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Zusammenfassung
In dieser Arbeit wird der Einfluss von Strahlungsdämpfungseffekten auf die Wech-
selwirkung eines Elektronenbündels mit einem starken Laserfeld untersucht, unter
Einbeziehung nichtlinearer sowie quantenmechanischer Effekte. Dieses Vorhaben ist
durch zweierlei technologische Entwicklungen begründet: Zum einen durch die er-
hebliche Zunahme experimentell verfügbarer Laserintensitäten sowie zum anderen
durch die bedeutenden Fortschritte in der Elektronenbeschleunigung. In einem Pa-
rameterbereich, in dem Strahlungsdämpfung durch die inkohärente Emission mehre-
rer Photonen verursacht wird, wird ein kinetischer Ansatz entwickelt, um die Dy-
namik von Elektronen sowie Photonen mittels Verteilungsfunktionen zu beschreiben.
Während klassische Elektrodynamik, ausgehend von der Landau-Lifshitz Gleichung,
eine Abnahme der Breite der Energieverteilung des Elektronenbündels vorhersagt,
zeigt die Analyse in dieser Arbeit den gegenteiligen Effekt, sobald Quanteneffekte
bedeutsam werden. Wie gezeigt wird, wird die Verbreiterung der Elektronenenergie-
verteilung durch die intrinsich stochastische Natur der Photonemission verursacht.
Um den Unterschied zwischen klassischer und quantentheoretischer Strahlungsdämp-
fung quantitativ zu erklären, wird gezeigt, dass die Energieverteilung des Elektro-
nenbündels nach der Streuung bei gegebener Laserfluenz von der Form des Laser-
pulses und seiner Dauer abhängt. Im Gegensatz dazu zeigt die klassische Anal-
yse keine derartige Abhängigkeit. Schließlich wird der kinetische Ansatz verallge-
meinert, um die Erzeugung von Elektron-Positron-Paaren durch Photonen, welche
während der Wechselwirkung emittiert wurden, miteinzubeziehen. Dies erlaubt eine
abschließende Untersuchung der nichtlinearen, gekoppelten Dynamik aller an der
Wechselwirkung beteiligten Teilchen, d.h. anfänglich vorhandener Elektronen, emit-
tierter Photonen sowie während der Wechselwirkung erzeugter Elektron-Positron-
Paare.

Abstract
In this work the influence of radiation reaction on the interaction of an electron
bunch with a strong laser field is studied including nonlinear and quantum effects.
This venture is motivated by two technological developments: On the one hand,
the tremendous increase in available laser intensities and, on the other hand, the
significant advancements in electron acceleration technology. Considering a regime
where radiation reaction effects are caused by the incoherent emission of several
photons, a kinetic approach is developed to describe the dynamics of electrons and
photons via distribution functions. Whereas classical electrodynamics, employing
the Landau-Lifshitz equation, predicts a narrowing of the energy distribution of the
electron beam, the analysis in this work reveals the opposite effect in case that quan-
tum effects become significant. The spreading of the electrons’ energy distribution
is shown to be caused by the intrinsic stochastic nature of photon emission. In order
to explain quantitatively the discrepancy between classical and quantum radiation
reaction, the final electron distribution as computed in our quantum treatment is
demonstrated to depend on the laser’s envelope shape and its duration at a given
total laser fluence. On the contrary, the classical analysis does not exhibit such a
dependency. Finally, the kinetic approach is extended to allow for the inclusion of
pair creation by photons emitted during the scattering. This facilitates a conclu-
sive investigation of the nonlinear coupled dynamics of all particles involved in the
interaction, i.e., electrons in the initial bunch, photons and electron-positron pairs
produced during the scattering.
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1
Introduction

In a recent experiment the mass of the electron was measured with an unprecedented
relative precision [Stur 14]. Not only does this measurement constitute a remark-
able experimental result but it is also in perfect agreement with the theoretical
predictions made by quantum electrodynamics (QED). In general, the formidable
predictive power of this latter theory has been tested in numerous experimental
studies: Prime examples of such investigations include the determination of the
electron’s g-factor both in a free state [Hann] and bound states of hydrogen-like
atoms [Haff 00,Verd 04,Stur 11]. The extraordinarily good agreement of experimen-
tally determined quantities and the corresponding theoretical calculations led to the
conclusion that QED is the “best tested” existing physical theory.

This assertion is noteworthy inasmuch as the fully developed theory of QED has
only been available for some 60 years [Nobe 65]. The theory of classical electrody-
namics, on the other hand, was developed already in the 1860s. Thus, it was sub-
jected to far more experimental tests all confirming its validity in a parameter regime
where quantum effects are negligible. However, even this uncountably often tested
theory exhibits an unresolved issue even in its realm of applicability. The problem
is encountered in the calculation of an electron’s (in fact any charged particle’s)
trajectory in the presence of an external electromagnetic field, taking into account
the energy-momentum loss of the particle due to the emission of electromagnetic
radiation [Land 75, Spoh 04, Rohr 07] (see sec. 2.1.1). The effect of this energy-
momentum loss on the electron’s trajectory is commonly referred to as radiation
reaction (RR). Conventionally a particle’s trajectory is calculated by means of the
Lorentz force equation and its emission employing Maxwell’s equations. By solving
the coupled system of these latter equations, the so-called Lorentz-Abraham-Dirac
(LAD) equation can be obtained containing terms apart from the Lorentz-force,
which describe RR [Rohr 07]. This equation, however, features several physical
problems (see sec. 2.1.1). However, it has been pointed out [Land 75] that in the
classical domain, where quantum effects such as recoil in photon emission are negligi-
ble, the LAD equation can be approximated in a theoretical consistent fashion. This
approximated equation is known as the Landau-Lifshitz (LL) equation and it does
not exhibit the shortcomings of the former [Spoh 00,Rohr 02,Di P 12]. In addition,
alternative equations have been proposed as a description of RR [Hamm 10], which
are not pursued in this work. In any case, in external fields strong enough to cause an
electron to emit an average energy comparable to its initial one within only one laser
period, the electron dynamics is clearly dominated by RR effects [Koga 05,Di P 08].



Nevertheless, nowadays an experimental realization of the accordingly required very
strong fields is rather complicated, which explains the lack of an experimental test
of the LL equation. However, employing an analytical solution of the LL equation in
an arbitrary plane-wave field [Di P 08], it was shown that RR effects should be de-
tectable also at lower field strengths [Di P 09]. Moreover, various recent theoretical
studies pointed out possible detection schemes of signatures of RR in the classical
regime [Harv 11,Thom 12,Hein 13,Tamb 14,Gree 14].

It is commonly believed that in order to meaningfully judge upon the validity
of either description of RR in the classical domain it is necessary to go to the un-
derlying theoretical framework of QED which includes classical electrodynamics as
a limiting case as soon as quantum effects are negligible. However, recalling the
previously mentioned lack of an agreement on the proper classical description of
RR, it is not surprising that there is much less consensus on an according quan-
tum description of RR. One may approach an according theoretical framework,
however, following a simple consideration: In classical electrodynamics the descrip-
tion of RR requires the solution of the fully self-coupled dynamics of an external-
field-driven electron, clearly going beyond the Lorentz force formalism. An accord-
ing quantum description would consequently call for the inclusion of all processes
that may occur from an initial electron accelerated in an external electromagnetic
field [Di P 10, Di P 12, Ilde 13b, Ilde 13a] (see sec. 2.1.2). Thus, obviously a full
quantum picture of RR would require the incorporation of effects such as multiple
photon emission and radiative corrections. In the case of sufficiently strong elec-
tromagnetic fields, however, even further effects such as the process of pair pro-
duction have to be taken into account. The produced electrons and positrons,
in turn, are accelerated by the background field and will emit further photons
and, for certain conditions, even facilitate the formation of the so-called QED cas-
cades [Bell 08, Fedo 10, Elki 11, Soko 10, Neru 11]. Hence it is obvious that solving
the intrinsically multiparticle problem of quantum RR is a formidable theoretical
task. Moreover, already in a parameter regime where pair production is still negli-
gible, the quantum and RR effects dominate the electron dynamics if the recoil of
the emitted becomes substantial. Beyond the just outlined theoretical interest in
developing a concise understanding of RR, there also exists a technologically moti-
vated need for a reliable framework of describing RR. Since the onset of RR effects
signifies the regime in which a charged particle’s dynamics is substantially altered,
due to its inevitable emission of electromagnetic radiation, understanding it most
profoundly is also vitally essential for experimental applications as, e.g., accelerator
and plasma physics. This urge even translates to the construction of novel experi-
mental devices, e.g., quantum x-free electron lasers [Boni 84,Boni 85]. In particular,
there is a strong demand of further theoretical studies of RR effects in the interac-
tion of electrons with ultra-intense laser pulses, as the latter are generic sources of
ultra-high electromagnetic fields in laboratories around the world nowadays.

In addition to RR, however, in the interaction of electrons with strong laser pulses
there occurs another class of novel effects, namely nonlinear dynamics. Since the
groundbreaking invention of the laser [Maim 60], lasers have become powerful exper-
imental tools for the investigations of various physical phenomena. Already shortly
after the first realization of the laser, sufficiently high intensities to cause nonlinear
optical effects could be produced. These nonlinear effects include, e.g., second-
harmonic generation first demonstrated in [Fran 61]. A significant breakthrough
in the generation of intense laser pulses has been achieved by the so-called chirped
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Chapter 1 Introduction

pulse amplification technique [Stri 85]. This facilitated the production of pulses
with intensities beyond 1014-1015 W/cm2 at which the dynamics of an electron in
an atom or molecule is substantially modified, since the corresponding electron field
strengths become comparable to the Coulomb field in atoms. Such high intensities
trigger high-order harmonic generation (HHG) resulting in the creation of extreme-
ultraviolet and soft x-ray radiation [Prot 97, Agos 04]. Considering even higher
optical laser intensities of the order 1018 W/cm2, an electron in a laser field is accel-
erated to relativistic velocities within only one laser wavelength. Thus, this regime is
known as the relativistic regime. In order to quantify the interaction with such rela-
tivistic intense fields, it is convenient to introduce the so-called classical nonlinearity
parameter [Brow 64]

ξ =
|e|E0

ω0mc
, (1.1)

with the peak electric field strength E0, the speed of light c, and the central angular
frequency ω0. The charge and the mass of an electron are indicated by e < 0
and m, respectively. The absence of Planck’s constant ~ in this Lorentz-invariant
parameter demonstrates its purely classical nature. It can be interpreted as the
work in units of the electron mass performed on the electron by the laser field
in one laser period. Since consequently beyond the threshold ξ = 1 the electron
is accelerated to relativistic velocities within one laser cycle, its dynamics in this
regime depends nonlinearly on the laser field amplitude. This nonlinearity induces
various new effects as, e.g., a longitudinal electron drift and the appearance of higher
harmonics in the emission spectrum. Furthermore, also in the relativistic regime a
novel technique labeled laser wakefield acceleration was developed [Muls 10]. Such
acceleration mechanisms can be exploited in so-called plasma-based laser-electron
accelerators [Esar 09, Malk 12] and allow already for the production of electron
beams with an energy in the GeV range [Wang 13].

So far, the highest laser peak intensity realized in a laboratory is roughly 2 ×
1022 W/cm2 [Yano 08]. In general, the question arises which is the highest laser
intensity that can be generated. As theoretical investigations have shown a laser
field reaching the value of the critical field of QED

Fcr =
m2c3

|e|~ ≈ 1.3× 1016 V

cm
(1.2)

would result in the creation of electron-positron pairs directly from the vacuum
[Saut 31a, Saut 31b, Heis 36, Schw 51]. Hence, a laser field with the corresponding
critical intensity of Icr = cF 2

cr/4π ≈ 4.6× 1029 W/cm2 would be rapidly depleted by
the production of pairs. However, it was pointed out [Fedo 10] that the attainable
laser intensities might be drastically reduced due to the formation of QED cascades
even if only one electron-positron pair is created. The production of such an “initial”
electron-positron pair can originate from the presence of a photon in the laser field,
which itself may have been emitted by an accelerated electron originally stemming
from residual gas in the interaction region. In the case of an electron or a photon
propagating in a laser pulse, it is useful to introduce two additional Lorentz-invariant
expressions. Considering the motion of an electron with four-momentum pµ in a
laser field with wave vector kµ0 , the so-called nonlinear quantum parameter is given
by [Ritu 85]

χ =
|e|~
√
|(F µν(ϕ)pν)2|
m3c3

=
(kµ0pµ)

ω0mc

E(ϕ)

Fcr

, (1.3)
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where F µν(ϕ) is the electromagnetic field strength tensor depending on the laser
phase ϕ = kµ0xµ and E(ϕ) the corresponding phase-dependent electric field. This
quantity can be interpreted as the electric field amplitude in units of the critical
field experienced by the electron in its initial rest frame and it measures the impor-
tance of quantum effects, e.g., the photon recoil in multiphoton Compton scattering.
Analogously, for a photon with wave vector kµ propagating through the laser field
the parameter

κ =
|e|~
√
|(F µν(ϕ)kν)2|
m3c3

=
(kµ0kµ)

ω0mc

E(ϕ)

Fcr

(1.4)

can be constructed in complete accordance to the parameter χ. In case that the sin-
gle photon upon the collision with the laser field creates a pair, κ can be interpreted
as the electric field amplitude in units of the critical field in the center-of-mass sys-
tem of the produced electron and positron [Ritu 85]. It was shown that the increase
of the laser intensity not only results in the occurrence of nonlinear effects but also
quantum effects become substantial if the parameters χ and κ reach the order of
unity [Ritu 85].

Following these technical progresses, the main goal of this thesis is to further
elucidate the characteristics of RR effects in the nonlinear quantum regime. To
this end, the impact of RR on the dynamics of an ultrarelativistic electron beam
colliding with an intense laser pulse will be investigated.

The remainder of this thesis is organized in the following way: In chapter 2 the
theoretical background of radiation reaction is presented. To this end, the classi-
cal interaction of a charged particle with an external field is recapitulated, with a
special emphasis on the possible classical description of radiation reaction via the
Landau-Lifshitz equation. This discussion is then transferred to the framework of
QED. Employing the solutions of the Dirac equation in the presence of a plane-wave
field, the photon emission probability is examined and the notion of the nonlin-
ear moderately quantum regime is introduced, in which radiation reaction effects
mainly stem from multiple incoherent photon emission and pair creation is negli-
gible. Subsequently, the process of pair production is studied in order to allow for
investigations beyond the nonlinear moderately quantum regime. Finally, some of
the key aspects of the kinetic theory are recapitulated and the necessary assumptions
for the employment of a kinetic approach are discussed.

Chapter 3 is then dedicated to the development and thorough examination of a
kinetic approach describing the collision of an intense laser pulse with an ultrarela-
tivistic electron beam. Restricting to the nonlinear moderately quantum regime, the
general three-dimensional kinetic approach, based on the Vlasov equation, is simpli-
fied to one dimension, where the evolution of electrons and photons is investigated
in terms of distribution functions. Within this regime, however, RR is shown to
have an unconventional effect on the evolution of the electron distribution function.
Specifically, in case of non-negligible quantum effects RR leads to a spreading of
the energy distribution of the electrons, whereas classical electrodynamics employ-
ing the LL equation predicts a narrowing. In order to explain this, the classical
limit of the kinetic equations is derived via an expansion in the quantum nonlinear-
ity parameter χ. After proving the numerical validity of our approach in the limit
χ→ 0, we discuss the effects of the leading order quantum corrections. These quan-
tum corrections modify the structure of the kinetic equation in such a way that the
corresponding single-particle equation is a stochastic differential equation. Consid-
ering an approximate solution of the kinetic equations, the leading-order quantum
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Chapter 1 Introduction

corrections are shown to induce a broadening of the electron distribution function.
Thus, the stochasticity of photon emission can clearly be identified as the source of
the broadening feature of RR in the quantum case. To further clarify the different
properties of RR in the classical and the nonlinear moderately quantum regime, we
investigate the influence of the laser pulse shape and duration on the dynamics of
electrons and photons. Whereas the LL equation indicates no dependency on the
pulse shape and duration at a given total laser fluence, the numerical simulations of
RR exhibit a dependency in both cases.

In chapter 4, we drop the condition that pair creation is excluded and amend the
kinetic approach by the dominating pair production process. The resulting set of
equations is then solved numerically and the coupled dynamics of the distribution
functions is investigated. To this end, the evolution of the fully coupled system is
compared to those cases, where either pair production is neglected or the radiation
of the created positrons is artificially excluded. Furthermore, the dependency on the
laser pulse duration at a given fluence of the laser field is studied for different initial
electron beam energies. Finally, we give estimates on the necessary laser intensities
for an experimental observation of pair production by considering electron bunches
with energies achievable nowadays.

In chapter 5, the numerical evaluation of the kinetic equations is discussed. With
emphasis on rewriting the kinetic equations into a form convenient for a numerical
treatment, we explain the applied numerical methods and the employed approxima-
tions.

In the final chapter 6, the findings of this thesis are summarized and an outlook
is given.

The details of the expansion of the kinetic equation in χ are given in app. B.
In app. C it is shown how a stochastic differential equation can be related to this
expanded kinetic equation. An approximate solution to the latter is derived in
app. D. In addition, app. E shows the numerical equivalence of our approach with
the microscopic approach employed in [Di P 10].

1.1 Notations and units

Throughout the remainder of the work, we will make use of natural units defined
by the conditions

~ = c = 1, (1.5)

with ~ indicating Planck’s constant and c the speed of light. We further assume the
charge of an elementary particle to include its sign, i.e., for an electron e = −|e|,
and employ the Gaussian unit convention

4πε0 = 1, (1.6)

where ε0 indicates the vacuum permittivityI, leading to the connection of the fine
structure constant α with the unit charge

e2 = α ≈ 1

137
. (1.7)

INote that in the remaining part of the thesis ε0 always indicates the initial energy.
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1.1 Notations and units

Finally, the following table displays a summary of the notations employed in this
work.

Notations

aµ = (a0, a) four-vector with the spatial components a
xµ, pµ space-time coordinates and momentum four-vector
vµ = pµ/m four-velocity
kµ0 , ε

µ
0 four-wave vector and polarization four vector of the laser

a⊥ spatial components of four-vector a perpendicular to the spatial
laser wave vector k0

a‖ spatial component of four-vector a parallel to the spatial laser
wave vector k0

φ, T,x⊥ light-cone coordinates for the space-time vector x
p−, p+,p⊥ light-cone coordinates for the four-momentum p
f(x) function depending on the spatial coordinates
x∗ typical value of the quantity x
σ standard deviation of a distribution function
∂xf(x) partial derivative with respect to x
df(x)/dx total derivative with respect to x
∂µ = (∂t,∇) four-derivative
d4a volume element of the four components of a four-vector a
da volume element of the 3 spatial components of a four-vector a
γµ vector of Dirac matrices
aµb

µ four-product employing the Einstein sum convention
/a = γµa

µ Feynman slash notation
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2
Theoretical background

In order to describe the effects of radiation reaction, it is necessary to define the
term in the classical as well as in the quantum framework. Therefore, the inter-
action of a charged particle with an external electromagnetic field is discussed in
the first section of this chapter, with special emphasis on the radiation emitted
by the accelerated particle. This, however, leads immediately to the problem that
the loss of energy and momentum is not taken into account in the calculation of
the charged particle’s trajectory by the common treatment employing the Lorentz
equation. This issue is known as radiation reaction. Thus, a self-consistent so-
lution of the Maxwell equations and the Lorentz equation is introduced, which,
however, exhibits several unphysical drawbacks. Finally, an approximated equation,
the so-called Landau-Lifshitz equation, is presented avoiding these shortcomings. In
addition, the analytical solution in case of a plane-wave background field is given
for this equation.

In the second part of the first section, the previous analysis is reapplied in the
framework of quantum electrodynamics. To this end, the wave functions are intro-
duced describing a charged particle in the presence of an external plane-wave field.
Focusing on the case of strong external fields, the properties of the probability of
photon emission are discussed. In analogy to the classical case, radiation reaction
is identified with the dynamical processes beyond Lorentz dynamics. In this con-
text, the notion of the so-called nonlinear moderately quantum regime is introduced.
After that, the first section is concluded by a brief discussion of the pair-creation
process.

The second section is devoted to a brief overview of the kinetic theory, in which an
ensemble of particles is described statistically by employing a distribution function.
Thus, the fundamental Vlasov equation is introduced describing the evolution of
a charged particle distribution in the presence of an electromagnetic field. This
equation is then amended by the inclusion of collision terms and transformed into a
general transport equation. Finally, the kinetic approach as a semi-classical method
is demonstrated to be an adequate description of the collision of an ultrarelativistic
electron beam and a strong plane-wave laser field.

This chapter mainly contains a summary of discussions made in standard text-
books such as [Jack 75,Land 75,Bere 82,Pita 81].



2.1 Radiation reaction in classical and quantum electrodynamics

2.1 Radiation reaction in classical and quantum electrodynamics

2.1.1 Classical electrodynamics

In the framework of classical electrodynamics, the motion of a charged particle, an
electron for definiteness (with electric charge e < 0 and mass m), is described by
the Lorentz force equation [Land 75]

m
dvµ

ds
= eF µνvν , (2.1)

where vµ = (v0,v) = dxµ/ds indicates the four-velocity of the electron and s is
its proper time. An arbitrary electromagnetic field can be expressed by the four-
potential Aµ(x) = (Φ(x),A(x)), with the scalar potential Φ(x) and the vector po-
tential A(x), which constitutes the antisymmetric field strength tensor F µν(x) =
∂µAν(x)− ∂νAµ(x) employed in eq. (2.1). In turn, in the presence of a four-current
jµ = (ρ, j), with the charge density ρ and the spatial charge current j, the field
strength tensor is defined by the Maxwell equations [Land 75]

∂µF
µν(x) = 4πjν(x). (2.2)

From the definition of the field strength tensor, however, it is apparent that there is
no unique choice of the four-potential Aµ(x) and the application of a gauge trans-
formation does not alter the corresponding expression of the field strength tensor.
Thus, the four-potential itself cannot be a measurable quantity and the actual phys-
ical quantities uniquely defined by eq. (2.2) are the electric and the magnetic field
E(x) and B(x), respectively. These fields can be obtained from the four-potential
via the formulas

E(x) = −∇Φ(x)− ∂A(x)

∂t
(2.3)

B(x) = ∇×A(x). (2.4)

In the case of a vanishing four-current jµ ≡ 0 and by choosing the Lorenz gauge
condition ∂µA

µ(x) = ∂tΦ(x) +∇A(x) = 0, eq. (2.2) is reduced to the wave equation

�Aµ(x) = 0, (2.5)

where we introduced the D’Alembert operator � = ∂µ∂
µ = ∂2t − ∇2. Eq. (2.5)

determines the propagation of an electromagnetic wave in free space. Early on it
was discovered that functions depending on the space-time coordinates only via the
phase ϕ = kµ0xµ are solutions to eq. (2.5). These are the so-called plane-wave solu-
tions. The corresponding wave vector is then given by kµ0 = (ω0,k0), where ω0 = |k0|
indicates the central angular frequency and k0 is the spatial wave vector. Since we
will focus on the case of a linearly polarized plane-wave, the four-potential can be
written as Aµ = A0ε

µf(ϕ), with the constant amplitude A0, the plane-wave’s polar-
ization four-vector εµ, and the shape function f(ϕ) determining the temporal varia-
tion of the potential. Considering the reference frame of a vanishing scalar potential
Φ(x) ≡ 0, the four- potential has the form Aµ(ϕ) = (0,A(ϕ)), corresponding to a
purely spatial polarization vector εµ = (0, ε) fulfilling k0 ·ε = 0. In order to describe
the sojourn of an electron in a plane-wave field, it is convenient to introduce for an
arbitrary four-vector aµ = (a0,a) the expressions a‖ = k0 ·a/ω0, a⊥ = a−k0a‖/ω0,
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Chapter 2 Theoretical background

and a− = a0−a‖. Since the plane-wave only depends on the phase, x⊥ and t+x‖ are
cyclic coordinates in the corresponding Lagrange formulation of the problem. Thus
the conjugated momenta p⊥(ϕ) + eA(ϕ) and p−(ϕ) have to be conserved, where
we introduced the electron momentum pµ = (ε,p) = mvµ. Employing the initial
condition pµ(ϕ0) = (ε0,p0) for an initial phase ϕ0, the evolution of the electron’s
four-momentum is determined by [Land 75]

ε(ϕ) = ε0 − e
p0,⊥ · [A(ϕ)−A(ϕ0)]

p0,−
+
e2

2

[A(ϕ)−A(ϕ0)]
2

p0,−
, (2.6)

p⊥(ϕ) = p0,⊥ − e [A(ϕ)−A(ϕ0)] , (2.7)

p‖(ϕ) = p0,‖ − e
p0,⊥ · [A(ϕ)−A(ϕ0)]

p0,−
+
e2

2

[A(ϕ)−A(ϕ0)]
2

p0,−
. (2.8)

However, these formulas do not take into account that an accelerated electron
emits radiation, which in turn modifies the electron’s trajectory due to the loss
of energy and momentum. This backreaction of the self-generated electromagnetic
field on the electron dynamics is known as radiation reaction (RR). The motion of
a point charge constitutes a charge current and its emission can be calculated by
employing the Liénard-Wiechert potentials [Jack 75,Land 75]. Analyzing the angular
distribution of the emitted radiation in the case of an ultrarelativistic electron,
one obtains that the opening angle of the emission cone is ∆ϑ ∼ m/ε, where ϑ
indicates the angle between the instantaneous propagation direction of the electron
and the direction in which radiation is emitted [Jack 75,Land 75]. Thus in this work,
the emission is considered to occur mainly in the instantaneous forward direction.
Considering now the emitted power P which is given by the relativistic Larmor
formula [Land 75]

P = −2

3
e2

dvµ

ds

dvµ
ds

, (2.9)

where dvµ/ds indicates the acceleration, an additional damping force can be intro-
duced into the common Lorentz force equation. In [Abra 04] the generalized form
of this damping force was suggested to be

F µ
R =

2

3
e2
(

d2vµ

ds2
+

dvν

ds

dvν
ds

vµ
)
. (2.10)

The inclusion of this expression in eq. (2.1), is known as the Lorentz-Abraham-Dirac
(LAD) equation

m
dvµ

ds
= eF µνvν +

2

3
e2
(

d2vµ

ds2
+

dvν

ds

dvν
ds

vµ
)
. (2.11)

However, this equation exhibits several unphysical properties. For instance, it allows
for so-called runaway solutions, where even in the absence of an accelerating field
the acceleration of the electron diverges exponentially [Rohr 07,Hart 10].

As it was pointed out in [Land 75], the Lorentz force is much larger than F µ
R in

the instantaneous rest-frame of the electron if the conditions

λ∗ � αλC and F ∗ � Fcr

α
(2.12)
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2.1 Radiation reaction in classical and quantum electrodynamics

are fulfilled. Here, we introduced the typical wavelength λ∗ and typical field am-
plitude F ∗ for the external electromagnetic field and the Compton wavelength
λC = 1/m ≈ 3.9 × 10−11 cm. The conditions (2.12) are always fulfilled in the
framework of classical electrodynamics. Indeed, quantum effects like photon recoil
are negligible and the wave function of the electron remains well localized, if the
more restrictive conditions F ∗ � Fcr and λ∗ � λC are fulfilled. If the conditions
in eq. (2.12) are also fulfilled in the instantaneous rest frame of the electron, the
order of the LAD equation can be reduced by replacing the electron acceleration
occurring in eq. (2.11) by means of eq. (2.1). Following this procedure, one obtains
the Landau-Lifshitz (LL) equation

m
dvµ

ds
= eF µνvν +

2

3
α

[
e

m
(∂αF

µν)vαvν −
e2

m2
F µνFανv

α +
e2

m2
(Fανvν)(Fαλv

λ)vµ
]
.

(2.13)
This equation does no longer have the drawbacks of the LAD equation. In fact, the
investigations in [Spoh 00,Rohr 08] further corroborate that the LL equation is the
correct description of classical RR. Nonetheless, the LL equation does not represent
the only equation that has been proposed to describe RR in classical electrodynamics
without the shortcomings of the LAD equation, see the recent review [Hamm 10].
The LL equation can be solved analytically for several external field configurations,
e.g., a constant electromagnetic field [Sen 71a,Sen 71b,Gupt 72,Sen 73,Herr 73,
Kazi 11] and a monochromatic plane-wave [Niki 96]. In addition, the LL equation
allows for an analytical solution also in the case of an arbitrary plane-wave [Di P 08].
As only the quantity v−(ϕ) will be of interest in the following chapters, we cite here
only the equation for v−(ϕ) [Di P 08]

v−(ϕ) =
v0,−
h(ϕ)

, (2.14)

where we introduced the function

h(ϕ) = 1 +
2

3
RC

∫ ϕ

ϕ0

dϕ′ f2(ϕ′), (2.15)

v0,− indicates the initial value, and we made use of the quantity RC = αξχ. Further-
more, if RC ≈ 1 and χ� 1, i.e., quantum effects like photon recoil are negligible, the
interaction of the electron and the plane-wave field occurs in the so-called classical
radiation dominated regime. This regime has been studied in [Shen 70,Koga 05] and
it is characterized by the fact that some components of the RR force (see eq. (2.10))
can be of the same order as the Lorentz force in the laboratory frame. Therefore,
in this parameter regime the RR force can lead to strongly altered dynamics of the
electron in comparison to the one expected from only considering Lorentz dynamics.

2.1.2 Quantum electrodynamics

So far the electron has been described as a point charge. In the framework of a quan-
tum theory, however, electrons are rather described by wave functions. Considering
only a single-particle quantum theory, the Dirac equation [Dira 28]

{γµ [i∂µ − eAµ(x)]−m}ψ(x) = 0 (2.16)

determines the evolution of a four-component electron bispinor ψ(x) in the presence
of an external electromagnetic field Aµ(x). γµ indicate the Dirac matrices. In the
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Figure 2.1: Symbolical depiction of the Furry picture, where the interaction of the electron
with the unquantized external field (dashed lines) is taken into account exactly.

special case of a plane-wave field, the Dirac equation permits an analytical solution.
Assuming that in the limit ϕ→ −∞, the four-potential vanishes, Aµ(−∞) = 0, and
that the electron momentum and spin are given by pµ0 = (ε0,p0) and σ0/2 = ±1/2,
respectively, we obtain the positive energy (ε0 > 0) solutions [Volk 35,Bere 82]

ψp0,σ0(x) =

[
1 +

e

2(k0,µp
µ
0)
/k0 /A(ϕ)

]
up0,σ0√
2V ε0

exp(iSp0) (2.17)

with the quantization volume V and the free positive-energy bispinor up0,σ0 [Bere 82].
We further employed the Feynman slash notation /a = γµa

µ for an arbitrary four-
vector aµ. The quantity

Sp0(x) = −(pµ0xµ)−
∫ ϕ

−∞
dϕ′

{
e[pµ0Aµ(ϕ′)]

(k0,µp
µ
0)
− e2A2(ϕ′)

2(k0,µp
µ
0)

}
(2.18)

expresses the classical action of an electron propagating in a plane-wave field. The
states ψp0,σ0(x) are known as Volkov states and they constitute a complete set of
orthogonal states [Ritu 85,Zako 05,Boca 10], i.e., the Volkov states can be employed
as a basis to study the evolution of electron wave packets. In order to understand the
importance of these solutions, we recall the classical nonlinearity parameter ξ which
can be understood as the work performed by the external field over one Compton
wavelength λC in units of the wave’s photon energy ω0. From this one can conclude
that at ξ & 1, multiphoton effects will become important in QED processes and
in turn the plane-wave field cannot be taken into account perturbatively [Ritu 85].
Therefore, the Volkov states will be employed instead of the free particle states in the
QED calculations. These calculations employ the so-called Furry picture [Furr 51],
wherein the interaction of ψ(x) and the radiation field described by Aµ(x) is treated
by means of perturbation theory, whereas the interaction with the external field is
accounted for exactly. Hence, the dynamics of the electron-positron field and the
radiation field is determined by the S-matrix [Bere 82]

S = T
{

exp

[
−ie

∫
d4xψ(x)γµψ(x)Aµ(x)

]}
, (2.19)

where T indicates the time-ordering operator and ψ(x) = ψ†(x)γ0 is the adjoint
spinor to ψ(x). Graphically this can be depicted in terms of the common Feynman
diagrams, only with double lines indicating electron (or positron) states that take
the unquantized external field into account exactly.

We now turn to one particular QED process, namely the emission of a single-
photon by an electron in a plane-wave field. The emission of a photon with wave
vector kµ changes the electron’s initial momentum pµi to the final momentum pµf ,

where the absorption of ` plane-wave photons with wave vector kµ0 is assumed. Note
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2.1 Radiation reaction in classical and quantum electrodynamics

that in the case of a vanishing external field, the conservation law pµi = pµf +kµ has to
be fulfilled, which is kinematically forbidden. The S matrix element corresponding
to single-photon emission can be written as [Ritu 85]

Sfi = −ie
∫

d4xψpf ,σf (x) /A
∗
em(x)ψpi,σi(x), (2.20)

where ψpf ,σf (x) and ψpi,σi(x) are the Volkov states according to eq. (2.17) and

Aµem(x) =

√
2π

ωV
εµk exp (ikνx

ν) (2.21)

is the wave function of the emitted free photon. Since we are not interested in the
polarization characteristics of this process, we can average over the initial electron
spin and sum over the final electron spin and the photon polarization. The cor-
responding emission probability has been evaluated in [Boca 09, Mack 11, Seip 11]
and [Niki 64] in the case of a pulsed plane-wave and a monochromatic plane-wave
field, respectively. However, it was pointed out [Ritu 85] that the emission prob-
ability is a gauge- and Lorentz-invariant quantity and in turn can only depend
on quantities that are gauge- and Lorentz-invariant themselves. In the case of an
electron moving in an arbitrary electromagnetic field (F µν(x) = (E(x), B(x))) the
probability can generally depend on the quantities ξ and χ(x) depending on the
local field amplitude as well as on the field invariants

F(x) =
1

4
F µν(x)Fµν(x) = −1

2

[
E2(x)−B2(x)

]
, (2.22)

G(x) =
1

4
F µν(x)F̃µν(x) = −E(x) ·B(x), (2.23)

where F̃µν(x) = εµνρσF
ρσ(x)/2 is the dual field of F µν(x) and εµνρσ is the four-

dimensional completely antisymmetric tensor with ε0123 = 1. If the external fields
now fulfill the conditions

|F(x)|, |G(x)| � F 2
cr, |F(x)|, |G(x)| � χ2(x)F 2

cr, (2.24)

we are allowed to neglect the dependencies on the quantities F(x) and G(x) [Ritu 85].
In turn, the probability of photon emission practically coincides with the one ob-
tained in the case of a constant crossed field. This justifies the employment of the
constant crossed field probability, with the replacements E → E(x) and B → B(x).
Since F(x) and G(x) vanish identically for a plane-wave field, the probability al-
ways depends on χ(x) and ξ exclusively and the constant field probability can be
employed if ξ � 1. In fact, in the case of ξ � 1, the region in which the radiation
is formed l0, the so-called radiation formation length, is l0 = λ0/ξ � λ0, where λ0
is the central wavelength [Ritu 85]. This illustrates that the region in which the
radiation is formed is much smaller than the distance over which the plane-wave
field varies. In order to describe the photon emission process, it is convenient to
introduce the expression u = k−/(p− − k−). Finally, the single-photon emission
probability per unit phase ϕ and per unit u in the ultrarelativistic regime ξ � 1
reads [Ritu 85]

dPp−
dϕdu

=
α√
3π

m2

ω0p−

1

(1 + u)2

[(
1 + u+

1

1 + u

)

×K 2
3

(
2u

3χ(ϕ, p−)

)
−
∫ ∞

2u
3χ(ϕ,p−)

dxK 1
3
(x)

] (2.25)
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Figure 2.2: Schematic depiction of the nonlinear moderately quantum regime, where RR
stems from the incoherent emission of multiple photons.

for an electron with initial momentum value p− and an emitted photon with mo-
mentum value k− and with χ(ϕ, p−) = (p−/m)|E(ϕ)|/Fcr. The functions Kν(x) are
the modified Bessel functions of the second kind and of νth order (see app. A). In
addition, we mention here that for ξ � 1 the number of absorbed laser photons `
scales like ` ∼ ξ3 [Ritu 85]. Furthermore, from eq. (2.25) we can derive the total
quantum radiation intensity [Ritu 85,Baie 94]

Iq =
αm2

3
√

3π

∫ ∞

0

du
4u3 + 5u2 + 4u

(1 + u)4
K 2

3

(
2u

3χ

)
,

=
2

3
αm2χ2

(
1− 55

√
3

16
χ+ 48χ2

)
+O

(
χ5
)
.

(2.26)

Note that the leading order term is exactly the classical radiation intensity Icl =
(2/3)αm2χ2 corresponding to classically emitted power in eq. (2.9).

Returning to the issues of RR, it has to be clarified what RR effects actually are
in the framework of quantum electrodynamics. In the case of classical electrody-
namics we identified RR as all the effects which are not included in the Lorentz
dynamics and arise due to the interaction of the electromagnetic field emitted by
an electron with the electron itself. By transferring this definition to the realm of
QED, RR in principle incorporates all possible quantum processes originating from
an initial single electron propagating in an external field. The possibly occurring
quantum processes include multiple photon emission, pair creation by previously
emitted photons and higher-order radiative corrections. Hence, a full description of
quantum RR would require not only a full evaluation of the S-matrix in eq. (2.19)
but also the inclusion of all possible final states.

However, in [Di P 10] the so-called nonlinear moderately quantum regime was
introduced, which is constituted by the conditions ξ � 1 and χ . 1. Since the prob-
ability of pair creation by a photon with light cone momentum k− is approximately
suppressed by the exponential factor η(k−) = exp(−8/3κ), with κ = k−χ/p−, the
condition χ . 1 allows to neglect electron-positron pair production. In addition, the
emission of j photons within one radiation formation length is roughly αj−1 times
the emission probability of one photon for χ . 1 [Ritu 85] and in turn only the
emission of one photon per radiation formation length can be taken into account.
As radiative corrections also give rise to additional factors of α, these contributions
can be neglected as well. Thus, we can conclude that in the nonlinear moderately
quantum regime RR is due to multiple incoherent photon emissions [Di P 10], as is
graphically shown in fig. 2.2.
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2

Figure 2.3: In the case of ξ � 1, the trident process is dominated by the consecutive
processes of photon emission and laser assisted pair production by the emitted
photon [Hu 10, Ilde 11].

Under these assumptions the single-photon emission probability is approximately
Pp− ∼ RQ∆ϕ, with RQ = αξ and the phase interval ∆ϕ corresponding to the pulse
duration. These considerations lead to the introduction of the so-called quantum
radiation dominated regime, which is characterized by RQ ≈ 1 and χ & 1. As
long as χ� 1/α3/2 and pair creation is still negligible, the above description of RR
remains valid in the case χ & 1, since for χ � 1 the emission of j photons within
one radiation formation length is roughly (αχ2/3)j−1 times the emission probability
of one photon [Ritu 85]. In the quantum radiation dominated regime the emission
of multiple photons occurs already in one laser period. We note that the obtained
spectrum of single-photon emission in the classical limit χ → 0 coincides with the
one obtained for multiphoton Thomson scattering based on the trajectory calculated
by employing the Lorentz equation [Mack 11]. This corroborates the idea that RR
can be related to the radiation processes that go beyond single-photon emission.

In the regime described above, pair production has always been neglected. How-
ever, with increasing values of χ, RR effects will also include the effect of creating
electron-positron pairs. As in the framework of QED only vertices connecting two
fermion lines and one photon line are allowed, the production of a pair from an
electron requires at least two vertices. In the co-called trident process an electron
emits a photon, which in turn splits into an electron and a positron (see fig. 2.3).
The trident process consists of two physically distinct channels. In the first case,
pair production is a two-step process, where the initial electron emits a real photon
which subsequently transforms into a pair of charged particles. In the second case,
the emitted photon is virtual and pair production is a one-step process, i.e., photon
emission and pair creation occur in the same formation region. In [Hu 10, Ilde 11]
(see also [King 13]) the trident process has been studied and pair production via the
two-step process was found to be dominant in the presence of a strong laser plane-
wave (ξ � 1). In fig. 2.3 it is shown that the trident process can then be separated
into two processes. The probability of a photon creating an electron-positron pair
can be calculated analogously to the probability of photon emission. Since ξ � 1,
the probability in the case of a constant crossed field can be employed. In addition,
we average over the initial photon polarization and sum over the spins of the elec-
tron and the positron. Finally, for a photon with momentum k− creating an electron
with momentum p− and a positron with momentum k− − p−, the probability per
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unit phase and unit p− reads (see [Ritu 85])

dPk−
dϕdp−

=
α√
3π

m2

ω0k2−

[
k2−

p−(k− − p−)
K 2

3
(κ(ϕ, k−, p−))−

∫ ∞

κ(ϕ,k−,p−)

dxK 5
3
(x)

]
,

(2.27)
where we introduced the function κ(ϕ, k−, p−) = 2k2−/[3p−(k− − p−)κ(ϕ, k−)], with
κ(ϕ, k−) = (k−/m)|E(ϕ)|/Fcr.

2.2 Kinetic theory

The main idea of the kinetic theory is to avoid the microscopic description of each
particle in a physical ensemble, e.g., a plasma or a gas, and rather describe the
evolution of the entire system statistically by means of distribution functions (see,
e.g., [Pita 81]). This is motivated by the fact that a system of N particles in prin-
ciple requires the solution of 6N coupled equations in order to define the particles’
evolution in phase space spanned by the spatial coordinates r and the particles’ mo-
menta p. In fact, the number of equations is even larger if the constituting particles
of the system feature additional degrees of freedom, e.g., vibrational and rotational
in the case of non-monoatomic molecules. Since the particles under consideration
in the main part of this thesis are electrons, photons and positrons, and we are not
investigating the influence of spin and polarization on the dynamics, there are no
additional internal degrees of freedom that have to be taken into account. There-
fore, the evolution of an ensemble of particles can be described by the distribution
functions fp(t, r,p), where the index p indicates the particle type, limited here to
electrons, positrons and photons. The distribution function is considered to be nor-
malized in such a way that the integral over the spatial coordinates and the momenta
components results in the total number of particles. By neglecting internal interac-
tions such as collisions of the particles, the distribution functions obey Liouville’s
theorem [Pita 81]

dfp(t, r,p)

dt
= 0. (2.28)

Assuming an external potential U(r), eq. (2.28) can be rewritten as

dfp(t, r,p)

dt
=
∂fp(t, r,p)

∂t
+

dr

dt︸︷︷︸
=v

·∂fp(t, r,p)

∂r
+

dp

dt︸︷︷︸
=F

·∂fp(t, r,p)

∂p
= 0, (2.29)

where we introduced the external force F . In the case of an electron propagating
in an electromagnetic field and neglecting other forces with respect to the Lorentz
force, the corresponding equation reads [Pita 81]

∂fe−(t, r,p)

∂t
+ v · ∂fe−(t, r,p)

∂r
+ e [E + v ×B] · ∂fe−(t, r,p)

∂p
= 0. (2.30)

This equation is the well-known Vlasov equation. The according equation for a
positron can be achieved by the replacement of the subscript e− → e+ and e→ |e|.I

IRecall that we included the sign of the charge in the definition of e, i.e., for an electron the last term on
the right hand side of eq. (2.30) implies a negative sing, whereas a positive sign is implied in the case
of a positron.
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As the photon is not a charged particle, it is not affected by the Lorentz force and
the equation for the photon distribution is simplified to

∂fγ(t, r,k)

∂t
+
k

ω
· ∂fγ(t, r,k)

∂r
= 0, (2.31)

where we made use of the common notation k as the wave vector of a photon
instead of p to indicate its momentum. If also collisions of the particles are taken
into account, eq. (2.28) becomes the more general transport equation [Pita 81]

dfp(t, r,p)

dt
= C[fp(t, r,p)], (2.32)

where C[fp(t, r,p)] is the so-called collision integral. The collisional processes in
the system under consideration will be the emission of photons and the creation of
electron-positron pairs. We note here that for the photon emission the transport
equation has the form of a so-called diffusion equation. Introducing the momentum
distribution, e.g., for an electron,

fe−(t,p) =

∫
d3r fe−(t, r,p) (2.33)

the diffusion equation reads [Pita 81]

∂fe−(t,p)

∂t
=

∫
d3p′ [P (p+ p′,p′)fe−(t,p+ p′)− P (p,p′)fe−(t,p)] , (2.34)

where P (p,p′) indicates the probability per unit time for an electron to emit a
photon resulting in the change p→ p′ in the electron momentum. Apparently, the
number of particles in a certain phase space volume is changed via two events. On
the one hand, an electron with initially higher momentum can emit a photon in
such a way that the final electron is in the considered phase space volume. On the
other hand, an electron initially in this phase space volume can leave this volume
due to the emission of a photon. In addition to the distribution function we define
the corresponding entropy [Pita 81], again in the case of an electron,

S =

∫
d3r d3p fe−(t, r,p) ln

[
kB

fe−(t, r,p)

]
, (2.35)

with the Boltzmann constant kB. Considering now the time evolution of the entropy,
we obtain

dS

dt
=

∫
d3r d3p

∂

∂t

{
fe−(t, r,p) ln

[
kB

fe−(t, r,p)

]}

= −
∫

d3r d3p ln [fe−(t, r,p)]
∂fe−(t, r,p)

∂t
.

(2.36)

Applying eq. (2.29) and eq. (2.32), the terms involving derivatives with respect to
r and p can be shown to vanish by employing Gauss’s theorem. This simplifies the
above equation to

dS

dt
= −

∫
d3r d3p ln [fe−(t, r,p)] C[fe−(t, r,p)], (2.37)
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indicating that the evolution of the entropy is exclusively determined by the collision
integral.

So far we did not take into account the fact that electrons, positrons and photons
in general require a description via quantum wave functions. In principle, this
leads to an analogously defined transport equation, where the canonical variables
r and p are operators and the observables are calculated as expectation values
employing a quantum density matrix (see, e.g., [Vask 05]). However, it was pointed
out in [Baie 94] that, e.g., photon emission from a high-energetic charge in the
presence of an external field exhibits two different kinds of quantum effects. The
first type concerns the quantization of the particle’s dynamic variables and their
non commutativity, which can be shown, e.g., in the case of a charged particle in a
magnetic field B, to be of the order of B/(Fcrγ

2), with the relativistic gamma factor
γ = ε/m. Therefore, the motion of the particle becomes classical at relativistic
energies and thus can be described without the use of quantum states. However,
the second type of quantum effect concerns the recoil experienced by the emitting
particle upon the emission of a photon which cannot be neglected at χ . 1, i.e.,
the actual process of photon emission has to be treated in the framework of strong-
field QED. This permits a semi-classical investigation, where the electrons in the
beam and the emitted photons are described by distribution functions in phase
space obeying kinetic equations and the radiation process is characterized by the
quantum emission probability. Analogously, the quantum effects accompanying pair
creation are only taken into account via the pair production probability in the kinetic
equation of the photons.
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3
Kinetic approach (1): Photon emission

In this chapter, the collision of an ultrarelativistic electron beam with an intense
laser pulse is considered and a theoretical model describing the effects of RR on the
dynamics is developed in the so-called nonlinear moderately quantum regime. Start-
ing from the general Vlasov equation including terms corresponding to the incoher-
ent emission of single photons by the electron beam, the simplified one-dimensional
kinetic equations describing the evolution of electrons and photons by means of dis-
tribution functions are derived by employing their kinematic properties within this
regime. Subsequently, this approach is proven analytically and numerically to co-
incide with the results obtained by the LL equation in the parameter region where
quantum effects like photon recoil are known to be negligible. However, while the LL
equation predicts a narrowing of the electron distribution function, the numerical
simulations exhibit the opposite tendency in the case where the neglect of quantum
effects is no longer justified. By expanding the kinetic equation of the electrons for
small quantum corrections, the approximated evolution of a single electron is shown
to be described by a Langevin equation, i.e., the dynamics of the electron is no longer
deterministic as soon as quantum effects become important. In fact, the stochastic
nature of photon emission is demonstrated to induce a broadening mechanism in
the evolution of the electron distribution. Finally, the influence of the laser pulse
shape and duration on the dynamics of electrons and photons is investigated. Parts
of this chapter have been presented in [Neit 13] and [Neit 14].

3.1 Derivation and properties of the kinetic equations for
photon emission

In order to achieve a complete description of RR in the full strong-field QED regime,
the problem arises to determine the full S-matrix including effects as radiative cor-
rections, multiple photon emission as well as subsequent pair creation by simulta-
neously taking into account exactly all interactions with the strong external field.
Since there is no solution at hand to this highly demanding task, it is favorable to
examine a concrete scenario allowing for several restrictions to the full process. Mo-
tivated by the recent developments in the creation of intense laser pulses [Yano 08]
and the production of high-energy electron bunches [Wang 13], the head-on collision
of an ultrarelativistic electron beam with a strong plane-wave field is considered
in the nonlinear moderately quantum regime [Di P 10] (see sec. 2.1.2). On the
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Figure 3.1: Generic choice of the coordinate frame for the collision of the electron bunch
and the laser pulse.

one hand, this implies a large relativistic nonlinearity parameter, ξ � 1, indicating
strongly nonlinear dependency on the laser field amplitude. On the other hand,
the condition χ . 1 ensures that, while nonlinear QED effects become significant,
electron-positron pair creation and higher-order radiative corrections can still be ne-
glected. Within this regime, the effect of RR can be understood as the consecutive
incoherent emission of multiple photons by the beam electrons [Di P 10]. Further, it
was pointed out in [Baie 94] (see sec. 2.2) that photon emission by an ultrarelativistic
charge permits a semi-classical investigation, where the electrons in the beam and
the emitted photons are described by distribution functions in phase space obeying
kinetic equations, and the radiation process is characterized by the quantum emis-
sion probability. Hence, in the nonlinear moderately quantum regime, RR can be
studied by means of a kinetic approach [Baie 94, Khok 04, Soko 10, Elki 11]. An
alternative, microscopic approach has been examined in [Di P 10] leading to equiv-
alent results (see app. E). As for χ . 1 pair creation is negligible, the set of kinetic
equations is further simplified since the distribution function of the positrons is ex-
pected to vanish throughout the whole interaction time and the electron distribution
function is decoupled from the one for the photons.

Turning now to the specific scenario under consideration, as depicted in fig. 3.1,
we assume the plane-wave to propagate along the positive y direction, to be linearly
polarized along the z direction and to have the wave vector kµ0 = (ω0,k0), with
ω0 being the laser central angular frequency. In this case, the electric field can
be written as E(ϕ) = E0f(ϕ)ẑ, where ϕ = ω0(t − y) indicates the laser phase
and we introduced an arbitrary pulse shape function f(ϕ) fulfilling |f(ϕ)|max = 1.
On the other hand, the electrons are assumed to propagate along the negative y
direction with initial four-momentum pµ = (ε,p), with ε =

√
m2 + p2. We start the

derivation of the kinetic equations at the general three-dimensional Vlasov equation
(see, e.g., [Pita 81] and sec. 2.2) for an electron distribution function fe−(t, r,p)
depending on the spacetime variables as well as the momenta of the electrons

dfe−(t, r,p)

dt
=

[
∂

∂t
+

dr

dt
· ∂
∂r

+
dp

dt
· ∂
∂p

]
fe−(t, r,p) = collision terms, (3.1)

where the collision terms indicate the terms corresponding to the occurrence of pho-
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ton emission that are proportional to the emission probabilities per unit time dP/dt.
In the case of a plane-wave electromagnetic field (E(φ),B(φ)), the expression dp/dt
is given by the Lorentz force FL(φ,p) = e[E(φ) + (p/ε)×B(φ)].I This allows us to
rewrite eq. (3.1) as

[
∂

∂t
+
p

ε
· ∂
∂r

+ FL(φ,p) · ∂
∂p

]
fe−(tr,p) =

∫
dk

dP (φ;p⊥ + k⊥ → p⊥, p− + k− → p−)

dtdk
fe−(t, r,p+ k)

− fe−(t, r,p)

∫
dk

dP (φ;p⊥ → p⊥ − k⊥, p− → p− − k−)

dtdk
,

(3.2)

where [dP (φ;p⊥ → p⊥ − k⊥, p− → p− − k−)/dtdk]dk indicates the probability
per unit time that a photon with a momentum ranging between k and k + dk is
emitted by an electron with momentum p. As pointed out in sec. 2.1.2, the ra-
diation formation length l0 = λ0/ξ is much smaller than the central wavelength
if ξ � 1 and in turn the background field can be assumed to be uniform and
constant within a radiation formation length. Hence, the expression dP (φ;p⊥ →
p⊥ − k⊥, p− → p− − k−)/dtdk can be replaced by the corresponding expression
obtained when considering a constant crossed field (E,B), with the substitution
(E,B) → (E(φ),B(φ)) [Ritu 85]. In addition, in case of a plane-wave back-
ground field the notation apparently displays the conservation of the transverse
momentum in the photon emission [Bere 82]. Furthermore, the canonical momenta
p−(φ) and p⊥ + eA(φ) are conserved during the sojourn of the electron in the
laser field [Land 75]. Considering this aspect, it is convenient to perform a change
of variables from the common spacetime coordinates to the light-cone coordinates
φ = t−y, T = (t+y)/2 and r⊥ = (x, z), and the corresponding quantities p− = ε−py
(which will be called the minus momentum in the following), p+ = (ε + py)/2 and
p⊥ = (px, pz), which obey the formulas (see eq. (2.6)-eq. (2.8))

p−(φ) ≡ p0,−, (3.3)

p⊥(φ) = p0,⊥ − eA(φ), (3.4)

p+(φ) =
m2 + p2⊥(φ)

2p0,−
, (3.5)

where we introduced the four-vector potential in Lorentz gauge Aµ(φ) = (0,A(φ)) =

(0,−E0f(φ)ẑ), with f(φ) =
∫ φ
0
dφ′ f(φ′), and p0,⊥ and p0,− indicate the initial trans-

verse and minus momentum, respectively. Thus, we obtain for the expression on the
left-hand side of eq. (3.2)

∂

∂t
+
p

ε
· ∂
∂r

+ FL(φ,p) · ∂
∂p

=
p−
ε

∂

∂φ
+
p+
ε

∂

∂T
+
p⊥
ε
· ∂

∂r⊥

+ eE(φ)

(
p−
ε

∂

∂pz
+
pz
ε

∂

∂py

)
,

(3.6)

with E(φ) = E0f(φ). In the following, we will continue to explicitly write all the
dependencies of the distribution function by fe−(φ, T, r⊥, p−,p⊥). Note that there

IIn order to avoid additional factors of ω0 throughout the derivation, we make use of the phase variable
φ = t− y instead of ϕ, but will return to the latter notation at the end of the derivation.
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3.1 Derivation and properties of the kinetic equations for photon emission

exists a one-to-one relation between the quantity p− =
√
m2 + p2⊥ + p2y − py and

py at a given value p⊥. As mentioned before, we consider the electron bunch to
be ultrarelativistic, and the kinetic equation permits further simplification if the
condition ε∗ � mξ is fulfilled. The quantity ε∗ indicates a typical energy of an
electron in the beam and can be expressed as ε∗ ≈ p∗−/2. In the realistic situation,
for example, of an electron bunch with typical energy ε∗ = 1 GeV colliding head-
on with a laser field of intensity 1022 W/cm2 [Yano 08] with an optical frequency
ω0 = 1.55 eV, the condition ε∗ � mξ = 24 MeV is fairly well fulfilled. As can be
seen from eq. (3.4), this condition ensures that the electron is barely deflected by
the laser field and that the transverse momentum remains negligible in comparison
to p−. Moreover, if the electrons are ultrarelativistic, the electromagnetic radiation
is mainly directed along the instantaneous propagation direction of the electrons
[Ritu 85].

Finally, the energy loss due to photon emission is presumed to be sufficiently small,
in order to grant the validity of the condition ε∗ � mξ for the entire interaction
between the laser pulse and the electron bunch. This implies that the electrons are
not reflected by the pulse at any time, as p∗y ≈ −ε∗ [Di P 09]. For the purpose of
estimation, a sine pulse with NL cycles is considered and we calculate the final value
p∗−,f ≈ 2ε∗f ≈ 2|p∗y,f | employing the classical exact solution of the LL equation [Di
P 08],

p∗−,f =
p∗−

1 + 2
3
αχ∗ξπNL

, (3.7)

and presume that the condition p∗−,f = p∗−/[1 + (2/3)αχ∗ξπNL] � mξ is fulfilled.
Note that the latter condition is also fulfilled for the average momentum in the quan-
tum regime, as the average energy emitted in the quantum case is overestimated by
the classical formulas [Ritu 85]. Under the aforementioned conditions, the elec-
tron distribution function will remain well-peaked in the region of momenta where
|p⊥| � ε, p− ≈ 2ε and p+ = (m2+p2⊥)/2p− � ε during the collision and we can seek
for a solution of the form fe−(φ, T, r⊥, p−,p⊥) = ge−(φ,p⊥)ρe−(φ, T, r⊥, p−), where
the dependency on the transverse momentum was separated. The introduction of
the function ge−(φ,p⊥) allows for a treatment of the phase evolution of a finite trans-
verse momentum. By applying the adopted structure of the electron distribution
function, the left-hand side of eq. (3.6) can be approximated as

∂

∂t
+
p

ε
· ∂
∂r

+ FL(φ,p) · ∂
∂p
≈ p−

ε

[
∂

∂φ
+ eE(φ)

∂

∂pz

]
, (3.8)

where the ratio p−/ε was kept for the moment, anticipating the subsequent deriva-
tion.

Now, as the emission probabilities do not depend on T and on r⊥, we are allowed to
factorize these dependencies and rewrite the distribution function ρe−(φ, T, r⊥, p−) =
fT (T )f⊥(r⊥)ne−(φ, p−) and the functions fT (T ) and f⊥(r⊥) can be assumed to be
well-peaked in the spatial region at the values T = 0 and r⊥ = 0, respectively,
by assigning initial conditions for the electron beam accordingly. Furthermore, as
it was already pointed out, the photons will be emitted mainly in the negative y
direction in case of ultrarelativistic electrons and in turn, the differential probability
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Chapter 3 Kinetic approach (1): Photon emission

[dP (φ;p⊥ → p⊥ − k⊥, p− → p− − k−)/dtdk]dk can be approximated by

dP (φ;p⊥ → p⊥ − k⊥, p− → p− − k−)

dtdk
dk ≈ dP (φ; p− → p− − k−)

dtdky
δ(k⊥)dk

=
dP (φ; p− → p− − k−)

dtdk−
dk−

=
p−
ε

dP (φ; p− → p− − k−)

dφdk−
dk−.

(3.9)

We emphasize here that the electron and photon momenta only appear as p− and k−
in the expression dP (φ; p− → p−−k−)/dφdk− [Ritu 85]. Utilizing the approximated
expressions in eq. (3.8) and in eq. (3.9) derived above, the initial kinetic equation
(3.2) is turned into

[
∂

∂φ
+ eE(φ)

∂

∂pz

]
ge−(φ,p⊥)ne−(φ, p−) =

ge−(φ,p⊥)

[∫ ∞

0

dk−
dP (φ; p− + k− → p−)

dφdk−
ne−(φ, p− + k−)

(3.10)

−ne−(φ, p−)

∫ ∞

0

dk−
dP (φ; p− → p− − k−)

dφdk−

]
.

At this point, the function ge−(φ,p⊥) can be chosen to fulfill the Liouville-like equa-
tion [

∂

∂φ
+ eE(φ)

∂

∂pz

]
ge−(φ,p⊥) = 0. (3.11)

Considering ge−(0,p⊥) to be a function g̃e−(p⊥) well-peaked in the region p⊥ ≈
0, the solution of eq. (3.11) reads ge−(φ,p⊥) = g̃e−(p⊥ + eA(φ)), with A(φ) =

(0, 0,−
∫ φ
0
dφ′E(φ′)) (see also eq. (3.4)), leading to a decoupling of the evolution of

the transverse and the longitudinal momenta. Note that also the initial function
g̃e−(p⊥) = δ(p⊥) is a valid choice in the limiting case. This reduces eq. (3.10) to

∂ne−(φ, p−)

∂φ
=

∫ ∞

0

dk−
dP (φ; p− + k− → p−)

dφdk−
ne−(φ, p− + k−)

− ne−(φ, p−)

∫ ∞

0

dk−
dP (φ; p− → p− − k−)

dφdk−
,

(3.12)

and we stress the fact that there are no terms arising from the Lorentz force, since p−
is a constant of motion in the presence of a plane-wave background field. In fact, this
indicates that without the occurrence of photon emission the electron distribution
function cannot depend on the laser phase but only on p−. By recalling the complete
electron distribution function fe−(t, r,p) = fT (T )f⊥(r⊥)ge−(φ,p⊥)ne−(φ, p−) and
employing a particular well-peaked function ge−(φ,p⊥), e.g., a Gaussian, the electron
distribution function Fe−(t, r) in the configuration space can be approximated as

Fe−(t, r) =

∫
dp fe−(t, r,p)

≈ fT (T )f⊥(r⊥)

∫ ∞

0

dp−
2

ne−(φ, p−),

(3.13)
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where the additional factor 1/2 origins from the change of variable from py to p−.
Note that the function ne−(φ, p−) is presumed to be peaked in the region of p− such
that p− ≈ 2ε. It can be easily derived that the expression

∫∞
0

dp−ne−(φ, p−) is ac-
tually independent of φ by integrating eq. (3.12) with respect to p−. Hence, we can
conclude from eq. (3.13) that the spatial shape of the electron bunch remains un-
changed throughout the collision, whereas the movement of its center is determined
by y ≈ −t and r⊥ ≈ 0.

Before coming to the final form of the kinetic equation for the electrons, we turn
to the full kinetic equation for the photon distribution fγ(t, r,k),

[
∂

∂t
+
k

ω
· ∂
∂r

]
fγ(t, r,k) =

∫
dp

dP (φ;p⊥ → p⊥ − k⊥, p− → p− − k−)

dtdk
fe−(t, r,p).

(3.14)

By following the same course of derivation as in the case of the electron distribution,
we can simplify the kinetic equation and obtain

∂nγ(φ, k−)

∂φ
=

∫ ∞

0

dp−
dP (φ; p− → p− − k−)

dφdk−
ne−(φ, p−), (3.15)

where we defined nγ(φ, k−) analogously to ne−(φ, p−). We will now return to the
original notation ϕ = ω0φ and introduce pi,− = p− + k− as the initial momentum
of the electron. In the last step, we adopt the single-photon emission probability
averaged over the initial electron spin and summed over the final electron spin and
photon polarization per unit phase ϕ and per unit u = k−/(p− − k−) (see [Ritu 85]
and eq. (2.25)),

dPp−
dϕdu

=
α√
3π

m2

ω0p−

1

(1 + u)2

[(
1 + u+

1

1 + u

)

×K 2
3

(
2u

3χ(ϕ, p−)

)
−
∫ ∞

2u
3χ(ϕ,p−)

dxK 1
3
(x)

]
,

(3.16)

where Kν(x) is the modified Bessel function of the second kind of νth order and
χ(ϕ, p−) = (p−/m)|E(ϕ)|/Fcr. This probability has actually been derived for the
case of a constant crossed field but, as mentioned before, can be applied here since
the variation of the field within one radiation formation length is negligible due
to ξ � 1. Together with the identification ω−10 dP (φ; pi,− → pi,− − k−)/dφdk− 7→
dPpi,−/dϕdk− (note that, as pi,− = p− + k−, where p− refers to the final electron,
dPpi,−/dϕdk− = dPpi,−/dϕdp−), the result of our derivation is the set of kinetic
equations (see [Baie 94])

∂ne−(ϕ, p−)

∂ϕ
=

∫ ∞

p−

dpi,− ne−(ϕ, pi,−)
dPpi,−
dϕdp−

− ne−(ϕ, p−)

∫ p−

0

dk−
dPp−

dϕdk−
, (3.17)

∂nγ(ϕ, k−)

∂ϕ
=

∫ ∞

k−

dpi,− ne−(ϕ, pi,−)
dPpi,−
dϕdk−

, (3.18)

with

dPpi,−
dϕdp−

=

∣∣∣∣
du

dp−

∣∣∣∣
dPpi,−
dϕdu

∣∣∣∣
u=(pi,−−p−)/p−

=
pi,−
p2−

dPpi,−
dϕdu

∣∣∣∣
u=(pi,−−p−)/p−

, (3.19)
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dPp−
dϕdk−

=
du

dk−

dPp−
dϕdu

∣∣∣∣
u=k−/(p−−k−)

=
p−

(p− − k−)2
dPp−
dϕdu

∣∣∣∣
u=k−/(p−−k−)

, (3.20)

dPpi,−
dϕdk−

=
du

dk−

dPpi,−
dϕdu

∣∣∣∣
u=k−/(pi,−−k−)

=
pi,−

(pi,− − k−)2
dPpi,−
dϕdu

∣∣∣∣
u=k−/(pi,−−k−)

. (3.21)

Note that equation (3.17) is an integro-differential equation, i.e., it is non-local in the
momentum p−. This fact is deeply related to the quantum nature of the emission of
radiation, which is quantum mechanically described as the emission of photons which
carry energy and momentum. Through this emission process the initial momentum
p0,− of an electron emitting a photon with momentum k− will be coupled to that
with momentum p0,− − k−, where k− spans from 0 to p0,−.

Integrating eq. (3.17) over p− yields after a short calculation

∂

∂ϕ

∫ ∞

0

dp− ne−(ϕ, p−) =
∂Ne−

∂ϕ
= 0, (3.22)

which expresses the conservation of the total number of electrons Ne− . Furthermore,
by multiplying the kinetic equation of the electron and the photon distributions by
p− and k−, respectively, and in turn integrating over all p− and k−, we achieve

∂

∂ϕ

[∫ ∞

0

dp− ne−(ϕ, p−)p− +

∫ ∞

0

dk− nγ(ϕ, k−)k−

]
= 0, (3.23)

implying that the total energy minus the total longitudinal momentum is conserved.
As the total number of electrons is conserved, equation (3.17) must be expressible
by means of a continuity equation

∂ne−(ϕ, p−)

∂ϕ
+
∂j(ϕ, p−, ne−(ϕ, p−))

∂p−
= 0, (3.24)

where j(ϕ, p−, ne−(ϕ, p−)) indicates the current density that in principle can depend
on phase and momentum as well as on the distribution function itself. In fact, after
some algebra we find

j(ϕ, p−, ne−(ϕ, p−)) =− αm2

√
3πω0

∫ ∞

p−

dp′− ne−(ϕ, p′−)

{∫ p−

0

dp′′−
p′2−

×
[(

p′−
p′′−

+
p′′−
p′−

)
K 2

3

(
Y (ϕ, p′−, p

′′
−)
)
−
∫ ∞

Y (ϕ,p′−,p
′′
−)

dxK 1
3
(x)

]}
,

(3.25)

with

Y (ϕ, p′−, p
′′
−) =

2mFcr

3p′−|E(ϕ)|

(
p′−
p′′−
− 1

)
. (3.26)

Once more the structure of the current density in eq. (3.25) emphasizes the non-
locality in the electron momentum, since it is not possible to separate the distribution
function from the current density.
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energy distribution

electron bunch
laser pulse

radiation
reaction

quantum
result
(χ∗ . 1)

classical
result
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Figure 3.2: Schematic depiction of the effect of RR in the classical and the nonlinear
moderately quantum regime.

3.2 Comparison of the classical and the nonlinear moderately
quantum regime

After the derivation of the kinetic equations, we now turn to the predictions they
make about the phase evolution of the electron and photon distributions espe-
cially for the nonlinear moderately quantum regime. The numerical evaluation of
eq. (3.17), however, immediately leads to a contradiction to the results obtained in
classical electrodynamics by employing the LL equation. The different impact of
including RR in the classical and the quantum regime is schematically depicted in
fig. 3.2. It was shown that in the framework of classical electrodynamics the energy
distribution of particles interacting with strong laser fields is narrowed by the effects
of RR [Zhid 02,Naum 09,Chen 11,Tamb 10,Tamb 11]. On the other hand, the nu-
merical investigation of eq. (3.17) reveals an opposite effect, namely an increase in
the energy width of the electron beam. In order to understand this striking differ-
ence in the consequences of RR in both regimes, we investigate the classical limit of
eq. (3.17) for χ(ϕ, p−)� 1 (the derivation of the analytical expansion of eq. (3.17)
can be found in app. B). To this purpose, it is favorable to perform the changes
of variables v = (pi,− − p−)/p−χ(ϕ, p−) and v = k−/(p− − k−)χ(ϕ, p−)) in the first
and second integral in eq. (3.17), respectively. Expanding the resulting equation in
χ(ϕ, p−) up to the order χ3(ϕ, p−) yields the Fokker-Planck-like equation [Gard 09]
(see also [Pita 81,Soko 10])

∂ne−(ϕ, p−)

∂ϕ
= − ∂

∂p−
[A(ϕ, p−)ne−(ϕ, p−)] +

1

2

∂2

∂p2−
[B(ϕ, p−)ne−(ϕ, p−)] (3.27)
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with a “drift” coefficient A(ϕ, p−) and a “diffusion” coefficient B(ϕ, p−) given by

A(ϕ, p−) = −2αm2

3ω0

χ2(ϕ, p−)

[
1− 55

√
3

16
χ(ϕ, p−)

]
(3.28)

B(ϕ, p−) =
αm2

3ω0

55

8
√

3
p−χ

3(ϕ, p−), (3.29)

respectively (see also sec. C.2). Note that this expansion transformed eq. (3.17)
from an integro-differential equation into a partial differential equation, i.e., for small
quantum photon-recoil effects the evolution of the electron distribution function with
momentum p− is essentially determined by values in the vicinity of p−, rendering
its dynamics local. Finally, we mention that in an expansion up to higher orders in
χ(ϕ, p−), terms proportional to higher-order derivatives of ne−(ϕ, p−) with respect
to p− would arise.

3.2.1 Classical dynamics

At first, we only consider the terms proportional to χ2(ϕ, p−) in eq. (3.27), resulting
in a Liouville-type equation:

∂ne−(ϕ, p−)

∂ϕ
= − ∂

∂p−

(
ne−(ϕ, p−)

dp
(c)
−

dϕ

)
(3.30)

with
dp

(c)
−

dϕ
= −Icl(ϕ, p−)

ω0

, (3.31)

where Icl(ϕ, p−) = (2/3)αm2χ2(ϕ, p−) indicates the classical radiation intensity
[Land 75]. Employing the LL equation, one obtains exactly the classical single-
particle equation for p− in eq. (3.31) [Di P 08] (see also [Elki 11]). This implies
that the classical dynamics of the electron distribution including RR is character-
ized precisely by the terms proportional to χ2(ϕ, p−) in eq. (3.27). In addition,
eq. (3.30) being of the Liouville type indicates that the evolution of the electron
distribution is deterministic in classical electrodynamics, as it has to be [Gard 09].
Moreover, the single-particle equation in eq. (3.31) allows for an analytical solution

for p
(c)
− (ϕ, p0,−) [Di P 08],

p
(c)
− (ϕ, p0,−) =

p0,−
h(c)(ϕ, p0,−)

(3.32)

with

h(c)(ϕ, p0,−) = 1 +
2

3
α
p0,−
ω0

E2
0

F 2
cr

∫ ϕ

0

dϕ′f 2(ϕ′), (3.33)

for an electron with initial momentum pµ(0) = pµ0 = (ε0,p0) (p0,− = ε0− p0,y) at the

initial phase ϕi = 0. As 0 < ∂p
(c)
− (ϕ, p0,−)/∂p0,− < 1 for ϕ > 0, we can immediately

observe that the difference ∆p
(c)
− (ϕ) between the momenta of two electrons decreases

for increasing values of ϕ, which is due to the nonlinearity of Icl in the parameter

χ(ϕ, p−). Explicitly, the difference between the two momenta p
(a)
− and p

(b)
− with

initial values p
(a)
0,− and p

(b)
0,−, respectively, evolves like (w.l.o.g. p

(a)
− > p

(b)
− )

∆cp−(ϕ) = p
(a)
− (ϕ)− p(b)− (ϕ) =

p
(a)
0,− − p(b)0,−

h(c)
(
ϕ, p

(a)
0,−

)
h(c)

(
ϕ, p

(b)
0,−

) ≤ p
(a)
0,− − p(b)0,−. (3.34)
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Since we have the analytical solution (refLLansol) at hand, the exact analytical
solution of eq. (3.30) can be derived by means of the method of characteristics.
Considering as initial distribution ne−(0, p−), e.g., a Gaussian

ne−(0, p−) =
Ne−

√
π
2
σp−

[
1 + erf

(
p∗−√
2σp−

)] exp

[
−(p− − p∗−)2

2σ2
p−

]
, (3.35)

where Ne− is again the total number of electrons, p∗− is the average value of p− and
σp− is the standard deviationII, the solution of eq. (3.30) can be written as

ne−(ϕ, p−) =
Ne−

√
π
2
σp−

[
1 + erf

(
p∗−√
2σp−

)]
g2(ϕ, p−)

exp

{
− 1

2σ2
p−

[
p−

g(ϕ, p−)
− p∗−

]2}
,

(3.36)
where we introduced the function

g(ϕ, p−) = 1− 2

3
α
p−
ω0

E2
0

F 2
cr

∫ ϕ

0

dφf 2(φ). (3.37)

Note that g(ϕ, p−) = h(c)(ϕ,−p−). As p0,− is positive for finite values of p0,y
and p0,− → 0 only at py → +∞ and as p0,− = p

(c)
− (ϕ, p0,−)g(ϕ, p

(c)
− (ϕ, p0,−)),

the function g(ϕ, p−) has to be strictly positive for all values of ϕ. This im-
plies that at each ϕ there is a maximum value p−,max = p−,max(ϕ) for p− fixed
by the equation g(ϕ, p−,max) = 0. The appearance of g(ϕ, p−) in the exponent
of eq. (3.36) indicates again that classical RR effects tend to decrease the energy
width of the electron distribution, which is in accordance with results obtained
in previous studies of the production of particle beams via laser-plasma interac-
tion [Zhid 02,Naum 09,Chen 11,Tamb 10,Tamb 11]. In addition, in case of σp− � p∗−
in eq. (3.36), it can be shown that the distribution ne−(ϕ, p−) is approximately a

Gaussian centered at p
(c)
− (ϕ, p∗−) and has approximately an effective width of

σ(c)
p−(ϕ, p∗−) ≈ σp−

h2(ϕ, p∗−)
, (3.38)

which decreases with increasing ϕ.
Finally, we also want to test the numerical coincidence of eq. (3.17) and eq. (3.30)

in a situation where quantum effects are negligible but RR effects are large. There-
fore, a 1600-cycle optical laser pulse (corresponding to a final phase of ϕf = 3200π),
i.e., f(ϕ) = f1(ϕ) = sin(ϕ) sin2(ϕ/3200) (corresponding to a pulse duration τ of
about 4 ps) with peak intensity I0,1 = 4.3 × 1020 W/cm2 and central angular fre-
quency ω0 = 1.55 eV (ξ1 = 10) is considered to collide with an initially Gaus-
sian electron beam centered at p∗− = 84 MeV (ε∗ ≈ p∗−/2 = 42 MeV) such that
χ∗1 = (p∗−/m)(E0/Fcr) ≈ 5 × 10−3 with width σp− = 8.4 MeV and Ne− = 1000 the
total number of electrons. The results for the initial and final distributions are shown
in fig. 3.3. Corroborating the discussion above, the final distribution ne−(ϕf , p−),
obtained by numerically solving eq. (3.17) (solid, red line), and the classical an-
alytical solution nLL

e− (ϕf , p−) (see eq. (3.36)) are very similar and both display a

IIThis is strictly only true if the variable p− spans from −∞ to +∞. However, the momentum p− allows
only for positive values, and in the case where p∗− � σp− (which will be fulfilled in all our numerical
examples), p∗− and σp− are good approximations of the average value and of the standard deviation of
the distribution, respectively.
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Figure 3.3: Comparison of the initial electron distribution (dotted, blue line) and the final
electron distribution according to eq. (3.17) (solid, red line) and to eq. (3.36)
(dashed, green line), as functions of p−/2 ≈ ε. The laser and the electron
distribution parameters are given in the text [Neit 13].

decrease of the width from 8.4 MeV to 4.7 MeV. Note that for an average energy
of ε∗f = 30 MeV of the final distribution, the condition ε∗f � mξ1 = 5 MeV ensuring
the validity of our approach is fairly well-fulfilled.

3.2.2 Replacement of the classical intensity Icl by the quantum intensity Iq

An examination of the structure of eq. (3.30) and eq. (3.31) seems to suggest that
the quantum description of RR effects would be incorporated in the evolution of the
electron distribution function by the replacement of the classical radiation intensity
Icl(ϕ, p−) by the corresponding quantum one Iq(ϕ, p−) (see eq. (2.26)). And, in
fact, we observe that the leading quantum correction proportional to χ3(ϕ, p−) in
the drift coefficient A(ϕ, p−) (see eq. (3.28)) is exactly the term one achieves by
the substitution Icl(ϕ, p−) → Iq(ϕ, p−) [Baie 94, Ritu 85]. The replacement of the
intensity and the subsequent modification of the drift coefficient, however, does
not alter the Liouville-like structure of the approximated kinetic equation, whereas
the momentum change per unit phase is “effectively” changed. In particular, the
single-particle equation corresponding to the modified kinetic equation is still a
deterministic differential equation. As we find the leading quantum correction to
be negative, it is expectable that the classically predicted narrowing of the energy
width is reduced or even overcome. In order to investigate whether the replacement
of the intensities would lead to a broadening in the energy width, we return to the

evolution of the difference between two momenta p
(a)
− and p

(b)
− with initial values p

(a)
0,−

and p
(b)
0,−, respectively (w.l.o.g. p

(a)
− > p

(b)
− ). Taking into account the full expression
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3.2 Comparison of the classical and the nonlinear moderately quantum regime

for the quantum intensity given in eq. (2.26), one obtains

d∆qp−(ϕ)

dϕ
=

dp
(a)
− (ϕ)

dϕ
− dp

(b)
− (ϕ)

dϕ
= − 1

ω0

[
Iq

(
ϕ, p

(a)
−

)
− Iq

(
ϕ, p

(b)
−

)]

= − αm2

3
√

3πω0

∫ ∞

0

du
4u3 + 5u2 + 4u

(1 + u)4

[
K 2

3

(
2u

3χ
(
ϕ, p

(a)
−
)
)
−K 2

3

(
2u

3χ
(
ϕ, p

(b)
−
)
)]

≤ 0,
(3.39)

where we made use of the fact that the modified Bessel function of the second kind
is strictly decreasing. Thus, although the substitution Icl(ϕ, p−)→ Iq(ϕ, p−) might
extenuate the reduction of the energy width, the incorporation of the quantum
intensity would still predict a narrowing of the energy distribution. This can also
be understood intuitively, since quantum mechanically, electrons with higher energy
will on average emit more radiation. Therefore, we can conclude that the broadening
of the electron distribution must be due to another reason than the modification of
the drift coefficient A(ϕ, p−) and we will see in the next section that it is caused by
the appearance of the diffusion term B(ϕ, p−).

3.2.3 Stochastic nature of photon emission

Recalling the approximated Fokker-Planck-like equation (3.27), we identify another
quantum correction that is of the same order as the one in the function A(ϕ, p−).
This second quantum correction manifests itself in the occurrence of the diffusion co-
efficient B(ϕ, p−), which is also multiplied by a second -order derivative of ne−(ϕ, p−)
with respect to p−. In turn, the Liouville-like structure of the classical kinetic equa-
tion (3.30) is substantially altered and this structural change is closely related to the
stochastic nature of the quantum emission of photons. In accordance with the theory
of stochastic differential equations, the Fokker-Planck-like equation (3.27) describ-
ing the evolution of the electron distribution can be connected with a single-particle
stochastic equation

dp− = A(ϕ, p−)dϕ+
√
B(ϕ, p−)dW, (3.40)

where dW represents an infinitesimal stochastic function [Gard 09] (see app. C),
i.e., the trajectory of a single beam electron is no longer deterministic as in the
framework of classical electrodynamics. In fact, the diffusion term in eq. (3.27)
tends to increase in the energy width of the distribution [Gard 09] (see also sec. C.2)
and, as we will see in our numerical simulations below, it is causing the broadening
of the electron distribution function. In app. D, an approximated solution of the
Fokker-Planck-like equation (3.27) is derived assuming that a Gaussian distribution
centered at p∗− and with width σp− � p∗− at ϕi = 0 will keep its Gaussian shape and
be well-peaked throughout the whole interaction. The movement of the center of
the Gaussian can then be approximately described by (see eq. (D.9) and eq. (D.10))

p
(q)
− (ϕ, p∗−) ≈ p

(c)
− (ϕ, p∗−)[1 + δh(ϕ, p∗−)], (3.41)

where we introduced the correction to h(c)(ϕ, p∗−) introduced above (see eq. (D.10))

δh(c)(ϕ, p∗−) =
55
√

3

16h(c)(ϕ, p∗−)

∫ ϕ

0

dϕ′χ(ϕ′, p∗−)
∂

∂ϕ′
{

ln
[
h(c)(ϕ′, p∗−)

]}
. (3.42)
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Chapter 3 Kinetic approach (1): Photon emission

Note that the expression δh(c)(ϕ, p∗−) originates from the quantum correction to the
drift function A(ϕ, p−) and that it is non-negative for all phases ϕ > 0. Furthermore,
the evolution of the width of the distribution is given by

σ(q)
p− (ϕ, p∗−) ≈ σ(c)

p−(ϕ, p∗−)

[
1 + 2δh(ϕ, p∗−) +

1

2σ2
p−

∫ ϕ

0

dϕ′B(ϕ′, p∗−)

]
, (3.43)

making apparent that both quantum corrections discussed above tend to increase
the width of the distribution function. Moreover, we note here that the broadening
caused by the diffusion term is roughly ζ = p∗ 2− /σ

2
p � 1 times larger than δh(ϕ, p∗−)

and thus dominates the broadening in the considered parameter regime. In addition,
we emphasize that the approximated solution based on the Fokker-Planck equation is
only justified at αξζΦLχ

∗ 2 � 1, with ΦL being the total laser phase. Finally, we turn
to a technical aspect of the use of the Fokker-Planck equation. Considering, e.g., an
initial δ-like momentum distribution and a vanishing drift term, the Fokker-Planck
equation predicts the occurrence of artificial particles with momentum larger than
the initial one. This clearly unphysical feature implies that a completely consistent
treatment of RR demands the evaluation of the full equation (3.17), which will be
achieved numerically in the remainder of this thesis .
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Figure 3.4: Phase evolution of the electron distribution as a function of p−/2 ≈ ε for
the shape function f2(ϕ) according to eq. (3.17) (part a)), to eq. (3.36)
(part b)) and to eq. (3.30) with the replacement Icl(ϕ, p−) → Iq(ϕ, p−) (part
c)) [Neit 13].

In order to illustrate the effects discussed above and to show that they can in
principle be experimentally verified with present-day technology, we consider a 10-
cycle (ϕf = 20π), i.e., f(ϕ) = f2(ϕ) = sin(ϕ) sin2(ϕ/20) (τ ≈ 27 fs), optical
laser pulse with peak intensity I0,2 = 2 × 1022 W/cm2 (ξ2 = 68) [Yano 08] and
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3.2 Comparison of the classical and the nonlinear moderately quantum regime

ω0 = 1.55 eV to collide with an initial Gaussian electron distribution with p∗− =
2 GeV (ε∗ ≈ 1 GeV), such that χ∗2 = 0.8, σp− = 0.2 GeV, and a total number
of 1000 electrons. Electron beams of such high energies are presently not only
available in conventional accelerators but also by employing plasma-based electron
accelerators [Leem 06,Wang 13], rendering an all-optical setup feasible in principle.
The results of our numerical simulations are shown in fig. 3.4.

In agreement with our analysis above, the full quantum calculations based on
eq. (3.17) displayed in fig. 3.4a) predicts a broadening of the electron distribu-
tion. On the other hand, a strong narrowing of the distribution is predicted in
classical electrodynamics by employing the analytical solution in eq. (3.36) (see
fig. 3.4b)). Moreover, in accordance with our findings in sec. 3.2.2 even the sub-
stitution Icl(ϕ, p−) → Iq(ϕ, p−) would still lead to a narrowing of the distribution
function (see fig. 3.4c)). Apparently these numerical results support the idea that
the difference in the evolution of the electron beam in the classical and the nonlinear
moderately quantum regime is due to the increasing importance of the stochasticity
of photon emission in the quantum case. In addition, we mention that the condi-
tion ensuring the validity of our kinetic approach is fairly well-fulfilled, even in the
most unfavorable classical treatment where the average energy of the final electron
distribution is ε∗f = 173 MeV corresponding to ε∗f � mξ2 = 35 MeV.

Finally, we observe that the broadening of the electron momentum distribution
caused by the inclusion of RR effects can also be interpreted in terms of the entropy
of the distribution itself. Hence, we define the entropy (see sec. 2.2)

S(ϕ) := −
∫ ∞

0

dp− ne−(ϕ, p−) ln

[
ne−(ϕ, p−)

n0

]
(3.44)

corresponding to the electron distribution, where we set the Boltzmann constant
equal to unity and, in order to make the argument of the logarithm dimensionless,
introduced the physically ineffective constant n0, which can be chosen, for example,
such that S(0) = 0 at initial phase ϕi. This definition implies the phase evolution
of the entropy

dS(ϕ)

dϕ
= −

∫ ∞

0

dp−
∂ne−(ϕ, p−)

∂ϕ
ln

[
ne−(ϕ, p−)

n0

]
+ boundary terms, (3.45)

where the boundary terms can be assumed to vanish by virtue of physical considera-
tions that the electron distribution as well as its derivative with respect to p− vanish
at the values p− → 0 and p− →∞. Employing this definition and the approximated
kinetic equation in eq. (3.27) results in

dS(ϕ)

dϕ
= −4αm2

3ω0

∫ ∞

0

dp−
p−

χ2(ϕ, p−)ne−(ϕ, p−)

{
1− 55

√
3

32
χ(ϕ, p−)

×
[

1 +
1

6

p2−
n2
e−(ϕ, p−)

(
∂ne−(ϕ, p−)

∂p−

)2
]}

.

(3.46)

This formula once more displays that the classical deterministic evolution of the
electrons imply a “cooling” of the electron bunch, whereas the terms corresponding
to quantum corrections induce a broadening of the distribution function.
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Chapter 3 Kinetic approach (1): Photon emission

3.3 Pulse-shape effects

Motivated by the fact that the final classical electron distribution ne−(ϕf , p−) given
by eq. (3.36) depends only on the total fluence

Φ =
E2

0

ω0

∫ ϕf

0

dϕf 2(ϕ), (3.47)

we investigate in this section the influence of the laser pulse form f(ϕ) on the electron
and photon distributions at a given pulse fluence that can be modified in pulse shape
and pulse duration via the various available pulse shaping techniques for laser pulses
(see, e.g., [Wint 08] for a discussion of pulse shaping techniques in the context of
High Harmonic Generation). Therefore, we solve the kinetic equations (3.17)-(3.18)
numerically and consider a central angular frequency of the laser field corresponding
to the laser photon energy ω0 = 1.55 eV in the entire section.

3.3.1 Influence of the laser pulse shape

In the first numerical examples, we study the influence of two different shapes of the
laser pulse at a given pulse fluence and pulse duration. The initial electron beam
is assumed to be the Gaussian beam in eq. (3.35) with Ne− = 1000, p∗− = 1.4 GeV
corresponding to an average energy of ε∗ ≈ 700 MeV, and with σp− = 0.14 GeV.
Further, we choose two pulses of 20 cycles (final phase ϕf = 40π), the first one
described by the function f3(ϕ) = sin(ϕ) sin2(ϕ/40), with a peak intensity of I0,3 =
1022 W/cm2, and the second one by the function

f4(ϕ) =





sin(ϕ) sin2
(
ϕ
4

)
if ϕ ∈ [0, 2π]

sin(ϕ) if ϕ ∈ [2π, 38π]

sin(ϕ) sin2
(
ϕ−36π

4

)
if ϕ ∈ [38π, 40π],

(3.48)

corresponding to a pulse duration of 54 fs for both pulses. In order to achieve the
same fluence Φ = 1.3× 109 J/cm2 for both pulses, the peak intensity of the second
pulse is reduced to I0,4 = 4 × 1021 W/cm2. The main difference between the two
shape functions is that, while in the case of the first pulse the intensity increases and
decreases smoothly over the entire pulse, the intensity is increased and decreased
over just on cycle for the second pulse. The considered scenario yields the relativistic
and the quantum nonlinearity parameters ξ3 = 48 and χ∗3 = 0.40 for the pulse shape
f3(ϕ), and ξ4 = 31 and χ∗4 = 0.25 for the pulse shape f4(ϕ). As in both situations it is
ξ � 1, we are allowed to apply the quasi-static approximation and we notice that we
are slightly below the so-called quantum radiation dominated regime characterized
by the conditions RQ = αξ ∼ 1 and χ∗ & 1 [Di P 10] for the given parameters (see
sec. 2.1.2).

In fig. 3.5 the phase evolution of the electron distributions ne−(ϕ, p−) and the
photon spectra nγ(ϕ, k−)k− is shown for the pulse shape f3(ϕ) and in fig. 3.6 for the
pulse shape f4(ϕ). fig. 3.5b) displays that for the pulse shape f3(ϕ), in the beginning
less energy is emitted by the electrons and the main part of the energy is emitted
at the peak of the pulse. On the contrary, in the case of the pulse shape f4(ϕ) (see
fig. 3.6b)), the emission starts almost immediately after arrival of the pulse, which
is due to the vast increase of the intensity to the maximum value over just one
cycle. The same characteristic pattern can also be recognized in the evolution of the
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Figure 3.5: Phase evolution of the electron distribution (part a)) as a function of p−/2 ≈ ε
and the photon spectrum (part b)) as a function of k−/2 ≈ ω for the shape
function f3(ϕ) [Neit 14].
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Figure 3.6: Phase evolution of the electron distribution (part a)) as a function of p−/2 ≈ ε
and the photon spectrum (part b)) as a function of k−/2 ≈ ω for the shape
function f4(ϕ) [Neit 14].

electron distributions in fig. 3.5a) and fig. 3.6a). Further, in the case of the pulse
shape f4(ϕ), we can identify a photon yield exceeding the one for the pulse shape
f3(ϕ) (see also the final photon spectra in fig. 3.7b)) caused by the longer interaction
time at a higher intensity, where the photon emission probability is enhanced.

Also, since the emission probability increases at higher intensities (see also the
final photon spectra in fig. 3.7b)), the photon yield for the pulse shape f4(ϕ) exceeds
the photon yield for the pulse shape f3(ϕ) due to the longer interaction time at a
higher intensity. In turn, in the collision with the laser pulse with the shape function
f4(ϕ), the electron bunch loses more energy. As already pointed out, the classical
analytical solution in eq. (3.36) predicts the same final distribution function for
both shape functions, i.e., the differences between the two final electron distributions
(see fig. 3.7a)) are caused by the quantum effects in the interaction. As for both
pulse shapes f3(ϕ) and f4(ϕ) the typical quantum nonlinearity parameters are not
significantly smaller than unity (χ∗3 = 0.40 and χ∗4 = 0.25), a difference between the
final distribution functions was expected. Although this difference is a signature
of quantum RR, we note that the effect of the distribution function broadening
discussed in sec. 3.2.3 is more prominent. Finally, anticipating a presently feasible
total number of Ne− = 6×108 electrons (corresponding to a total charge of Q = 100
pC) [Wang 13], we can estimate the number of emitted photons Nγ. This results
in Nγ = 9.5 × 109 and Nγ = 1.1 × 1010 for the shape functions f3(ϕ) and f4(ϕ),
respectively.
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Figure 3.7: Comparison of the final electron distributions (part a)) as functions of p−/2 ≈ ε
and photon spectra (part b)) as functions of k−/2 ≈ ω for the shape functions
f3(ϕ) (solid, red line) and f4(ϕ) (dashed, green line) [Neit 14].
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Figure 3.8: Phase evolution of the electron distribution (part a)) as a function of p−/2 ≈ ε
and the photon spectrum (part b)) as a function of k−/2 ≈ ω for the shape
function f5(ϕ) [Neit 14].

3.3.2 Influence of the laser pulse duration

In the following paragraph, we now compare the impact of two different pulse
durations for pulses with the same pulse shape at a given fluence. Keeping the
sin2-pulse shape, we consider a two-cycle pulse (ϕf = 4π), i.e., f(ϕ) = f5(ϕ) =
sin(ϕ) sin2(ϕ/4), with peak intensity I0,5 = 4 × 1022 W/cm2 and a 40-cycle pulse
(ϕf = 80π), i.e., f(ϕ) = f6(ϕ) = sin(ϕ) sin2(ϕ/80), with peak intensity I0,6 =
2 × 1021 W/cm2, corresponding to pulse durations of 5 fs and 108 fs, respectively.
The given parameters yield a fluence Φ that is equal to 5 × 108 J/cm2. The initial
Gaussian electron beam is centered around p∗− = 1.6 GeV, corresponding to an av-
erage energy of ε∗ ≈ 800 MeV, and it has a standard deviation of σp− = 0.16 GeV.
The quantum nonlinearity parameter χ∗ for such an electron beam is about unity for
the shorter pulse, whereas for the longer pulse, the relativistic parameter is ξ5 = 97
such that RQ ≈ 0.7, i.e., the process is considered to occur in the quantum radiation
dominated regime (see sec. 2.1.2). In fig. 3.8 and fig. 3.9 the numerical results are
shown for the pulse shape functions f5(ϕ) and f6(ϕ), respectively.

In comparison with the previous examples we identify, a completely different phase
evolution of the electron distribution in case of the two-cycle pulse. In fig. 3.8a),
we can observe that the electron distribution substantially spreads out as soon as
the laser pulse intensity reaches its maximum and thereby loses its Gaussian shape.
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Figure 3.9: Phase evolution of the electron distribution (part a)) as a function of p−/2 ≈ ε
and the photon spectrum (part b)) as a function of k−/2 ≈ ω for the shape
function f6(ϕ) [Neit 14].
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Figure 3.10: Comparison of the final electron distributions (part a)) as functions of
p−/2 ≈ ε and photon spectra (part b)) as functions of k−/2 ≈ ω for the shape
functions f5(ϕ) (solid, red line) and f6(ϕ) (dashed, green line) [Neit 14].

On the other hand, for the longer pulse described by the shape function f6(ϕ), the
electron distribution changes rather smoothly (see fig. 3.9a)) and the shape of the
electron distribution remains approximately Gaussian. Even in the case of the shape
function f6(ϕ), where χ∗6 ≈ 0.2 (ξ6 = 22), the electron distributions appear to be
very sensitive to quantum effects, corroborating the fact that the stochastic nature
of the photon emission cannot be neglected in the nonlinear moderately quantum
regime. As analyzed in sec. 3.2.3, the stochasticity of the photon emission process
induces a drastic broadening as soon as quantum effects become important, whereas
the classical analysis employing the LL equation predicts a strong narrowing of the
electron distributions when taking into account RR effects [Neit 13]. As before, we
consider the final electron distribution and photon spectrum in more detail, as they
can be more relevant from an experimental point of view (see fig. 3.10).

Since the fluence of the laser field is the same for both pulse shapes, the classical
solution (3.36) would again predict the same final electron distributions. This once
more allows to conclude that, as in the previous example, the differences between
the two final electron distributions in fig. 3.10a) arise due to quantum effects. We
further mention that due to the longer interaction, although at lower laser intensity,
the photon spectrum for the 40-cycle pulse has its maximum at lower energies and
its photon yield is much higher than for the two-cycle pulse. Anticipating again a
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nowadays feasible total number of Ne− = 6× 108 electrons (corresponding to a total
charge of Q = 100 pC) [Wang 13], we estimate the number of emitted photons Nγ

for both pulses by integrating over the obtained photon distribution function. In
the case of the shape function f5(ϕ), this yields Nγ = 1.8 × 109 and for the shape
function f6(ϕ), we obtain Nγ = 8.5× 109.

Finally, we point out that for the two-cycle pulse, where quantum effects are more
significant, the photon spectrum is peaked at roughly k∗− ≈ 0.2 GeV. Recalling
that the probability of pair creation contains a suppressing factor of approximately
η(k∗−) = exp(−8/3κ∗), with κ∗ = k∗−χ

∗/p∗− (see [Ritu 85]), we are able to conclude
that for the peak of the photon spectrum, η(k∗−) ∼ 10−12 and in turn that pair
production is negligible, as it was initially presumed. Furthermore, we have also
proven that numerical simulations including pair production (see ch. 4) yield the
same final result.
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4
Kinetic approach (2): Pair production

In this chapter, the kinetic approach derived and studied in the previous chapter
is extended in such a way that the possible creation of electron-positron pairs is
included in the kinetic equations describing the dynamics of the collision of the
electron beam with the laser pulse (see, e.g., [Soko 10, Elki 11, Neru 11] for similar
studies). After identifying the process dominating the production of pairs in the
given parameter regime, we amend the corresponding pair production probabilities
in the kinetic equations for photons and electrons. In addition, the kinetic equation
for positrons is constituted analogously to the one for the electrons. The obtained
fully coupled set of equations is then solved numerically and the interplay of the
distribution functions is examined by the artificial neglect of some interdependencies.
Finally, following the investigations of sec. 3.3, the influences of the laser pulse
duration on the evolution of the distribution functions are studied at a given fluence
of the laser field and different initial electron beam energies. Parts of this chapter
have been presented in [Neit 14].

4.1 Derivation of the kinetic equations including pair creation

Considering the collision of highly-energetic electron bunches with ultra-strong laser
fields as discussed in ch. 3 at even higher initial electron energies and field inten-
sities invalidates the assumption that the production of electron-positron pairs can
be neglected in the derivation of the kinetic equations. Although the other condi-
tions required for the validity of the kinetic approach are not altered by an inclusion
of pair creation, two major changes must be made to achieve an appropriate de-
scription of the interactions of the electrons with the laser field. Evidently, the
distribution function describing the positrons can no longer be assumed to vanish
identically. However, the kinetic equation for the positrons can be constructed anal-
ogously to the one corresponding to the electrons, since the probability of photon
emission is the same for both species. Secondly, the collision terms occurring in
eq. (3.1) and eq. (3.14) must not only take into account the expressions related to
the process of photon emission, but must also include the probabilities for the cre-
ation of pairs. These electron-positron pairs are produced via the so-called trident
process (see sec. 2.1.2) which describes the emission of a photon by an electron and
the subsequent decay of the emitted photon into a pair of charged particles. The
trident process itself can occur via two physical channels. In the first case, the
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emitted photon is virtual and thereby the initial electron is considered to directly
produce the electron-positron pair. In the second scenario, the emitted photon is
real, which divides the trident process into two separate processes. As it was shown
in [Hu 10, Ilde 11], the dominant process of pair creation in an intense laser plane-
wave field (ξ � 1) is the separable subsequent process. In fact, this allows for an
employment of the probability of laser-assisted pair production by a photon, where
we again average all the probabilities over the initial photon polarization and sum
over the final electron and positron spin. The probability per unit phase ϕ and per
unit p− that a pair with particles’ momenta p− and k−−p− is produced by a photon
with momentum k− is given by (see [Ritu 85])

dPk−
dϕdp−

=
α√
3π

m2

ω0k2−

[
k2−

p−(k− − p−)
K 2

3
(κ(ϕ, k−, p−))−

∫ ∞

κ(ϕ,k−,p−)

dxK 5
3
(x)

]
,

(4.1)
where we introduced κ(ϕ, k−, p−) = 2k2−/[3p−(k− − p−)κ(ϕ, k−)], with κ(ϕ, k−) =
(k−/m)|E(ϕ)|/Fcr. Introducing now the distribution function ne+(ϕ, p−) for the
created positrons and applying the pair creation probability yields the set of kinetic
equations (see [Baie 94])

∂ne−(ϕ, p−)

∂ϕ
=

∫ ∞

p−

dpi,− ne−(ϕ, pi,−)
dPpi,−
dϕdp−

− ne−(ϕ, p−)

∫ p−

0

dk−
dPp−

dϕdk−

+

∫ ∞

p−

dk− nγ(ϕ, k−)
dPk−

dϕdp−
, (4.2)

∂ne+(ϕ, p−)

∂ϕ
=

∫ ∞

p−

dpi,− ne+(ϕ, pi,−)
dPpi,−
dϕdp−

− ne+(ϕ, p−)

∫ p−

0

dk−
dPp−

dϕdk−

+

∫ ∞

p−

dk− nγ(ϕ, k−)
dPk−

dϕdp−
, (4.3)

∂nγ(ϕ, k−)

∂ϕ
=

∫ ∞

k−

dpi,− [ne−(ϕ, pi,−) + ne+(ϕ, pi,−)]
dPpi,−
dϕdk−

− nγ(ϕ, k−)

∫ k−

0

dp−
dPk−

dϕdp−
. (4.4)

At first we observe that the evolution of the electron distribution is no longer de-
coupled from the photon distribution and also the positron distribution function is
coupled to the evolution of the photons. Even though the equations for the charged
particles are not coupled directly, they can in principle be affected by each other
through the linking equation of the photons, i.e., we obtain a fully coupled system
of integro-differential equations. Further, we note that although the total number of
particles is no longer conserved, the difference of eq. (4.2) and eq. (4.3) is conserved,
which indicates the conservation of the total charge

∂

∂ϕ

[∫ ∞

0

dp− ne−(ϕ, p−)−
∫ ∞

0

dp− ne+(ϕ, p−)

]
= 0. (4.5)

This can be explained by the fact that the expressions corresponding to pair creation
cancel and that eq. (3.22) is valid independently for ne−(ϕ, p−) and ne+(ϕ, p−).
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Moreover, we obtain the analogue of eq. (3.23)

∂

∂ϕ

[∫ ∞

0

dp− ne−(ϕ, p−)p− +

∫ ∞

0

dp− ne+(ϕ, p−)p− +

∫ ∞

0

dk− nγ(ϕ, k−)k−

]
= 0,

(4.6)
ensuring the conservation of the total energy minus the total longitudinal momentum
throughout to whole interaction. In addition, the numerically evaluated results of
the kinetic equations (4.2)-(4.4) were found to coincide with results obtained for all
the examples given in ch. 3, corroborating that the neglect of pair production was
justified in these cases, as expected. Note that the investigations in the regime χ & 1
cannot be extended to arbitrary values of the quantum nonlinearity parameter in our
approach, since the increased energy loss of the electrons via photon emission would
lead to a violation of the required condition p∗− � mξ that our approach is based on.
Nevertheless, we ensured the validity of all our approximations throughout the whole
numerical calculations. Finally, we mention that the generation of QED cascades is
impossible in the setup under consideration [Soko 10], as the final particles for each
RR effect taken into account (photon emission and pair creation) have values of the
minus-momentum smaller than the initial particle.

4.2 The coupled dynamics of photon emission and pair
production

In order to understand the mutual influence of the evolution of the particle distribu-
tion functions, we consider the collision of a 20-cycle sin2-pulse, i.e., f(ϕ) = f7(ϕ) =
sin(ϕ) sin2(ϕ/40), with laser peak intensity I0,7 = 4.2×1021 W/cm2 with an initially
Gaussian electron distribution with p∗− = 100 GeV (ε∗ ≈ 50 GeV) and σp− = 10 GeV
that is normalized to unity. The given parameters yield the relativistic parameter
ξ7 = 31 and the quantum nonlinearity parameter χ∗7 = 19.

The evolutions of the electron distribution, of the positron distribution and of the
photon spectrum are shown in fig. 4.1. We observe that the emission of photons
causes the electrons to lose a large amount of their initial momentum during the
collision with the plane- wave field (see fig. 4.1a)). As expected, the thus-generated
photons possess an energy sufficiently high to create electron-positron pairs. This
evidently implies a loss in the yield of highly-energetic photons in the final photon
spectrum as well as a rise in the number of charged particles. Here, we find that
the ratio of the final and the initial number of electrons is approximately 1.56, i.e.,
the number of electrons is enhanced by more than 50%. In fig. 4.1b) we identify
that the produced particles have a much smaller energy than the initial electrons.
This can be understood by the fact that the photons creating the electron-positron
pairs must have an energy smaller than the one of the emitting electron and, addi-
tionally, in the pair-production process this energy is subsequently distributed into
two particles. The evolution of the distribution functions shown in fig. 4.1 already
includes the fully-coupled dynamics of the electrons, positrons and photons making
it difficult to identify how the evolution of each distribution function is affected by
the radiation and pair-production processes. In order to obtain a deeper insight in
the interdependencies of the interacting particles, we simulated the above consid-
ered collision again but excluded artificially either pair creation or the radiation of
the created positrons. fig. 4.2 shows the final distributions corresponding to these
calculations.
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Figure 4.1: Phase evolution of the electron (part a)) and positron distribution (part b))
as functions of p−/2 ≈ ε and of the photon spectrum (part c)) as a function
of k−/2 ≈ ω for the shape function f7(ϕ) [Neit 14].

Fig. 4.2b) only displays the final distribution functions for the full dynamics and
the one where radiation by positrons is excluded, since in the case of the exclusion of
pair creation the distribution function describing the positrons has to vanish iden-
tically throughout the entire interaction of the electron bunch with the laser pulse.
Further, we observe in fig. 4.2a) and fig. 4.2c) that the final electron distribution
and the final photon spectrum are drastically altered if pair creation is taken into
account. Apparently the high-energy part of the photon spectrum is substantially
reduced by the inclusion of pair production, since the high-energetic photons can de-
cay into pairs of charged particles. In turn, the total number of electrons is increased
and we identify an enlarged gain in the low-energy part of the final energy distri-
bution of the electrons (see fig. 4.2a)). On the other hand, the high-energy part of
the final electron distribution remains unchanged, since the created particles occur
mainly at energies much smaller than the initial energy of the electron bunch. As the
number of particles is increased and these particles can emit radiation themselves,
fig. 4.2c) exhibits an enhanced photon yield in the region of smaller photon energies.
This is also apparent in case of the inclusion of RR for the produced positrons. In
fig. 4.2b) it can be seen that the distribution is shifted to lower energies, implying
that the created particles are able to interact with the external laser field and thus
emit photons. Analogously, the incorporation of positron radiation enhances also
the photon gain for smaller photon energies in comparison to the final spectrum
where this radiation is not taken into account (see fig. 4.2c). Finally, we observe
that the radiation emitted by the positrons hardly influences the evolution of the
electrons and only leads to a marginally higher peak of the electron energy spectrum
(see fig. 4.2a)). We can conclude that in this situation the created positrons do not
only emit photons, but these photons still possess an energy sufficiently high to
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Figure 4.2: Comparison of the final electron (part a)) and positron distributions (part b))
as functions of p−/2 ≈ ε and photon spectra (part b)) as functions of k−/2 ≈ ω
for the full kinetic approach (solid, red line), without the radiation of positrons
(dashed, green line) and without pair production (short dashed, blue line) for
the initial Gaussian electron distribution with p∗− = 100 GeV (ε∗ ≈ 50 GeV)
and the shape function f7(ϕ) [Neit 14].
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produce a small amount of charged particles within the remaining interaction time
with the laser pulse.

4.3 Dependence on the laser pulse shape and the initial electron
energy

In comparison to our investigations in sec. 3.3, we now study the influences of the
initial energy of the electrons and the laser peak intensities on the final electron
and positron distributions and on the photon spectrum. To this end, we will again
assume laser pulses at a given pulse fluence, which can be modified via pulse shaping
in an actual experiment. In addition, we will examine how the dynamics is changed if
the initial energy of the electron bunch is altered: We consider two initially Gaussian
electron distributions, with the first one as before with p∗− = 100 GeV (ε∗ ≈ 50 GeV)
and σp− = 10 GeV (see the previous section). Analogously, we choose the second
one to be centered at p∗− = 10 GeV (ε∗ ≈ 5 GeV) with a width of σp− = 1 GeV.
Both distributions are normalized to unity. Each of the distributions is considered
to collide with three different laser pulses in total, always featuring the fluence Φ =
5.2× 108 J/cm2 and a sin2-pulse form, i.e., f(ϕ) = sin(ϕ) sin2(ϕ/2NL), but varying
numbers of laser cycles NL and laser peak intensities. For the first pulse we set, as in
the previous numerical simulation, the peak intensity to be I0,7 = 4.2× 1021 W/cm2

for f7(ϕ) = sin(ϕ) sin2(ϕ/40) (ϕf = 40π) corresponding to the parameters ξ7 = 31
and χ∗7 = 19. The second pulse is considered to be a five-cycle pulse, i.e., f8(ϕ) =
sin(ϕ) sin2(ϕ/10) (ϕf = 10π), with a peak intensity of I0,8 = 1.7 × 1022 W/cm2

leading to the numerical values ξ8 = 63 and χ∗8 = 37. Finally, the third one-cycle
pulse is chosen to have the shape function f9(ϕ) = sin(ϕ) sin2(ϕ/2) (ϕf = 2π)
and the peak intensity I0,9 = 1023 W/cm2 yielding ξ9 = 153 and χ∗9 = 91. The
corresponding pulse durations are approximately 54 fs, 14 fs and 3 fs, respectively.

fig. 4.3 displays final electron and positron distributions as well as the photon
spectra in case of the collision of the first electron distribution with the three different
laser pulses. In accordance with our findings in sec. 3.3, we observe that the photon
gain is smaller for the one-cycle pulse than the five-cycle pulse, which itself leads to
a smaller photon yield than the 20-cycle pulse. This feature can again be explained
by observing that the longer interaction time of the laser field and the electrons
results in an enhanced radiation, even though the laser peak intensity is not as high
as in the case of the shorter pulses. The number of electron-positron pairs created
by the longer pulses also surmounts the number produced by the one-cycle pulse (see
fig. 4.3), as both the laser intensities and the initial energy of the electrons are high
enough to cause the emission of many photons with sufficiently high energy during
the collision. In fact, in the case of the one-cycle pulse, the ratio of the final and the
initial electron number is decreased to 1.06 in comparison to 1.56 for the 20-cycle
pulse, although the intensity is larger by a factor of 24 for the former. Anticipating an
experimental examination, we estimate the number of produced positrons Ne+ and
photons Nγ considering a nowadays typical electron bunch with charge Q ≈ 100 pC
corresponding to a total initial number of Ne− = 6× 108 [Wang 13]. Our numerical
calculations indicate that the shape function f7(ϕ) results in Ne+ = 3.3 × 108 and
Nγ = 5.5 × 109, f8(ϕ) yields Ne+ = 1.3 × 108 and Nγ = 1.7 × 109 and in case of
f9(ϕ) one obtains Ne+ = 3.4× 107 and Nγ = 5.5× 108.

Considering now the second initial electron distribution, we expect pair creation
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Figure 4.3: Comparison of the final electron (part a)) and positron distributions (part b))
as functions of p−/2 ≈ ε and photon spectra (part c)) as functions of k−/2 ≈ ω
for the shape functions f7(ϕ) (solid, red line), f8(ϕ) (dashed, green line) and
f9(ϕ) (short dashed, blue line) for the initial Gaussian electron distribution
with p∗− = 100 GeV (ε∗ ≈ 50 GeV) [Neit 14].
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Figure 4.4: Comparison of the final electron (part a)) and positron distributions (part b))
as functions of p−/2 ≈ ε and photon spectra (part c)) as functions of k−/2 ≈ ω
for the shape functions f7(ϕ) (solid, red line), f8(ϕ) (dashed, green line) and
f9(ϕ) (short dashed, blue line) for the initial Gaussian electron distribution
with p∗− = 10 GeV (ε∗ ≈ 5 GeV) [Neit 14].
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and quantum effects to be less prominent, as for p∗− = 10 GeV the value χ∗ is
decreased by a factor of 10 and in turn also the value κ∗ will be reduced. In fig. 4.4
the final distribution functions are shown for the collision of the aforementioned
three laser pulses with this electron distribution. As in the previous simulations, the
collision with the 20-cycle pulse exhibits the largest loss in energy for the electrons.
However, the collision of the laser pulses described by f8 and f9 result in much
broader final electron distributions and in the case of the one-cycle pulse, the initial
peak around p∗− = 10 GeV (ε∗ ≈ 5 GeV) can still be identified. In agreement with
the analysis above, the long pulse still produces more photons, but in contrast to the
previous example the maximum of the spectrum is shifted to smaller values of k− (
see fig. 4.4c)). Hence, the typical value κ∗ is severely reduced resulting in a lower
pair-production probability. In fact, the number of pairs created by the 20-cycle
pulse is smaller than the one produced by the shorter pulses. This can be explained
by the fact that, although the total photon yield is the highest for the longest pulse,
the laser peak intensity and the energy of the emitted photons are not high enough
to produce a large number of electron-positron pairs. On the other hand, in the case
of the five-cycle pulse, the laser peak intensity is still sufficiently high to result in a
slightly higher number of produced particles in comparison with the one-cycle pulse
and thereby the beneficial effect of a longer interaction time is transferred onto the
positron yield (see fig. 4.4b)). As before, we want to give estimates for the final Ne+

and Nγ produced by an electron bunch with total initial number of Ne− = 6 × 108

electrons. In the case of f7(ϕ), it results in Ne+ = 5.8 × 106 and Nγ = 5.6 × 109,
whereas in the case of f8(ϕ) one obtains Ne+ = 1.6 × 107 and Nγ = 2.5 × 109, and
in the case of f9(ϕ) one achieves Ne+ = 1.4× 107 and Nγ = 1.0× 109.

Finally, for presently available laser-accelerated electron beams [Wang 13], we
give an estimation for the laser peak intensities at which electron-positron pairs
should in principle be detectable. A Gaussian electron beam centered at p∗− =
4 GeV (ε∗ ≈ 2 GeV) and with σp− = 0.2 GeV with a total number of N = 6 × 108

electrons (corresponding to a charge of Q ≈ 100 pC as before) is considered to collide
with 10-cycle sin2-shaped laser pulses differing in their peak intensities. Assuming
that the detection of a few tens of positrons is practicable, we find detectable pair
production at an intensity of I0 = 1.5 × 1021 W/cm2, which would yield a total
number of 26 produced positrons. Considering also a slightly lower electron energy
p∗− = 2 GeV (ε∗ ≈ 1 GeV), the creation of 19 pairs already demands an increased
intensity of I0 = 5×1021 W/ cm2. This implies that in order to study pair production
experimentally, higher beam energies are more advantageous.
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5
Numerical treatment of the kinetic

equations

This chapter is dedicated to the numerical details of the evaluation of the kinetic
equations (3.17)-(3.18) as well as (4.2)-(4.4). Since these kinetic equations constitute
a coupledI system of linear partial integro-differential equations that has neither a
known analytical solution nor can be simplified analytically via the common meth-
ods, e.g., by performing a Laplace transformation, the full system has to be treated
numerically. Solving such a set of equations, however, can turn out to be vastly
tedious depending on the actual structure of the formulas and the properties of the
involved functions. In particular, strongly oscillating functions and functions with
singularities in general render the numerical calculation of integrals and differentials
troublesome. However, only removable singularities occur in the case of the kinetic
equations due the analytical characteristics of the modified Bessel functions of the
second kind (see app. A).

In order to overcome the numerical challenges of the kinetic equations, we recall
the kinetic equation (3.17) for the electrons without the inclusion of pair creation

∂ne−(ϕ, p−)

∂ϕ
=

∫ ∞

p−

dpi,− ne−(ϕ, pi,−)
α√
3π

m2

ω0p2i,−

[(
pi,−
p−

+
p−
pi,−

)

×K 2
3

(X(ϕ, p−, pi,−))−
∫ ∞

X(ϕ,p−,pi,−)

dxK 1
3
(x)

]

− ne−(ϕ, p−)

∫ p−

0

dk−
α√
3π

m2

ω0p2−

[(
p−

p− − k−
+
p− − k−
p−

)

×K 2
3

(X ′(ϕ, p−, k−))−
∫ ∞

X′(ϕ,p−,k−)

dxK 1
3
(x)

]
,

(5.1)

IRecall that although (3.17) is completely decoupled from (3.18), the phase evolution of nγ(ϕ, k−) is
exclusively determined by the phase evolution of ne−(ϕ, p−).



where we employed the transformations (3.19) and (3.20), and introduced

X(ϕ, p−, pi,−) =
2

3χ(ϕ, pi,−)

(
pi,−
p−
− 1

)
, X ′(ϕ, p−, k−) =

2

3χ(ϕ, p−)

(
k−

p− − k−

)
.

(5.2)

In order to calculate the evolution of the electron distribution function numerically,
it is necessary to discretize the continuous phase and minus momentum variables
and construct two grids with a finite number of points. Obviously, a finite grid is not
able to cover the first integral in eq. (5.1) that extends to infinity, and the integrals
have to be transformed in such a way that the integration interval can be covered
by the grid. Furthermore, if the integration variable is equal to p− (lower limit
for the first integral and upper limit for the second one), both integrals exhibit a
singularity due to the divergent part of the modified Bessel functions (see eq. (A.4)).
These two singularities, however, are exactly compensating each other and for the
purpose of numerical implementation it is favorable to make this cancellation more
apparent. Therefore, we perform the following changes of variables pi,− = p−/w
(dpi,−/dw = −p−/w2) and k− = p−(1− w) (dk−/dw = −p−). Thus, we obtain

∂ne−(ϕ, p−)

∂ϕ
=

∫ 1

0
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]
,

(5.3)

with the transformed functions

X̃(ϕ, p−, w) =
2

3χ(ϕ, p−)
(1− w) and X̃ ′(ϕ, p−, w) =

2

3χ(ϕ, p−)

(
1

w
− 1

)
,

(5.4)

where the cancellation of the terms on the right hand side for w → 1 is evident
due to the equal prefactors and the arguments of the modified Bessel functions.
Analogously, we now transform eq. (3.18),

∂nγ(ϕ, k−)

∂ϕ
=

∫ ∞

k−

dpi,− ne−(ϕ, pi,−)
α√
3π

m2

ω0(pi,−)2

[(
pi,−

pi,− − k−
+
pi,− − k−
pi,−

)

×K 2
3

(X ′′(ϕ, k−, pi,−))−
∫ ∞

X′′(ϕ,k−,pi,−)

dxK 1
3
(x)

]
,

(5.5)
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where we defined

X ′′(ϕ, k−, pi,−) =
2

3κ(ϕ, k−)

(
k2−

pi,−(pi,− − k−)

)
. (5.6)

The substitution pi,− = k−/w (dpi,−/dw = −k−/w2) then yields

∂nγ(ϕ, k−)

∂ϕ
=

∫ 1

0

dw ne−(ϕ, k−/w)
α√
3π

m2

ω0k−

[(
1− w +

1

1− w

)

×K 2
3

(
X̃ ′′(ϕ, k−, w)

)
−
∫ ∞

X̃′′(ϕ,k−,w)

dxK 1
3
(x)

]
,

(5.7)

with the changed expression

X̃ ′′(ϕ, k−, w) =
2

3κ(ϕ, k−)

(
w2

1− w

)
. (5.8)

For the inclusion of pair creation, the expressions corresponding to photon emis-
sion do not have to be altered and the radiation of positrons can be immediately
incorporated with eq. (5.3) by the substitution ne− → ne+ , since the emission proba-
bilities are identical for electrons and positrons. Thus, only the terms corresponding
to pair production have to be transformed to facilitate a numerical treatment. An
examination of the last part of eq. (4.4),

−αm
2nγ(ϕ, k−)√

3πω0

∫ k−

0

dp−
k2−

[
k2−

p−(k− − p−)
K 2

3
(κ(ϕ, k−, p−))−

∫ ∞

κ(ϕ,k−,p−)

dxK 5
3
(x)

]
,

(5.9)
where we again made use of

κ(ϕ, k−, p−) =
2

3κ(ϕ, k−)

k2−
p−(k− − p−)

, (5.10)

reveals that due to the integration path, the values corresponding to κ ∈ (8/3κ,∞)
are covered twice by the integration. Hence, we split the integral at the value
p− = k−/2 and perform the transformations p− = k−w/(1 +w) (dp−/dw = k−/(1 +
w)2) and p− = k−/(1 + w) (dp−/dw = −k−/(1 + w)2) in the first and second
expressions, respectively. The resulting terms are identical and can be summed up
again. Following the described procedure and employing also the identity eq. (A.9)
yields

−2αm2nγ(ϕ, k−)√
3πω0

∫ 1

0

dw

(1 + w)2

[(
w +

1

w

)
K 2

3
(κ̃(ϕ, k−, w)) +

∫ ∞

κ̃(ϕ,k−,w)

dxK 1
3
(x)

]
,

(5.11)
with the transformed function

κ̃(ϕ, k−, w) =
2

3κ(ϕ, k−)

(1 + w)2

w
. (5.12)

Finally, the formulas describing pair creation in the kinetic equations for the elec-
trons and positrons are converted as in the procedures above. As the probabilities
are once more the same for both species, just one term has to be modified,

αm2

√
3πω0

∫ ∞

p−

dk−
k2−

nγ(ϕ, k−)

[
k2−

p−(k− − p−)
K 2

3
(κ(ϕ, k−, p−))−

∫ ∞

κ(ϕ,k−,p−)

dxK 5
3
(x)

]
.

(5.13)
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As before, we change the integration to a form that allows for a proper numerical
calculation via k− = p−/w (dk−/dw = −p−/w2). With this we arrive at the last
transformed part

αm2

√
3πω0

∫ 1

0

dw

p−
nγ

(
ϕ,
p−
w

)[1− 2u+ 2u2

u− u2 K 2
3

(κ̃′(ϕ, p−, w)) +

∫ ∞

κ̃′(ϕ,p−,w)

dxK 1
3
(x)

]
,

(5.14)
with the altered function

κ̃′(ϕ, p−, w) =
2

3χ(ϕ, p−)

1

1− u. (5.15)

For the discretization of the phase and the minus momentum two static grids
were constructed whereupon an equally spaced (like for the phase variable) or a
logarithmic grid was built to cover the features of the distribution function ad-
justed to its range, e.g., a logarithmic spacing in case of the photon distribution
nγ(ϕ, k−). The phase evolution of the distribution functions was calculated by em-
ploying an explicit finite-difference method and the occurring integrals except for
the one involving K 1

3
(x) (see below) have been evaluated by the calculation of the

corresponding Riemann sums, in which the momentum values not covered by the
grid were computed via an interpolation of grid points.

Since the modified Bessel functions of the second kind are highly-nontrivial func-
tions, the calculation of their values can be rather difficult and especially very time-
consuming in a numerical simulation. Thus, a time-efficient numerical procedure is
desirable and more easily calculable functions have been chosen as approximations
for the occurring Bessel functions. By introducing the function (see [Baie 94])

f̃(x) =

√
π

2x

e−x

2
, (5.16)

we can find the approximations

K 2
3
(x) ≈ f̃(x)

[(
1 +

a1
x

) 1
6

+
(

1 +
a2
x

) 1
6

]
, (5.17)

with the constants a1 = 0.1265 and a2 = 1.040, and likewise

K 1
3
(x) ≈ f̃(x)

[(
1 +

b1
x

)− 1
6

+

(
1 +

b2
x

)− 1
6

]
, (5.18)

with b1 = 0.054 and b2 = 0.78. Furthermore, an approximated expression was
employed for the recurrent integral of the function K 1

3
(x),

∫ ∞

x

K 1
3
(y)dy ≈ 2f(x)

[
1 +

c1
x

+
c2
x2

]− 1
4

, (5.19)

where c1 = 2.53 and c2 = 0.245 [Baie 94]II. The accuracy of these expressions was
found to be better than 0.2% for (5.17), better than 1% for (5.18), and better than
2% for (5.19).

IINote that in [Baie 94], due to a typo, c1 was mistaken for c2 and vice versa.
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In order to examine the validity of our numerical results, the conservation of the
total charge (see eq. (3.22) and eq. (4.5)) and of the total energy minus the total
longitudinal momentum (see eq. (3.23) and eq. (4.6)) has been monitored throughout
the entire numerical simulation. On the other hand, the calculations have been
compared with the existing results in the classical and quantum regime. In the
case of the classical limit (χ� 1), we guaranteed the consistency of the numerically
obtained findings with the analytical limit of the kinetic equation (see fig. 3.3) which
was shown to coincide with expression resulting from the LL equation in eq. (3.30).
Furthermore, in the quantum regime our findings were in good agreement with the
results achieved by a similar kinetic approach in [Soko 10] as well as with the results
from alternative approaches, namely the microscopic approach in [Di P 10] (see
app. E) and the stochastic model for RR in [Blac 14].
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6
Summary and outlook

Summary

The aim of this thesis was to study the impact of radiation reaction on the dynamics
of an electron beam colliding with a laser field. In particular, we wanted to compare
the different characteristics of radiation reaction effects in the classical and the
quantum regime.

To this end, we started in chapter 2 with a discussion of the dynamics of charged
particles in an external electromagnetic field in the framework of classical electro-
dynamics. There, we identified the LL equation as the correct classical equation
incorporating the energy and momentum loss due to radiation. Afterwards, this
analysis of the interaction of charged particles with an external plane-wave field was
transferred into the realm of QED. In the parameter regime under consideration,
radiation reaction was shown to result from incoherent multiple photon emission
and pair production. Finally, we reviewed some of the key aspects of the kinetic
theory.

Following these remarks, we derived a kinetic approach characterizing the colli-
sion of an ultrarelativistic electron beam with an intense laser pulse in chapter 3.
In the case of the nonlinear moderately quantum regime, the kinetic approach was
reduced to a one-dimensional problem and the dynamics of electrons and photons
were studied in terms of distribution functions. Whereas classical electrodynamics
based on the LL equation predicts a narrowing of the electron energy distribution,
radiation reaction was demonstrated to induce a broadening of energy distribution,
when quantum effects become important. In order to understand the striking dif-
ference between quantum and classical radiation reaction, the classical limit of the
kinetic equations was investigated employing an expansion in the quantum nonlin-
earity parameter χ. The details of this expansions were moved to the appendix B.
As summarized in app. C, the resulting Fokker-Planck-like equation is equivalent
to a stochastic single-particle equation. Considering an approximate solution of the
kinetic equation derived in app. D, the leading-order quantum corrections are shown
to render the final electron distributions broader than the initial ones. Hence, the
increase of the electron energy width is caused by the stochastic nature of photon
emission, which becomes substantial in the quantum regime. To further clarify the
impact of radiation reaction on the dynamics of electrons and photons, we studied
the influence of the laser pulse duration and shape at given total laser fluences. In



particular, the increase of the pulse duration at a given laser fluence was demon-
strated to have a beneficial effect on the total photon yield. Since the classical
analysis based on the LL equation depends exclusively on the total laser fluence,
differences in the final electron energy distribution and the photon spectra must
be due to the interplay of radiation reaction and quantum effects. Our numerical
calculations indicated that the final electron and photon distributions are modified
by quantum radiation reaction already at χ∗ = 0.2 − 0.3. Moreover, in app. E our
approach was demonstrated to numerically coincide with the microscopic approach
employed in [Di P 10].

In chapter 4, we extended our kinetic approach in order to incorporate the produc-
tion of electron-positron pairs by photons emitted during the interaction. After the
derivation of the kinetic equations, we investigated the nonlinear coupled evolution
of the particles involved in the scattering process. To this end, the fully coupled
dynamics were compared with those, where either the radiation of the produced
positrons or pair production was artificially neglected. The high-energy part of the
final photon spectrum was shown to be significantly decreased by the inclusion of
pair creation. On the contrary, the increased number of charged particles resulted
in a higher low-energy part of the electron and positron distribution in this case.
Furthermore, the incorporation of photons emitted by positrons caused a slight mod-
ification in the electron distribution function pointing to the conclusion that there
is a weak nonlinear coupling between all the particles’ distribution functions. Anal-
ogously to the discussion in chapter 3, the influence of the pulse duration on the
dynamics was studied for two initial electron distributions at a give total laser flu-
ence. As it was demonstrated in chapter 3, longer pulse durations at a given fluence
result in an increased final photon yield. On the one hand, considering sufficiently
high initial electron beam energies, this beneficial effect of a longer pulse duration
was shown to render a higher gain of produced pairs. On the other hand, if the
initial beam energy is not high enough, the less energetic photons emitted cannot
facilitate an enhanced number of created pairs. Anticipating an experimental in-
vestigation of pair production, this result hints that an increase in the energy of
the electrons is more favorable than in increase the total laser fluence. In addition,
the effect of pair creation was estimated to be in principle measurable for nowadays
feasible laser intensities and electron bunch energies also in an all-optical setup.

Chapter 5 was devoted to the numerical treatment of the derived kinetic equa-
tions. In particular, it was shown how these equations can be rewritten into a form
that allowed for a numerical evaluation via a finite-difference method. To this end,
the specific discretization scheme was presented and the employed approximated
expressions for the modified Bessel functions of the second kind were introduced.

In conclusion, a kinetic approach permitting the incorporation of radiation reac-
tion effects has been investigated with special emphasis on a regime accessible with
presently available high intensity laser pulses and ultrarelativistic electron beams.

Outlook

Motivated by the nowadays experimental feasible electron beam energies and laser
pulse intensities, we considered several specific conditions in the derivation of our
kinetic approach. In fact, some of these might point to a natural continuation of
this work.

• The employed probabilities for photon emission and pair production were al-
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ways averaged or summed over the spins of the charged particles and the po-
larization of the photons. Nevertheless, a description of the polarization char-
acteristics of the quantum particles involved would be favorable, e.g., whether
the emission of photons via spin-flip can result in a polarization or depolariza-
tion of the initial electron beam. Especially, it would be of interest if the final
spins of the electrons and positrons as well as the polarization of the photons
can be configured by an adequate choice of the laser parameters. However, it
is not directly apparent whether a semi-classical kinetic approach facilitates
the incorporation of the charged particles’ spin or the photons’ polarization.

• Considering laser pulses at even higher intensities, the production of a large
amount of pairs might occur. If the number of pairs becomes sufficiently high
the interaction between the produced particles have to be taken into account.
In particular, an initial or created electron together with a positron can anni-
hilate into a photon or one of the charged particles could reabsorb one of the
emitted photons. The incorporation of these effects could render the treatment
of collisions with larger laser pulse intensities feasible.

• A consequence of the implementation of larger total laser fluences would be
the enhanced energy loss of the charged particles. This can in principle violate
our assumption that the transverse momentum can be neglected in compari-
son to the longitudinal one. In this case, a kinetic approach has to account
for all momentum components and cannot be reduced to a one-dimensional
problem. Such an extended approach would allow for an increase in the total
laser fluence, i.e., the consideration of higher laser peak intensities or longer
laser pulse durations.
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A
Modified Bessel functions

In this appendix some of the characteristics of the modified Bessel functions used in
this thesis are reviewed (see, e.g., [Abra 64,Jeff 07]).

The modified Bessel functions of the first kind I±ν(x) and of the second kind Kν(x),
where ν indicates the order, are the solutions of the modified Bessel equation:

x2
d2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0. (A.1)

The modified Bessel function of the second kind Kν(x) can be expressed in terms of
I±ν(x):

Kν(x) =
π

2

I−ν(x)− I+ν(x)

sin(νx)
, (A.2)

where the right hand side has to be replaced by the limit

Kν(x) = lim
µ→ν

Kµ(x) (A.3)

if ν is either an integer or equal to zero. In case of ν > −1 and x > 0, the values of
Iν(x) and Kν(x) are real and positive. As in the context of photon emission and pair
creation investigated in this work there occur solely the modified Bessel functions of
the second kind, the following discussion will be focused on Kν(x). For arguments
x→ 0, the function Kν(x) exhibits a divergence according to

Kν(x) ∝ 1

2

(
Γ(ν)

(x
2

)−ν
+ Γ(−ν)

(x
2

)ν)
(x→ 0), (A.4)

with Γ(ν) being the gamma function. For large arguments |x| → ∞, it decreases
exponentially,

Kν(x) ∝
√

π

2x
e−x (|x| → ∞). (A.5)

Furthermore, the modified Bessel functions of the second kind are symmetric in the
order ν,

K−ν(x) = Kν(x), (A.6)

and fulfill the following recurrence relations

Kν−1(x) + Kν+1(x) = −2
d

dx
Kν(x), (A.7)



x
d

dx
Kν(x)− ν Kν(x) = −xKν+1(x). (A.8)

Employing eq. (A.6) and eq. (A.7), we obtain the helpful identity

∫ ∞

y

dxK 5
3
(x) = 2K 2

3
(y)−

∫ ∞

y

dxK 1
3
(x). (A.9)

In addition, for constants a and µ, the definite integral

∫ ∞

0

dx xµ Kν(ax) = 2µ−1a−µ−1Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
(A.10)

can be employed if Re(a) > 0 and Re(µ+ 1± ν > 0).
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B
Calculation of the expansion of eq. (3.17)

In sec. 3.2 we studied the classical limit and the leading order quantum corrections of
the kinetic equation describing the electron distribution function, where we employed
a perturbative expansion of eq. (3.17). This appendix is devoted to some of the
calculation details of this expansion.

In order to arrive at the approximation (3.27) to eq. (3.17), it is favorable to change
the integration variables in eq. (3.17) (see also eq. (5.1) and eq. (5.2)). Hence, we
perform the transformations pi,− = p−(1 + vχ(ϕ, p−)), with dpi,−/dv = p−χ(ϕ, p−),
and k− = p−vχ(ϕ, p−)/(1 + v), with dk−/dv = p−χ(ϕ, p−)/[1 + vχ(ϕ, p−)]2, in
the first integral and second integral, respectively. By rearranging the terms and
dropping for the moment the quantum nonlinearity parameter’s explicit dependency
of on the phase and the momentum χ = χ(ϕ, p−), we obtain

∂n
p−
e−

∂ϕ
=

αm2

√
3πω0

χ

p−

∫ ∞

0

dv

{[
1

ṽχ
+

1

ṽ3
χ

][
n
ṽχp−
e− K 2

3

(
2v

3ṽχ

)
− np−e−K 2

3

(
2v

3

)]

− 1

ṽ2
χ

[
n
ṽχp−
e−

∫ ∞

2v/3ṽχ

dxK 1
3
(x)− np−e−

∫ ∞

2v/3

dxK 1
3
(x)

]}
,

(B.1)

where we introduced the symbols ṽχ = 1 + vχ, n
p−
e− = ne−(ϕ, p−) and n

ṽχp−
e− =

ne−(ϕ, ṽχp−) for the sake of compact writing. We aim for an expansion up to cubic
order in the quantum nonlinearity parameter and start by pointing out that there is
no term corresponding to the zero-th order, since there is a factor of χ in front of the
integral and the expression in the curly brackets vanishes in the limit χ→ 0, as well.
Furthermore, there is no contribution proportional to χ in the Taylor series due to
the very same reason. On the one hand, the occurring derivative with respect to χ
acts on the factor χ in front of the integral leaving the term in the curly brackets
unaffected, which in turn vanishes by evaluating it at the point χ = 0. On the other
hand, the derivative acts on the integral leaving the factor χ in front of the integral
unaffected and therefore gives again no contribution to the expansion.

Thus, the lowest-order contribution of the perturbative expansion is of the order
of χ2 and it is given by

∂n
p−
e−

∂ϕ
=

αm2

√
3πω0

χ2

p−

∫ ∞

0

dv

[
vp−F

(
2v

3

)
∂n

p−
e−

∂p−
− 2v2

3
F′
(

2v

3

)
n
p−
e−

]
+O

(
χ3
)
,

(B.2)



where we defined the function

F(x) := 2K 2
3

(x)−
∫ ∞

x

dyK 1
3
(y) (B.3)

and the prime notation F′(x) indicates the derivate with respect to the argument x.
Like in eq. (B.2) and in the following terms of the Taylor series the calculation of
integrals of F(x) and its derivatives is required. We exemplify the principal procedure
by explicitly evaluating the first integral on the right hand side of eq. (B.2). By
employing the definition of F(x) and integrating by parts, we achieve an expression
whose value can be determined with the help of the formula (A.10):

∫ ∞

0

dv vF

(
2v

3

)
=

∫ ∞

0

dv v

[
2K 2

3

(
2v

3

)
−
∫ ∞

2v/3

dxK 1
3
(x)

]

=

∫ ∞

0

dv 2v K 2
3

(
2v

3

)
−
∫ ∞

0

dv
v2

3
K 1

3

(
2v

3

)

(A.10)
=

2π√
3
.

(B.4)

All the remaining integrations occurring in the expansion of eq. (3.17) up to the
order of χ3 can be obtained following this outline of analysis, and without displaying
further details, we list here only the final results:

∫ ∞

0

dv v2F

(
2v

3

)
=

55π

24
, (B.5)

∫ ∞

0

dv v2F′
(

2v

3

)
=− 2

√
3π, (B.6)

∫ ∞

0

dv v3F′
(

2v

3

)
=− 165π

16
, (B.7)

∫ ∞

0

dv v4F′′
(

2v

3

)
=

495π

8
. (B.8)

Therefore, by only taking into account terms proportional to χ2, eq. (3.17) reads

∂n
p−
e−

∂ϕ
=

2αm2

3ω0

χ2

(
2n

p−
e−

p−
+
∂n

p−
e−

∂p−

)

=− 2αm2

3ω0

∂

∂p−

[
−χ2(ϕ, p−)ne−(ϕ, p−)

]
,

(B.9)

where the explicit dependency on the phase and the momentum was included again
in the last line. As intended, this result yields the first term in eq. (3.28) coinciding
with the classical electrodynamics result obtained by employing the LL equation.

Analogously, the perturbative expansion up to the order χ3 allows for an identi-
fication of the leading-order quantum corrections to the kinetic equation, which we
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indicate by
(
∂n

p−
e−/∂ϕ

)
χ3 ,
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∫ ∞
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∂p−
+

55p−
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(B.10)

Anticipating the final Fokker-Planck-like structure of the approximated kinetic equa-
tion and writing again the explicit dependency on the phase and the momentum,
the expressions occurring in eq. (B.10) can be artificially rearranged in the formula

(
∂ne−(ϕ, p−)

∂ϕ

)

χ3

=− ∂

∂p−

[
αm2

√
3ω0

55

8
χ3(ϕ, p−)ne−(ϕ, p−)

]

+
1

2

∂2

∂p2−

[
αm2

3ω0

55

8
√

3
p−χ

3(ϕ, p−)ne−(ϕ, p−)

]
.

(B.11)

Finally, we conclude that the combination of eq. (B.9) and eq. (B.11) leads exactly
to the Fokker-Planck-like equation investigated in the main text:

∂ne−(ϕ, p−)

∂ϕ
= − ∂

∂p−
[A(ϕ, p−)ne−(ϕ, p−)] +

1

2

∂2

∂p2−
[B(ϕ, p−)ne−(ϕ, p−)] (B.12)

with

A(ϕ, p−) = −2αm2

3ω0

χ2(ϕ, p−)

[
1− 55

√
3

16
χ(ϕ, p−)

]
, (B.13)

B(ϕ, p−) =
αm2

3ω0

55

8
√

3
p−χ

3(ϕ, p−). (B.14)
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C
Connection between the Fokker-Planck

and the Langevin equation

In this appendix it is shown how the Langevin equation describing the stochastic
motion of a single particle can be related to the Fokker-Planck equation describing
the deterministic evolution of a macroscopic distribution of these particles. There-
fore, some parts of the theory of stochastic differential equations are recapitulated
here. However, this is only intended to be a short overview and does not include
complete mathematical proofs of the equations and properties given below. A more
detailed discussion of the topics related to stochastic differential processes can be
found, e.g., in [Gard 09].

C.1 From the Langevin to the Fokker-Planck equation

Instead of the usual notations for stochastic processes we will here employ the same
variables as in the main text, e.g., we use the phase ϕ as evolution variable and not
the common t as symbol for the time. Considering now a stochastic process, i.e.,
a random variable P̂−(ϕ)I that evolves in phase and corresponds to the measurable
values p−(ϕ), the Langevin equation can be written as

dp−(ϕ) = A[ϕ, p−(ϕ)]dϕ+
√
B[ϕ, p−(ϕ)]dW (ϕ), (C.1)

where the square-root is due to the anticipation of the final form of the related
Fokker-Plank equation. The functions A[ϕ, p−(ϕ)] and B[ϕ, p−(ϕ)] are the so-called
drift coefficient and diffusion coefficient, respectively. The names already hint at
the influence of these functions on the evolution of a particle distribution, and will
be justified in sec. C.2.

The expression dW (ϕ) indicates an infinitesimal stochastic function, namely the
Wiener process. The Wiener process is a stochastic process fulfilling the Markov
condition, i.e., the stochastic evolution of the events is only influenced by the values
at the last phase step and not by those before that. The conditional probability
P (w,ϕ|w0, ϕ0) to find the value w at phase ϕ under the assumption that it had the

IThe notation P̂−(ϕ) for the random variable is chosen to avoid confusion with the probabilities occurring
in the text indicated by P .



C.1 From the Langevin to the Fokker-Planck equation

initial value w0 at initial phase ϕ0
II is then given by the expression

P (w,ϕ|w0, ϕ0) =
1√

2π(ϕ− ϕ0)
exp

[
−(w − w0)

2

2(ϕ− ϕ0)

]
, (C.2)

with the initial condition P (w,ϕ0|w0, ϕ0) = δ(w − w0). The Wiener process is con-
tinuous everywhereIII but differentiable nowhere. By means of a Riemann-Stieltjes
integral, the Ito stochastic integral of an arbitrary function G(t) is defined as

∫ ϕ

ϕ0

G(ϕ′)dW (ϕ′) := ms-lim
L→∞

{
L∑

l=1

G(ϕl−1) [W (ϕl)−W (ϕl−1)]

}
, (C.3)

where ms-lim indicates the mean square limit and convergence under this limit is
equivalent to the vanishing of the mean square deviation. Note that an alterna-
tive but nevertheless equivalent way to define stochastic integration is given by the
Stratonovich integral which differs from the Ito integral by the choice of the inter-
mediate evaluation points for the subintervals. Furthermore, this definition can be
proven to imply the identities dW (ϕ)2 = dt and dW (ϕ)2+M = 0 for M > 0.

Facilitating these properties for a function G[p−(ϕ)] depending on the stochas-
tically evolving variable p−(ϕ), we can expand dG[p−(ϕ)] up to second order in
dW (ϕ),

dG[p−(ϕ)] =G[p−(ϕ) + dp−(ϕ)]−G[p−(ϕ)]

=
∂G[p−(ϕ)]

∂p−(ϕ)
dp−(ϕ) +

1

2

∂2G[p−(ϕ)]

∂p−(ϕ)2
dp−(ϕ)2

=
∂G[p−(ϕ)]

∂p−(ϕ)

{
A[ϕ, p−(ϕ)]dϕ+

√
B[ϕ, p−(ϕ)]dW (ϕ)

}

+
1

2

∂2G[p−(ϕ)]

∂p−(ϕ)2
B[ϕ, p−(ϕ)]dW (ϕ)2

=

{
A[ϕ, p−(ϕ)]

∂G[p−(ϕ)]

∂p−(ϕ)
+

1

2
B[ϕ, p−(ϕ)]

∂2G[p−(ϕ)]

∂p−(ϕ)2

}
dϕ

+
√
B[ϕ, p−(ϕ)]

∂G[p−(ϕ)]

∂p−(ϕ)
dW (ϕ),

(C.4)

where all higher-order terms have been discarded. eq. (C.4) is known as Ito’s formula
and by applying it to the phase derivative of the mean value of an arbitrary function
G[p−(ϕ)], we now connect the Langevin with the Fokker-Planck equation:

d

dϕ
〈G[p−(ϕ)]〉 =

〈dG[p−(ϕ)]〉
dϕ

=

〈
A[ϕ, p−(ϕ)]

∂G[p−(ϕ)]

∂p−(ϕ)
+

1

2
B[ϕ, p−(ϕ)]

∂2G[p−(ϕ)]

∂p−(ϕ)2

〉
.

(C.5)

Since the process p−(ϕ) with initial value p−,0 has the conditional probabilities
P (ϕ, p−|ϕ0, p−,0), we rewrite eq. (C.5) by employing the definition of the mean value.

IIIn this appendix, the subscript 0 is used to indicate the initial phase value instead of i as in the main
text, since it allows to write the sequences and sums in an easily accessible way.

IIIMathematically strictly speaking, the Wiener process is almost surely continuous, i.e., it is a continuous
function of phase with probability one.
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This yields

〈dG[p−(ϕ)]〉
dϕ

=

∫
dp−G(p−)∂ϕP (ϕ, p−|ϕ0, p−,0)

=

∫
dp−

[
A(ϕ, p−)∂p−G(p−) +

1

2
B(ϕ, p−)∂2p−G(p−)

]
P (ϕ, p−|ϕ0, p−,0)

=

∫
dp−G(p−)

{
−∂p− [A(ϕ, p−)P (ϕ, p−|ϕ0, p−,0)]

+
1

2
∂2p− [B(ϕ, p−)P (ϕ, p−|ϕ0, p−,0)]

}
,

(C.6)

where we integrated by parts to obtain the last line and the integration path includes
all values corresponding to the set of possible events. As the function G(p−) was
chosen to be arbitrary, the conditional probability P (ϕ, p−|ϕ0, p−,0) has to fulfill the
Fokker-Planck equation

∂ϕP (ϕ, p−|ϕ0, p−,0) =− ∂p− [A(ϕ, p−)P (ϕ, p−|ϕ0, p−,0)]

+
1

2
∂2p− [B(ϕ, p−)P (ϕ, p−|ϕ0, p−,0)] .

(C.7)

The Fokker-Planck equation, however, describes the evolution of the probability
density function, which in our case complies with the momentum distribution func-
tions for the considered particles, e.g., the momentum distribution for the electrons
ne−(ϕ, p−). Finally, by substituting the conditional probability by the electron dis-
tribution function, we achieve the Fokker-Planck equation of the main text (see
eq. (3.27)):

∂ne−(ϕ, p−)

∂ϕ
= − ∂

∂p−
[A(ϕ, p−)ne−(ϕ, p−)] +

1

2

∂2

∂p2−
[B(ϕ, p−)ne−(ϕ, p−)] . (C.8)

C.2 Interpretation of A(ϕ,p−) and B(ϕ,p−)

For the purpose of comprehending the functions’ A(ϕ, p−) and B(ϕ, p−) influence on
the phase evolution of the momentum distribution of the electrons, we investigate
two simplified versions of eq. (C.7) in this section. Since there is no general solution
to the Fokker-Planck equation involving arbitrary complex functions A(ϕ, p−) and
B(ϕ, p−), we will only consider the cases in which the one function is a constant
and the other one is vanishing to get a principal understanding of their meaning.
However, in app. D an approximate solution to eq. (3.27) of the main text including
more complex structured functions is derived displaying the same properties as in
the far simpler cases discussed here.

At first, by setting A(ϕ, p−) ≡ A and B(ϕ, p−) ≡ 0, we reduce eq. (C.8) to

∂ne−(ϕ, p−)

∂ϕ
= −A ∂

∂p−
[ne−(ϕ, p−)] , (C.9)

and with the initial electron distribution ne−(0, p−) chosen to be a normalized Gaus-
sian centered around p∗− and width σp− , we obtain the result

ne−(ϕ, p−) =
1√

π/2σp− [1 + erf(p∗−/
√

2σp−)]
exp

[
−(p− − p∗− − Aϕ)2

2σ2
p−

]
, (C.10)
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C.2 Interpretation of A(ϕ,p−) and B(ϕ,p−)

where we also set ϕ0 = 0 and introduced the error function erf(x).IV From eq. (C.10)
it becomes immediately apparent why the function A(ϕ, p−) ≡ A is called drift
coefficient. In this special scenario the Gaussian distribution - without changing its
shape - shifts to higher values of p∗− for increasing phase and A > 0. On the other
hand, for A < 0, the distribution drifts into the other direction.

Secondly, we now assume A(ϕ, p−) ≡ 0 and B(ϕ, p−) ≡ B transforming eq. (C.8)
into

∂ne−(ϕ, p−)

∂ϕ
=

1

2
B
∂2

∂p2−
[ne−(ϕ, p−)] , (C.11)

which is the well-known heat equation. Employing the initial condition ne−(0, p−) =
δ(p− − p∗−), we find the solution

ne−(ϕ, p−) =
1√

Bϕπ/2[1 + erf(p∗−/
√

2Bϕ)]
exp

[
−(p− − p∗−)2

2Bϕ

]
. (C.12)

Although the width σp− is missing due to the choice of a delta peak as initial
condition, a brief comparison with eq. (C.10) shows that the term Bϕ occurs in
the same positions and thus can be easily interpreted as a time-evolving width. If
B < 0, there exist no bounded solutions to eq. (C.12) and an interpretation of the
solutions as distribution function is impossible. With that we are able to conclude
that the appearance of the term including B leads to a broadening of the width of
the distribution for increasing phase.

IVNote that we employed p− ∈ (0,∞), as always.
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D
Approximated solution of eq. (3.27)

In sec. 3.2.3, the influence of the quantum corrections on the evolution of the electron
distribution was discussed with a special emphasis on the aspect whether the initial
width of the distribution σp− is increased or decreased. There, an approximate
solution of the Fokker-Planck-like equation (3.27) was employed which assumed
an initial Gaussian distribution to evolve in such a way that, on the one hand, the
Gaussian shape was preserved but, on the other hand, allowed for a shift of the peak
as well as an alteration of the width. Here, we derive this approximate solution and
its resulting properties used in the main text.

We begin by writing down again the expanded kinetic equation (3.27),

∂ne−(ϕ, p−)

∂ϕ
= − ∂

∂p−
[A(ϕ, p−)ne−(ϕ, p−)] +

1

2

∂2

∂p2−
[B(ϕ, p−)ne−(ϕ, p−)] , (D.1)

and separate the dependencies on the phase and the momentum included in the
definition of χ(ϕ, p−) for the drift coefficient A(ϕ, p−),

A(ϕ, p−) =− 2α

3ω0

E2(ϕ)

F 2
cr

p2− +
55α

8
√

3ω0m

|E3(ϕ)|
F 3
cr

p3−

= a(ϕ)p2− + b(ϕ)p3−,

(D.2)

and for the diffusion coefficient B(ϕ, p−),

B(ϕ, p−) =
α55

24
√

3ω0m

|E3(ϕ)|
F 3
cr

p4− = c(ϕ)p4−. (D.3)

The explicit separation of phase and momentum permits the rescaling of the origi-
nally assumed electron distribution by n̄e−(ϕ, p−) := p2−ne−(ϕ, p−) and by employing
the newly defined phase dependent functions a(ϕ), b(ϕ) and c(ϕ), we achieve

∂n̄e−(ϕ, p−)

∂ϕ
= p2−


− ∂

∂p−
{n̄e−(ϕ, p−) [a(ϕ) + b(ϕ)p−]}

+
1

2

∂2

∂p2−

[
c(ϕ)p2−n̄e−(ϕ, p−)

] .

(D.4)

Considering the further course of derivation, it is convenient to search for a solution
of the partial differential equation depending on x = 1/p− instead of p−. Thus, by



introducing a new electron distribution ñe−(ϕ, x) and in addition performing the
change ∂/∂p− = −x2∂/∂x, we obtain

∂ñe−(ϕ, x)

∂ϕ
=− ∂

∂x

{
ñe−(ϕ, x)

[
−a(ϕ)− b(ϕ)

x

]}

+
1

2

∂

∂x

{
x2

∂

∂x

[
c(ϕ)

x2
ñe−(ϕ, x)

]}
,

(D.5)

where we artificially inserted additional minus signs in order to preserve the Fokker-
Planck-like structure of the formula. Presuming a distribution function well-peaked
at x∗(ϕ), the terms arising from the derivatives not acting on the distribution func-
tion itself are negligible and the differential equation is reduced to

∂ñe−(ϕ, x)

∂ϕ
≈ −

[
−a(ϕ)− b(ϕ)

x∗(ϕ)

]
∂ñe−(ϕ, x)

∂x
+

c(ϕ)

2

∂2ñe−(ϕ, x)

∂x2
. (D.6)

The movement of the peak position is approximately determined by the differential
equation

∂x∗(ϕ)

∂ϕ
≈ −a(ϕ)− b(ϕ)

x∗(ϕ)
. (D.7)

Since the Fokker-Planck equation (D.1) is the result of a perturbative expansion of
the original kinetic equation (3.17), its validity is restricted to a parameter regime
with χ(ϕ, p−) � 1 and in turn, the terms proportional to b(ϕ) and c(ϕ) have to
be understood as corrections of higher order. Therefore, the phase evolution of the
peak position x∗(ϕ) must be governed by the expression proportional to a(ϕ) within
this framework. Hence, the shift of the peak position is approximately given by

x∗(ϕ, x∗0) ≈ x∗0 −
∫ ϕ

0

dϕ′ a(ϕ′)−
∫ ϕ

0

dϕ′
b(ϕ′)

x∗0 −
∫ ϕ′
0

dϕ′′ a(ϕ′′)
, (D.8)

where we set again the initial phase ϕi = 0 and introduced the initial peak position
x∗(0) = x∗0.

Analogously, the motion of the momentum value at which the original Gaussian
distribution is centered is obtained by employing the relation between x and p− and
defining the initial condition for the peak position p∗−(0) = p∗0,− = 1/x∗0,

p∗−(ϕ, p∗0,−) ≈


 1

p∗0,−
−
∫ ϕ

0

dϕ′ a(ϕ′)−
∫ ϕ

0

dϕ′
b(ϕ′)

1
p∗0,−
−
∫ ϕ′
0

dϕ′′ a(ϕ′′)



−1

=:
p∗0,−

h(q)(ϕ, p∗0,−)
.

(D.9)

In order to illustrate the structural similarity, we defined in the last line the function

h(q)(ϕ, p∗0,−) as the counterpart to the change in momentum given by p
∗ (c)
− (ϕ, p0,−) =

p∗0,−/h
(c)(ϕ, p∗0,−) (see eq. (3.32)) in classical electrodynamics. To further clarify the

connection between h(c)(ϕ, p∗0,−) and h(q)(ϕ, p∗0,−), the part corresponding to the
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classical dynamics is separated,

h(q)(ϕ, p∗0,−) ≈ 1− p∗0,−
∫ ϕ

0

dϕ′ a(ϕ′)− p∗ 20,−
∫ ϕ

0

dϕ′
b(ϕ′)

1− p∗0,−
∫ ϕ′
0

dϕ′′ a(ϕ′′)

= h(c)(ϕ, p∗0,−)− p∗ 20,−
∫ ϕ

0

dϕ′
b(ϕ′)

h(c)(ϕ′, p∗0,−)

= h(c)(ϕ, p∗0,−)− 55
√

3

16

∫ ϕ

0

dϕ′ χ(ϕ′, p∗0,−)
∂

∂ϕ′
{

ln
[
h(c)(ϕ′, p∗0,−)

]}

=: h(c)(ϕ, p∗0,−)
[
1− δh(ϕ, p∗0,−)

]
,

(D.10)

and the deviation δh(ϕ, p∗0,−) of the function describing the approximated quantum
process from the classical one is defined. We note here that δh(ϕ, p∗0,−) only occurs
due to the quantum correction in the drift term A(ϕ, p−) of eq. (D.1) and is strictly
positive for all phases ϕ > 0.

Returning to the problem of finding a solution to the Fokker-Planck-like equation,
the combination of eq. (D.6) and eq. (D.8) allows for an analytical solution by means
of the method of characteristics. Setting the initial distribution function to be a
Gaussian centered at x∗0 and with width σx yields

ñe−(ϕ, x) ≈ Nx√
σ2
x +

∫ ϕ
0

dϕ′ c(ϕ′)
exp

{
− [x− x∗(ϕ, x∗0)]2

2
[
σ2
x +

∫ ϕ
0

dϕ′ c(ϕ′)
]
}
, (D.11)

where Nx is a normalization constant.I In turn, eq. (D.11) can be reformulated in
terms of the momentum p− as intended in the beginning,

ne−(ϕ, p−) ≈ Np−√
σ2
x +

∫ ϕ
0

dϕ′ c(ϕ′) p2−

exp




−

[
1
p−
− 1

p∗−(ϕ,p
∗
0,−)

]2

2
[
σ2
x +

∫ ϕ
0

dϕ′ c(ϕ′)
]





=
Np−√

σ2
x +

∫ ϕ
0

dϕ′ c(ϕ′) p2−

exp




−
[
h(q)(ϕ, p∗0,−)

]2 [
p− − p∗0,−

h(q)(ϕ,p∗0,−)

]2

2p2−p
∗ 2
0,−
[
σ2
x +

∫ ϕ
0

dϕ′ c(ϕ′)
]




,

(D.12)

where we employed eq. (D.9) and Np− indicates the normalization factor. As in the
derivation we assumed the approximate solution to be well-peaked, we can further
simplify the distribution function,

ne−(ϕ, p−) ≈ Np−
[
h(q)(ϕ, p∗0,−)

]2
√
σ2
x +

∫ ϕ
0

dϕ′ c(ϕ′) p∗ 20,−

exp




−
[
h(q)(ϕ, p∗0,−)

]4 [
p− − p∗0,−

h(q)(ϕ,p∗0,−)

]2

2p∗ 40,−
[
σ2
x +

∫ ϕ
0

dϕ′ c(ϕ′)
]




,

(D.13)

IThe normalization “constant” evolves, however, itself in phase, since the mean value and the width
of the distribution function are varying. Explicitly, for a distribution normalized to unity, we obtain

Nx =

√π
2

{
1 + erf

[
x∗(ϕ,x∗0)√

2σ2
x+2

∫ϕ
0 dϕ′ c(ϕ′)

]}−1

.
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where we made use of the property p− ≈ p∗0,−/h
(q)(ϕ, p∗0,−).II Finally, we give an

approximate formula describing the evolution of the distribution width including
quantum corrections, where we return from c(ϕ) to the function B(ϕ, p−) and employ
the substitution σx = p∗ 20,−σp− . From eq. (D.13), we can identify the expression
corresponding to the standard deviation of a Gaussian distribution and can expand
the result in the small parameters B(ϕ, p−) and δh(ϕ, p−),

σ(q)
p− (ϕ, p∗0,−) ≈

√√√√σ2
p− +

∫ ϕ
0

dϕ′B(ϕ′, p∗0,−)
[
h(q)(ϕ, p∗0,−)

]4

=

√
σ2
p−[

h(c)(ϕ, p∗0,−)
]4

√√√√√
1 +

∫ ϕ
0

dϕ′
B(ϕ′,p∗0,−)

σ2
p−[

1− δh(ϕ, p∗0,−)
]4

≈ σ(c)
p−(ϕ, p∗0,−)

[
1 + 2δh(ϕ, p∗0,−) +

1

2σ2
p−

∫ ϕ

0

dϕ′B(ϕ′, p∗0,−)

]
,

(D.14)

with the definition of the classically evolving width σ
(c)
p−(ϕ, p∗0,−) given in eq. (3.38).

We recall here that in order for this approximation to be valid, the distribution
function must be well-peaked, i.e., σ � p∗−, throughout the whole interaction and
the corrections have to be much smaller than the leading-order contribution. In the
case of eq. (D.14), this implies that αξζΦLχ

∗ 2 � 1 has to be fulfilled, with the total
laser phase ΦL and the ratio ζ = p∗ 2− /σ

2
p. In addition, the term proportional to

δh(ϕ, p∗0,−) in eq. (D.14) is much smaller than the term proportional to B(ϕ′, p∗0,−)
which contains the additional factor ζ.

IIFor the sake of completeness, we give here the explicit form of the normalization factor: Np− =√π
2

{
1 + erf

[
h(q)(ϕ,p∗0,−)

p∗0,−
√

2σ2
x+2

∫ϕ
0 dϕ′ c(ϕ′)

]}−1

.
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E
Microscopic approach

In this appendix the agreement of the “macroscopic” kinetic approach with the
so-called microscopic approach developed in [Di P 10] is investigated by the com-
parison of the results for the emitted photon spectra. In order to calculate the
photon spectrum in the framework of the microscopic approach, the probability of
the incoherent emission of more than one photon by a single electron is determined.
By an integration over all but one degrees of freedom, the single-photon spectrum
can be obtained. Although the microscopic approach has the advantage of circum-
venting the problem of finding a solution to the kinetic integro-differential equations
(3.17) and (3.18), multi-dimensional integrals have to be evaluated, whose dimen-
sionality rise with an increase in the number of emitted photons. In [Di P 10] the
multidimensional integrals were calculated via the Monte Carlo method and the in-
clusion of up to 16 emitted photons was found to be sufficient for convergence of the
spectrum at the given parameters.

In order to obtain a comparable photon spectrum to this numerical result, we
set the peak intensity to I0 = 1023 W/cm2 I and consider a two-cycle sinusoidal
pulse, i.e., f(ϕ) = sin(ϕ) (ϕf = 4π, ξ = 154), with a pulse duration of about
5 fs and central angular frequency ω0 = 1.55 eV. Furthermore, we have chosen an
initial Gaussian electron distribution centered at p∗− ≈ 2 GeV (corresponding to
ε∗ = 1 GeV considered in [Di P 10]) and a standard deviation of σp− = 0.1 GeV. For
the sake of comparison with the single-particle approach in [Di P 10], we normalized
the electron distribution to unity (N = 1) and the photon spectra are plotted against
the normalized quantity $ = k−/p∗−. In fig. E.1 the numerical result for the final
photon spectrum is shown and the solid, red line corresponds to the quantum photon
spectrum taking into account RR effects, i.e., the incoherent emission of multiple
photons.

By averaging the single-photon emission spectrum (see Eq. (3.16)) with respect to
the initial electron distribution, we can calculate the quantum spectrum without the
inclusion of RR effects. Moreover, the classical spectra without RR can be obtained
in the limit of negligible photon recoil, i.e., k− � p−, by substituting 1 + u ≈ 1 and
u ≈ k−/p− in the single-photon emission probability in eq. (3.16) multiplied by k−.
The analytical solution of p−(ϕ) in eq. (3.32) can be employed, to take into account
RR effects via the LL equation in the classical spectrum. Comparing the quantum
spectrum including RR effects in fig. E.1 (solid, red line) with the solid black line

INote that in [Di P 10] the value of the average intensity is given instead of the peak intensity.
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Figure E.1: Photon emission spectra: quantum spectrum with RR effects (solid, red line),
quantum spectrum without RR effects (long-dashed, dark blue line), classical
spectrum with RR effects (short dashed, light blue line ) and classical spectrum
without RR effects (dot-dashed, green line) [Neit 14].

in Fig. 2 in [Di P 10] reveals that the numerical simulations achieved by the two
different approaches are in excellent agreement [Neit 14].
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J. Verdú, and G. Werth. “High-Accuracy Measurement of the Mag-
netic Moment Anomaly of the Electron Bound in Hydrogenlike Carbon”.
Phys. Rev. Lett., Vol. 85, 5308, 2000.

[Hamm 10] R. T. Hammond. “Relativistic Particle Motion and Radiation Reaction
in Electrodynamics”. Electron. J. Theor. Phys., Vol. 7, No. 23, 221,
2010.

[Hann] D. Hanneke, S. Fogwell, and G. Gabrielse. “New Measurement of the
Electron Magnetic Moment and the Fine Structure Constant”. Phys.
Rev. Lett., Vol. 100, 120801.

[Hart 10] F. Hartemann. High-Field Electrodynamics. Pure and Applied Physics,
Taylor & Francis, 2010.

[Harv 11] C. Harvey, T. Heinzl, and M. Marklund. “Symmetry breaking from
radiation reaction in ultra-intense laser fields”. Phys. Rev. D, Vol. 84,
116005, 2011.

[Hein 13] T. Heinzl, C. Harvey, A. Ilderton, M. Marklund, S. S. Bulanov, S. Ryko-
vanov, C. B. Schroeder, E. Esarey, and W. P. Leemans. “Detecting
radiation reaction at moderate laser intensities”. ArXiv e-prints, Oct.
2013.

[Heis 36] W. Heisenberg and H. Euler. “Consequences of Dirac Theory of the
Positron”. Z. Phys., Vol. 98, 714, 1936.

[Herr 73] J. C. Herrera. “Relativistic Motion in a Uniform Magnetic Field”. Phys.
Rev. D, Vol. 7, 1567, 1973.

[Hu 10] H. Hu, C. Müller, and C. H. Keitel. “Complete QED Theory of Mul-
tiphoton Trident Pair Production in Strong Laser Fields”. Phys. Rev.
Lett., Vol. 105, 080401, 2010.

[Ilde 11] A. Ilderton. “Trident Pair Production in Strong Laser Pulses”. Phys.
Rev. Lett., Vol. 106, 020404, 2011.

[Ilde 13a] A. Ilderton and G. Torgrimsson. “Radiation reaction from QED: Light-
front perturbation theory in a plane wave background”. Phys. Rev. D,
Vol. 88, 025021, 2013.

[Ilde 13b] A. Ilderton and G. Torgrimsson. “Radiation reaction in strong field
QED”. Phys. Lett. B, Vol. 725, 481, 2013.

[Jack 75] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, New
York, 2nd Ed., 1975.

[Jeff 07] A. Jeffrey and D. Zwillinger. Table of Integrals, Series, and Products.
Table of Integrals, Series, and Products Series, Elsevier Science, 2007.

[Kazi 11] P. O. Kazinski and M. A. Shipulya. “Asymptotics of physical solutions
to the Lorentz-Dirac equation for planar motion in constant electromag-
netic fields”. Phys. Rev. E, Vol. 83, 066606, 2011.

89



Bibliography

[Khok 04] M. Khokonov. “Cascade processes of energy loss by emission of hard
phonons”. Sov. Phys. JETP, Vol. 99, No. 4, 690, 2004.

[King 13] B. King and H. Ruhl. “Trident pair production in a constant crossed
field”. Phys. Rev. D, Vol. 88, 013005, 2013.

[Koga 05] J. Koga, T. Z. Esirkepov, and S. V. Bulanov. “Nonlinear Thomson
scattering in the strong radiation damping regime”. Phys. Plasmas,
Vol. 12, No. 9, 093106, 2005.

[Land 75] L. Landau and E. Lifshitz. The Classical Theory of Fields. Course of
theoretical physics, Butterworth Heinemann, 1975.

[Leem 06] W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Toth, K. Nakamura,
C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker. “GeV
electron beams from a centimetre-scale accelerator”. Nature Phys.,
Vol. 2, No. 10, 696, 2006.

[Mack 11] F. Mackenroth and A. Di Piazza. “Nonlinear Compton scattering in
ultrashort laser pulses”. Phys. Rev. A, Vol. 83, 032106, 2011.

[Maim 60] T. H. Maiman. “Stimulated optical radiation in ruby”. Nature, Vol. 187,
493, 1960.

[Malk 12] V. Malka. “Laser plasma accelerators”. Phys. Plasmas, Vol. 19, No. 5,
055501, 2012.

[Muls 10] P. Mulser and D. Bauer. High Power Laser-Matter Interaction. Springer
Tracts in Modern Physics, Springer, 2010.

[Naum 09] N. Naumova, T. Schlegel, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov,
and G. Mourou. “Hole Boring in a DT Pellet and Fast-Ion Ignition with
Ultraintense Laser Pulses”. Phys. Rev. Lett., Vol. 102, 025002, 2009.

[Neit 13] N. Neitz and A. Di Piazza. “Stochasticity Effects in Quantum Radiation
Reaction”. Phys. Rev. Lett., Vol. 111, 054802, 2013.

[Neit 14] N. Neitz and A. Di Piazza. “Electron-beam dynamics in a strong laser
field including quantum radiation reaction”. ArXiv e-prints, March
2014.

[Neru 11] E. N. Nerush, I. Y. Kostyukov, A. M. Fedotov, N. B. Narozhny,
N. V. Elkina, and H. Ruhl. “Laser Field Absorption in Self-Generated
Electron-Positron Pair Plasma”. Phys. Rev. Lett., Vol. 106, 035001,
2011.

[Niki 64] A. Nikishov and V. Ritus. “Quantum processes in the field of a plane
electromagnetic wave and in a constant field”. Sov. Phys. JETP, Vol. 19,
No. 2, 529, 1964.

[Niki 96] A. I. Nikishov. “The Lorentz-Dirac equation in light of quantum the-
ory”. J. Exp. Theor. Phys., Vol. 83, 274, 1996.

[Nobe 65] Nobel Prize in Physics.
http://www.nobelprize.org/nobel\_prizes/physics/laureates/

1965/index.html, 1965.

90



Bibliography

[Pita 81] L. Pitaevskii and E. Lifshitz. Physical Kinetics. Elsevier Science, 1981.

[Prot 97] M. Protopapas, C. H. Keitel, and P. L. Knight. “Atomic physics with
super-high intensity lasers”. Rep. Prog. Phys., Vol. 60, No. 4, 389, 1997.

[Ritu 85] V. Ritus. “Quantum effects of the interaction of elementary particles
with an intense electromagnetic field”. J. Russ. Laser Res., Vol. 6, No. 5,
497, 1985.

[Rohr 02] F. Rohrlich. “Dynamics of a classical quasi-point charge”. Phys. Lett.
A, Vol. 303, No. 56, 307, 2002.

[Rohr 07] F. Rohrlich. Classical Charged Particles. World Scientific, Singapore,
2007.

[Rohr 08] F. Rohrlich. “Dynamics of a charged particle”. Phys. Rev. E, Vol. 77,
046609, 2008.
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