
GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Geosci. Model Dev. Discuss., 6, 3743–3786, 2013
www.geosci-model-dev-discuss.net/6/3743/2013/
doi:10.5194/gmdd-6-3743-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in
Geosciences

O
pen A

ccess

Natural Hazards
and Earth System

Sciences

O
pen A

ccess

Annales
Geophysicae

O
pen A

ccess

Nonlinear Processes
in Geophysics

O
pen A

ccess

Atmospheric
Chemistry

and Physics

O
pen A

ccess

Atmospheric
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric
Measurement

Techniques

O
pen A

ccess

Atmospheric
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate
of the Past

O
pen A

ccess

O
pen A

ccess

Climate
of the Past

Discussions

Earth System
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System
Dynamics

Discussions

Geoscientific
Instrumentation

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and
Earth System

Sciences

O
pen A

ccess

Hydrology and
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess
Solid Earth

Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards
and Earth System

Sciences

O
pen A

ccess

Discussions

This discussion paper is/has been under review for the journal Geoscientific Model
Development (GMD). Please refer to the corresponding final paper in GMD if available.

CUDA-C implementation of the ADER-DG
method for linear hyperbolic PDEs

C. E. Castro1,*, J. Behrens2, and C. Pelties3

1Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D Arica, Chile
2KlimaCampus, University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany
3Department of Earth and Environmental Sciences, Geophysics Section,
Ludwig-Maximilians-Universität, Munich, Germany
*formerly at: KlimaCampus, University of Hamburg, Hamburg, Germany

Received: 27 May 2013 – Accepted: 31 May 2013 – Published: 13 July 2013

Correspondence to: C. E. Castro (ccastro@uta.cl)

Published by Copernicus Publications on behalf of the European Geosciences Union.

3743

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

We implement the ADER-DG numerical method using the CUDA-C language to run
the code in a Graphic Processing Unit (GPU). We focus on solving linear hyperbolic
partial differential equations where the method can be expressed as a combination
of precomputed matrix multiplications becoming a good candidate to be used on the5

GPU hardware. Moreover, the method is arbitrarily high-order involving intensive work
on local data, a property that is also beneficial for the target hardware. We compare
our GPU implementation against CPU versions of the same method observing similar
convergence properties up to a threshold where the error remains fixed. This behaviour
is in agreement with the CPU version but the threshold is larger that in the CPU case.10

We also observe a big difference when considering single and double precision where
in the first case the threshold error is significantly larger. Finally, we did observe a speed
up factor in computational time but this is relative to the specific test or benchmark
problem.

1 Introduction15

Many scientific research directions rely heavily on simulation-based knowledge gain,
because experiments are either too costly or not possible. In those areas, where me-
chanical or fluid-dynamical processes play a role, these simulations often consist of
numerical solutions of partial differential equations (PDEs). In particular, the time re-
quired to obtain the solution is of large importance in the quest for ever more reli-20

able and more accurate research results. While fast and accurate computations can be
achieved by advancement of algorithmic approaches, new hardware has also helped to
solve ever larger and more complex problems. Here we concentrate on the second ap-
proach and employ specialised hardware for reducing computational time. In particular
a General Purpose Graphics Processing Unit (GPGPU) (Owens et al., 2007) demands25

for carefully optimised algorithms but offer large gains in computational performance.

3744

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The NVIDIA Tesla C2070 card for example has a peak double precision floating point
performance of 515 Gflops.

Graphics Processing Units (GPUs) were originally developed to assist the Central
Processing Unit (CPU) of workstation type computers in processing all the data re-
lated to graphics. GPUs are based on the Single Instruction, Multiple Data (SIMD) pro-5

gramming paradigm where one instruction is used to compute a large set of similarly
structured but distinct data, creating an important source of parallelism and therefore
reducing computational time. In recent years, the developers of GPUs realised that
scientific computation could benefit from this hardware architecture to obtain faster nu-
merical solutions at low cost and started producing the GPGPUs together with a more10

user-friendly software interface.
The availability of standardised software and hardware triggered a number of new

GPU implementations of numerical methods solving Navier-Stokes (Asouti et al.,
2011), linear elasticity (Komatitsch et al., 2010; Rietmann et al., 2012; Mu et al., 2013),
or shallow water (Brodtkorb et al., 2012; de la Asunción et al., 2012) equations among15

others. The leading facilities in the current TOP500 list of supercomputers comprise
GPGPU architectures (Meuer et al., 2012), and it is foreseeable that these types of
machines will prevail in the coming years.

In this manuscript we present a numerical implementation of the ADER-DG (Käser
and Dumbser, 2006; Castro et al., 2010) numerical method on the CUDA (formerly20

Compute Unified Device Architecture) parallel programming model from NVIDIA, in
particular in C with CUDA extensions. Other language options are e.g. OpenCL, CUDA-
Fortran, CUDA-Python. We will focus on C-CUDA because it is open and commonly
used. We will use the current generation Fermi-based Tesla card C2070, which sup-
ports double precision IEEE 754 standard floating point arithmetic, to solve a hyperbolic25

linear partial differential equation with variable coefficients of the form

∂u(x,t)
∂t

+
∂f (x,t)
∂x

+
∂g(x,t)

∂y
= 0, (1)

3745

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with f (x,t) = a(x)u(x,t) and g(x,t) = b(x)u(x,t) the flux functions in x and y directions,
respectively. In vectorial notation

∂U(x,t)
∂t

+
∂F(x,t)

∂x
+
∂G(x,t)

∂y
= 0 , (2)

with F(x,t) = A(x)U(x,t) and G(x,t) = B(x)U(x,t) the flux vectors in x and y direction,
respectively. We use an arbitrarily high-order in space and time Discontinuous Galerkin5

numerical method. We said arbitrarily in the sense that the order of the method is an
input parameter in the implementation and that there is no theoretical limit for it. In
practice, the maximum achievable order depends on machine accuracy and is strongly
limited by memory and CPU time resources.

PDE systems of the form (2) represent (between others) the advection of a vector10

U(x,t) as a consequence of a velocity field given by the entries of matrices A(x) and
B(x). This velocity field is space dependent and has not a divergence free constraint.
Equation (2) is used for tracer advection or linear elasticity in its velocity-stress formu-
lation.

The mentioned ADER-DG numerical method has several desired properties: it is15

high-order accurate in space and time and therefore numerical errors are minimized; it
can be implemented on unstructured meshes which allows us to consider complex ge-
ometries; it makes use of a reference spatial coordinate system, where basis functions
are defined, and therefore many integrals can be pre-computed; and it uses a small
stencil to communicate to neighbour elements requiring only direct neighbours for the20

flux computation independent of the applied order. In summary, the discrete version of
the numerical method can be formulated as a set of matrix-matrix multiplication steps
and is therefore a good candidate to be implemented on the GPU hardware.

It should be noted that the method presented is capable of utilizing non-uniform and
unstructured meshes. While in Sect. 4 we present results for triangular meshes, the25

method works for triangular and quadrilateral elements. This is in contrast to many
CUDA implementations, that make use of the simplicity of structured rectangular and
uniform meshes and corresponding computational stencils.

3746

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In this manuscript we try to understand if the GPU implementation of the ADER-DG
numerical method retains the well-known high-order properties documented in Käser
and Dumbser (2006); Castro et al. (2010); Pelties et al. (2010); Hermann et al. (2011);
Pelties et al. (2012); SeisSol (2013) between others.

The manuscript is organized as follows: in Sect. 2 we describe the numerical method,5

in Sect. 3 we briefly describe the hardware and explain the data structure to best fit in
the GPU architecture, in Sect. 4 we show numerical results where we compare and
assess the new CUDA implementation and finally in Sect. 5 we discuss the results and
show the conclusions.

2 Numerical method10

In this section we describe the derivation of the numerical method which follows on pre-
vious developments presented in the literature by Dumbser (2005); Käser and Dumb-
ser (2006); Castro et al. (2010); Pelties et al. (2010); Hermann et al. (2011); Pelties
et al. (2012) among others. The numerical method is constructed based on a spatial
discretization of the physical domain Ω ∈R2 considering a conforming discretization15

where we use super-index i to identify element (triangle or quadrangle) E i ∈Ω. The
p-th component of the unknown vector U(x,t) is approximated using a linear combi-
nation of time-dependent degrees of freedom (dof) ûpl(t) and space-dependent basis
functions φl (ξ,η) which are defined in a reference coordinate system (ξ,η). See Ap-
pendix A for details on the basis functions and mapping from physical to reference20

space coordinate systems. For x ∈ E i we approximate the p-th component of U(x,t)
as

up(x,t) ≈
Nl∑
l=1

ûi
pl (t)φl (ξ,η) , (3)

3747

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with Nl the number of basis functions used to approximate the continuous function
up(x,t) and defined by

Nl =
O(O+1)

2
(4)

where O is the approximation order of the numerical method. In what follows we will
drop the space and time dependences to simplify notation.5

Taking the p-th component of Eq. (2), multiplying by the base function φk which is in
the same space as φl and integrating in space over the i -th element we have∫
E i

φk
[
∂tup +∂xfp +∂ygp

]
dV = 0, (5)

or using the divergence operator∫
E i

φk
[
∂tup +∇ ·hp

]
dV = 0. (6)10

Here hp is the p-th component of H = [F,G]. From the vector calculus identity ∇ ·
(φkH) =φk (∇ ·H)+H · ∇φk and using the divergence theorem we obtain∫
E i

φk∂tupdV −
∫
E i

hp · (∇φk) dV +
∫

∂E i

(
φkhp

)
·ndS = 0. (7)

Using Einstein notation we write hp =
[
fp,gp

]
=
[
Apq,Bpq

]
uq. Expanding the deriva-

tives on the second term in Eq. (7) and ordering them we have15 ∫
E i

φk∂tupdV −
∫
E i

h∗
p ·
(
∇ξφk

)
dV +

∫
∂E i

(
φkhp

)
·ndS = 0, (8)

3748

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with,

h∗
p =
[
ξxApq + ξyBpq , ηxApq +ηyBpq

]
uq

=
[
A∗
pq , B∗

pq
]
uq .

(9)

Here we used the chain rule to expand the derivatives and define ∇ξ = [∂ξ,∂η]. Note
that we use the ∗ upper index to identify the matrices written in the reference space
coordinates. From Eq. (2) we see that A(x) and B(x) are spatially dependent matrices5

therefore we can approximate them in the same manner as Eq. (3) writing

Ai
pq(x) ≈

∑Nm
m=1 Â

i
pqmφm(ξ,η) ,

Bi
pq(x) ≈

∑Nm
m=1 B̂

i
pqmφm(ξ,η) ,

(10)

with Nm =Om(Om +1)/2 where Om ≤O is the approximation order for the matrices.
This means that we can change the approximation order used to represent the wind
field for the advection equation or the material properties in the elastic wave equation.10

See Castro et al. (2010) for sub-cell resolution approximation.
Assuming that the Jacobian of the mapping J = ∂(x,y)/∂(ξ,η) is constant inside

element E i (see Appendix A for details on the mapping) we can easily compute h∗
p

considering that

A∗i
pq ≈ Â∗i

pqmφm and B∗i
pq ≈ B̂∗i

pqmφm (11)15

are obtained from Eqs. (9) and (10). Now we substitute Eqs. (3) and (11) into Eq. (8)
and express the volume integrals in the reference element ER with |J | due to the change

3749

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

in the integration domain,

∂tû
i
plMkl |J | − Â∗i

pqmK
kξ
klmû

i
ql |J | − B̂∗i

pqmK
kη
klmû

i
ql |J |

+
∫

∂E i

(
φkhp

)
·ndS = 0,

(12)

with pre-computed matrices

Mkl =
∫
ER

φkφl dV ,

K kξ
klm =

∫
ER

∂ξφkφlφmdV ,

K kη
klm =

∫
ER

∂ηφkφlφmdV .

(13)

The boundary integral in Eq. (12) is the flux contribution from neighbour elements5

and it is computed using a numerical flux function.

2.1 Numerical flux

The numerical flux for a linear PDE can be expressed as a linear function of the un-
known vectors from the two adjacent elements Ui and Ui j , with j counting the direct

3750

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

neighbour elements as indicated in Fig. 1,

H ·n = [F,G] · [nx,ny] ,

=
[(

A+ |A|
)

2 Ui +

(
A− |A|

)
2 Ui j

]
nx

+
[(

B+ |B|
)

2 Ui +

(
B− |B|

)
2 Ui j

]
ny ,

(14)

where |A| = R|Λ|R−1 with R the right eigenvectors and |Λ| = diag(|λ1|, |λ2|, . . .) a diagonal
matrix with absolute values of the eigenvalues on the diagonal. If we evaluate |A| =
diag(λ+A), with λ+A the maximum positive eigenvalue of matrix A, we obtain the well5

known Rusanov flux (Rusanov, 1970). The same procedure is used for the matrix B.
Using the Rusanov flux the numerical flux function is expressed as

H ·n = 1
2

(
Anx +Bny +S+)Ui

+ 1
2

(
Anx +Bny −S+)Ui j ,

(15)

with S+ = I |nxλ
+
A+nyλ

+
B | and I the identity matrix. Writing Eq. (15) in tensor notation we

have10

hp ·n = 1
2

(
Apqnx +Bpqny +S+

pq
)
ui
q

+ 1
2

(
Apqnx +Bpqny −S+

pq
)
ui j
q .

(16)

Before substituting the Jacobian approximations (10) into Eq. (16) we choose to
evaluate λ+A and λ+B based on the mean value of the corresponding matrices. As a
consequence, S+

pq is not space dependent and only varies on the edge considered

3751

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

in the numerical flux function. For implementation purposes we still use a polynomial
expansion of it but knowing that all but the first degree of freedom Ŝ+

pqm are zeros.
Now the space dependent flux function is written as follows

hp ·n = 1
2

(
Âpqmnx + B̂pqmny + Ŝ+

pqm

)
ûi
ql φlφm

+ 1
2

(
Âpqmnx + B̂pqmny − Ŝ+

pqm

)
ûi j
ql φlφm .

(17)

Finally the boundary integral in Eq. (12) responsible for the flux computation is dis-5

cretized by∫
∂E i

(
φkhp

)
·ndS =

Ns∑
j=1

[
1
2

(
Âpqmn

j
x + B̂pqmn

j
y + Ŝ+

pqm

)
ûi
ql

]
|S j |F j ,0

klm

+
Ns∑
j=1

[
1
2

(
Âpqmn

j
x + B̂pqmn

j
y − Ŝ+

pqm

)
ûi j
ql

]
|S j |F j ,i

klm ,

(18)

where |S j | is the length of the j -th edge and Ns is the number of edges depending
on triangular or quadrilateral elements. The boundary integrals F j ,0

klm and F j ,i
klm are pre-

computed in the reference space coordinates using the parameter χj ∈ [0,1] describing10

3752

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the j -th edge,

F j ,0
klm =

1∫
0

φk(χj)φl (χj)φm(χj)dχj ,

F j ,i
klm =

1∫
0

φk(χj)φ
i j
l (1− χj)φm(χj)dχj .

(19)

Note that F j ,0
klm is responsible for the flux contribution from the element E i while

F j ,i
klm considers the contribution of the neighbour element as the neighbour degrees of

freedom are considered in the second integral by φi j
l (1− χj). Now the semi-discrete5

scheme is written emphasizing the remaining time dependence

∂tû
i
pl (t)Mkl |J | =[
Â∗i
pqmK

kξ
klm + B̂∗i

pqmK
kη
klm

]
|J |ûi

ql (t)

−
Ns∑
j=1

1
2

[
Âpqmn

j
x + B̂pqmn

j
y + Ŝ+

pqm

]
|S j |F j ,0

klmû
i
ql (t)

−
Ns∑
j=1

1
2

[
Âpqmn

j
x + B̂pqmn

j
y − Ŝ+

pqm

]
|S j |F j ,i

klmû
i j
ql (t) .

(20)

3753

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Integrating Eq. (20) in time[
ûi ,n+1
pl − ûi ,n

pl

]
Mkl |J | =

[
Â∗i
pqmK

kξ
klm + B̂∗i

pqmK
kη
klm

]
|J |

tn+1∫
tn

ûi
ql (τ)dτ

−
Ns∑
j=1

1
2

[
Âpqmn

j
x + B̂pqmn

j
y + Ŝ+

pqm

]
|S j |F j ,0

klm

tn+1∫
tn

ûi
ql (τ)dτ

−
Ns∑
j=1

1
2

[
Âpqmn

j
x + B̂pqmn

j
y − Ŝ+

pqm

]
|S j |F j ,i

klm

tn+1∫
tn

ûi j
sl (τ)dτ ,

(21)

we obtain the discrete scheme to update the numerical solution from time level t = tn

to time level t = tn+1 = tn +∆t. The time step ∆t is defined from the stability condition
∆t = CFL ∆x/Smax.5

The time integral

tn+1∫
tn

ûi
pl (τ)dτ is obtained from the Cauchy-Kowalewski procedure

and explained in the following section.

2.2 Time integration

This time integration scheme is based on a local space-time expansion that is valid
inside the element E i for one time step ∆t and is constructed as follows.10

3754

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Writing Eq. (2) in the reference space coordinates, multiplying by the basis function
φk and integrating over the reference element yields∫
ER

φk
[
∂tûp + A∗

pq
(
∂ξuq

)
+B∗

pq
(
∂ηuq

)
+
(
∂ξA

∗
pq
)
uq +

(
∂ηB

∗
pq
)
uq
]

dV = 0.

(22)

Introducing the polynomial approximation defined in Eqs. (3) and (10) we find an
expression for the first time derivative of the degrees of freedom5

∂tû
i
pl (t)Mkl = −

[
Â∗i
pqmK

lξ
klm + B̂∗i

pqmK
lη
klm

+ Â∗i
pqmK

mξ
klm + B̂∗i

pqmK
mη
klm

]
ûi
ql (t) .

(23)

Applying recursively this algorithm we can estimate any order time-derivative using

∂r ûi
pl (t)

∂tr
Mkl = −

[
Â∗i
pqmK

lξ
klm + B̂∗i

pqmK
lη
klm

+ Â∗i
pqmK

mξ
klm + B̂∗i

pqmK
mη
klm

] ∂r−1 ûi
ql (t)

∂tr−1
.

(24)

Now we can approximate the time evolution of the numerical solution for τ ∈ [0,∆t]
using a Taylor expansion10

ûi
pl (t

n + τ) =
O−1∑
r=0

∂r ûi
pl (t

n)

∂tr
τr

r !
(25)

3755

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where O is the order of the numerical method. The time integral of the degrees of
freedom is easily computed from Eq. (25) to obtain

∆t∫
0

ûi
pl (t

n + τ)dτ =
O−1∑
r=0

∂r ûi
pl (t

n)

∂tr
∆tr+1

(r +1)!
. (26)

Using Eq. (26) we can update the numerical solution (21) in one single step from
t = tn to t = tn+1.5

2.3 Sub model

In the previous sections we developed the numerical method to solve Eq. (2) that repre-
sents, for example, the advection of a tracer driven by a velocity field which can accel-
erate and therefore is spatially dependent and non divergence-free. In geophysical sci-
ence, we found another very interesting partial differential equation that represents the10

propagation of seismic waves, written in the form of the linear elastic wave equation. In
its velocity-stress formulation (Virieux, 1984, 1986) is a linear hyperbolic problem which
can not be written in conservative form, instead is formulated in the quasi-conservative
form as presented in Käser and Dumbser (2006); Castro et al. (2010),

∂U(x,t)
∂t

+A(x)
∂U(x,t)

∂x
+B(x)

∂U(x,t)
∂y

= 0 . (27)15

Here, matrices A(x) and B(x) appear outside the respective spatial derivatives. In the
limit case where A(x) ≡ A and B(x) ≡ B are constant, Eqs. (2) and (27) are equivalent.
Otherwise, they represent a different problem and therefore have different solutions.
One can move between both formulations making use of a source term. See LeVeque
(2002) for more details on variable-coefficient linear equations. Here we briefly demon-20

strate the modifications required to accommodate for solving Eq. (27).
It is possible to write Eq. (27) in conservative form by adding the missing part of the

conservative products and therefore introducing a new source term. The final equation
3756

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

which is equivalent to Eq. (27) reads

∂U(x,t)
∂t

+
∂F(x,t)

∂x
+
∂G(x,t)

∂y

=
∂A(x)

∂x
U(x,t)+

∂B(x)

∂y
U(x,t) ,

(28)

with F(x,t) = A(x)U(x,t) and G(x,t) = B(x)U(x,t).
The introduction of the right hand side source term implies two modifications to our

numerical method. First, the time integration scheme from Eq. (24) is replaced by5

∂r ûi
pl (t)

∂tr
Mkl = −

[
Â∗i
pqmK

lξ
klm + B̂∗i

pqmK
lη
klm

] ∂r−1 ûi
ql (t)

∂tr−1
. (29)

Second, the update Eq. (21) needs to be modified incorporating the source contribu-
tion as follows[
ûi ,n+1
pl − ûi ,n

pl

]
Mkl |J | =[

Â∗i
pqmK

kξ
klm + B̂∗i

pqmK
kη
klm

]
|J |

tn+1∫
tn

ûi
ql (τ)dτ

−
Ns∑
j=1

1
2

[
Âpqmn

j
x + B̂pqmn

j
y + Ŝ+

pqm

]
|S j |F j ,0

klm

tn+1∫
tn

ûi
ql (τ)dτ

−
Ns∑
j=1

1
2

[
Âpqmn

j
x + B̂pqmn

j
y − Ŝ+

pqm

]
|S j |F j ,i

klm

tn+1∫
tn

ûi j
sl (τ)dτ

+
[
Â∗i
pqmK

mξ
klm + B̂∗i

pqmK
mη
klm

]
|J |

tn+1∫
tn

ûi
ql (τ)dτ .

(30)

3757

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3 Numerical implementation

3.1 Hardware characteristics, grid, block and thread

In this implementation we use the NVIDIA Tesla C2070 graphic card which has 14
Streaming Multiprocessors (SM) each with 32 Streaming Processors (SP) also called
CUDA cores represented in Fig. 2. While this is the physical distribution inside the5

GPU, a developer needs to design the code considering another abstraction model.
The general outline of the code to be sent to the GPU is following the SIMD (Single
Instruction, Multiple Data) programming model.

In a more detailed view the programming primitives are defined by grids, blocks and
threads as shown in Fig. 3 where finally the CUDA-C functions, called kernels, run.10

Beside this we need to consider resources like global memory, shared memory and
registers among others which are limited in size and bandwidth/latency, see NVidia
(Consulted Nov 2012b) for more details.

Once an algorithm is written in a kernel, multiple versions of the same kernel are
executed acting on different data (in accordance with the SIMD model). On runtime,15

each of these kernels is called a thread and together define the thread block. A thread
block is assigned to a SM to be executed and inside this block the shared memory is
available to all threads. The collection of all blocks is defined by the grid as shown in
Fig. 3. In the same code line where a kernel is called, the CUDA extension symbols
“<<<” and “>>>” are used to define the dimensions of the grid and the block as show20

in Fig. 5.

3.2 Data structure

In order to use the GPU architecture we need to design a data structure such that
numerical algorithms run efficiently. In this manuscript we assume that the main time
loop of our computation can be entirely coded and executed in the GPU memory with-25

out copying data between CPU and GPU memory in runtime. Moreover we mainly

3758

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

consider locality of the data as our means of optimisation. Other more sophisticated
approaches can deal with data alignment, cache miss minimization and many more,
as explained by NVidia (Consulted Nov 2012a).

In Eq. (3) we introduced the polynomial expansion for the unknown vector Up, where
p stands for the p-th component of the PDE, approximating the solution with a linear5

combination of basis function φl and degrees of freedom ûpl , with l representing the
corresponding basis function. The numerical method makes intense use of the degrees
of freedom in the update scheme of one element as expressed in Eq. (21). In order to
use the dofs inside of our GPU algorithm we will store them in one single array of
dimension 2. We call this array dof and the size is [nDof_l, nComp x nElem] .10

The first index correspond to the number of degrees of freedom used to expand the
unknown vector, while the second index is obtained from the number of components of
the PDE times the number of elements in the mesh.

In this form, when this array is stored inside GPU global memory, the
degrees of freedom associated to element E i are stored in the position15

nDof_l * nComp* (i-1) ... nDof_l * nComp* (i) and therefore adjacent in the
memory. We follow the same approach for the degrees of freedom of the Jacobian
matrices in Eq. (11).

3.3 GPU algorithm

The CUDA algorithm used to implement the ADER-DG numerical method is organised20

to be contained in a shared library so we can recycle most of our existing Fortran code.
The new CUDA code is structured in two parts. The first one is the driver which is
called by the Fortran code after all preprocess is performed. The driver is responsible
for preparing the data structure such that to optimise the GPU memory and to upload all
required information into the GPU memory. Schematically this algorithm is represented25

in Fig. 5. We use two kernels to implement the numerical method. The first one is
called TimeIntegrateDof and is responsible for the time integration step (26) and

3759

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the volume integral. The second kernel is called FluxComputation , which depends
on the previous one, and is responsible for the numerical flux computation Eq. (18).

The kernel definition is designed such that we map each element E i to a thread
block in a 2-D array. Each block then is defined to map the degrees of freedom ûi

lp
inside each element as graphically represented in Fig. 3. The parameters dimGrid5

and dimBlock (see Fig. 5) are defined during run time in order to optimize the kernel
execution. Moreover we use two constants that are hard coded in a C header file such
that we can define the size of the shared memory used. These two parameters are the
number of components of the PDE and the number of dof given by Eq. (4).

#define MAX_nCOMP 5 #define MAX_nDOF 2110

In this case we define them for the case of the seismic wave equation and sixth
order method in two spatial dimensions. To construct a more general software one can
consider to use templates but this is out of the scope of the current work.

Using this configuration we use the following C-CUDA intrinsic functions gridDim ,
blockIdx and threadIdx to identify the element (iElem), component (ip) and de-15

grees of freedom (il) inside each kernel.

iElem = blockIdx.y * gridDim.x + blockIdx.x; ip = threadIdx.x; il =
threadIdx.y;

The reader can find the implementation of these kernels as a complementary mate-
rial to this manuscript.20

3.4 Memory consumption

Because our scope is to run this implementation completely inside the GPU, we need
to be sure that the available memory is capable to store all the required information.
To this end we compute the theoretical memory consumption for a 5 component PDE
(linear elasticity in 2-D for example) considering double precision and order of approx-25

imation from first to seventh, that is 1 to 28 degrees of freedom. In Fig. 6 we plot the
3760

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

results where horizontal axis is number of elements and vertical axis is memory. The
maximum GPU memory of the Tesla C2070 cards is 6 Gb therefore we could easily fit
up to 3×109 elements with fifth (p4) order of accuracy.

4 Numerical results

In this section we will discuss the numerical results of our GPU implementation of the5

ADER-DG scheme. For all results obtained from the implemented algorithm we used a
fixed time step obtained from the CFL condition

∆T = min

{
CFL ∆xi

(2O−1)S i

}
for all E i ∈Ω , (31)

with S i the maximum wave speed inside element E i , ∆xi measured as the minimum
distance from the barycentre to the edge of the element and CFL=0.9.10

To assess the proposed implementation we perform several test problems based on
measuring the order of convergence. The empirically determined order of convergence
(with respect to the mesh size) allows us to verify the expected accuracy of the numer-
ical method and to identify code implementation errors. A convergence test is defined
by running a simulation on a sequence of refined meshes k, see Fig. 7 to see three of15

them, and compare the numerical solution at the final time against an exact solution.
Note that finer meshes are not self refinements of coarser meshes.

We start by fixing the order of the numerical method and run the simulation for each
mesh. At final time we measure the error (Ek) of the complete domain Ω comparing
against an exact solution using a suitable norm, for example L1, L2 or L∞. Comparing20

these errors for different mesh spacing (hk) gives us the order of convergence of the
numerical scheme via the expression

O =
log(Ek+1/Ek)

log(hk+1/hk)
. (32)

3761

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.1 Convergence test 1 for advection equation: Constant coefficients

Here we test the convergence properties of the CUDA implementation solving the con-
servative form Eq. (1) applied to the linear advection equation. We scale the periodic
domain to Ω= [−0.5,0.5]× [−0.5,0.5] and define a constant speed setting ax(x) = 1.0
and ay (x) = 1.0, see Appendix C for details of the PDE. The final time is tend = 2.0 such5

that the numerical solution is the same as the initial condition. The initial condition is
defined using a Gaussian function

u(x,y) = aexp

(
−

(x−x0)2

2σ2
x

−
(y − y0)2

2σ2
y

)
, (33)

with a = 0.2, (x0,y0) = (−0.2,−0.2) and σx = σy = 0.05. In Fig. 8 we plot the value of
u(x = 0.2,y = 0.2,t) in time for different meshes for the fourth order method. In black we10

have a reference solution computed with the seventh order method and mesh h = 0.025
(the right one in Fig. 7). We also show the difference between the reference solution
and the numerical solution multiplied by a factor of 10, obtained with the fourth order
method using the three meshes depicted in Fig. 7. We clearly see that the solution with
mesh size h = 0.05 is already very good with an error of the order of 1 %.15

In Fig. 9 we plot the error versus mesh spacing and computational time. We obtain
the expected order of convergence up to seventh order (p6). We observe what seems
to be a threshold around 10−11 where the error does not decrease any further as we in-
crease the order of the scheme or refine the mesh. We also observe that for any given
error level, higher order schemes are more efficient. The segmented line is the result20

from the CPU code. The errors measured for the CPU and GPU implementation are
equivalent up to machine accuracy therefore superimposed on the left side of Fig. 9. On
the right side we see a big difference between these two lines with the CPU implemen-
tation being one order of magnitude more expensive. However, from this comparison
we can not conclude any speed up factor, since no special care was taken to optimise25

the CPU code. A discussion of this fact will be postponed to the conclusions section.
3762

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.2 Convergence test 2 advection equation: Variable coefficients

This test problem has spatial dependent coefficient for the velocity field and a periodic
domain scaled to Ω= [−0.5,0.5]× [−0.5,0.5]. The velocity field is defined using an
auxiliary coordinate system (x′,y ′) rotated in 45◦ counter clock wise from the original
Cartesian coordinates. In this auxiliary coordinate system we define the velocity field5

by

v(x′) = v0 +αcos
(

2πd(x′)

λ

)
, d(x′) = |x′| , (34)

with v0 = 1.0, α = 0.2, λ = 2/
√

2 and d (x′) the distance of a point to the y ′ axis.
Then, this velocity is projected back to the Cartesian coordinates defining ax(x) =
v(x′)cos(π/4) and ay (x) = v(x′)sin(π/4). In Fig. 10 we show the velocity field and the10

auxiliary coordinate system. The final time tend is computed such that the solution co-
incides with the initial condition as

tend =

√
2∫

0

1
v(x′)

dx′ = 1.443375673. (35)

As in test problem 1 we use a Gaussian function (33) to define the initial condition
using a = 0.2, (x0,y0) = (0,0) and σx = σy = 0.05. In Fig. 11 we show the convergence15

results. We observe the expected order of convergence up to a threshold error level
(around 10−9 for the double precision results) where the error reach machine accuracy.
This threshold is in the order of 10−5 for the single precision runs plotted with dashed
lines (SP GPU p3m3 and SP GPU p4m4).

4.3 Convergence test 3 advection equation: A swirling deformation flow20

The following test is adapted from (LeVeque, 1996) and consists of a velocity field that
is space and time-dependent. The main idea is to have a swirling deformation flow that

3763

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

after half the period changes direction to recover the initial condition described by the
following functions

ax(x) = sin(πx)2 sin(2πy)g(t) ,

bx(x) = −sin(πy)2 sin(2πx)g(t) .
(36)

Function g(t) = cos(πt/T) is responsible for the time dependency with T = 1.5 the
period. The initial condition is a Gaussian function (33) with a = 0.5, (x0,y0) = (0.75,0.5)5

and σx = σy = 0.05 and the computational domain is the unit square. We use the same
meshes as presented in Fig. 7. For this test we observe the expected convergence
measured in the L2 and L∞ norm. In this case, as the wind field has space dependency
we also required a high-order representation of matrix coefficients. We plot also in
Fig. 7 the numerical solution obtained from a l semi-Lagrangian code (Behrens, 1996)10

with dashed line.

4.4 Convergence test elastic wave equation

This convergence test problem was obtained from Käser and Dumbser (2006). We
use a square computational domain scaled to Ω= [−50,50]× [−50,50] with periodical
boundaries and evolve the initial condition for one period such that we can compare15

with the exact solution, in this case the initial condition. We run this test fixing the
order of the method, for example second order (P1), over several meshes that were
constructed with increasing number of elements (decreasing mesh size). Figure 14
depicts the results using the model presented in Sect. 2.3 obtained for the seismic
wave equation. On the left we plotted error versus mesh size while on the right error20

against computing time. We compare single (SP) and double (DP) precision runs in
the GPU code and the CPU code from SeisSol (2013). The solid lines are the double
precision runs from second to sixth order method where we see that the expected
convergence is reached (slope of the lines) and is equivalent to the error level obtained

3764

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with SeisSol (segmented lines). Note also that at small error levels, in particular the DP
P5 line reaches a limit where it seems that no further improvements are possible. The
same behaviour is observed for the SeisSol code but with a smaller error. Something
similar happens for the single precision runs (dotted lines) where the errors behave
as expected following the double precision results up to a threshold where the error5

remains the same even if we increase the order of the method or further refine the
mesh. In the right part we plot the error level against the computational time. We can
conclude that for a specific error, say 10−4, a higher order method is more efficient than
a lower order method as it requires less time to reach the same error level. We observe
also that in the region where the single and double precision GPU code generate the10

same error level there is no speed up in the case of single precision. When comparing
computational time between our GPU implementation and the CPU one we observe
that the GPU is faster. This advantage decreases when higher order is used.

Visible is the overhead in a GPU. The time increases in particular when the work load
is low (coarse meshes with low number of elements) and can lead even to higher run15

times than the CPU version. However, this overhead decreases relatively when more
elements have to be computed so that the GPU is fully loaded and becomes more
efficient than the CPU code.

5 Conclusions and future work

In this manuscript we presented a GPU implementation of the arbitrarily high-order20

ADER-DG numerical method considering unstructured meshes in two spatial dimen-
sions. We presented a strategy to adapt memory allocation to the specific hardware.
The implemented code can be easily adapted to other linear hyperbolic equations by
using the CUDA-C library approach.

We found that the expected order of accuracy is reached for the presented test cases.25

We also observe that there is a threshold after which the error can not be reduced.
This is in particular evident when running the GPU code in single precision mode. For

3765

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

computations where very small errors are required, we suggest to use only double pre-
cision implementations. With respect to computational time, we observe that the GPU
code give us a speed up factor comparing against a CPU implementation. The reduced
computational time can be assigned to several components, for example the special-
ized hardware architecture of the GPUs, the implementation effort to optimize the code5

and the benchmark used to measure it. With respect to the latter one we must keep
in mind that a CPU implementation is subject to optimizations as well and therefore
the relative (CPU vs GPU) speed up strongly depends on how much effort was used
to code it. Finally we note that during the GPU algorithm development and implemen-
tation some limited optimizations were necessary due to hardware constraints and to10

respect available resources of the graphic cards.
As a future work we are considering to implement a parallel GPU simulation and

extend this implementation to three spatial dimensions.

Appendix A

Reference coordinate system15

We make use of a reference coordinate system (ξ,η) where the basis functions are
defined using the Jacobian polynomials. If triangular elements are used the reference
element ER is defined by 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1−ξ. If quadrangular elements are used
the reference element ER is defined by 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1.

The mapping between the physical (x,y) and the reference (ξ,η) coordinate system20

is represented by the Jacobian matrix J = ∂(x,y)/∂(ξ,η).

J =
[
xξ xη
yξ yη

]
, J−1 =

[
ξx ξy
ηx ηy

]
, (A1)

3766

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Naming the Del operator in Cartesian coordinates ∇ = [∂x,∂y] and ∇ξ = [∂ξ,∂η] in
the reference coordinates we can write

∇ = ∇ξJ−1 (A2)

For triangular elements J and its determinant |J | are constant. On the other hand on
quadrangular elements J and |J | are constant only for parallelograms.5

Appendix B

L2 projection

We use the L2 projection at time t = 0 to project he initial condition into the time-
dependent degrees of freedom ûi

pl (t = 0) that represent the numerical solution inside

element E i , where x ∈ E i .10

ûi
pl (t = 0) =

∫
ER

up(x(ξ,η),0)φl (ξ,η)dξdη

Ml l
. (B1)

The number of dof used depend on the order of the numerical method that we want
to use with l = 1, . . . ,Nd.

We project the Jacobian matrices Apq and Bpq in the same manner. This is done

once at the beginning of the computation for each element E i and stored. The order15

of the approximation of these matrices is independent of the order of the numerical

3767

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

method therefore we use m = 1, . . . ,Ndm basis functions. For x ∈ E i we use

Âi
pqm =

∫
ER

Apq(x(ξ,η))φm(ξ,η)dξdη

Mmm
,

B̂i
pqm =

∫
ER

Bpq(x(ξ,η))φm(ξ,η)dξdη

Mmm
.

(B2)

The star matrices defined in the volume integral (10) are constructed from Âi
pqm and

B̂i
pqm as follows

Â∗i
pqm = ξxÂ

i
pqm + ξy B̂

i
pqm ,

B̂∗i
pqm = ηxÂ

i
pqm +ηy B̂

i
pqm .

(B3)5

We remark that in this work we restrict to mesh topologies where the Jacobian map-
ping matrix J is constant inside each element. In practice this means that we can use
triangular and quadrangular elements with the later at most need to be parallelograms.

Appendix C

Partial differential equations10

For completeness, here we show the two partial differential equations used to test the
ADER-DG algorithm.

3768

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

C1 The advection equation

The advection equation is an hyperbolic scalar partial differential equation that can
represent the propagation of a tracer driven by a velocity field, see Chapter 2.1 of
LeVeque (2002).

∂u(x,t)
∂t

+
∂f (x,t)

∂t
+
∂g(x,t)

∂t
= 0. (C1)5

with f (x,t) = ax(x)u(x,t) and g(x,t) = ay (x)u(x,t). The space dependent velocity field
is described by its two components ax(x) and ay (x). In this case, when the velocity is
space dependent we can refer to the variable coefficient linear equation, see Chapter 9
of LeVeque (2002).

C2 The elastic wave equation10

The elastic wave equation is an hyperbolic partial differential equation that can rep-
resent the propagation of seismic waves in an elastic medium. In its velocity-stress
formulation reads,

∂U(x,t)
∂t

+A(x)
∂U(x,t)

∂x
+B(x)

∂U(x,t)
∂y

= 0. (C2)

Matrices A and B are the Jacobian matrices and describe the elastic medium where15

the waves propagate. Vector U = [σxx,σyy ,σxy ,ux,uy]T is the unknown vector corre-
sponding to the normal stress in x and y direction, the shear stress and the particle

3769

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

velocities in x and y direction. The Jacobian matrices are

A =


0 0 0 −(λ+2µ) 0
0 0 0 −λ 0
0 0 0 0 −µ
− 1

ρ 0 0 0 0
0 0 − 1

ρ 0 0

 ,

B =


0 0 0 0 −λ
0 0 0 0 −(λ+2µ)
0 0 0 −µ 0
0 0 − 1

ρ 0 0
0 − 1

ρ 0 0 0

 .

(C3)

with ρ the density and λ and µ the Lamé constants. See Käser and Dumbser (2006);
Castro et al. (2010) for further details.

Acknowledgements. This work was supported through the Cluster of Excellence “CliSAP”5

(EXC177), University of Hamburg, funded through the German Science Foundation (DFG).
The co-authors acknowledge funding through Volkswagen Foundation. The first author also
thanks Oliver Kunst for sharing his helpful knowledge on the C++ language and all its mys-
teries. Finally, big thanks to the Numerical Methods in Geosciences group in KlimaCampus.
Thanks also to Alexander Breuer for his comments helping us to improve this work.10

References

Asouti, V. G., Trompoukis, X. S., Kampolis, I. C., and Giannakoglou, K. C.: Unsteady CFD com-
putations using vertex-centered finite volumes for unstructured grids on Graphics Processing
Units, Int. J. Numer. Meth. Fl., 67, 232–246, 2011. 3745

Behrens, J.: An Adaptive Semi-Lagrangian Advection Scheme and its Parallelization,15

Mon. Wea. Rev., 124, 2386–2395, 1996. 3764
3770

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Brodtkorb, A. R., Sætra, M. L., and Altinakar, M.: Efficient shallow water simulations on GPUs:
Implementation, visualization, verification, and validation, Comput. Fluids, 55, 1–12, 2012.
3745

Castro, C. E., Käser, M., and Brietzke, G. B.: Seismic waves in heterogeneous material: subcell
resolution of the discontinuous Galerkin method, Geophys. J. Int., 182, 250–264, 2010. 3745,5

3747, 3749, 3756, 3770
de la Asunción, M., Castro, M. J., Fernández-Nieto, E., Mantas, J. M., Acosta, S. O., and

González-Vida, J. M.: Efficient GPU implementation of a two waves TVD-WAF method for
the two-dimensional one layer shallow water system on structured meshes, Comput. Fluids,
80, 441–452, 2012. 374510

Dumbser, M.: Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws
in Complex Domains, Ph.D. thesis, Universität Stuttgart, Institut für Aerodynamik und Gas-
dynamik, 2005. 3747

Hermann, V., Käser, M., and Castro, C. E.: Non-conforming hybrid meshes for efficient 2-D
wave propagation using the Discontinuous Galerkin Method, Geophys. J. Int., 184, 746–758,15

2011. 3747
Käser, M. and Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic

waves on unstructured meshes I. The two-dimensional isotropic case with external source
terms, Geophys. J. Int., 166, 855–877, 2006. 3745, 3747, 3756, 3764, 3770

Komatitsch, D., Erlebacher, G., Gd̈deke, D., and Michéa, D.: High-order finite-element seismic20

wave propagation modeling with MPI on a large GPU cluster, J. Comput. Phys., 229, 7692–
7714, 2010. 3745

LeVeque, R. J.: High-resolution conservative algorithms for advection in incompressible flow,
SIAM J. Numer. Anal., 33, 627–665, 1996. 3763

LeVeque, R. J.: Finite volume methods for hyperbolic problems, Cambridge, 2002. 3756, 376925

Meuer, H., Strohmaier, E., Dongarra, J., and Simon, H.: TOP500 Supercomputer sites, available
at: http://www.top500.org/list/2012/11/ (last access: November 2012), 2012. 3745

Mu, D., Chen, P., and Wang, L.: Accelerating the discontinuous Galerkin method for seismic
wave propagation simulations using the graphic processing unit (GPU) single-GPU imple-
mentation, Comput. Geosci., 51, 282–292, 2013. 374530

NVidia: CUDA C Best Practices Guide, available at: http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html, last access: November 2012a. 3759

3771

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.top500.org/list/2012/11/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

NVidia: CUDA C Programming Guide, available at: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html, last access: November 2012b. 3758

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E., and Purcell,
T. J.: A Survey of General-Purpose Computation on Graphics Hardware, Comput. Graph
Forum, 26, 80–113, 2007. 37445

Pelties, C., Käser, M., Hermann, V., and Castro, C. E.: Regular versus irregular meshing for
complicated models and their effect on synthetic seismograms, Geophys. J. Int., 183, 1031–
1051, 2010. 3747

Pelties, C., de la Puente, J., Ampuero, J.-P., Brietzke, G. B., and Käser, M.: Three-dimensional
dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured10

tetrahedral meshes, J. Geophys. Res., 117, B02309, doi:10.1029/2011JB008857, 2012.
3747

Rietmann, M., Messmer, P., Nissen-Meyer, T., Peter, D., Basini, P., Komatitsch, D., Schenk, O.,
Tromp, J., Boschi, L., and Giardini, D.: Forward and Adjoint Simulations of Seismic Wave
Propagation on Emerging Large-Scale GPU Architectures, sC12, 10–16 November, Salt15

Lake City, Utah, USA, 2012. 3745
Rusanov, V. V.: On difference schemes of third-order accuracy for nonlinear hyperbolic systems,

J. Comput. Phys., 5, 507–516, 1970. 3751
SeisSol: The SeisSol working group, available at: http://seissol.geophysik.uni-muenchen.de/

(last access: May 2013), 2013. 3747, 376420

Virieux, J.: SH-wave propagation in heterogeneus media: Velocity-stress finite-difference
method, Geophysics, 49, 1933–1957, 1984. 3756

Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference
method, Geophysics, 51, 889–901, 1986. 3756

3772

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://dx.doi.org/10.1029/2011JB008857
http://seissol.geophysik.uni-muenchen.de/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

12 C. E. Castro et al.: CUDA-C implementation of the ADER-DG method

Ei

Eij

n
ij

ûi
pl

û
ij

pl

Fig. 1. Element Ei and its direct jth neighbour Eij . The normal vector nij is defined pointing outward from the jth edge of element Ei.

SM SPTesla C 2070

Fig. 2. Hardware distribution of the CUDA cores in a Tesla C2070 graphic card.

E1 E2 EMgx

ENe−1 ENe

. . .

. . .

.

..
.
..

.

..

Grid definition Block definition

û11

ûNd1

û12

ûNd2

...
...

...

. . .

. . . û1Nc

ûNdNc

thread
ûNd2

Fig. 3. Grid and block definition. We call Mgx the maximum x-direction block number which depends on the GPU used. Here we show the

mapping between blocks and elements of our mesh Ei where one block is assigned to one element. In the same manner each thread block is

assigned to one of the degrees of freedom from Ei.

.

û1

pl ûie
pl û

Ne

pl

� � �

p= 1

p= 2

l = 21 3

.

Fig. 4. Construction of dof to store the degrees of freedom of all elements in one single array inside GPU global memory. Here we see the

example for a pde with 2 components and 3 degrees of freedom to approximate vector U.

Fig. 1. Element E i and its direct j -th neighbour E i j . The normal vector ni j is defined pointing
outward from the j -th edge of element E i .

3773

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

12 C. E. Castro et al.: CUDA-C implementation of the ADER-DG method

Ei

Eij

n
ij

ûi
pl

û
ij

pl

Fig. 1. Element Ei and its direct jth neighbour Eij . The normal vector nij is defined pointing outward from the jth edge of element Ei.

SM SPTesla C 2070

Fig. 2. Hardware distribution of the CUDA cores in a Tesla C2070 graphic card.

E1 E2 EMgx

ENe−1 ENe

. . .

. . .

.

..
.
..

.

..

Grid definition Block definition

û11

ûNd1

û12

ûNd2

...
...

...

. . .

. . . û1Nc

ûNdNc

thread
ûNd2

Fig. 3. Grid and block definition. We call Mgx the maximum x-direction block number which depends on the GPU used. Here we show the

mapping between blocks and elements of our mesh Ei where one block is assigned to one element. In the same manner each thread block is

assigned to one of the degrees of freedom from Ei.

.

û1

pl ûie
pl û

Ne

pl

� � �

p= 1

p= 2

l = 21 3

.

Fig. 4. Construction of dof to store the degrees of freedom of all elements in one single array inside GPU global memory. Here we see the

example for a pde with 2 components and 3 degrees of freedom to approximate vector U.

Fig. 2. Hardware distribution of the CUDA cores in a Tesla C2070 graphic card.

3774

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

12 C. E. Castro et al.: CUDA-C implementation of the ADER-DG method

Ei

Eij

n
ij

ûi
pl

û
ij

pl

Fig. 1. Element Ei and its direct jth neighbour Eij . The normal vector nij is defined pointing outward from the jth edge of element Ei.

SM SPTesla C 2070

Fig. 2. Hardware distribution of the CUDA cores in a Tesla C2070 graphic card.

E1 E2 EMgx

ENe−1 ENe

. . .

. . .

.

..
.
..

.

..

Grid definition Block definition

û11

ûNd1

û12

ûNd2

...
...

...

. . .

. . . û1Nc

ûNdNc

thread
ûNd2

Fig. 3. Grid and block definition. We call Mgx the maximum x-direction block number which depends on the GPU used. Here we show the

mapping between blocks and elements of our mesh Ei where one block is assigned to one element. In the same manner each thread block is

assigned to one of the degrees of freedom from Ei.

.

û1

pl ûie
pl û

Ne

pl

� � �

p= 1

p= 2

l = 21 3

.

Fig. 4. Construction of dof to store the degrees of freedom of all elements in one single array inside GPU global memory. Here we see the

example for a pde with 2 components and 3 degrees of freedom to approximate vector U.

Fig. 3. Grid and block definition. We call Mgx the maximum x direction block number which
depends on the GPU used. Here we show the mapping between blocks and elements of our
mesh E i where one block is assigned to one element. In the same manner each thread block
is assigned to one of the degrees of freedom from E i .

3775

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

12 C. E. Castro et al.: CUDA-C implementation of the ADER-DG method

Ei

Eij

n
ij

ûi
pl

û
ij

pl

Fig. 1. Element Ei and its direct jth neighbour Eij . The normal vector nij is defined pointing outward from the jth edge of element Ei.

SM SPTesla C 2070

Fig. 2. Hardware distribution of the CUDA cores in a Tesla C2070 graphic card.

E1 E2 EMgx

ENe−1 ENe

. . .

. . .

.

..
.
..

.

..

Grid definition Block definition

û11

ûNd1

û12

ûNd2

...
...

...

. . .

. . . û1Nc

ûNdNc

thread
ûNd2

Fig. 3. Grid and block definition. We call Mgx the maximum x-direction block number which depends on the GPU used. Here we show the

mapping between blocks and elements of our mesh Ei where one block is assigned to one element. In the same manner each thread block is

assigned to one of the degrees of freedom from Ei.

.

û1

pl ûie
pl û

Ne

pl

� � �

p= 1

p= 2

l = 21 3

.

Fig. 4. Construction of dof to store the degrees of freedom of all elements in one single array inside GPU global memory. Here we see the

example for a pde with 2 components and 3 degrees of freedom to approximate vector U.

Fig. 4. Construction of dof to store the degrees of freedom of all elements in one single array
inside GPU global memory. Here we see the example for a pde with 2 components and 3
degrees of freedom to approximate vector U.

3776

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

C. E. Castro et al.: CUDA-C implementation of the ADER-DG method 13

Data structure preparation

Upload data to GPU memory

Kernel calls

Fig. 5. Schematic view of the CUDA-C driver function that prepares and uploads the data into the GPU memory before running the time

loop.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

nElem x 106

G
b

m
em

or
y

p0
p1
p2
p3
p4
p5
p6

Fig. 6. Here we see the relation between memory requirements versus accuracy order of the numerical method presented in this manuscript

considering a 5 component PDE and double precision representation for real numbers.

Fig. 7. Meshes used in the convergence test. From left to right we see three meshes with characteristic length h= 0.1, h= 0.05 and

h= 0.025.

Fig. 5. Schematic view of the CUDA-C driver function that prepares and uploads the data into
the GPU memory before running the time loop.

3777

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

C. E. Castro et al.: CUDA-C implementation of the ADER-DG method 13

Data structure preparation

Upload data to GPU memory

Kernel calls

Fig. 5. Schematic view of the CUDA-C driver function that prepares and uploads the data into the GPU memory before running the time

loop.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

nElem x 106

G
b

m
em

or
y

p0
p1
p2
p3
p4
p5
p6

Fig. 6. Here we see the relation between memory requirements versus accuracy order of the numerical method presented in this manuscript

considering a 5 component PDE and double precision representation for real numbers.

Fig. 7. Meshes used in the convergence test. From left to right we see three meshes with characteristic length h= 0.1, h= 0.05 and

h= 0.025.

Fig. 6. Here we see the relation between memory requirements versus accuracy order of the
numerical method presented in this manuscript considering a 5 component PDE and double
precision representation for real numbers.

3778

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

C. E. Castro et al.: CUDA-C implementation of the ADER-DG method 13

Data structure preparation

Upload data to GPU memory

Kernel calls

Fig. 5. Schematic view of the CUDA-C driver function that prepares and uploads the data into the GPU memory before running the time

loop.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

nElem x 106

G
b

m
em

or
y

p0
p1
p2
p3
p4
p5
p6

Fig. 6. Here we see the relation between memory requirements versus accuracy order of the numerical method presented in this manuscript

considering a 5 component PDE and double precision representation for real numbers.

Fig. 7. Meshes used in the convergence test. From left to right we see three meshes with characteristic length h= 0.1, h= 0.05 and

h= 0.025.Fig. 7. Meshes used in the convergence test. From left to right we see three meshes with
characteristic length h = 0.1, h = 0.05 and h = 0.025.

3779

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

14 C. E. Castro et al.: CUDA-C implementation of the ADER-DG method

0.0 0.5 1.0 1.5 2.0
Time [s]

�0.20

�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

0.20

T
ra

ce
r

Reference
Mesh 01
Mesh 005
Mesh 0025

Fig. 8. Time signal for test 1. The black line is the reference solution obtained with mesh 0.025 and seventh order method. The purple, blue

and red lines were obtained using the fourth order method and we plot the difference against the reference solution, multiplied by a factor of

10.

10-310-2

Mesh size

10-12

10-10

10-8

10-6

10-4

10-2

Er
ro

r

101 102 103 104 105

Computational time [s]

10-12

10-10

10-8

10-6

10-4

10-2

Er
ro

r

GPU p2m0
GPU p3m0
GPU p4m0
GPU p5m0
GPU p6m0
CPU p2m0

Linear advection eq. u(1) norm: L2

Fig. 9. Convergence test 1 for linear advection equation. The numerical solutions are named with the order of the method p2 to p6 while m0

represents the approximation order to the background field, in this case is constant.

Fig. 8. Time signal for test 1. The black line is the reference solution obtained with mesh 0.025
and seventh order method. The purple, blue and red lines were obtained using the fourth order
method and we plot the difference against the reference solution, multiplied by a factor of 10.

3780

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

14 C. E. Castro et al.: CUDA-C implementation of the ADER-DG method

0.0 0.5 1.0 1.5 2.0
Time [s]

�0.20

�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

0.20

T
ra

ce
r

Reference
Mesh 01
Mesh 005
Mesh 0025

Fig. 8. Time signal for test 1. The black line is the reference solution obtained with mesh 0.025 and seventh order method. The purple, blue

and red lines were obtained using the fourth order method and we plot the difference against the reference solution, multiplied by a factor of

10.

10-310-2

Mesh size

10-12

10-10

10-8

10-6

10-4

10-2

Er
ro

r

101 102 103 104 105

Computational time [s]

10-12

10-10

10-8

10-6

10-4

10-2

Er
ro

r

GPU p2m0
GPU p3m0
GPU p4m0
GPU p5m0
GPU p6m0
CPU p2m0

Linear advection eq. u(1) norm: L2

Fig. 9. Convergence test 1 for linear advection equation. The numerical solutions are named with the order of the method p2 to p6 while m0

represents the approximation order to the background field, in this case is constant.
Fig. 9. Convergence test 1 for linear advection equation. The numerical solutions are named
with the order of the method p2 to p6 while m0 represents the approximation order to the
background field, in this case is constant.

3781

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

C. E. Castro et al.: CUDA-C implementation of the ADER-DG method 15

x′

y′

−0.5 0.5x

0.5

y

−0.5

1.2

1.0

0.8

Velocity field

Fig. 10. Velocity field for the convergence test 2 including the auxiliary coordinate system (x′,y′).

10-310-2

Mesh size

10-12

10-10

10-8

10-6

10-4

10-2

Er
ro

r

101 102 103 104 105

Computational time [s]

10-12

10-10

10-8

10-6

10-4

10-2

Er
ro

r

CPU p2m2
GPU p2m2
GPU p3m3
GPU p4m4
GPU p5m5
SP GPU p3m3
SP GPU p4m4

Linear advection eq. u(1) norm: L2

Fig. 11. Convergence test 2 for tracer advection equation. On the left we plot the error level versus the mesh size for L2 norm. We observe

the expected convergence for the numerical method of order 3 (p2m2) to 6 (p5m5) using double precision. We show also two runs obtained

with single precision which hit machine accuracy much earlier than the double precision runs.

Fig. 10. Velocity field for the convergence test 2 including the auxiliary coordinate system
(x′,y ′).

3782

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

C. E. Castro et al.: CUDA-C implementation of the ADER-DG method 15

x′

y′

−0.5 0.5x

0.5

y

−0.5

1.2

1.0

0.8

Velocity field

Fig. 10. Velocity field for the convergence test 2 including the auxiliary coordinate system (x′,y′).

10-310-2

Mesh size

10-12

10-10

10-8

10-6

10-4

10-2

Er
ro

r

101 102 103 104 105

Computational time [s]

10-12

10-10

10-8

10-6

10-4

10-2

Er
ro

r

CPU p2m2
GPU p2m2
GPU p3m3
GPU p4m4
GPU p5m5
SP GPU p3m3
SP GPU p4m4

Linear advection eq. u(1) norm: L2

Fig. 11. Convergence test 2 for tracer advection equation. On the left we plot the error level versus the mesh size for L2 norm. We observe

the expected convergence for the numerical method of order 3 (p2m2) to 6 (p5m5) using double precision. We show also two runs obtained

with single precision which hit machine accuracy much earlier than the double precision runs.

Fig. 11. Convergence test 2 for tracer advection equation. On the left we plot the error level
versus the mesh size for L2 norm. We observe the expected convergence for the numerical
method of order 3 (p2m2) to 6 (p5m5) using double precision. We show also two runs obtained
with single precision which hit machine accuracy much earlier than the double precision runs.

3783

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

16 C. E. Castro et al.: CUDA-C implementation of the ADER-DG method

t= 0 t= 0.75 t= 1.5

Fig. 12. Snapshot of the numerical solution test 3. At time t= 0 the initial condition begins to deform due to the flow field. At time t= 0.75
reaches the maximum deformation and the velocity flow change direction to recover the initial condition at time t= 1.5

0.05 0.01 0.002
Mesh size

10-10

10-8

10-6

10-4

10-2

100

Er
ro

r GPU p1m1
GPU p2m2
GPU p3m3
GPU p4m4
GPU p5m5
GPU p6m6
Lagrange

Linear advection eq. u(1) norm: L2

0.05 0.01 0.002
Mesh size

10-10

10-8

10-6

10-4

10-2

100

Er
ro
r GPU p1m1

GPU p2m2
GPU p3m3
GPU p4m4
GPU p5m5
GPU p6m6
Lagrange

Linear advection eq. u(1) norm: Linf

Fig. 13. Convergence Test 3 for the tracer advection equation. We plot the L2 and L∞ norm.

Fig. 12. Snapshot of the numerical solution test 3. At time t = 0 the initial condition begins to
deform due to the flow field. At time t = 0.75 reaches the maximum deformation and the velocity
flow change direction to recover the initial condition at time t = 1.5

3784

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

16 C. E. Castro et al.: CUDA-C implementation of the ADER-DG method

t= 0 t= 0.75 t= 1.5

Fig. 12. Snapshot of the numerical solution test 3. At time t= 0 the initial condition begins to deform due to the flow field. At time t= 0.75
reaches the maximum deformation and the velocity flow change direction to recover the initial condition at time t= 1.5

0.05 0.01 0.002
Mesh size

10-10

10-8

10-6

10-4

10-2

100

Er
ro

r GPU p1m1
GPU p2m2
GPU p3m3
GPU p4m4
GPU p5m5
GPU p6m6
Lagrange

Linear advection eq. u(1) norm: L2

0.05 0.01 0.002
Mesh size

10-10

10-8

10-6

10-4

10-2

100

Er
ro
r GPU p1m1

GPU p2m2
GPU p3m3
GPU p4m4
GPU p5m5
GPU p6m6
Lagrange

Linear advection eq. u(1) norm: Linf

Fig. 13. Convergence Test 3 for the tracer advection equation. We plot the L2 and L∞ norm.Fig. 13. Convergence Test 3 for the tracer advection equation. We plot the L2 and L∞ norm.

3785

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
6, 3743–3786, 2013

CUDA-C
implementation of

the ADER-DG method

C. E. Castro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

C. E. Castro et al.: CUDA-C implementation of the ADER-DG method 17

10-1100

Mesh size

10-8

10-6

10-4

10-2

100

102

Er
ro

r

100 101 102 103 104 105 106

Computational time [s]

10-8

10-6

10-4

10-2

100

102

Er
ro

r

DP P1
DP P2
DP P3
DP P4
DP P5
SP P1
SP P2
SeSl P1
SeSl P2
SeSl P3
SeSl P4
SeSl P5

Elastic wave eq. u(3) norm: L2

Fig. 14. Convergence test of the ADER-DG code applied to the linear elastic wave equation. We compare double precision (DP) and single

precision (SP) of the GPU implementation against the CPU code SeisSol (SeSl) for different order from second (P1) to sixth (P5). In the

vertical axis the error level obtained using the L2 norm. The figure on the left depicts the error against mesh size while on the right the

horizontal axis represents computational time.

Fig. 14. Convergence test of the ADER-DG code applied to the linear elastic wave equation. We
compare double precision (DP) and single precision (SP) of the GPU implementation against
the CPU code SeisSol (SeSl) for different order from second (P1) to sixth (P5). In the vertical
axis the error level obtained using the L2 norm. The figure on the left depicts the error against
mesh size while on the right the horizontal axis represents computational time.

3786

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/3743/2013/gmdd-6-3743-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

