction in MPI-ESM-LR is larger in

BGC than in COU–RAD, although the global near-

surface temperature increase is slightly smaller in the

BGC experiment. As for SST, the responses of MMLD

and AMOC in the BGC experiment and in the COU

relative to the RAD simulation are dominated by in-

terannual- to decadal-scale variability (i.e., the response

over the 140 years is smaller than the amplitude of

variability), and hence the small inconsistencies found

here do not indicate significant differences between the

two cases.

The sea ice area response in the COU and BGC

simulations as well as the difference COU–RAD for

Arctic and Antarctic are shown in Figs. 3e,f. The Arctic

sea ice cover in the BGC simulations shows a small de-

cline in all models, which is very similar to the ice cover

differences seen in the COU relative to the RAD ex-

periment. This Arctic sea ice decline is strongly cor-

related with the corresponding global surface air

temperature and global SST increases. In the Southern

Hemisphere, the modeled sea ice cover remains less

affected by the CO2 indirect warming in all models,

except IPSL-CM5A-LR, which shows a noticeable

Antarctic sea ice decline in the BGC simulation. The

nonlinearity in sea ice cover is smaller than 0.5 3
106 km2 for bothArctic andAntarctic with the exception

of IPSL-CM5A-LR, which shows an Antarctic sea ice

cover nonlinearity of 1.4 3 106 km2. Assuming an ac-

cumulated carbon flux of 3 kgCm22, which is a typical

value found for the Southern Ocean in the fully coupled

simulations, we estimate, as an upper limit, that the ice

area nonlinearity could contribute about 1.5 PgC

(4.2 PgC for IPSL-CM5A-LR) to the simulated non-

linearity of carbon fluxes. The role of sea ice retreat is

further investigated in the next section.

It is a limitation of this study that we cannot strictly

disentangle the contribution of nonlinearities in climate

to the simulated carbon flux nonlinearity. Additional

model experiments (e.g., with CO2 indirect warming

switched off) would be required to quantify the role of

various climatic factors. The results presented in this

section do, however, not support the notion that climatic
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differences between BGC and COU–RAD have a sig-

nificant impact.We note that the CNRM-CM5.2, which

does not include the CO2 indirect warming effect,

shows a carbon flux nonlinearity very similar to the

other models. Nevertheless, this limitation adds some

additional uncertainty to the results presented in this

study.

c. Nonlinearity due to sea ice

Sea ice retreat under warming climate can poten-

tially cause nonlinear carbon feedbacks, depending on

whether climate warms under rising or preindustrial

CO2 levels. The mechanism behind this nonlinearity

found by Zickfeld et al. (2011) in the SouthernOcean in

their model is as follows. In the RAD simulation,

carbon-rich upwelled waters release more CO2 to the

atmosphere as sea ice retreats with warming climate

(positive carbon–climate feedback). In contrast, in the

high CO2 experiments COU and BGC, the rising at-

mospheric CO2 partial pressure turns the outgassing

into uptake, such that retreating sea ice leads to increased

uptake in the fully coupled relative to the BGC ex-

periment (negative carbon–climate feedback). Conse-

quently, this kind of nonlinearity is expected only if

there is a potential for carbon outgassing under the re-

treating ice cover.

To assess this mechanism for our CMIP5 model en-

semble, we calculate accumulated carbon fluxes in grid

cells that are ice covered in the control simulation. We

define ‘‘ice-covered grid cell’’ as grid cells that have an

average ice cover larger than 30% in the control simu-

lation. In the Southern Hemisphere, the accumulated

carbon uptake through these grid cells in the fully cou-

pled simulations amounts to roughly 20–70PgC and

the ice cover decreases by 2–6 3 106 km2 (Figs. 4a,b).

Figure 4c shows that three of the models considered

here (IPSL-CM5A-LR, CanESM2, and CNRM-CM5.2)

show an overall outgassing of CO2 in this region in the

control simulation. Likewise, these models show a con-

siderable nonlinearity DCnl of 10–12PgC, which is

compatible with the mechanism described above (Figs.

4d,e; negative carbon climate feedback derived from

FIG. 4. Feedback analysis for Southern Hemisphere grid points that have a mean sea ice cover .30% in the control simulation:

(a) cumulative carbon uptake and (b) changes in sea ice cover for the fully coupled simulation, (c) carbon fluxes for the control simulation

(positive into the ocean), (d) difference in cumulative carbon uptake between the COU and BGC experiments, (e) cumulative carbon

uptake in the RAD relative to the control simulation, and (f) changes in integrated air–sea carbon flux for both estimates at the end of the

simulation period, with the left (right) bar in each pair of bars representing the COU–BGC (RAD)-derived estimates. The color code is

indicated in (a).
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COU–BGC, positive feedback derived from the RAD

experiment). For all other models we find a small non-

linearity of less than 2.2 PgC (Fig. 4f), which is on the

same order as the estimated nonlinearity due to differ-

ences in sea ice cover (section 4b). We note that the

nonlinearity in Antarctic sea ice cover found for IPSL-

CM5A-LR, acts to decrease the local nonlinearity in

carbon uptake since the relatively large decrease in

Antarctic sea ice in the BGC simulation increases car-

bon uptake and thus decreases the COU–BGC estimate

of the carbon–climate feedback.

In the Northern Hemisphere (not shown) all models

take up carbon in the ice-covered region in the control

simulation, and the carbon–climate feedback is negative

(increased carbon uptake due to climate change) for all

models and irrespective of the estimate used, such that

the nonlinearity is negligible on a global scale (less than

3 PgC with varying sign).

d. Ocean DIC content

Carbon dioxide entering the surface ocean dissolves

and forms carbonic acid, which dissociates to form bi-

carbonate and carbonate ions (Zeebe and Wolf-

Gladrow 2001); the sum of all these species is known

as dissolved inorganic carbon (DIC). DIC is converted

to organic carbon by biological processes, and part of

this organic carbon is exported out of the surface ocean

to be remineralized at depth. Although this biological

pump process is crucial for the distribution of carbon in

the interior ocean, the standing stock of organic carbon

in the ocean is small compared to the inorganic carbon

stock. We note that none of the models considered here

implement a sensitivity of biological production to in-

creasing carbon availability (e.g., a change in organic

carbon to nutrients ratio in organic matter) as, for in-

stance, in Oschlies et al. (2008) or Tagliabue et al. (2011)

with implications for carbon uptake. Likewise, none of

the models implement a sensitivity of calcification to

decreasing seawater pH. Therefore, in the models used

here, we do not expect large nonlinearities due to dif-

ferences in organic carbon production and export rates

between the BGC–CTR and COU–RAD experiment

pairs.

Figure 2c shows the two different DCclim estimates

derived from air–sea CO2 fluxes together with the cor-

responding changes in ocean DIC content. The differ-

ence between DCclim and DDIC is relatively small for all

models and, more importantly, the nonlinear behavior is

almost exactly the same. We therefore conclude that, on

a global scale, changes in the integrated air–sea CO2 flux

translate directly into changes in ocean DIC content.

Specifically, we assume that, under the linear feedback

framework, (3) linking the carbon inventory changes in

the different experiments would be transferable to

changes in DIC inventory. In other words, we assume

that the condition DDICCOU 6¼ DDICBGC 1 DDICRAD

is an indicator for nonlinear carbon cycle feedbacks,

and in analogy to (4) we define a measure of nonlinear

DIC stock changes as DDICnl 5 DDICCOU 2
(DDICBGC 1 DDICRAD).

Figure 5a shows global mean profiles of DIC con-

centration changes for the COU experiment relative to

BGC, and for the RAD relative to the control simula-

tion. Carbon is lost from the ocean owing to climate

change above 1000-m depth in all models for both esti-

mates. Below 2000-depth, however, the DIC concen-

tration is increasing in the RAD simulations in all

models, whereas climate change generally leads to a

decrease in DIC when estimated by COU–BGC. Be-

tween 2000- and 3000-m depths DICCOU 2 DICBGC is

negative for all models. The difference between the

COU–BGC and RAD–CTR cases, shown in Fig. 5b, is

positive (DICCOU 2 DICBGC is less negative than

DICRAD 2 DICCTR) above 400-m depth and negative

(DICRAD 2 DICCTR . DICCOU 2 DICBGC) below

approximately 750m for all models. Hence, we find

a consistently distinct nonlinearity in shallow and deep

water masses. Based on this result, we divide the water

column into two compartments for the following anal-

ysis, the ‘‘upper ocean’’ above 500-m depth and the

‘‘deep ocean’’ below 500-m depth. We note that, al-

though this separation of upper and deep ocean is not

based on physical reasoning, the upper ocean roughly

represents watermasses that are well ventilated for large

parts of the World Ocean, except for parts of the

northern and eastern Pacific where old water masses

reach shallower depths above 500m. In terms of carbon

mass, the upper ocean accumulatesmore than half of the

DIC taken up in the fully coupled simulation: that is,

316–395PgC compared to 176–342PgC taken up by the

deep ocean (Fig. 6a).

Figures 6b,c show the climate change impact on the

DIC inventory calculated as DDICCOU2DDICBGC and

DDICRAD. Consistent with the profiles of DIC concen-

tration changes shown in Fig. 5, these estimates are

qualitatively similar for the upper ocean with the loss of

carbon due to climate change being larger by 27.5 to

216 PgC for the RAD simulation. The increase in DIC

concentration below 500m seen in the RAD simulations

translates into an increase of deep ocean DIC content

for most models, ranging from 4.7 to 39PgC. Only the

HadGEM2-ES shows a slight deep ocean DIC decrease

(21.7 PgC) in response to climate change in the RAD

simulation. In contrast, deep ocean DIC decreases by

220 to263 PgC in the COU experiment relative to the

BGC simulations at the end of the 140-yr period. For
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DDICnl we find values between 7.5 and 16Pg for the

upper ocean and between 233 Pg and 275 Pg for the

deep ocean.

This finding is in line with the results of Zickfeld et al.

(2011) and can be interpreted in terms of ocean circu-

lation and stratification changes in the different experi-

ments. In the COU and BGC simulations, where the

ocean is taking up carbon, the carbon–climate feedback

is determined by the amount of carbon that cannot be

brought down to deeper depth because of increased

ocean stratification (diagnosed with reduced mixing and

reduced water mass transport in the North Atlantic, Fig.

3) in the COU experiment relative to BGC. In contrast,

the RAD experiment shows a loss of carbon from the

ocean. This loss, however, is mostly caused by depletion

of upper-ocean DIC, while reduced overturning and

mixing lead to increasing isolation of deep waters from

the surface. Depending on the changes in circulation

fields and associated changes in carbon pumps, these

effects lead to almost constant or even increasing deep

ocean DIC content. This reduced (or even reversed)

climate change impact in the deep ocean seen in the

RAD experiment is partly compensated by the surface

ocean carbon–climate feedback. Here, the RAD ex-

periment shows a stronger depletion ofDIC in the upper

500m compared to the corresponding reduction in DIC

FIG. 5. Global mean profiles of (a) changes in ocean DIC concentration (mean value over the last 10 yr of the

simulation period) derived fromCOU–BGC (solid lines) andRAD (dashed lines) and (b) the difference between the

COU–BGC- and the RAD-derived estimate. The color code for the individual models is given in (a).

FIG. 6. Change in total DIC content over the 140-yr simulation period for (a) the COU, (b) the difference between COU and BGC, and

(c) the RAD experiments. The two bars given for each model show the upper 500-m DIC content (left bar, lighter colors) and the deep

ocean (below 500m) DIC content (right bar, darker colors). The color code for the individual models is as in Fig. 5.
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inventory found in the COU simulation relative to BGC.

Both effects are investigated further in the following two

subsections.

1) A LINEARIZED MODEL FOR UPPER-OCEAN

DIC CONTENT

We assume that the upper-ocean carbon cycle feed-

back is dominated by the response of seawater carbon

chemistry to climate change and rising CO2 levels. To

quantify the relative importance of different factors, we

apply a simplified model for changes in surface ocean

DIC concentration (using simulated annual mean fields

of sea surface temperature, salinity, and alkalinity). We

assume here that these surface changes are roughly

representative for the upper ocean (0–500-m depth).

Since the partial pressure of CO2 in seawater (pCO2)

is a function of temperature T, salinity S, DIC, and total

alkalinity A, a variation in pCO2 can be written using

a first-order Taylor series approximation as

dpCO25
›pCO2

›T
dT1

›pCO2

›S
dS

1
›pCO2

›DIC
dDIC1

›pCO2

›A
dA .

Here, we are going to assume that the ocean under

constant atmospheric CO2 partial pressure acts to keep

dpCO2 5 0 from one year to the next. This assumption

does not imply that there is no partial pressure differ-

ence, DpCO2 5 (pCOatm
2 2 pCO2), across the air–sea

interface. Rather, we assume that DpCO25 constant for

annual mean values of two consecutive years. We fur-

ther presume that pCO2 variations due to biological

activity and remineralization are, on an annual to in-

terannual time scale, small enough to be neglected. In

other words, for each change in pCO2 caused by

changing temperature, salinity, or alkalinity, a surface

water parcel takes up or releases a corresponding

amount of CO2 in order to neutralize the pCO2 change:

dDIC’

�
›pCO2

›DIC

�21�
2
›pCO2

›T
dT

2
›pCO2

›S
dS2

›pCO2

›A
dA

�
. (5)

If the atmospheric CO2 partial pressure is not constant,

there is an additional contribution to dDIC,

dDICatm5
›DIC

›pCOatm
2

dpCOatm
2 ,

which can be written in the same form as the individual

terms of (5),

dDICatm’

�
›pCO2

›DIC

�21 ›pCO2

›pCOatm
2

dpCOatm
2 . (6)

Since we assume DpCO2 ’ constant, we have

›pCO2

›pCOatm
2

’ 1.

We note that the term ›pCO2/›DIC is closely related to

the Revelle factor, which is defined as

R5
DIC

pCO2

›pCO2

›DIC

(Revelle and Suess 1957; Zeebe and Wolf-Gladrow

2001).

For this study, we employ (5) and (6) to approximate

variations in annual mean surface DIC due to modeled

temperature, salinity, alkalinity, and atmospheric CO2

changes (dDICT, dDICS, dDICA, and dDICatm). Tech-

nical details and an evaluation of the method can be

found in appendix B. Values of dDICT, dDICS, dDICA,

and dDICatm calculated for a range of DIC concentra-

tions (2000–2400mmol l21) and at two different tem-

peratures (58 and 208C) using dT 5 0.58C, dS 5 0.5 psu,

dA 5 2mmol l21, and dpCOatm
2 5 4 ppm are given in

Fig. 7. All resulting surface DIC variations become

considerably smaller at high DIC except for dDICA,

which is slightly larger at high DIC values. This general

behavior is found for both low and high temperatures.

FIG. 7. Linear approximation of surfaceDIC change according to

(5) and (6) for surface property variations dT510.58C (red lines),

dS 5 10.5 psu (dark blue lines), dA 5 12mmol l21 (green lines),

and dpCO2 5 14 ppm (light blue lines) for a range of DIC values

from 2000 to 2400mmol l21 and two different temperatures (58C:
dashed lines; 208C: solid lines).
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The two estimates of the surface ocean carbon–

climate feedback (COU–BGC and RAD) split into con-

tributions from temperature, salinity, and alkalinity by

means of the linear model are shown in Fig. 8. Changes

in salinity and alkalinity mainly come from increased

freshwater fluxes due to melting sea ice and enhanced

runoff in the COU and RAD simulations. There is

a small contribution of dDICatm to the COU–BGC es-

timate, which arises from slightly different Revelle

factors in the two simulations. Although this result

demonstrates that the carbon–concentration and carbon–

climate feedbacks are coupled to some degree for the

surface ocean, the magnitude of this effect is small. In-

creasing SST contributes most to the surface ocean

carbon–climate feedback (55%–70% of the sum of all

contributions in COU–BGC and 70%–86% in RAD)

followed by alkalinity changes (16%–30% in COU–

BGC and 10%–28% in RAD) while salinity changes are

negligible on a global scale. Consistent with a larger

sensitivity at low DIC concentrations (Fig. 7), SST

change causes larger surface DIC decrease in the RAD

simulation than in COU–BGC, while alkalinity varia-

tions cause larger carbon decline under high DIC. For

most models, the nonlinearity due to SST increase is

dominant. In NorESM, nonlinearities due to SST and

alkalinity nearly cancel each other, leading to an almost

equal surface DIC decrease in RAD as well as in COU–

BGC (NorESM shows a relatively small SST response

and relatively large alkalinity changes). In summary,

the stronger surface ocean DIC decline in the RAD

simulation compared to the COU–BGC estimate is

primarily caused by the larger temperature sensitivity of

the carbonate system at lower DIC concentration. The

imprint of this behavior can be found down to approxi-

mately 500-m depth on a global scale (cf. Fig. 5b).

2) DEEP OCEAN DIC CONTENT

To better understand the strong nonlinearity in the

deep ocean DIC, we compile a regional picture of this

effect in terms of zonal means over different ocean ba-

sins in Fig. 9. The most significant nonlinearity DDICnl

is found in the North Atlantic north of 208N and

in the waters south of 508S. In both regions,

DDICCOU
deep 2DDICBGC

deep is clearly negative for all models:

that is, less DIC is transported down into the deep ocean

in the COU simulation compared to BGC. In contrast,

DDICRAD
deep is generally near neutral or positive in both

regions. The North Pacific shows a similar behavior for

the RAD simulation: that is, a near-neutral or positive

DDICRAD
deep . However, although DDICCOU

deep 2DDICBGC
deep

is found to be smaller than DDICRAD
deep for all individual

models here, the large negative excursion of

DDICCOU
deep 2DDICBGC

deep found in the North Atlantic

basin is absent in the northern Pacific region. In the

tropics both estimates of the climate effect on deep

ocean DIC are nearly equal: that is, there is little non-

linearity in a region extending from approximately 158S
to 158N.

Upon examining cross sections of North Atlantic DIC

in the different experiments (not shown), it becomes

FIG. 8. Total decrease in surface DIC concentration due to climate change (dark blue) as

modeled by the linearized surface ocean model (see text) and contributions of temperature

(light blue), alkalinity (light green), salinity (orange), and atmospheric CO2 variations (brown)

to the total sum; shown are the estimates by (a) the difference between the COU and BGC

simulations and (b) the RAD simulation.
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apparent that the large climate effect on DDICCOU
deep 2

DDICBGC
deep is caused by the decrease of AMOC strength

and deep water formation in the COU experiment,

which has a strong effect on DIC invasion into the deep

North Atlantic Ocean in all models. A similar weaken-

ing of the AMOC and reduction of mixed layer depth is

present in the RAD simulation (cf. Fig. 3). However,

since atmospheric CO2 is not rising in this experiment,

there is no surface to deep ocean flux, which is sup-

pressed by reduced overturning and mixing. Rather, the

deep ocean becomes more isolated from the surface

leading to increasing DIC content (this issue is further

discussed below). A similar picture emerges for the

ocean south of 558S. Here, too, we find DDICRAD
deep .

0 and DDICCOU
deep 2DDICBGC

deep , 0 for all models with

a maximum difference occurring between 608 and 708S.
We note that the largest portion of Southern Hemi-

sphere anthropogenic carbon uptake and storage is

characteristically found at lower latitudes north of 558S,
both in observation-based estimates (Sabine et al. 2004;

Sall�ee et al. 2012) as well as in the CMIP5 models con-

sidered here (not shown). The deep ocean water masses

south of 558Smainly belong to CircumpolarDeepWater

(CDW) and Antarctic Bottom Water (AABW), which

are connected to the surface through the lower/southern

branch of the Southern Ocean meridional overturning

circulation (MOC) and through deep-water formation

at the southern limb of the Southern Ocean (Sall�ee et al.

2013). While the upper/northern branch of the Southern

Ocean MOC strengthens with increasing westerly wind

intensity as climate warms, all CMIP5 models consid-

ered here simulate a weakening of the lower/southern

branch (not shown). Hence, the deep ocean DIC non-

linearity appears to be consistently linked to a reduction

of deep-water formation, in both the North Atlantic and

Southern Ocean.

The increase of deep ocean DIC seen in the RAD

experiment is accompanied by an increase in reminer-

alization below 500-m depth. We demonstrate this by

calculating the apparent oxygen utilization (AOU) for

the different experiments. AOU indicates the total ox-

ygen consumption by organic carbon remineralization

since a water parcel left the surface: that is, the differ-

ence between the saturation concentration (Weiss 1970)

and the in situ concentration. Figure 10 shows the dif-

ferences in apparent oxygen utilization below 500m for

COU–BGC and RAD as zonal means. Positive AOU

differences indicate that a water parcel has experienced

more remineralization of organic carbon. Generally, the

reduced overturning circulation in the COU and RAD

experiments leads to higher AOU nearly everywhere

because of longer water-mass residence times in the

deep ocean. At the same time, the export production

(export across 100-m depth) decreases globally in all

models (not shown) by approximately 6%–20%, except

in the region south of 408S where it stays constant or

FIG. 9. Zonalmeans of deep oceanDDIC
deep
clim (column integral below 500-m depth; mean value over the last 10 yr of

the simulation period) derived fromCOU–BGC (solid lines) and RAD (dashed lines) for (a) the Atlantic Ocean, (b)

the Indian and Pacific Oceans, and (c) the waters south of 408S. The color code for the individual models is given in

(b), and mean values over all models are shown by thick black lines. The averaging region is indicated by the gray

shaded domains in the right-hand panels.
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shows an increasing trend in some models. Hence, the

higher AOU indicates that the generally decreased

particle rain from the euphotic zone is overcompensated

by a longer residence time of water masses in the deep

ocean on a global scale. This result is consistent with the

finding of Matear and Hirst (1999) that ocean CO2 up-

take in their model increases in response to circulation

changes alone (i.e., when warming-induced outgassing is

suppressed). Likewise, the increase in deep ocean AOU

is consistent with the modeling study by Bernardello

et al. (2013), who find that an increase of remineralized

DIC outweighs reduced preformed DIC concentrations

under changing climate. Interestingly, the climatic effect

on AOU is virtually identical whether estimated by the

RAD experiment or by COU–BGC (see Fig. 10; an

exception to this statement is the IPSL-CM5A-LR in

the Southern Ocean, where the AOU is elevated in the

COU–BGC estimate while almost unchanged in the

RAD simulation). This result indicates that generally

very similar changes of particle rain versus deep ocean

residence times also occur in the COU experiment rel-

ative to BGC. However, this effect is masked by the

strong climate induced suppression of carbon drawdown

into the deep ocean in the COU simulation.

5. Summary and conclusions

In this study, we quantify the nonlinearity of ocean

carbon cycle feedbacks in CMIP5 earth system models

for idealized experiments. If the feedback was linear,

the carbon–concentration and carbon–climate feed-

backs could be derived from two simulations: namely,

a biogeochemically coupled simulation (BGC, ‘‘con-

stant climate under rising CO2’’) and a radiatively cou-

pled simulation (RAD, ‘‘climate change under constant

CO2’’). These two independent carbon cycle feedbacks

would then add up to the carbon cycle feedback found in

a fully coupled (COU) standard simulation. CMIP5

earth system models, however, consistently show that

the ocean carbon cycle feedback is nonlinear. The

magnitude of this nonlinearity, compared to the total

ocean carbon feedback, is relatively small (3.6%–

10.6%). However, in relation to the ocean carbon–

climate feedback, which is the smaller contribution to

the total feedback, the nonlinearity is of the same order

of magnitude as the feedback itself. While the climate

change under constant CO2 type simulations (RAD)

show from 27.7 to 248PgC release to the atmosphere,

the climate feedback estimate derived by taking the

difference between the COU and BGC simulations

yields from 246 to 299 PgC. The main reason for this

discrepancy is that the carbon distribution and carbon

gradients evolve very differently in the RAD simulation

compared to the COU and BGC experiments: While in

RAD the feedback is due to a loss of carbonmainly from

the upper ocean, the feedback in theCOU relative to the

BGC simulation arises owing to a reduction of carbon

transport to the deep ocean.

We find that the retreat of sea ice in regions that ini-

tially (i.e., in the control simulation) act as a source of

CO2 to the atmosphere may locally cause large non-

linear carbon cycle feedbacks. Three out of the seven

CMIP5 models simulate a CO2 source in the Antarctic

sea ice region in the control experiment, and these

FIG. 10. As in Fig. 9, but for apparent oxygen utilization (AOU).
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models consistently show a relatively large nonlinearity

of 11 PgC (1.9–5 PgC uptake in COU relative to BGC

but from 26.5 to 28.8 PgC loss in RAD). The sign of

this nonlinearity is opposite of what is simulated glob-

ally, and hence the sea ice mechanism tends to coun-

teract the global feedback nonlinearity. The other

models show only small nonlinearities (less than 2.2 PgC

with varying sign) in the Antarctic sea ice region. In the

Arctic, none of the models simulate CO2 outgassing

under retreating sea ice. Consequently, the nonlinearity

in carbon cycle feedbacks is small there (less than 3PgC

with varying sign). We therefore conclude that sea ice

retreat generally does not cause a globally significant

nonlinearity of carbon cycle feedbacks in the models

considered here.

In the upper 500m of the water column, approxi-

mately, the sign of the carbon cycle nonlinearity is also

found to be reversed compared to the total feedback

nonlinearity. Here, the loss of carbon in the RAD sim-

ulations amounts to237 to250Pg, while the COU–BGC

estimate shows a reduction in carbon uptake of 226 to

237 Pg. A linearized carbon chemistry scheme has been

employed to explore the contribution of seawater car-

bon chemistry to the surface ocean nonlinearity, as-

suming that this analysis is roughly representative for

the upper ocean (0–500m). Carbon uptake/release in

response to SST and salinity (alkalinity) variations is

larger (smaller) at low CO2 concentrations. We find

that SST changes contribute most to the surface carbon–

climate feedback in the CMIP5 models (55%–70% of

the sum of all contributions in COU–BGC and 70%–

86% in RAD). Alkalinity plays the second largest role

(16%–30% in COU–BGC and 10%–28% in RAD)

while the role of salinity is negligible. In summary, we

find that the reversed sign of the upper-ocean carbon

cycle nonlinearity can be explained by the nonlinear

chemistry of the carbonate system. That is, the upper-

ocean carbon–climate feedback is larger rather than

smaller in the RAD experiment owing to the higher

sensitivity of the carbonate system to changes in tem-

perature at lower DIC concentrations. Although more

than 50%of carbon taken up by the ocean is found in the

upper 500-m water column in the 1% CO2 yr
21 scenario

considered here, the upper-ocean carbon cycle non-

linearity is relatively small (7.5–16PgC).

The largest nonlinearity within the ocean carbon cycle

feedback loop is simulated in the deep ocean dissolved

inorganic carbon content (below 500m). IncreasingDIC

inventories (4.7–39PgC) with proceeding climate change

are found in the RAD experiments for all but onemodel

(which shows a slight deep ocean DIC decrease of

21.7 PgC). We find that this enhanced deep ocean

carbon storage is caused by longer water-mass residence

times overcompensating a generally reduced particle

rain from the surface ocean. The same residence time

versus particle rain changes, identified by a similar ap-

parent oxygen utilization pattern, is simulated in the

COU scenarios. However, the overall climate impact on

the deep ocean carbon inventory under rising CO2 levels

(COU–BGC estimate) is a clear reduction of deep

ocean DIC in all models (from 220 to 263 PgC) since

the dominant process in this feedback loop is the de-

creased downward transport of carbon owing to reduced

circulation and mixing.

The key regions for ocean carbon cycle feedbacks are,

consistent with previous studies, the North Atlantic and

the Southern Ocean. At the same time, these regions

exhibit the strongest nonlinearities as well as the largest

intermodel spread in climate change impact on carbon

uptake and storage. We find that in the Southern Hemi-

sphere the nonlinearity is not tied to the main carbon

uptake regions.Rather, the strongest nonlinearity in deep

ocean carbon storage is found in the region south of 558S
where comparatively little anthropogenic carbon is taken

up and stored. This nonlinearity appears to be associated

with the southern and lower cell of the Southern Ocean

water mass circulation. To reduce uncertainties in carbon

cycle feedback projections, it is important to better un-

derstand and model the processes governing carbon up-

take and storage in the North Atlantic and Southern

Ocean.

The fully, radiatively, and biogeochemically coupled

simulations can be used in three different combinations

to quantify the carbon cycle feedbacks. Our results in-

dicate that using the BGC–RAD combination is in-

consistentwith regard to total carbonuptake since the sum

of the ocean carbon–concentration and carbon–climate

feedbacks calculated this way is larger by 19–58 Pg C than

the total feedback found in the fully coupled simulation.

Using either experiment pair COU–BGC or COU–

RAD is consistent but involves a different interpretation

of the feedbacks. For example, the carbon–climate

feedback calculated using the RAD experiment quan-

tifies the impact of climate change on ocean carbon

fluxes at constant CO2 levels, while the difference be-

tween the COU and BGC simulations gives the climate

change impact under rising CO2. Since the latter would

be the quantity of interest for most applications, we

recommend using the COU–BGC pair of simulations

for the quantification of ocean carbon cycle feedbacks in

concentration-driven experiments.

Our results show that the perturbation of the ocean

carbon cycle in the 1% scenario is too large to rely on

a simple linear feedback analysis. Further, Gregory et al.

(2009) demonstrated that the carbon–concentration

feedback is strongly dependent on the rate of change of
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atmospheric CO2 and hence scenario dependent. In

view of these results, future research should be directed

toward finding an improved formalism for carbon cycle

feedback quantification.
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APPENDIX A

Carbon Cycle Feedback Metrics

As outlined by Arora et al. (2013, their appendix A1),

the model simulations COU, BGC, and RAD can be

used in three combinations to estimate the carbon–

concentration and carbon–climate feedbacks. If feed-

backs are linear, all three estimates would be identical.

Let us consider two model experiments, E1 and E2,

following different CO2–T trajectories (through a full or

partial decoupling of CO2 and temperature change in at

least one of the experiments):

DCE15bDCOE1
2 1 gTE1 and

DCE25bDCOE2
2 1 gTE2 . (A1)

The general solution of (A1) in terms of b and g is

given by

b5 (DCE1DTE22DCE2DTE1)/d and

g5 (DCE2DCOE1
2 2DCE1DCOE2

2 )/d , (A2)

where d5DCOE1
2 DTE2 2DCOE2

2 DTE1. We can solve

for b and g using the COU–BGC, COU–RAD, or

BGC–RAD experiment pairs, and the resulting three

pairs of estimates for b and g read

bCOU2BGC 5
DCBGCDTCOU2DCCOUDTBGC

DCO2(DT
COU2DTBGC)

’
DCBGC

DCO2

, (A3a)

bCOU2RAD 5
DCRADDTCOU2DCCOUDTRAD

DCO2DT
RAD

’
DCCOU2DCRAD

DCO2

, (A3b)

bBGC2RAD 5
DCBGCDTRAD 2DCRADDTBGC

DCO2DT
RAD

’
DCBGC

DCO2

, (A3c)

gCOU2BGC5
DCCOU2DCBGC

DTCOU2DTBGC
’

DCCOU2DCBGC

DTCOU
,

(A3d)

gCOU2RAD 5
DCRAD

DTRAD
, and (A3e)

gBGC2RAD 5
DCRAD

DTRAD
. (A3f)

The approximations given in (A3a)–(A3d) are applica-

ble if DTBGC ’ 0 and/or DTCOU ’ DTRAD. Since

DCORAD
2 5 0, it turns out that the two estimatesgCOU–RAD

and gBGC–RAD are identical (hence, we denote the g fac-

tor derived from either the COU–RAD or BGC–RAD

experiment pairs gRAD). Likewise, since DCOCOU
2 5

DCOBGC
2 in the set of simulations used for this study,

the b estimates derived from COU–BGC and BGC–

RAD are equal in the limit of zero temperature change

DTBGC. We note that the experiment RAD was not

carried out by the C4MIP model ensemble; hence,

Friedlingstein et al. (2006) used theCOU–BGCestimates

in their study, while Arora et al. (2013) chose the BGC–

RAD approach.

APPENDIX B

Implementation of the Linear Surface DIC Model

The linearized surface ocean DIC scheme employed

in section 4d(1) is implemented as follows. The seawater
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carbonate system including the borate buffer is solved

for pCO2 as described in Zeebe and Wolf-Gladrow

(2001) using annual mean surface fields (results of the

participating CMIP5 models) of DIC, total alkalinity A,

temperature T, and salinity S. The solubility of CO2 in

seawater (K0) is calculated according to Weiss (1974),

and the dissociation constants of CO2 and boric acid (K1,

K2, andKb) and the ion product of water (Kw) are taken

from Dickson and Millero (1987), Dickson (1990), and

Millero (1995), respectively. Although the models gen-

erally include the contributions of minor bases like

phosphate and silicate to total alkalinity, we neglect

these contributions here. The derivatives of pCO2 with

respect to DIC, A, T, and S are calculated using a

second-order difference scheme; for example,

›pCO2(DIC,A,T ,S)

›T

’
pCO2(DIC,A,T1DT, S)2pCO2(DIC,A,T2DT, S)

2DT

for a small temperature perturbation DT. We integrate

the linear model by using differences in annual mean

values between years i and i2 1, for example, dTi5Ti2
Ti21, where i 5 2, . . . , 140, to derive the corresponding

contributions to dDIC. The calculations are performed

grid point wise and global dDIC values are finally ob-

tained by averaging over all model grid points. The re-

sults for surface DIC change relative to the simulation

start year is then obtained by summing up all annual

contributions, D dDIC5�dDICi. As demonstrated in

Figs. B1a,b for the COU–BGC and RAD simulations,

respectively, the linear model is able to reproduce

both the interannual variability and the long-term

trend very well. We note that for the simulations with

rising CO2 (COU and BGC) there is an over-

estimation of dDICi leading to D dDIC.DDIC by ap-

proximately 10% at the end of the 140-yr period (not

shown). The reason for this overestimation is that the

approximation DpCO2 5 (pCOatm
2 2pCO2)’ constant

is violated to some extent for scenarios with rapid in-

crease in atmospheric CO2. Nevertheless, for the differ-

ence COU2 BGC, the results from the linear model are

similarly close to the full model results as for the RAD

simulation (Fig. B1).
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