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Abstract

We study the intimate connection between neutrinos and simple abelian gauge sym-
metries U(1)’, starting from the observation that the full global symmetry group of
the Standard Model, G = U(1)p—r xU(1)r,—1, xU(1)L, L., can be promoted to a
local symmetry group by introducing three right-handed neutrinos—automatically
making neutrinos massive. The unflavored part U(1)p_r, is linked to the Dirac
vs. Majorana nature of neutrinos; we discuss the B — L landscape—including lepton-
number-violating Dirac neutrinos—and implications for neutrinos, the baryon asym-
metry, and experiments. Flavored subgroups U(1)" C G can shed light on the pe-
culiar leptonic mixing pattern and mass ordering; we show how normal, inverted,
and quasi-degenerate mass hierarchy can arise from a U(1) in a simple and testable
manner. We furthermore present all U(1)" C G that can enforce viable texture zeros
in the neutrino mass matrices. Beyond G, symmetries U(1)py in the dark matter
sector can give rise to naturally light sterile neutrinos, which provide a new portal
between visible and dark sector, and also resolve some longstanding anomalies in
neutrino experiments. Further topics under consideration are the mixing of vector
bosons with the Z boson, as well as the Stiickelberg mechanism. The latter raises
the question why the photon should be massless—or stable for that matter!

Zusammenfassung

Wir befassen uns mit der innigen Verbindung zwischen Neutrinos und einfachen
abelschen Eichsymmetrien U(1)’, der Feststellung folgend, dass die volle globale
Symmetriegruppe des Standardmodells, G = U(1)p— x U(1),—r, x U(1)L, L.,
nach Einfiihrung dreier rechtshdndiger Neutrinos geeicht werden kann — was Neutri-
nos automatisch massiv macht. Der generationsunabhéngige Teil U(1)p_1, hingt da-
bei mit der Dirac- oder Majorana-Natur der Neutrinos zusammen; wir untersuchen
die B — L Landschaft — Leptonenzahl-verletzende Dirac-Neutrinos eingeschlossen —
und Implikationen fiir Neutrinos, die Baryonasymmetrie und Experimente. Genera-
tionsabhéngige U(1)’ C G konnen die eigentiimlichen leptonischen Mischungs- und
Massenparameter erkléren; wir zeigen wie normale, invertierte und quasi-entartete
Massenhierarchien in einfacher und testbarer Weise durch solche U(1)" erzeugt wer-
den konnen. Des Weiteren bestimmen wir alle Untergruppen U(1)" C G die zu er-
laubten Textur-Nullen in Neutrino-Massenmatrizen fihren. Jenseits von G konnen
abelsche Eichsymmetrien U (1)py im Sektor der dunklen Materie auf natirliche Wei-
se zu leichten sterilen Neutrinos fithren, welche nicht nur ein neues Portal zwischen
dem sichtbaren und dem dunklen Sektor 6ffnen, sondern auch seit langem beste-
hende Anomalien in einigen Neutrinoexperimenten auflosen. Als weitere Themen
behandeln wir die Mischung von Vektorbosonen mit dem Z, sowie den Stiickelberg-
Mechanismus, welcher die Frage aufwirft, warum das Photon masselos sein sollte —
oder stabil!
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Disclaimer

The research presented in this thesis contains original results already published in peer-
reviewed journals. This is indicated at the appropriate places—typically at the beginning of
the chapters—but in essence it comes down to this:

e Chapter 2 contains work published in “Neutrinoless quadruple beta decay” [1] (in col-
laboration with W. Rodejohann) (Sec. 2.3.3) and “Leptogenesis with lepton-number-
violating Dirac neutrinos” [2] (Sec. 2.3.4).

e Chapter 3 contains work published in “Neutrino hierarchies from a gauge symmetry” [3]
(in collaboration with W. Rodejohann) (Secs. 3.1 and 3.2), “Gauged L, — L, symmetry
at the electroweak scale” [4] (in collaboration with W. Rodejohann) (Sec. 3.3), and
“Vanishing minors in the neutrino mass matrix from abelian gauge symmetries” [5] (in
collaboration with T. Araki and J. Kubo (Sec. 3.4), as well as the proceedings found
in Refs. [6,7].

e Chapter 4 is a slightly rewritten version of “Exotic charges, multicomponent dark mat-
ter and light sterile neutrinos” [8] (in collaboration with H. Zhang).

e Appendix A.2 contains almost verbatim the paper “How stable is the photon?” [9].

e In appendix B.2 we present the results from “Kinetic and mass mixing with three
abelian groups” [10] (in collaboration with W. Rodejohann).

In order to keep the thesis pithy and topically coherent, we will not cover all work that
has been published during the course of this Ph.D. (having already displaced potentially
distracting topics adjacent to the main part to the appendices). In particular, we omit a
discussion of the papers

e “Hidden O(2) and SO(2) symmetry in lepton mixing” [11] (in collaboration with
W. Rodejohann)—connecting the small neutrino-mixing parameters Am?2, and 613 with
an approximate global symmetry.

e “Seesaw parametrization for n right-handed neutrinos” [12]—studying the effects of a
varying number n # 3 of right-handed neutrinos in the seesaw mechanism, especially
on neutrino mass anarchy.

e “Sterile neutrino anarchy” [13] (in collaboration with W. Rodejohann)—extending the
neutrino mass anarchy framework to the 3 + 2 scenario of light sterile neutrinos.
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Chapter 1
Introduction

The Standard Model (SM) is the pinnacle of about a century’s worth of particle physics.
Its framework unifies the description of the strong force, responsible for the inner structure
of protons and neutrons, and the electroweak force, which governs radioactive decays and
electromagnetism. It successfully describes physics down to length scales of 10718
sponding to energy scales up to TeV. With the discovery of a Higgs-like particle at the LHC
in 2012 [14,15], the entire SM particle content seems to be accounted for. Nevertheless, the
SM cannot be the final theory, as a number of observations lie beyond its realm. Some of
them, for example neutrino oscillations, can be relatively easy accommodated by extensions
of the SM; others, such as gravity, have proven to be an almost insurmountable obstacle. In
all cases no unique solution to any of the problems exists, spawning a plethora of competing
models which await scrutiny by future experiments. In the mean time we have only Ockham’s
razor—simplicity and minimality—and personal preference to select a solution to work on.
Since the truly minimal explanations offer only limited potential for a whole new thesis, we
will discuss slightly non-minimal scenarios, to be motivated below. We still keep an eye on
simplicity and testability of our models, hoping for either veri- or falsification by experiments.
This thesis is not meant to provide a review of the SM, nor of its shortcomings and solutions
thereof. We will rather introduce only topics and concepts that are of relevance to the orig-
inal work presented in the later chapters, sacrificing generality to conciseness. Reviews can
be readily found, should an interested reader stumble upon this thesis ill-prepared.

The SM is a quantum field theory with gauge group Gsm = SU(3)¢c x SU(2), x U(1)y
and particle content listed in Tab. 1.1. A brief inspection shows that it does not allow for any
gauge-invariant fermion or gauge boson masses;! masses are rather generated by spontaneous
symmetry breaking of SU(2);, x U(1)y to the electromagnetic gauge group U(1)gm by the
vacuum expectation value (VEV) of the Higgs doublet:

H= <go> N (” 8@) , with v/v/2 ~ 174 GeV . (1.1)

m, corre-

This electroweak symmetry breaking (EWSB) generates the masses for the W~ and Z, vector
bosons, but leaves the photon A, massless. Gauge invariance renders some of the scalars
unphysical, and one colloquially says that G~ and Im G° are “eaten” by the massive gauge
bosons, which however just corresponds to a particular choice of gauge fixing. In this unitary
gauge, only the real scalar h = v/2Re G° survives—the famous Higgs particle. Fermion masses

! An arguable exception being an allowed Stiickelberg mass for the hypercharge gauge boson; see App. A for
details of the mechanism and A.2 for a discussion of the induced photon mass.
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gauge group  Qr; uh; dip; Lj eh; H
SU3)e 3 3 3 1 1 1
SU2)r, 2 1 1 2 1 2
ULy pr B B W W

Table 1.1: Ggy = SU(3)¢ x SU(2)r, x U(1)y representations of left-handed fermions and the SM
Higgs H. The generation index j runs from 1 to 3, electric charge after symmetry breaking is Q) =
Ts + Y, and the components of the fermion doublets are denoted as Qr, ; = (ur,j, dz ;)T and L; =

(VJ" eL-,j)T'

arise from the Yukawa couplings
—Lyuk = €rj (ye)j, H Lk +0rj (yu) j H' Quk + dryj (ya)j H'Qri +huc,, (1.2)

where we also defined the conjugate doublet H = —igoH* = (—G*,Gy)T for convenience,
which transforms as (1,2,+1/2). Inserting the VEV (G) = v/+/2 generates the 3 x 3 mass
matrix M, = vy./+/2 for the charged leptons, and

M, = vy /v/2 = (U"R)! ding(m, me, mq) U™,

1.3
My = vya/V2 = (U) diag(mg, ms, mp) U, (13)

for the up- and down-type quarks, respectively.

Let us focus on the quark fields first; as already indicated by the bi-unitary transformation
in the above equation, the mass matrices M, 4 can be diagonalized by rotating the fields to
the mass basis, denoted with primes:

/ _ 77dR / _ rrd / __ TTUR / _TTU
R,j = U_]]devk’ L,] = U]].deJi" uR,] = UijU/R7k, uL,_] = UjkLuLJﬁ’ (14)

U4 being unitary 3 x 3 matrices. This automatically diagonalizes the interactions with the
physical Higgs field A in unitary gauge

—Lyuk D Z mq QR qr, (1+ h/v) +h.c., (1.5)
q=u,d,c,s,t,b

so there are no flavor-changing Higgs interactions. The remaining quark interactions come
from the gauge sector via the coupling to the covariant derivative D,,:

L D @L7j(“p)QL7j +ﬂR7j(UD)uR7]‘ + ERJ(Z']D)C[RJ . (1.6)

The rotations (1.4) of the right-handed quark fields do not change these kinetic terms;
however, if U% # U%, and hence Voxn = UYL (U)T # 1, the doublet structure of
Qr = (ur,dr)” is destroyed and charged-current interactions can jump across families:

Lo %H’Ljy“(VCKM)jkd’Lij+h.c. (1.7)



1.1 Neutrinos Oscillate and Have Mass 7

These are the only flavor-violating interactions of the SM, induced by the unitary Cabibbo—
Kobayashi-Maskawa (CKM) matrix Vegy. Having rewritten all quark interactions in terms
of the physical mass eigenstates, we can drop the primes on the spinors for convenience. Note
that a unitary 3 x 3 matrix has in general 9 parameters—3 mixing angles and 6 phases. All
but one of the phases can however be redefined into the right-handed quark fields, rendering
them unphysical.

Decades’ worth of experiments have provided plenty of information about the CKM matrix,
checking its unitarity, measuring the magnitude of its entries, as well as its CP-violating phase.
Of relevance for us are only the magnitudes [16]

0.974 0.225 0.004
|(Vexm)jul ~ [ 0225 0973 0.041 |, (1.8)
0.009 0.040 0.999

from which we learn that the off-diagonal entries are small, so the mixing matrix of the quark
sector is close to the identity matrix 1. This is to be compared to the leptonic mixing matrix
in the next section, which looks quite different.

Performing analogous rotations in the lepton sector shows that the lack of right-handed
neutrinos vg—or, more generally, the absence of any neutrino mass terms—allows us to
rotate the vy, arbitrarily; in particular, we can rotate them in the same way as ey, keeping
the doublet structure of L = (vp,er)’ intact. As a result, there are no flavor-changing
charged-current interactions in the lepton sector of the SM. We will see in the next section
how this changes once neutrinos are made massive.

1.1 Neutrinos Oscillate and Have Mass

The observation of neutrino oscillations has provided conclusive proof of non-vanishing neu-
trino masses, and hence physics beyond the SM. Our introduction will be the other way
around, showing first how neutrino masses lead to oscillations. At the end of the section we
will also comment on neutrino properties which are unobservable in oscillation experiments.

The addition of any neutrino mass term to Eq. (1.2)—to be defined below—forbids us to
freely perform rotations among the three neutrino families, because it introduces a preferred
basis. Now we need to diagonalize both the charged-lepton mass matrix

M, = vy./V2 = (U*®)" diag(me, my, m,) UL, (1.9)
by rotating to the charged-lepton mass eigenstates
€p; = Uiterk €rj = Usfer (1.10)

and the neutrino mass matrix, defining the mass eigenstates VLJ- = U;,fyL,k. In complete
analogy to the quark sector in the previous section, a mismatch in U and UYE breaks the
doublet structure and leads to flavor-changing charged-current interactions:

9 _ - g _
Lee = %elL,j’VM(UPMNS)jkVIL,kWM + EVILJ'VM(UPMNS)}kelL,kWJ' (1.11)
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The 3 x 3 unitary Pontecorvo-Maki-NakagawaSakata (PMNS) matrix Upyng = UL (UVE)T
is conventionally parametrized using three mixing angles and three phases, absorbing three
unphysical phases into the right-handed charged leptons:

1 0 0 Cc13 0 67i5813 C12 si2 O
Upvmns = | 0 co3  s23 0 1 0 —s12 c2 0| P
0 —8923 (€23 —€i5813 0 C13 0 0 1 1 12)
C12€13 $12€13 8136%5 -
= | —ca3s12 — s93513C12€"  cazcin — s23513512€°  saseis | P
$93512 — C23813C12€™  —sa3c1a — Ca3s13812€™  Cosers

with the Majorana-phase matrix P = diag(1, ei1/2 eiv2/ 2). Here we used the abbreviations
sij = sin 6;; and ¢;; = cos 8;; for the three mixing angles. We will often discard the subscript
PMNS on the mixing matrix U in the following when no confusion is possible.

We can again omit the primes on the fermion fields, having rewritten all interactions in
terms of the physical mass eigenstates. In comparison to the quark sector, it proves convenient
to keep the notion of neutrino flavor, because the neutrino masses are observed to be tiny.
When one of the neutrino mass eigenstates is created via a charged-current interaction (1.11),
it is typically kinematically possible to create all three.? Since the mass differences of the
neutrinos are extremely small, the three coherent neutrino wave packets only slowly run
apart, behaving for a while like one neutrino with a certain flavor. Beta decay will, for
example, create an electron-neutrino ve, which is a linear combination ) ; Uejv; of mass
eigenstates v;. We will denote flavor eigenstates with Greek indices, v, a = e, i, 7, and mass
eigenstates with Latin indices, v;, ¢ = 1,2,3. The conversion between these two sets is just
the PMNS matrix: v, = Uy;v;, using the Einstein summation convention.

1.1.1 Oscillations

The previous paragraph already provided the crucial ingredients for neutrino oscillations, to
which we turn now. We follow the standard derivation below, which has the minor drawback
of being wrong; since it nevertheless leads to the correct result and is quite intuitive, we only
refer to Ref. [18] for a proper treatment involving either wave packets or full quantum field
theory. Our discussion starts with the observation that neutrinos barely interact with the
other particles, and hence with matter. They have couplings to the Z and W~ bosons, and
maybe to the Higgs or some other scalar, depending on how neutrino masses are introduced,
but these scalar couplings are typically highly suppressed. The neutral-current coupling to
the Z has been used to “count” the number of light neutrinos (N, = 2.984 + 0.008 [16]) via
the invisible Z width at LEP—comprising only of Z — 7r in the SM—and is also crucial to
understand elastic scattering of neutrinos in matter. These interactions are however flavor-
diagonal and can therefore not be used to measure leptonic mixing. For neutrino oscillation
experiments, the charged-current interactions from Eq. (1.11) are the relevant ones, as they
allow an incoming neutrino v; to scatter inelastically in matter, producing a charged lepton ¢

2 Atomic decays of a metastable state |e) — |g) + -+ v; +v; can in principle provide energies sensitive to the
neutrino-mass thresholds, visible in the photon spectrum [17]; tiny rates render this approach experimentally
challenging.
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that can be readily detected using standard methods like Cerenkov radiation; the amplitude
for this process would be proportional to Uy and allow us to probe leptonic mixing. However,
as already discussed above, it is very difficult to actually create just a single neutrino mass
eigenstate v;; typically, all three of them will be created coherently, which means we should
take the creation process of the neutrino into account as well.

Starting with the charged-current creation of a neutrino in flavor state v, (to) = Uq;v;(to)
at time ty = 0, the propagation is given by the time evolution of the mass eigenstates

vi(t) = e "Fity;(0), (1.13)

assuming plane waves instead of more appropriate wave packets. Due to the smallness of the
neutrino masses m; compared to typical creation energies £, we can use the ultra-relativistic

limit for the individual energies E; = /|p;|? + m? ~ F+ m?/QE. In this limit, we can also
replace the propagation time t by the distance traveled L ~ t. The probability for detecting
the flavor state v at distance L from the creation is then simply

2
\ . (1.14)

P(ve = ) = | (valva(t) P = |32 Ugje 2P0t
J

Writing out these expressions is bothersome, but let us make note of the most important
properties. First, one of the time-propagation phase factors can be eliminated in this absolute
square, making only mass-squared differences Amgj =m? — mj2 physically relevant. Inserting
the parametrization from Eq. (1.12) shows that the Majorana phases ¢ and o drop out of
the oscillation formula; we will comment later on their possible physical effects. Another useful
form of the oscillation probability (1.14) can be obtained by multiplying-out the absolute
square:

P(va — vg) =0ap — 4> Re (U;Z.UﬁanjU;j) sin (

i>7

Am?jL
4B
(1.15)

AmZ.L
+221m(U;iU5anjU§j)Sin< ;ng )
i>]

The last sum only contributes if the CP phase 0 is not zero, because otherwise all matrix
elements Uy; are real. The name-giving oscillatory behavior in L is apparent from the phase
factors in Eq. (1.14) and the sines in Eq. (1.15). Typical values are Am? ~ 1073 eV? and
E ~ 1GeV, leading to an oscillation length of about a thousand kilometers—an utterly
impressive length for a quantum effect!

With the theoretical description from above in our hands, it seems like all but a minor
experimental issue to actually measure all of the neutrino parameters in Eq. (1.12). The
long time span of about forty years from the discovery of neutrinos to an observation of their
oscillations is however already a testament to the difficulties of this endeavor. The small cross
sections of the charged-current interactions (1.11), e.g. 0¢. =~ 1072 pb (E, /GeV) for neutrino—
nucleon scattering [16], make necessary huge detector targets in order to achieve appreciable
rates. The Super-Kamiokande detector, for example, consists of 50.000 tons of ultra-pure
water with ten thousand photomultipliers at the edge to detect Cerenkov light, and is situated
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parameter best fit 1o 30 range

sin? 019 0.306 + 0.012 0.271-0.346
sin? fo3 (0.446 + 0.007) @ (0.587i8;8§$) 0.366-0.663
sin? 013 0.02297 05075 0.0170-0.0288
Am3, [10~%eV?] 7451019 6.98-8.05
Am3, [1073eV?] (NH) +2.417 £0.013 2.247-2.623
Am3, [1073eV?] (IH) —2.410 £ 0.062 (—2.602)—(—2.226)

Table 1.2: Neutrino oscillation parameters from a global data fit, taken from Ref. [19].

a thousand meters underground to minimize unwanted cosmic-ray backgrounds. Obviously
we cannot do justice to all the impressive experimental efforts to pin down the neutrino
mixing parameters; numerous experiments have probed these oscillation probabilities for
various flavors, distances, and energies, culminating in a consistent set of parameters given
in Tab. 1.2.3

While the mixing angles ¢;; and the absolute values of the mass-squared differences |Am22j
are by now well known, there are only statistically insignificant hints for the CP-violating
phase ¢, which can still take any value from 0 to 27 at 3¢ level. Also unresolved is the
octant of a3 (s33 < 1/2), should data continue to hint at a non-maximal angle (s3; # 1/2).
Furthermore, experiments are not yet able to distinguish the two different possible mass
orderings: normal hierarchy (NH), with Am3;, ~ Am3, > 0, or inverted hierarchy (IH),
with Am%; < 0. The question of the neutrino mass hierarchy is, of course, more than a mere
labeling issue and might be phrased more physically as: Is the mass eigenstate with the largest
electron component (defined as v;) the lightest or the second-to-lightest eigenstate? Solar
neutrino oscillations have already shown that mo > mq, but the ordering relative to v is still
undetermined. Fig. 1.1 illustrate the two hierarchies, which will become important in Sec. 3.1,
where we connect them to abelian gauge symmetries. With only mass-squared differences
accessible in neutrino-oscillation experiments, the actual mass scale, e.g. the mass of the
lightest neutrino, remains unknown. In this regard, one further defines the quasi-degenerate

(QD) neutrino mass regime m; >,/ |Am§1732| ~ 0.05eV. While not yet as precisely measured

as the CKM matrix of the quark sector (Eq. (1.8)), we can nevertheless already conclude
that leptonic mixing looks drastically different, with much larger off-diagonal entries [19]:

0.799-0.844 0.515-0.581 0.130-0.170
|(Uphins)ajlse ~ | 0.214-0.525 0.427-0.706 0.598-0.805 | . (1.16)
0.234-0.536  0.452-0.721 0.573-0.787

3Note that the 1 and 3¢ ranges in Tab. 1.2 correspond to Ax? deviations from the global minimum (at IH).

This leads to reduced intervals around the second (local) minimum (at NH), as can be seen in e.g. Am3;
(NH). Confidence intervals under the prior assumption of a hierarchy can be obtained from the plots in
Ref. [19].
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Normal Inverted

vy I I 0
¢ Am%l
e ——— gl

Am3y e
] Yy
[ %

T Am%l

vy

¢ Am%l
v (I 3

Figure 1.1: Tllustration of normal and inverted mass ordering of neutrinos, left and right, respectively.
The colors illustrate the flavor content |Up;|? of the mass eigenstates v; using the best-fit values from
Tab. 1.2. The p/7 content of 14 2 depends on the CP angle § and lies between the extremal values
9 = 0 (upper rows) and 0 = 7 (lower rows).

The two large mixing angles—and in particular the former compatibility with the values
833 = 1/2, 2, = 1/3, and s?; = 0—have spawned a plethora of theoretical ideas regarding
their origin. For the most part these make use of discrete global symmetries in order to
explain the mixing angles geometrically. For this, the leptons and neutrinos are put into
representations of a non-abelian discrete symmetry such as Sy, Ay, or A(96), while the quarks
and the Higgs transform trivially. The goal is then to break the new symmetry into two
different remnant subgroups, one for charged leptons, one for neutrinos, in order to explain
the mismatch encoded in the PMNS matrix. This symmetry breaking is achieved with a
couple of so-called flavon fields ¢;, which have to obtain VEVs in specific directions of flavor
space; typically, even more fields and symmetries are necessary to achieve the desired vacuum
alignment, i.e. the “angles” between the VEVs (¢;), without fine-tuning. After this, we are
still faced with the problem of connecting the flavon VEVs to the actual lepton mass matrices.
The usual Yukawa couplings employed so far, e.g. e H L, are forbidden by the new symmetry,
so we are forced to consider non-renormalizable effective operators of the form quERfI fL/A
in order to actually generate lepton masses (using the seesaw mechanism (Sec. 2.2.1) for
the neutrinos). Inserting the flavon VEVs, one can then achieve a lepton—neutrino mismatch
of geometrical origin, for example tri-bimaximal mixing: s3; = 1/2, s3, = 1/3, and s}; = 0.
With the recent observation of 613 # 0, the discrete-group ansatz to the lepton flavor problem
has become yet more involved, with a widespread hope to generate a valid 613 by higher-order
corrections. Note that the higher-dimensional operators necessary for this framework might
be obtained from a renormalizable model, at the prize of introducing even more particles and
parameters. Predictivity of the discrete-group ansatz is limited to the neutrino parameters, as
all the newly introduced particles are assumed to be extremely heavy. After this heavily biased
and incomplete diatribe, it should be clear that we will not follow the approach of discrete
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non-abelian global symmetries in this thesis. Instead, we present an alternative based on
continuous abelian local symmetries in chapter 3, which requires just one symmetry-breaking
scalar and a handful of parameters, and is furthermore renormalizable and testable outside
of the neutrino sector. For an equally biased—but in the opposite direction—pedagogical
review of the discrete-group ansatz, we refer to Ref. [20].

Let us also note that some observations hint at deviations from the above three-neutrino
oscillation picture—typically interpreted and explained in a framework with even more neu-
trinos. The PMNS matrix is then promoted to a (3+n) x (34 n) matrix, and the n new states
are assumed to be light, typically eV. Consequently, they would contribute to the invisible
width of the Z boson, which is however strongly consistent with n = 0. The n new light states
of these so-called 3 + n models are hence not allowed to carry any Gsy quantum numbers,
and are therefore referred to as sterile neutrinos [21]. Such light sterile neutrinos will be the
topic of Ch. 4, where a longer introduction can be found.

1.1.2 Mass

Having discussed mixing angles, we turn to masses. Oscillation experiments aside, there are,
of course, other ways determine neutrino properties. One comes from cosmology, where the
nonzero neutrino masses contribute to the energy density of the Universe, leaving imprints
in the cosmic microwave background (CMB) [22]. The relevant quantity here is the sum of
neutrino masses, and recent Planck data, including data from WMAP and baryon acoustic
oscillations, give an upper bound of }>;m; < 0.23eV at 95% C.L. [23]. This limit strongly
depends on the combined data sets and model assumptions, but is still of utmost importance
for the quasi-degenerate neutrino mass regime.

A different upper bound on neutrino masses can be obtained by measuring the end-point
energy of the electron spectrum in beta decays. For massive neutrinos, not all the available
energy in a beta decay (A, Z) — (A, Z+1)+e~ +7, can be transferred to the electron, because
at least the amount AE = m,,_ is needed to create the electron anti-neutrino. Measuring the
highest possible electron energy very precisely can therefore give information about m,,.
From the discussion in this section, it is clear that m,,_ is not the mass of just one mass
eigenstate, but rather a parameter describing the incoherent emission of all three neutrinos.

In terms of our notation from above, this parameter takes the form m,, = />, \Ueij?.
The current limit is m,, < 2.3eV at 95% C.L. [24], but is expected to be improved in the
near future by an order of magnitude by the KATRIN experiment [25].

1.1.3 Neutrinoless Double Beta Decay

In order to introduce the last type of neutrino-mass experiment, we have to take a step back.
Our discussion so far did not require any knowledge about the type of neutrino mass—a
question only relevant for neutral fermions like the neutrino. The conceptually simplest is a
Dirac mass: In direct analogy to the quark sector, we can introduce right-handed neutrino
(RHN) partners vg to the SM in order to write down Yukawa couplings

ALy = —VR;j (Yv);o H Lo +hoc., (1.17)
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leading to an up-type Dirac mass matrix mp = ,v/v/2, and the neutrino mass eigenstates
are Dirac particles of the form v = vy + vg. In this case, the Majorana phases ¢; and
@2 in Eq. (1.12) can be absorbed into the vg fields and are rendered unphysical. In order
to write down the above Yukawa couplings, the vg have to be complete gauge singlets,
i.e. vg ~ (1,1,0), and will therefore not lead to new effects beyond neutrino mass.* Such
Dirac neutrinos will be discussed more thoroughly in the sections 2.1, 2.3.3, and 2.3.4.

A different type of mass term arises because the neutrinos are total singlets under the
unbroken SM group SU(3)c x U(1)gm, allowing for mass terms like m 7§ vy,. Basically, the
neutrinos can form their own right-handed neutrino partners Vg by use of parity-changing
charge conjugation W = (v1,)¢ = v¢ = CvL. The neutrinos are then self-conjugate Majorana
fields of the form v = vy 4+ v§ = v° Even though we apparently did not introduce new
fields to the SM, new physics is still required to generate this Majorana mass, because the
term m 7§ vy, is not invariant under SU(2)y, x U(1)y, but only under the unbroken subgroup
U(1)gm. If the new physics behind the Majorana mass is heavy and can be integrated out, it
will effectively give rise to the fully gauge-invariant higher-dimensional Weinberg operator [27]

Lo = —“ﬁﬁ(zgﬁ)(ﬂuﬁ) +h.c., (1.18)

leading to a Majorana neutrino mass matrix M,z = ga5v2 /A after EWSB, suppressed by
the new-physics scale A at which this operator is induced. Small neutrino masses m; < 1eV
can then be understood as the result of a large scale A > 10™ GeV instead of small Yukawa
couplings ¥, ~ 1071 (m, /1eV).

Seeing as this Weinberg operator is of mass dimension five—and actually the only d = 5
operator of the SM—it would give the dominant next-order term in an expansion of the SM
as an effective field theory below A:

L = L + Oges /A + Ogeg /A + ... (1.19)

Neutrino masses of Majorana type can hence be interpreted as the natural first sign of physics
beyond the SM. No sign of the Oy_¢ operators has emerged yet, which could give rise to
proton decay, an electric dipole moment for the neutron, or lepton-flavor-violating processes
such as p — ey [28], all under thorough experimental scrutiny. We stress that this argument
should not be misunderstood in the way that physics beyond the SM necessarily gives rise
to Majorana neutrinos, as the operator O4—5 could easily be forbidden by symmetries (see
Ch. 2), allowing only for Dirac masses.

The most famous renormalizable realization of the Weinberg operator (1.18), the seesaw
mechanism, will be discussed in Sec. 2.2.1 but is of no importance right now. Let us rather
discuss the physical impact of the Majorana nature and possible differences to the Dirac case.
First off, the Majorana neutrino mass matrix of whatever origin—written in the basis where
the charged-lepton mass matrix is diagonal—takes the form

1
L D —§ﬁi7aMQ5VL75+h.C. (1.20)

“The Yukawa coupling rH'L can also be written down for an SU(2)., triplet vr ~ (1,3,0), which would
bring with it two additional charged particles per generation and hence a more complicated phenomenol-
ogy [26].
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Figure 1.2: Mass parabolas for isobars (4, Z),
following the Bethe-Weizsdcker formula. Masses
of even—even (odd—odd) nuclei lie on the black
(red) parabola. The state (A, Zy — 2) cannot un-
dergo beta decay into (A, Zp—1), but can decay
via 2020 or Ov2[ into the energetically favorable I I I I I >
(A, Zp). The two electrons (in 2020 also the neu- Zo—2 Z Zo+2
trinos) carry away the energy difference Q.

The object 7, ,vr,5 can be shown to be symmetric under the exchange a <> 3, so M is some
complex symmetric matrix. Similar to the Dirac case discussed at the beginning of this section,
a unitary rotation of the neutrino fields v o, = Uoch/L7 ; can be used to diagonalize the mass
matrix M = U*diag(m1, ma, m3)UT. m; is then the mass of the Majorana field vi = (V)5
and we again drop the primes for convenience. The rotation matrix U is again the PMNS
matrix from Eq. (1.12), but with one crucial difference to the Dirac case: The Majorana
phases 1 and o are now physical, because they cannot be absorbed by the “right-handed
fields” W = (v1)¢. They are, of course, still unobservable in neutrino oscillation experiments,
as discussed above, and cosmology as well as measurements of the electron spectrum in beta
decays are similarly insensitive to the Majorana nature of neutrinos.

How does one then distinguish Majorana and Dirac neutrinos? The most promising way to
determine the neutrino nature are neutrinoless double beta decays. Some nuclei with an even
number of protons and neutrons (even—even) are stable against single beta decay (A4, 7) —
(A, Z + 1) + e~ + U,, because the odd-odd daughter nucleus has a lower binding energy
and hence higher mass (see Fig. 1.2 for an illustration), caused by the pairing term in the
semi-empirical Bethe-Weizsécker formula. The stability is however only guaranteed in the

first order of perturbation series, double beta decay
(A, Z2) - (A, Z+2)+2e 427, (2v20) (1.21)

allows the nucleus to skip the forbidden odd—odd state and go straight to the energetically
allowed even—even nucleus at the bottom of the mass-parabola. At quark level, 2028 describes
the process 2d — 2u + 2e~ + 27,. Double beta decay, being second order in the weak
coupling strength Gr = 1/v/2v%, is a highly suppressed process with measured lifetimes
exceeding 10 yr. Now, if neutrinos are Majorana particles, a competing decay channel opens
up, neutrinoless double beta decay

(A, Z) = (A, Z+2)+2¢ (0v28) (1.22)

corresponding to 2n — 2p+2e~ at hadron level or 2d — 2u+2e~ at quark level. Basically,
the Majorana mass term m..Vir, can be interpreted as a vertex at which the electron neu-
trino changes into an anti-neutrino. This allows the neutrino in normal double beta decay
to remain virtual, as can be seen pictorially in Fig. 1.3. In this simple form, the amplitude
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d u
o
Figure 1.3: Neutrinoless double beta decay 0v2f at quark
e level. Only a self-conjugate Majorana neutrino v = 7 can
remain virtual; the cross denotes the Majorana neutrino
d U mass Mee, interpreted as an interaction vertex.

for OIJZﬁ is still second order in G, and furthermore suppressed by the “interaction vertex”
Mee/q S €V/100 MeV—¢ being a typical nuclear energy scale—so it seems hopelessly sup-
pressed compared to the already small 2023. However, the phase space for 0253 is much
larger because fewer particles are emitted, enough to make 023 feasible. Better yet, with at
most some MeV of released energy (the @ value), the recoil of the daughter nucleus is irrel-
evant for the kinematics, resulting in two back-to-back electrons with sharp energy of Q/2.
This is to be compared to the continuous energy spectrum for the 20283 electrons, shown in
Fig. 1.4. The strategy for 025 observation is then to take a large amount of promising nuclei
(i.e. stable against beta decay, large ) value to reduce unwanted radioactive background) and
measure the deposited energy of emitted electrons. A small sharp peak at Q/2 (or @ if the
summed electron energy is taken) is then a sign for the existence of neutrinoless double beta
decay, and ultimately the Majorana nature of neutrinos—a statement that remains valid
independent of the underlying mechanism behind 0243, be it mediation of light Majorana
neutrinos as in Fig. 1.3 or other new physics [29].

Experiments have so far only put lower limits on the 02/ lifetime of various nuclei, which
can be converted into upper limits on the Majorana mass m..viv, with the knowledge of
the relevant nuclear matrix elements. The recent 90% C.L. limit of 7'0725 > 2.1 x 10% yr for

the germanium isotope §3Ge (with @ value ~ 2MeV) by GERDA [30] can for example be
translated into the bound m.. < (0.2-0.4) eV, subject to nuclear-physics uncertainties. In
order to connect this limit to the standard neutrino oscillation parameters, we write out the
ee entry of the Majorana mass matrix M, = U*diag(my, mg, m3)UT using the PMNS matrix
from Eq. (1.12):

Mee = |(My)ee| = Z mj\ = [m1E3Py + Mot s39e™t 4+ mys2yel (272 (1.23)

The last expression clearly shows the dependence of this parameter of the Majorana phases
1 and 9, which finally have a measurable effect. Using the global-fit values for the mixing
angles from Tab. 1.2, one can show that m.. could actually vanish for specific values of the
lightest neutrino mass (miightest ~ 4 meV) and phases, although only for NH. Correspondingly,
even Majorana neutrinos do not necessarily lead to (measurable) 0v23 rates. IH on the other
hand predicts me. = 10726V, potentially testable at future experiments. In the QD mass
regime one finds roughly me. > 4 x 1072 eV and cannot distinguish NH and IH with just
mee alone. There is, of course, more to be said about 0v2f3, be it experimental (status

of current experiments, prospects for the future, nuclear uncertainties) or theoretical (non-
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Figure 1.4: Summed energy spectrum of the
emitted electrons in (neutrinoless) double beta
decay (0v23) 2v25. The 0v2f3 spectral line
(blue) sits at the @ value of the decay, at most ! >
some MeV. The two decay rates are not to scale. Q Energy

standard mechanisms behind 0v23, well-motivated predictions); we refer to Ref. [31] as one
of a number of recent reviews on the subject.

1.1.4 Summary of Open Questions in Neutrino Physics

Neutrino oscillations succeeded in measuring the leptonic mixing angles and neutrino mass-
squared differences (Tab. 1.2), while upper limits on neutrino-mass parameters come from
cosmology, beta-decay, and neutrinoless double beta decay experiments. The unanswered
questions in the neutrino sector are hence:

e What is the absolute neutrino mass scale, e.g. the mass of the lightest neutrino?
e What is the nature of this mass, are neutrinos Majorana or Dirac particles?

e What is the mass ordering, do neutrinos have a normal or inverted hierarchy?

e [s there CP violation in the lepton sector, what are the values of d, @1, and po?
e In which octant lies 653, or can it even be maximal?

The answer to all these questions can, of course, only come from experiment, and at least
some will most likely be answered in the next decade. From the theoretical point of view it
is nonetheless intriguing to speculate about deeper reasons behind these issues, ultimately
trying to motivate or predict an answer and provide connections to other observables or areas
of physics [32]. This is the path taken in this thesis, and the above questions should be kept
in mind while reading the later chapters.

1.2 Baryon Asymmetry of the Universe

Neutrinos are the main focus of this thesis, but along the way we will also come across other
areas in need of physics beyond the SM. Two relevant subjects here are the baryon asymmetry
of the Universe (BAU) and dark matter, which both turn out to be linked to neutrinos and
abelian gauge symmetries in the later chapters of this thesis. We start with an introduction
of the former.
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Antiparticles are a general requirement for a consistent quantum field theory like the SM,
and have been produced and detected in a multitude of ways. Since particles and antiparti-
cles can per definition annihilate, e.g. into photons, our very existence proves that Earth is
composed only of matter, not antimatter. The moon landing has long since confirmed that
the Moon, too, is made of matter instead of antimatter or cheese, and unmanned probes
extend this observation to other planets. The non-annihilation of solar-wind particles with
planets shows that the Sun is really not an anti-Sun. For stars outside our solar system,
the arguments are not as clear; stars and anti-stars look the same, as the spectra of ele-
ments and anti-elements are identical and consist of the same photons. If other regions of
the Universe—be it solar systems, galaxies, or clusters—would indeed consist of antimatter,
we would however expect strong annihilations at the boundary region to the matter part we
know. Non-observations of the signature gamma lines, e.g. 511keV photons from eTe™ — v,
lead us to believe that the whole observable Universe consists of matter. We will work under
this paradigm and refer to Ref. [33] for an overview of antimatter regions in the Universe.

In standard Big Bang cosmology our Universe cooled down to its current state by expansion,
essentially diluting its contents. The Universe thus used to be a hot plasma of particles and
antiparticles in high densities, which have left imprints in certain observables—allowing us
to quantify the matter—antimatter asymmetry at different stages of cosmological evolution.
Note that we define matter today to consist of protons, neutrons, and electrons; seeing as
electric charge is conserved to an incredible degree [16] and the Universe carries very little,
if any, net charge [34], the number of electrons is fixed to the number of protons, allowing us
to talk about a baryon asymmetry rather than a matter asymmetry.

The observed value for the BAU is typically expressed in terms of number densities of
baryons np and antibaryons ng relative to the photon density n.,

np — 7lE§

~6x 10710, (1.24)
today

Ny
or relative to the entropy density s = 272g, T /45:
np — 7lz§

~8x 1071, (1.25)
today

}2313 =
S
g+ being the effective number of degrees of freedom in the Universe at temperature 7. These
asymmetries can be inferred either from Big Bang nucleosynthesis (BBN) [35] or the power
spectrum of temperature fluctuations in the CMB [23,36]. The CMB consists of the photons
left over from recombination at temperature 7" ~ 0.3eV, when electrons and protons first
formed neutral hydrogen and the opaque Universe became clear, while BBN probes the
Universe at a temperature 1" ~ 2 MeV. The consistently determined Y g at these two different
scales is a marvelous confirmation of our nuclear physics and cosmology models.
The dominance of matter over antimatter in our Universe raises the obvious question
about the why, but also about the how: The BAU cannot simply be imposed as an initial
condition for inflationary Big Bang cosmology,” because the energy demnsity of conserved

®Cosmic inflation describes the enormously rapid expansion of our Universe shortly after the Big Bang,

blowing its volume up by a factor (¢5°)® ~ 10™® [37]. Inflation of the small causally connected region gives
rise to the flat, homogeneous, and isotropic Universe we observe (using CMB data), naively without the
need for unnatural fine-tuning (see however Ref. [38] for a critical view).
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baryons would not allow for sufficient inflation [39]. In order to nevertheless obtain matter
dominance, a dynamical generation of the BAU is required. In the standard framework of
CPT-conserving quantum field theories, the conditions for such a dynamical baryogenesis
have been determined by Sakharov [40] to be

e baryon number violation,
e violation of both charge conjugation (C) and charge parity (CP), and
e out-of-equilibrium interactions.

The SM fulfills these conditions qualitatively: Baryon number B is violated by nonperturba-
tive processes in the early Universe (to be explained in Sec. 1.4), C and CP are violated by
the weak interactions and the complex phase in the CKM matrix (1.8), and the expansion
of the Universe provides out-of-equilibrium interactions. The resulting baryon asymmetry is
however orders of magnitude smaller than the observed one [33].

Since the BAU cannot be explained within the SM, this either hints at new particle physics,
or a problem with the assumed underlying inflationary Big Bang cosmology. Since the latter
seems to be in very good agreement with complementary observations of the CMB [23], we
will study some new-physics explanations of the BAU in this thesis (mainly in Ch. 2). As we
will review in Sec. 2.2.2, baryogenesis via leptogenesis can give a simple explanation of the
BAU and at the same time shed light on the small neutrino masses.

1.3 Dark Matter

We come to the third problem unaddressed by the SM relevant for this thesis: dark matter
(DM). Velocity dispersion of galaxies in clusters, unexplainable just with luminous matter,
served as the original hint for non-luminous, i.e. dark, matter. By now, several other ob-
servations apparently confirm this hypothesis, among them gravitational lensing, the Bullet
Cluster, large scale structure, and distant supernovae. Of great importance are further DM
imprints in the CMB, which can be used to accurately measure the density Qpy of DM
today [23]

Qpah? = 0.1199 + 0.0027, (1.26)

given in units of the critical density p. ~ 1072°kg/m? that renders our Universe flat (as
observed), and conventionally multiplied by h%, h ~ 0.67 + 0.01 being the Hubble constant
in units of 100km s~ Mpc~!. The DM density Qpyh? is about five times larger than the
density of baryons, Qph? = 0.02205 4 0.00028, which make up all the stars and galaxies
we observe. The remaining, and by far dominant, part of the energy density today (2 =~
1 —Qpm — Qp ~ 0.7) takes the form of dark energy, and seems to be well-described by
Einstein’s cosmological constant A.

Being particle physicists, we will only be concerned with particle dark matter in this
thesis, more specifically WIMP-like DM [41]. The idea behind this type of weakly interacting
massive particles (WIMPs) is based on the freeze-out mechanism: Let us consider a new stable
particle ¥ with mass myg ~ 10GeV-TeV and some weak interactions with SM particles,
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which are, however, strong enough to keep W in thermal equilibrium with the SM in the
early Universe. As the temperature drops below T ~ myg, ¥ production stops and the
number density ny decreases with an exponential Boltzmann factor e=™¥/T because of W
annihilations into the SM. The expansion of the Universe can however effectively stop this
annihilation by diluting the ¥ gas, which happens when the annihilation rate I' ~ nyo drops
below the Hubble expansion rate H(T") ~ @TQ /Mpy. At this time, typically at temperature
Ty ~ my /20, the DM number density is frozen out, allowing us to calculate the resulting
thermal relic density [42]

0.1pb
-

quh2 ~

(1.27)

In the above we defined the thermally averaged annihilation cross section o = (o(¥¥ —
SM) v), v being the DM velocity. The fact that the observed relic density (1.26) seemingly
requires typical weak (in the SU(2)r, x U(1)y sense) cross sections o ~ 1pb is known as the
WIMP miracle and strongly motivates DM searches around the electroweak scale.

The necessary interactions of the WIMP with the SM can be probed at colliders (looking
for SMSM — WW), indirect astrophysical signals (annihilations YW — SM from e.g. galax-
ies), or in direct detection experiments (scattering of W off recoiling nuclei). The latter are
particularly effective in the WIMP mass region my ~ 10 GeV-TeV, providing strong DM—
nucleon cross-section limits of opy v < 10771079 pb [43]. This puts some pressure on the
WIMP miracle, as the cross sections required for the relic density are orders of magnitude
above these limits. One typical solution of this paradox is a resonantly enhanced s-channel an-
nihilation cross section, e.g. via an intermediate boson X, that does not show up in ¢-channel
direct detection scattering—at the prize of fine-tuning my ~ mx /2.

In this thesis we do not actually set out to solve the DM issue; it just so happens that
several models in chapters 3 and 4—motivated by the neutrino sector—give rise to additional
stable particles, enforced by consistency requirements. The unavoidable occurrence of DM
in these models is particularly intriguing as it points to a deeper connection between the
neutrino and DM sectors.

1.4 Baryon and Lepton Numbers

After the introduction of the three areas of beyond-the-SM physics relevant for this thesis, we
slowly move towards the motivational part. Before turning to the title-giving abelian gauge
symmetries, we will take a look at the abelian global symmetries of the SM.

As already stated above, the Standard Model is a quantum field theory with gauge group
Gsm = SU(3)¢ x SU(2)r, x U(1)y and particle content from Tab. 1.1. The requirement of
gauge and Lorentz invariance severely restricts the allowed terms in the Lagrangian, and
renormalizability of the theory finally cuts down the—still infinite—amount of conceivable
operators to those with mass dimension d < 4. As a result of these theoretical demands, the
SM Lagrangian features a couple of accidental global symmetries. The phases of all quark
fields @), d;, and u;, can be shifted by a common amount without changing the Lagrangian;
the conserved quantity connected to this global U(1)p symmetry by Noether’s theorem is
called baryon number B, and is normalized by assigning B = 1/3 to all quarks—resulting in
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B =1 for the name-giving baryons proton and neutron. The conserved baryon current can
be written in terms of the quark fields as

. _ 1 _ B _
Jp= 2 BU)INTr=2 3 (Qur"Qr +Tmy"un +drydr) ,  (1.28)

fermions f families

with implicit isospin and color contractions.

The SM with massless neutrinos further allows to shift the phases of the lepton fields L;
and ep,; of each generation, leading to the global symmetry group U(1)r, x U(1)z, x U(1),
and the conservation of electron, muon, and tauon numbers L., L,, and L., respectively. The
conserved currents take the form

it = LaY"La + €raY"€Ra - (1.29)
The classical global symmetry group of the SM is hence abelian and given by

U(l)B X U(l)L X U(l)L X U(l)LT . (1.30)

e W

As discussed in Sec. 1.1, neutrino oscillation measurements have by now conclusively proven
that the individual lepton numbers are, in fact, not conserved, and that it is necessary to
extend the SM to account for neutrino masses, but we will postpone a discussion of this for
later and continue on with the SM.

The quantities B, L., L,, and L, are actually not even exactly conserved in the SM with
massless neutrinos, because they are violated by quantum anomalies. Specifically, Adler—Bell—
Jackiw-anomalies [44,45] arise at one-loop level and lead to a non-vanishing divergence of
the classically conserved currents:

3 e? - e? -
Ouity = 0ujt = 30,54 = ————B,,B" — WA A 1.31
nlp wlL mILa 3272 <0052 Oy sin? @y, M ’ ( )
W!f}/ and B, being field strength tensors of SU(2); and U(1)y, respectively, and W;ﬁ, =

%EumgW‘lﬂA and BW = %5“,,&530‘5 their duals. Here we have also defined the total lepton
number L = L. + L, + L.. While B and the L, are no longer conserved, one can easily
identify conserved linear combinations from Eq. (1.31), e.g. B — L and the lepton-number
differences L, — Lg. It is therefore more useful to go to a different basis for the generators
of the classically conserved global SM symmetries (1.30):

U(l)B X U(l)Le X U(l)LH X U(l)LT — U(1)3+L X U(l)B_L X U(l)Le—Lu X U(l)L;L_LT .
(1.32)

This rewriting is somewhat trivial, as we are still describing the same abelian symmetry
group U(1)*, but in this basis all currents except for the B + L current ji, ; = ji + ji in
Eq. (1.31) are conserved. What are then the phenomenological implications of 8,54 4 707
Even though the right-hand side of Eq. (1.31) can be written as a total divergence, the
nontrivial topological group structure of SU(2);, can give rise to a non-vanishing integral
[d*x W;‘VW‘“’ 4 in the action. This integral takes on discrete values for different field config-
urations and divides the vacuum into an infinite number of topologically inequivalent states.
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tr b br
ST, Ve
ST, vy
crL Vr Figure 1.5: One possible effective
twelve-fermion interaction medi-
ated by sphalerons [48], induced by
dp dp wug the effective operator in Eq. (1.33).

There exist nonperturbative effects, so-called instantons, which correspond to quantum tun-
neling between the different vacua, and in effect break baryon number by three units and
the individual lepton numbers by one unit: AB = 3, AL, = 1. Consequently, A(B+ L) = 6,
while B — L and L, — Lg are conserved in these transitions. At zero temperature, these
instanton solutions are suppressed by an exponential factor e~ (dm)?sin? Oy /e?  1()—1T3 [46],
rendering any baryon or lepton number violation in the SM unobservably small.

At nonzero temperature T' £ 0 however, small tunneling rates can be replaced by thermal
fluctuations over the potential barrier between the vacua, and these so-called sphaleron solu-
tions are of utmost relevance in the early Universe to understand the dominance of matter
over antimatter (see Sec. 1.2). Since the nonperturbative instanton or sphaleron solutions
are quite abstract, it is useful to illustrate their effects with an effective operator. Seeing as
the sphalerons are inherently connected to the SU(2);, anomalies of jp and jr (1.31), this
effective operator should involve only (and all of) the chiral doublets @} and Lj, leading us
to

Osphaleron — H QJL jLQjLLj ) (133)

families j

with implicit SU(3)¢ and SU(2), contractions. A diagrammatic example of a possible process
is shown in Fig. 1.5. This twelve-fermion operator indeed violates B + L by six units, but
conserves B — L and L, — Lg, in accordance to our discussion above. A proper analysis shows
that the (B + L)-violating rates are rapid for 7' > my ~ 80 GeV, and that sphalerons are in
equilibrium with the rest of the SM fields for temperatures between the electroweak phase
transition (EWPT) and T ~ 10'2 GeV [47].

To summarize, the classical SM Lagrangian has the global symmetry group U(1)p X
U, xU(1)p, x U(1)r,. B+ L turns out to be not a symmetry at all, since it is vio-
lated at quantum level, leaving us with the actual global symmetry group of the SM

G=U)p- xU()e—r, x UL, L., (1.34)

where we have chosen a specific basis in flavor space. G is more commonly written in terms of
the three non-anomalous quantities B/3 — Ly, as [, U(1)p/3—r, (see for example Ref. [47]),
but we will stick to the above decomposition in this thesis, which just corresponds to different
linear combinations of generators.
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1.5 Motivation of Symmetries

As the last part of this introductory chapter, we finally come to the motivation behind this
thesis. Following some technical arguments we will point out the title-giving connection be-
tween neutrinos and abelian gauge symmetries that will guide us through subsequent chapters.
Though part of the introduction, this section should not be skipped, as it contains results
originally published in the papers “Kinetic and mass mixing with three abelian groups” [10]
(in collaboration with W. Rodejohann) and “Vanishing minors in the neutrino mass matrix
from abelian gauge symmetries” [5] (in collaboration with T. Araki and J. Kubo).

In the last section we have rederived the well-known result that the SM has the global
abelian symmetry group G = U(1)p— xU(1)r, -1, XxU(1)z,—L,. Now, seeing as G is already
an anomaly-free global symmetry of the SM Lagrangian, it is tempting to try to promote it to
a local symmetry, following the enormous success of the gauge principle in the SM. As a local
symmetry, G gives rise to additional triangle anomalies (to be discussed below), which neces-
sitate the introduction of new anomaly-canceling chiral fields. As we will show below (and
pointed out in our paper [5]), it suffices to introduce just three right-handed SM-singlet neu-
trinos vg to cancel all arising anomalies and gauge G. This automatically results in massive
neutrinos, alleviating one of the major shortcomings of the Standard Model. We can take this
as an a posteriori motivation that our promotion of the non-anomalous global symmetries to
local symmetries is worthwhile and goes in the right direction; however, the connection be-
tween these symmetries and neutrinos goes actually beyond the mere introduction of RHNs,
as we will show in this thesis.

Anomalies in global symmetries like B are not problematic and simply show that the sym-
metry is broken, but anomalies in local symmetries would destroy gauge invariance and the
renormalizability of the theory. It is therefore important to ensure a cancellation of the chiral-
fermion contributions to one-loop triangle diagrams like Fig. 1.6.5 Attaching gauge bosons
with group indices a, b, and ¢ to the triangle diagrams, one can show that the amplitudes
are proportional to an anomaly coefficient

tr [(TRTR + TRTR) Th) (1.35)

where T3 denotes the generating group matrix for the left-handed fermions in the (reducible)
representation R.” For an anomaly-free U(1) gauge group, this simply means that the cubes
of all charges have to sum to zero (3. Q% = 0), which unfortunately looks a little more
complicated for non-abelian gauge groups (1.35). A different potential anomaly arises from
the coupling to gravity [50], proportional to tr[T}%]. Since only the matrix generators of abelian
groups have non-vanishing traces, the absences of gravitational anomalies simply requires the
charges of all U(1) gauge group factors to sum to zero (3> @ = 0). The SM gauge group Gsm
with field content from Tab. 1.1 is, of course, non-anomalous, albeit not obviously so [51];
the seemingly miraculous anomaly cancellation per fermion generation can be attributed

5An alternative would be the implementation of the Green-Schwarz mechanism [49] to cancel anomalies.
Since anomaly-canceling fermions turn out to have far more interesting/testable effects, we will not discuss
this here.

"Here we take all fermions to be left-handed, which can be trivially realized by rewriting any right-handed
PR as a left-handed charge conjugate ¢r = (V)¢ = UG = C\I/_RT.
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v

Figure 1.6: Triangle diagram
e relevant for gauge anomalies.
The polarization vectors £, be-
long to gauge bosons X with

o

€ group index a.

to an embedding of the SM gauge group Ggy into a non-abelian group such as SO(10),
each family forming an irreducible representation, e.g. 1650(19). While such Grand Unified
Theories (GUTs) also often lead to additional abelian factors Ggy x U(1)" at intermediate
stages of symmetry breaking, the phenomenology and underlying motivation is quite different
from the abelian gauge symmetries discussed in this thesis, and will not be discussed further.

Let us rather go back to our well-motivated group G from Eq. (1.34) and discuss the arising
anomalies in an SM extension by one of the U(1) C G factors, starting with U(1)p_r. We
are required to introduce particles beyond the SM to gauge B — L, as can be seen already by
the non-vanishing anomaly involving only B — L gauge bosons

AU =S B-1P =Y B -3 17

e (3 (5)"+ ()

:—Ng7

+N, [2 x (—1)3 + (+1)3] (1.36)

with the number of generations N, = 3 and number of colors N¢ = 3. Extending the SM
particle content of Tab. 1.1 by three RHNs v ~ (1,1,0)—carrying lepton numbers L, = 1,
L, =1, and L, = 1, respectively—contributes AA {U(l)%_L} = 3 x (+1) and successfully
cancels the anomaly. The gravitational anomaly is similarly canceled by the RHNs vg:
AUM)pr]=> (B-L)=> B-> L
1 1 1
— N,N¢ [2 x <§) + <—§) + <—§>} + Ny [2 % (=1) + (+1)] + 3 x (+1)
=0.
(1.37)

This leaves us with the anomalies involving SM gauge bosons, which do not couple to the
SM-singlets vg. It is already clear from Eq. (1.31) that there cannot be any cross-anomalies
of B — L with the SM, because the current jp_j, is exactly conserved even at quantum level.
Still, we will calculate some anomaly-coefficients explicitly, if only for illustration purposes.
We start with the triangle anomaly with two SU(3)c gauge bosons

A[SUBRUWE-L] = 3 (B-L)

quarks

— N,Nc {2 x (%) + (%) N (_%)] (1.38)

:()7
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two SU(2)1, gauge bosons

A[SURUWEL] = 5 (B-L)=NNe () +Ny(-1) =0, (139)
doublets

two hypercharge gauge bosons

A[UWFUW)p| =3 V(B -1)=0, (1.40)
and, finally, one hypercharge gauge boson

AUy U3 | =3 Y(B-L?=0. (1.41)

With the above equations, we have proven the well-known fact that Ggy x U(1)p—p, is a
consistent anomaly-free theory once three RHNs are introduced. Let us move on to the other
U(1) factors in G, which couple to lepton-number differences L, — Lg (1.34). This time we
omit the calculation of the cross-anomalies with the SM, which cancel due to Eq. (1.31). This
leaves

AU, =Y La—Lp)* = > Li- Y =0, (1.42)

« leptons [ leptons

and

AU, =Y (La=Lo)= Y La— Y. Lg=0. (1.43)

« leptons [ leptons

One of the lepton number differences L, — Lg can therefore be consistently gauged in addition
to the SM. This actually works even without the RHNs, as shown long ago [52-54], making
U(1)L, -1, the only new symmetry that can be gauged with the SM particle content.

So far, we have shown that every factor of the non-anomalous global symmetry

Q = U(l)B_L X U(l)Le—Lu X U(l)L;L_LT7 (144)

and by extension every U(1) subgroup of G, can be promoted to a local symmetry once right-
handed neutrinos are introduced. It has to our knowledge never been emphasized, though,
that the vp are already enough to make the entire group Gsm X G anomaly free. Having
already shown that all the cross-anomalies of G with the SM cancel, we only have to consider
cross-anomalies within G, following our papers [5,10]. We show the purely leptonic part

S(La—Lg)*(Ls—Ly) = > Li=2x(+1)*+(-1)* +(-1)* =0, (1.45)
3 leptons
> (La—Lg)(Lg—L)>=— > Ly=0, (1.46)
3 leptons
> (La—Lg)(Lg—Ly)Y =— > L3Y =0, (1.47)
5 leptons

and the anomalies involving B — L:

S>(B-L)(La—Lg?x > Lg=2x(+1)+(-1)+(-1)=0, (1.48)

3 leptons
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> (B—-L)(La—Lg)(Lg—Ly)= > Lj=0, (1.49)
[ leptons
>(B-L)(La-Lg)Y = > (B-LY- Y (B-LY=0, (1.50)
« leptons 3 leptons
> (B-LP(La—Lg)= >, (B=L?*- > (B-L)’=0, (1.51)
« leptons /3 leptons

where the last two relations follow from the universality of Y and B — L [10]. This means
that the full global symmetry group of the SM

Q:U(l)B_L X U(l)Le_L;L XU(l)LH_LT, (152)

can be promoted to a local symmetry group just with the introduction of three right-handed
neutrinos. Before diving into the physical implications of this result, let us make two technical
comments about the obtained result:

e First, note that even though we can formally consider the much larger group

Gsm X U()B—aoLe—zpLy—arLr X U(D)y,LotyuLytyr Ly

1.53
X U(l)LS_L;L X U(]‘)L;L_LT X U(]‘)LT_Le ( )

and show that it is anomaly-free for Y x, = 3 and >_ y, = 0, the decompositions

Le—L;=(Le— LM) + (LM — LT) , (1.54)
YeLe + yuLM - (ye + yu)LT = ye(Le - LM) + (ye + yu)(Lu - LT) ) (1'55)

and

B—x.Le—x,L, — (3 —xe—x,)Lr

—(B=L)+ (1 —2)(Le— L) + (2 —2e —2,)(Ly — Ly) (1.56)

show that the generators of the five new abelian groups are not independent, and only
two of the lepton-number differences can be gauged. Stated in another way: One of the
gauge bosons of U(1)r,—r, x U(1)r,—r, x U(1)L, 1, can be rotated away, i.e. made
non-interacting, so it suffices to consider U(1)r, -1, x U(1)r, -1, (with kinetic mixing).
The same argument holds for the other linear combinations.

e Second, there is a more elegant way to derive all the vanishing anomalies. By taking
another basis for the flavor-dependent part of G (acting on three-dimensional flavor
space), namely

L.— L, =diag(1,-1,0), (Le—Ly)+2(L,— L) =diag(1,1,-2), (1.57)

we see that these two generators form the Cartan sub-algebra of a rank-2 SU(3),. In
fact, putting the leptons in the representations

(Ley Ly L)Y ~ 30, (erypiry ) ~ 30, (VResVRusvRA). ~ 30, (1.58)
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immediately shows that they form a vector-like representation of SU(3), so the anomaly
A[SU(3)3] vanishes in direct analogy to the quarks in SU(3)c. Anomalies with other
nonabelian group factors vanish trivially, so the only possible anomalies are

AISUBRU()y] =S¥ =3 x [2Y (L) + Y(€5)] = 0.
3

ASUB)ZU(W)p-1] =) (B—=L)=3x[2(=1) + (+1) + (+1)] = 0,
3¢

(1.59)

which means that Ggy X U(1) g1, x SU(3), is anomaly-free. Since the SU(3), is badly
broken by the Yukawa couplings in the charged lepton sector—seeing as electron, muon,
and tauon have vastly different masses—we will not use it in the following. This is not
to say that a discussion of SU(3), might not be worthwhile, but is beyond the scope of
this thesis.

After many technical arguments, we can finally summarize our motivation for this thesis:
We have shown that with the introduction of just three right-handed neutrinos vg, the full
global symmetry group U(1)? of the SM can be promoted to a local symmetry group, i.e. that

SU(?))C X SU(?)L X U(l)y X U(l)B_L X U(l)Le—Lu X U(l)LH_LT7 (160)

Gsm G

is free of anomalies. The remainder of this thesis is devoted to a discussion of this abelian
gauge group or subgroups of G, but let us make a couple more comments:

e The three v will couple to the left-handed lepton doublet L via typical Yukawa cou-

plings 7r; (yv) ol "L, giving rise to a Dirac mass matrix for the neutrinos mp =
yu(H) (see Secs. 1 and 1.1). Gauge invariance under G only allows for a diagonal mp,
and the charged-lepton mass matrix M, is automatically diagonal as well. Neutrinos
are hence massive, but do not miz, which shows that at least the flavored gauge group
factor U(1)r,—r, x U(1)r, L, has to be broken. The specifics of this breakdown can
however shed light on various neutrino properties, as we will show in chapter 3.

Every U(1)’ subgroup of G, generated by a linear combination Y’ = «(B — L)+ 3(Le —
L,) +~v(L, — Ly), is in itself a well-motivated anomaly-free gauge-group extension of
the SM, which can be envisioned as the last step of a full breakdown G — nothing. We
will only work with such U(1)" subgroups, as they are simpler to handle and already
give rise to fascinating phenomenology.

Our derivation of G involved symmetries that act on SM fields. It is, of course, trivial to
extend Gy by a gauge group Gpy under which the SM particles are uncharged, Gpum
typically being connected to dark matter. Even though the SM fields are uncharged
under Gpr, this can still lead to interesting phenomenology, and we will show in chap-
ter 4 that an intimate connection to neutrinos can arise even in this case. Neutrinos
are good mediators to the Gpyr sector because they are gauge singlets of the unbroken
SM group SU(3)¢ x U(1)gMm, and can therefore mix with gauge-singlet fermions of the
(broken) group Gpm.
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All of this should suffice as an introduction and motivation for this thesis. In the next
chapter, we will discuss the unflavored G subgroup U(1)p_ in its various phases: unbroken
exact B — L in Sec. 2.1, the more commonly discussed case of Majorana B — L (B — L
spontaneously broken by two units) in Secs. 2.2.1 and 2.2.2, and finally our very own Dirac
B — L in Secs. 2.3.3 and 2.3.4, where B — L is broken spontaneously by four units, giving
rise to Dirac neutrinos with lepton-number-violating interactions. This chapter connects the
very nature of neutrinos, i.e. whether they are Dirac or Majorana fermions, to an abelian
gauge symimetry.

Chapter 3 is devoted to a discussion of flavor-dependent U(1)" subgroups of U(1)p_1 %
U(1)p.—r,xU()r, L., which can help us to understand the peculiar leptonic mixing pattern
and neutrino mass hierarchy in a very simple manner. In its most extreme case, such an
abelian gauge symmetry can even enforce texture zeros in the neutrino mass matrix, leading
to testable relations in the mixing parameters (Sec. 3.4). In all cases, the abelian gauge
symmetries are connected to neutrino properties and the employed models are particularly
simple and testable.

The above-mentioned possibility of gauge groups Gpym not acting on SM fermions will be
discussed in chapter 4. Following the title of this thesis, we are only concerned with abelian
gauge groups Gpm = U(1)pum. Despite the fact that the SM fermions do not couple to
Gpm, the new force can have very interesting consequences for neutrino physics, and can in
particular provide a natural explanation for new light sterile neutrinos at the eV scale.

We will briefly summarize our findings in Ch. 5, together with an outlook. Longer con-
clusions can be found at the end of each individual chapter, or even section. Some topics
(and associated original work) that are not directly related to the topic of this thesis, but
not far off either, have been put in the appendix in an effort to improve readability. App. A
introduces the Stiickelberg mechanism for abelian gauge boson masses. While we will use
this mechanism in the main text in our discussion of unbroken B — L (Sec. 2.1), it primarily
serves as a motivation for the paper “How stable is the photon?” [9] in App. A.2, where we
employ it to motivate a finite photon mass (and lifetime). App. B on the other hand deals
with kinetic mixing, and Z—Z' mixing in general. Based on the paper “Kinetic and mass
mixing with three abelian groups” [10] (in collaboration with W. Rodejohann), it is actually
very relevant to the topic of (multiple) abelian gauge symmetries discussed in this thesis, but
has by itself little to do with neutrinos. As such, it might be too distracting if included in
the main text. We urge the reader to peruse these appendices with the same commitment as
the main text.






Chapter 2
Unflavored Symmetries

Having motivated an abelian gauge group extension
GSM — GSM X U(l)B,L X U(l)LefL# X U(l)L#,LT = GSM X G (2.1)

in Sec. 1.5, we devote this chapter to an overview of U (1) g_r,, the unique unflavored subgroup
of G. Because of its generation-independent couplings, B — L is incapable to shed light on
the peculiar leptonic mixing pattern (Sec. 1.1); B — L is, however, connected to the very
nature of neutrinos. We identify three distinct possibilities for the gauge group U(1)p_1,
each with fascinating implications, especially for neutrino physics. Although rarely presented
in this manner, the discussions of unbroken B — L in Sec. 2.1 and “Majorana B — L” in
Secs. 2.2.1 and 2.2.2, contain no new results and serve as a topical overview and introduction
to relevant concepts like the seesaw and various leptogenesis mechanisms. Secs. 2.3.3 and
2.3.4 then extend the known framework and introduce the idea of lepton-number-violating
Dirac neutrinos, following very closely the papers “Neutrinoless quadruple beta decay” [1] (in
collaboration with W. Rodejohann) and “Leptogenesis with lepton-number-violating Dirac
neutrinos” [2].

2.1 Unbroken B — L

We start our discussion of Ggy x U(1)p—r with a particularly interesting, and not often
discussed, possibility: exact and unbroken B — L [55]. The active neutrinos then form Dirac
fermions together with the anomaly-canceling RHNs vr. To be more precise, the Yukawa
couplings Tg j (yu) ja L in a basis where the charged-lepton mass matrix is diagonal lead
to the Dirac-neutrino mass matrix

mp =y, (H) = Vi diag(m¥,m}, m%) Ul s (2:2)

the unitary matrix Vi being unphysical (see Ch. 1). The smallness of neutrino masses m”
compared to the other fermions can either be attributed to small Yukawa couplings y, ~
1071 (m¥/1eV)—which can be explained in a more natural way by extended dynamics [56-
58]—or via the small VEV of a second Higgs doublet y, ~ O(1)(1eV/(Ha2)) [59-61]. The
latter will be discussed in Sec. 2.3.4, we will stick to small Yukawas in this section, their
origin being irrelevant for the most part. Neutrinoless double beta decays are, of course,
absent in this framework, because neutrinos are Dirac and B — L is conserved (see Sec. 1.1).
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2.1.1 B — L Gauge Boson

Dirac neutrinos aside, an unbroken U(1)p_, brings with it only one more particle, the gauge
boson Z', coupled to the B — L current j% ; via

L > g/Zng—L

1/~ — _
=47, > [g (QLfy“QL +upytug + dR'y“dR) — Ly L —egyter — ﬁRfy“yR} ,

families

(2.3)

with suppressed color, isospin, and family indices. All fermions—including neutrinos—are
described by Dirac fermions after EWSB, leading to vector-like Z' couplings to these mass
eigenstates

g,Z;:jg—L — g'Zl: Z E (ﬂw“u +87“d) —evte —ﬁy“u} . (2.4)
families

Most importantly, the rotation to the fermion mass basis (see Ch. 1) does not lead to any
flavor-changing neutral currents mediated by the Z’. The above interactions—in particular
the coupling to electrons, and the quark-induced coupling to baryons—can now be used to
search for this new U(1)p_y, force, i.e. the Z'. If massless, this photon-like gauge boson would
couple to the huge number of neutrons in astrophysical objects, such as stars and planets,
because the contributions of protons and electrons would exactly cancel in electrically neutral
bodies. Tests of the weak equivalence principle then put strong bounds on the fine-structure
constant of this new force [62]:

ap_p = g% /4r <1074 at 95% C.L., (2.5)

as already recognized in early papers concerned with long-range forces acting on baryons [63]
and leptons [64]. A tiny gauge coupling is, of course, no argument against an unbroken
B — L symmetry, unnatural as it might seem. Furthermore, we can actually evade the above
constraint by using the Stiickelberg mechanism to generate a mass for Z’ without breaking
B — L. We postpone a detailed discussion of this mechanism to App. A and merely summa-
rize the result: Gauge bosons of abelian symmetries are permitted a mass by means of the
Stiickelberg mechanism—retaining gauge invariance, unitarity, and renormalizability. With
this in mind, one can start to probe the two-dimensional parameter space (ap_r, Mz/) in a
general way.! The above limit (2.5) holds for long-range forces, i.e. for gauge boson masses
Mz < 107136V ~ 1/10" m, while a short-range limit

My /g > 6TeV at 95% C.L. (2.6)

is valid for Mz > \/s;gp >~ 200 GeV [66,67], obtained from a study of effective four-fermion
operators at LEP. An even more stringent limit can be obtained from global fits to electroweak
precision data [68]:

My /g > T7TeV at 99% C.L., (2.7)

'Let us note that small values for both ¢’ and M, are technically natural in the sense of ’t Hooft [65], in
that all radiative corrections are again proportional to g’ and M/, respectively.
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which can be translated into a 95% C.L. bound of about 9 TeV. Limits for the vast mass region
in between (10713 eV < My < 200GeV) arise from various data sources such as neutrino—
nucleon scattering, beam-dump experiments, and successful BBN, but cannot be cast in such
simple forms as the above limiting cases (2.5) and (2.7), and have to our knowledge not been
completely explored. At least for Mz < 107°eV ~ 1/0.1m and Mz > 1keV limits can be
found in Refs. [62] and [69], respectively. The remaining region 107°eV < Mz < 1keV can
be constrained, for example, with tests of Coulomb’s law and stellar evolution, similar to
hidden photons (cf. Ref. [70]).

The LHC phenomenology of a Z' with My ~ TeV is well covered in the literature,
e.g. Ref. [71], and is not the focus of this thesis. Let us make but a couple of remarks:
The decay width into fermions is given by

1, f = lepton,
1/3, f = quark.

2 2
3 1 my my
P(Z/%ff):gaB_LMZ/ <1+2M%, 1_4M%, X (28)

The branching ratios into leptons and quarks are then fixed for a specified mass M/, and
can be used to distinguish this Z’ from other vector bosons (see for example Ref. [72]). Most
importantly, the rates are flavor-universal, at least for large My, so one expects the same
decay rates into e.g. electron and muon. This will no longer be the case for the flavored U (1)’
symmetries employed in Ch. 3, and serve as an important discrimination tool. Let us further
note that the invisible width of Z’ is governed by the decay into the light Dirac neutrinos
vV =vy, + VR:

Finv(Z/) =3 X P(Z, — ﬁy) =ap_r My, (29)

which effectively counts the number of light neutrinos, in complete analogy to the invisible
width of the Z, which however only counts the number of light left-handed neutrinos.

Even though an unbroken U (1) 5_, symmetry has naively only one parameter, the coupling
strength ¢’, we have remarked above (and shown in App. A) that a mass term My for
the gauge boson is also allowed. This mass term does mot introduce yet more parameters
or particles—as a Higgs mechanism unavoidably would—so unbroken U(1)p_ seems to
introduce only two parameters (plus neutrino masses and mixing). There is however a third
parameter associated with the Z’ boson of any abelian gauge group extension of the SM:
kinetic mizing [73]. This type of mixing arises in any gauge theory with two abelian factors
U(1); x U(1)2, because the associated field-strength tensors F{f 5 are gauge invariant objects
by themselves—compared to non-abelian ones, which transform covariantly but non-trivial—
allowing us to write down the kinetic terms

(2.10)

124 124 et

1 1 sin
LD —7FFiu = 774 Py — TXF{WF2
where we introduced the kinetic-mixing angle y. The vector fields need to be re-defined
using non-unitary transformations in order to arrive at conventionally-normalized physical
mass eigenstates—which then couple to both currents ji" and j§. Effectively, kinetic mixing
introduces a coupling of ji' to Ai. In the case of interest, this means that the Z’ boson of

our new U(1)p_r, will also couple to the hypercharge current ji-, with strength ﬁ sin x.
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Note that a small but nonzero y will typically be generated radiatively even if y = 0 at
some scale. Unbroken B — L is hence a three-parameter—plus neutrino masses and mixing—
extension of the SM. For a Z’ above MeV, constraints on ¢/, Mz and x have been derived
in Ref. [69]. In this chapter and the next, we will ignore the effects of kinetic mixing for
simplicity, but come back to it briefly in Ch. 4. Instead, App. B is devoted to a proper study
of kinetic mixing, also extending the framework to gauge groups with three abelian factors
U(1)g x U(1)p x U(1). (following the paper “Kinetic and mass mixing with three abelian
groups” [10] (in collaboration with W. Rodejohann)). This is of obvious interest following
our motivation for the gauge group U(1)p—r x U(1)r, -z, X U(1)r, L, in Sec. 1.5.

It should be mentioned that unbroken B — L is not compatible with GUT scenarios where
Gsm X U(1)p_1, is embedded into a simple non-abelian group such as SO(10). While the
fermion content of SM+vp nicely fits into an irreducible representation 1650(19) per family—
strongly motivating RHNs and U(1)p_ extensions—the overlying non-abelian structure
does not allow for any Stiickelberg mass terms. Additionally, all four gauge couplings of
Gsm x U(1)p—1, are generated by renormalization-group running of a single SO(10) gauge
coupling from the breaking scale A ~ 10'6 GeV to electroweak energies, making it impossible
to end up with a B — L coupling small enough to satisfy Eq. (2.5). So, while U(1)p_1, can be
easily considered part of a GUT, it has to be broken. The Majorana B — L case of Sec. 2.2
can for example be envisioned as part of a larger GUT framework, in which the high SO(10)
breaking scale naturally suppresses neutrino masses via the seesaw mechanism. Since GUTs
require increasingly complex scalar sectors to evade constraints, we will not discuss them any
further and continue on with our much simpler abelian gauge symmetries.

2.1.2 Dirac Leptogenesis

We will now turn our attention to the biggest challenge of our unbroken B — L scenario: the
dynamical generation of the matter—antimatter asymmetry of our Universe (see Sec. 1.2). It
is well known that the (B + L)-violating sphalerons in the SM (introduced in Sec. 1.4) would
wash out any baryon asymmetry in the early Universe if we start with B — L = 0. Since fine-
tuned initial conditions are not compatible with inflationary cosmology and we never break
B — L, it seems impossible to explain or even accommodate the BAU in our unbroken B — L
framework. However, the minor addition of RHNs to the SM makes possible baryogenesis
even for initial values B = L = 0 and without breaking B — L. This mechanism is called
Dirac leptogenesis or neutrinogenesis [74], and we will give a brief qualitative overview in
this section.

Processes and particles are in equilibrium in the early Universe at temperature 7T if the
equilibrating rates I' are fast compared to the Hubble expansion rate H(T')

T > H(T) ~1.66\/g. T*/Mpy , (2.11)

with the Planck mass Mp; ~ 10'? GeV and the effective number of degrees of freedom g,. In
our case the SM degrees of freedom give g, = O(100) above T' 2 1 TeV. All SM particles are in
equilibrium above the EWPT, due to the rather strong gauge couplings. Also in equilibrium
at these temperatures are the aforementioned sphalerons, which violate B+ L by six units but
conserve B— L [46,75]. These sphalerons will (partially) transfer any lepton asymmetry to the
baryon sector, which makes possible baryogenesis via leptogenesis. The question remains how
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we can generate any asymmetry if B — L is unbroken, and here the tiny Yukawa couplings
of our Dirac neutrinos turn out to be crucial. Ignoring the B — L gauge interactions for a
moment, our RHNs only couple to the SM via the Yukawa couplings Zry, H'L. Typical rates
to produce v above the EWPT will then take the form I' ~ y2¢?T, g being a gauge coupling
or the Yukawa coupling of the top quark [74]. With Eq. (2.11) we see that the vg are not in
thermal equilibrium above the EWPT, because the Yukawas y, ~ m,/100GeV are simply
too small. Only at much lower temperatures will the vr be connected to the SM again, but
by that time the sphalerons will have gone out of equilibrium and the BAU has been fixed.

On to the actual neutrinogenesis mechanism: The key idea is to generate an asymmetry
Ay in the left-handed neutrinos that is exactly canceled by an asymmetry Agp = —Ay, in the
RHNS, so neither lepton number L nor B — L are violated. According to the above discussion,
Apg will be hidden from the rest of the plasma, so the sphalerons will effectively only see a
nonzero Ay, and transfer that to a baryon asymmetry. A simple way to generate the needed
Aj = —Ap # 0 structure is to introduce two new heavy Higgs doublets ¥y ~ (1,2,—1/2),
which do not acquire VEVs:

L D Z Fjaﬂfa\lijRﬁ + G?ﬂza\i’jeﬁg + h.c. (2.12)
=12

The out-of-equilibrium decay of the lightest ¥; into Lvg and LUg will in general violate CP
at one-loop level, due to the complex nature of the Yukawa matrices F; and Gj. Consequently,
the asymmetry A; = —Apg # 0 can indeed be generated, and it has been shown in Refs. [56,
74] that the BAU (1.24) can be quantitatively explained in this way. We stress once again that
B — L is exactly conserved during this entire process; we ignored the effect of the Z’ boson
in the above discussion by assuming a tiny gauge coupling (2.5) or a very large Stiickelberg
mass Mz. Choosing parameters (¢’, Mz:) that make the Z’ relevant for neutrinogenesis goes
unfortunately beyond the scope of this thesis.

A word about relativistic degrees of freedom: Light Dirac neutrinos would effectively dou-
ble the number of neutrino species in cosmological considerations compared to the SM; in
turn, more relativistic particles would increase the expansion rate of the Universe, seeing as
the Hubble rate H(T') is proportional to /g, . BBN is a crucial testing ground here, because
a change of H(Tppn ~ 1MeV) directly affects the proton-to-neutron ratio, and hence the
helium abundance of the Universe. Resulting limits on g, at TppN are usually given in terms
of the effective number of neutrino species Neg—with g, = 5.5 + %Neg—but can, of course,
stem from various sources other than neutrinos. Neutrino heating increases the naive SM
estimate from 3 to NSM ~ 3.046 [16], and recent Planck data constrains Neg = 3.30 & 0.27
at 68% C.L. [23] (strongly dependent on the combination of data sets). While past results
hinted at far larger values for Neg, it now seems that additional light states are disfavored by
Planck. In particular, three RHN partners for our SM neutrinos seem to be vastly excluded,
as they would yield Neg ~ 6. However, in the neutrinogenesis mechanism discussed above,
the RHNs are necessarily not thermalized in order to be hidden from the sphalerons at tem-
peratures above EWSB. For the small neutrino masses allowed by experiments (Sec. 1.1.2),
the RHNs remain out of equilibrium during BBN, and subsequently do mot contribute to
Neg. In Sec. 2.3.4 we will present a different Dirac leptogenesis mechanism that works the
other way around: It requires thermalized RHNs and yields Neg > 3, so future data might
distinguish these two scenarios.
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The neutrinogenesis mechanism presented here is interesting not only for the usage of
Dirac neutrinos, but that it takes crucial advantage of their small masses—heavier neutrinos
simply would make neutrinogenesis impossible! While this connection between small neutrino
masses and leptogenesis is not as direct as in the Majorana B — L scenario of the next section,
it does hint at a link between these two subjects.

This already concludes our brief overview of the unbroken realization of a local U(1)p_r. In
absence of any observed B or L violating interactions, unbroken B — L remains an interesting
and simple possibility. It automatically gives rise to neutrino masses—solving the biggest
shortcoming of the SM—and can, with some additional scalars, give rise to a leptogenesis
mechanism. The main prediction is, of course, the Dirac nature of neutrinos and consequent
absence of neutrinoless double beta decay. The gauge boson Z’ properties ¢’, Mz, and x can
in principle take on any value, so further searches for it can only be encouraged; we stress in
particular that M is not in any way connected to other scales—unlike the Z’ of the next
section—so it can be searched for in various experiments, not only at the energy frontier.
That being said, it remains a lamppost search, as there is also no reason why ¢’, M/, and x
should take on values detectable by us.

2.2 Majorana B — L

We will now move on to the more popular scenario of spontaneously broken B — L [76,77],
starting with the part of parameter space that gives rise to Majorana neutrinos, the seesaw
mechanism, and standard thermal leptogenesis. In Sec. 2.2.3 we will discuss the simple scalar
potential of our model—Higgs doublet H plus SM-singlet scalar S—that is used many times
throughout this thesis.

2.2.1 Seesaw Mechanism

In this section we will discuss the framework of Majorana B — L, i.e. a local U(1)p_1, spon-
taneously broken by the VEV of an SM-singlet scalar S with B — L charge 2. The relevant
part of the Lagrangian takes the form

1
—L D V(H,8)+Vrj(y); o H Lo + SR KRy 7+ b, (2.13)

K, = Ki; being a complex symmetric Yukawa-coupling matrix. Assuming the scalar po-
tential V(H,S) to have a minimum at (H)| = v/v2 # 0 and [(S)| = vs/v2 # 0—to be
discussed in Sec. 2.2.3—the following mass terms for the neutral fermions are generated:

1
—L D (Mmp)jaVRjVL,a + §(MR)jk URjVRy + hec.

2.14)
1/ . 0 mb\ (v (
2 (VL VR) <mD MR) (1/%) h.c.,

with the Dirac mass matrix mp = vy, /v/2, the right-handed Majorana mass matrix Mp =
vsK/v/2, and an implicit matrix/vector notation in the last line. Without loss of general-
ity we can work in a basis where Mp is diagonal, Mpr = diag(M;, My, M3), because the
diagonalization merely redefines mp.
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The mass matrix in Eq. (2.14) gives rise to six massive Majorana fermions when diagonal-
ized by a unitary 6 x 6 matrix W:

0 mp = W* diag(m, ..., m¢) W' (2.15)
M , .

the mass eigenstates being admixtures of vy and vgr. However, the successful three-neutrino
oscillation picture presented in Sec. 1.1 strongly hints at a separation of scales, with three light
and three unobserved heavy (mostly sterile) neutrinos. This limiting case occurs naturally for
Mp > mp, the famous seesaw limit [78-81]. The three heavy mass eigenstates (with masses
~ M;) then consist mostly of vg and can be effectively integrated out of the Lagrangian,
generating the low-energy Majorana neutrino mass

2

M, ~ —mlT)MIEImD = —%Z—S ng_lyy. (2.16)
The three light neutrino masses are naturally suppressed by the ratio mp/Mp < 1, or
v/vg < 1 in our U(1)p_p framework, without the need of choosing tiny Yukawa couplings.
Indeed, with Yukawa couplings of order one, the B— L breaking scale suggested by the seesaw
mechanism would be Mg ~ vg ~ 10'° GeV. The heavy RHNs with mass matrix Mz can
furthermore naturally lead to leptogenesis, as we will see in Sec. 2.2.2. Diagonalization of
M,, can be performed in the following way

M, = Upyng diag(mi, ma, m3) U}T)MNS ) (2.17)

with the PMNS matrix from Eq. (1.12). The neutrino mass eigenstates v; = (UE,MNS)NV&
consist mostly of the active left-handed neutrinos vy, but have a small admixture of the
sterile vg, suppressed by mp/Mp. Furthermore, Upyngs is actually not unitary, as it is
just the upper-left 3 x 3 submatrix of the proper diagonalization matrix W from Eq. (2.15).
This can be ignored in the strong seesaw limit, as the non-unitary corrections to Upnns
are suppressed by mp/Mp, but can lead to observable effects in low-scale seesaw scenarios,
strongly constrained by data [82]. With natural seesaw scales Mg ~ 10'° GeV far beyond
experimental reach, considerable effort has been put into the construction and discussion of
such low-scale seesaws, with detection possibilities at colliders or via induced lepton flavor
violation. Being sterile and typically heavy, the search for the seesaw partners is certainly not
easy [83]. In our gauged B — L context however, all neutrinos are coupled to the Z’, which
leads to new signatures and could simplify the search, as discussed e.g. in Ref. [71].

In the limit Mg ~ vg > 100 GeV, the only testable prediction of the seesaw mechanism—
and more or less of Majorana B — L—is the Majorana nature of neutrinos. As already
discussed in Sec. 1.1.3, this can facilitate neutrinoless double beta decay, i.e. the A(B—L) = 2
process 2n — 2p + 2e~. Unobserved as of yet, the detection depends only on the entry
(M,)ee of the neutrino mass matrix; using the decomposition M, = U*diag(my, ma, m3)U"
with the values from Tab. 1.2 shows that (M, )e could vanish (or be unobservably small),
even though neutrinos are Majorana particles. Neutrinoless double beta decay is therefore
not a hard prediction of Majorana B — L—reasonable as it might be—and care has to be
taken in the interpretation of continuing non-observation. The combination of 0r25 with
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other neutrino-mass experiments (see Sec. 1.1.2) can in principle lay the question to rest, but
only under the assumption that no additional new physics interferes with the results. At least
the vanilla Majorana B — L model presented here, i.e. just three light Majorana neutrinos,
is falsifiable.

We note that the seesaw mechanism (Eqs. (2.14) and (2.16)) is obviously of interest far
beyond our local B — L model, and usually discussed independently. Simply introducing n
RHNSs to the SM leads to the same mass terms—Mp (mp) now being an n x n (n x 3)
matrix—because Vp ;v ;. Is then automatically gauge invariant. Without a gauged U (p-r,
the number n of RHNs is not restricted to n = 3 on theoretical grounds; to account for the
two measured Am%ml, at least two vg are required in absence of other physics beyond the
SM, and the same holds for successful leptogenesis [84]. Models with n > 2 can give rise to
interesting effects—see our paper [12]—but typically n = 3 is chosen for aesthetic reasons.

More could be said about the seesaw mechanism, but the above suffices for the purposes of
the later chapters. Let us rather turn to the leptogenesis mechanism accompanying seesaw,
before we discuss the scalar potential of our U(1)p_, model in Sec. 2.2.3.

2.2.2 Thermal Leptogenesis

Having discussed the famous seesaw mechanism as an explanation for the lightness of neutri-
nos, we turn to the equally famous accompanying leptogenesis mechanism [85]. We assume
a very high B — L breaking scale vg > 109 GeV in the following, and also assume the Z’ and
s bosons to be sufficiently heavy or weakly coupled to be irrelevant at temperatures below
the mass of the lightest RHN (vp 1) at T ~ M; > 10° GeV. This simply ensures that we
can work within the standard thermal leptogenesis scenario, without the additional bother-
some interactions mediated by Z’ and s. A discussion of the parameter space where the new
bosons are important goes unfortunately beyond the scope of this thesis. Our discussion of
this leptogenesis mechanism will once again be more qualitative, details can be found, for
example, in Ref. [84].

Below the B — L breaking scale, but above the EWPT, the right-handed neutrinos vg
interact only via their Yukawa couplings

1
—L 2 TR (W)jo H' Lo+ 5(MR)jk VR Vi + hoc. (2.18)

We can again choose Mp to be diagonal, with entries M;; the chiral right-handed fermions
VR, can then be written in terms of Majorana fermions N; = vgr; + v, = Nf. Due to
their self-conjugate nature, these heavy neutrinos can decay either into LH* or L°H via the
Yukawa couplings in Eq. (2.18), providing the necessary lepton number violation (LNV) for a
lepton asymmetry. Since the Yukawas are complex in general, CP-violating loop corrections
to these decays (depicted in Fig. 2.1) can yield different rates for I'(N — LH*) and I'(N —
L°H). The decay of these heavy N in the early Universe would then result in a lepton
asymmetry, provided the decay takes place out of equilibrium. This lepton asymmetry will
then be converted to a baryon asymmetry by the sphalerons, as discussed already in Sec. 1.4
and Sec. 2.1.

Let us make the above discussion more quantitative: At tree level, the total decay rate of
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Figure 2.1: CP-violating vertex and self-energy loop corrections to the LNV decay of the lightest
Majorana neutrino N1 — LH™ relevant for leptogenesis.

N, is given by
Iy, =T(N; = LH*) + T'(N; — L°H) = (y}y, )i M; /87, (2.19)

where no summation over the indices is assumed, but implicit matrix multiplication of ¥}y, .
We will assume a hierarchy M; < My 3 for simplicity, so we are only concerned with the
decay of the lightest RHN Nj. According to the famous Sakharov conditions [40], a dynam-
ical asymmetry generation requires departure from thermal equilibrium. Since the Universe
expands with a Hubble rate H(T') ~ 1.66,/g=1*/Mp (2.11), departure from equilibrium can
be achieved if the interaction rate 'y, is much smaller than H(7T) when the temperature
drops below M;:?

Ty, < H(M;) =~ 1.66\/g. M7 /Mp, . (2.20)

We define the CP asymmetry of the decay as

o LN = LHY) —T(Ny = L°H) Tm((y)y)3;] My <M12> . (2.21)

3
- ~~Tor 9|z
T(Ny = LH) +T(Ny = L°H) — 167 50 (yhy)n Mo \M?

where we already evaluated the one-loop contributions from Fig. 2.1, introducing the loop
function

T =1+ gx + O(x?). (2.22)

(_;) r—22% + (22 — 1) log(1 + )

The asymmetry e obviously vanishes in case of real Yukawas, but also in the absence of
Ns 3—or, equivalently, in the limit M3 — oo. This can be understood by noticing that a
generic 1 x 3 matrix y, in Eq. (2.18) can be transformed into (z,0,0) with real z simply
by means of a flavor rotation in L., rendering the Yukawas real again. Effectively we move
the CP violation to a sector of the Lagrangian irrelevant to the N decay, a feat that proves
impossible in the presence of more than one RHN.

To calculate the final B — L asymmetry, one needs to solve the Boltzmann equations that
describe the decay and inverse decay of N1, leading to YA(p_r) ~ 1073ne [47]. The efficiency
factor n < 1 depends on the validity of Eq. (2.20) and the initial abundance of N;. With

%We assume a sufficiently high reheating temperature after inflation so that the RHNs have been in thermal
equilibrium with the SM, be it via Yukawa couplings or B — L gauge interactions.



38 Chapter 2 — Unflavored Symmetries

this B — L asymmetry, one can then calculate the final baryon asymmetry by considering
the chemical potentials of the SM at temperatures far below Mj; it turns out that the
sphaleron conversion rate leads to Yag = %YA( B-I) [86], which can then be matched to the
observed value from Eq. (1.25). A typical value for the CP asymmetry would be & ~ 1076,
but it depends on the details of production and washout processes [84]. Let this suffice as an
introduction to thermal leptogenesis, as we have introduced all that we need later on.

2.2.3 Scalar Sector

After seesaw and leptogenesis, we turn to the other implications of this “Majorana B — L”
scenario, namely the scalar sector and differences in the Z’ phenomenology compared to
the discussion in Sec. 2.1. The following discussion will prove useful throughout the different
chapters of this thesis, as it can be readily adapted to the different models. Let us first discuss
the scalar potential V (H, S), following our paper [3]. Since this is arguably the simplest scalar-
potential extension of the SM, it is well covered in the literature; let us single out Ref. [87]
specifically, as it pertains our U(1)p_y, scenario. With just the usual Higgs doublet H and
one additional SM-singlet scalar S, the potential has the simple form

V(H,S) = =i [HI* + M |H[" = 3|S]” + Aol S|* + 8|57 | HI?, (2.23)

where we assume ;2 > 0 to generate nonzero VEVs v = /2|(H)| =~ 246 GeV and vg = v/2[(5)|.
The positivity of the potential gives the constraints A; > 0 and A\; Ao > §2/4. In unitary gauge
the charged component G~ of H = (G°,G~)T is absorbed by W, the pseudoscalar neutral
component ImG° by Z, and the pseudoscalar component Im S of S by the B — L vector
boson Z’, hence we may go to the physical basis H — ((h +v)/v/2,0)T, S — (s +vs)/V2,
which after the replacement of u? by the VEVs gives the potential:

V(h,s) = Mv2h? + Avis® + dvvughs
2.24
+ M\oh® + %th + Avgs® + %84 + %h252 + gvhSQ + gvShZS. ( )

The resulting mass matrix for the physical neutral scalars h and s can be read off the first
line to be

9 - 2002 Svug
Mscalar_ (5?}”5 2)\2@% ) (2'25)

leading to the mass eigenstates ¢; and ¢o

¢1\ _ [cosa —sina) [(h ) _ dwws
<¢2 “\lsina  cosa e with tan2a = Nk — AP (2.26)

and masses miQ = Mo? + 0% F \/()\22}% — M02)? + 620202, In the seesaw limit vg > v

we are mostly concerned with, the mixing angle is naturally suppressed, o ~ dv/2\yvg, and
the lighter mass eigenstate ¢; corresponds to the Higgs-like particle recently found at the
LHC [14,15], with m? ~ 2(\; — 62/4)2)v? ~ (125 GeV)2.
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The mass for our new vector boson Z’ generated after spontaneous symmetry breaking by
the VEV (S) = vg/v/2 takes the form

Mz =|(B — L)(S)g'vs| = 2lg'vs], (2.27)

so we can translate the LEP bound on My /¢’ from Eq. (2.7) into the constraint vg > 3.5 TeV.
The couplings of the Higgs ¢1 to fermions and gauge bosons are then modified by cos a with
respect to the SM, while the new scalar boson inherits all SM-Higgs couplings, multiplied
by sina. This, of course, also works the other way around, generating a coupling of the
125 GeV Higgs particle ¢ to the right-handed neutrinos proportional to sin «. Assuming all
RHNs and also ¢9 to be heavier than m;/2 ~ 62 GeV, the branching ratios of ¢; are SM-like,
and only the production cross sections are suppressed, yielding the bound cos? a > 0.66 at
95% C.L. [88]. There are, of course, also bounds on ¢ from direct searches, but we will skip
a discussion and simply work in the limits o < 1 and mg >~ mgs ~ /2 ovg > my implied by
seesaw.

Other than the new scalar ¢o ~ s, the collider phenomenology of the gauge boson Z’ is
similar to the unbroken B — L case of Sec. 2.1.1. An interesting difference arises however in
the invisible Z" width, still dominated by Z’ — vv. If all Majorana neutrinos, including the
“heavy” vg, are much lighter than the Z’, the width coincides with the Dirac case (Eq. (2.9)),
because all six neutrinos are kinematically accessible. In Majorana B — L, there is however
no reason why Mpr < My should hold, seeing as both are generated by the VEV wvg.
Some of the RHNs might hence be heavier than My /2 and not contribute to 'y, (Z’). The
invisible Z’ width can therefore tell us something about the neutrino nature: Dirac neutrinos
give Ty (Z') = ap_p Mz, while Majorana neutrinos lead to y ap_p Mz, with % <y<l1
depending on the actual mass spectrum.

This ends our section on Majorana B — L. A large VEV (S) ~ 10'® GeV generates large
masses for the right-handed neutrinos, making possible thermal leptogenesis to explain the
BAU and naturally small Majorana masses for the active neutrinos via seesaw; the new
bosons Z’ and s are also naturally heavy. In this high-scale limit, we only expect neutrinoless
double beta decay as a signature of B — L breaking and the Majorana nature of the neutrinos
(see Sec. 1.1.3). Lowering the (B — L)-breaking VEV to TeV values makes the model testable
at colliders, and the seesaw mechanism is still effective. However, leptogenesis is harder to
achieve in this case and requires modifications to the mechanism presented above; specifically,
a resonant leptogenesis is necessary, which has been discussed for the Majorana B — L case
in Ref. [89].

2.3 Dirac B — L

In the previous sections of this chapter we have given an overview over the two cases of
unbroken B — L (Sec. 2.1), and B — L spontaneously broken by two units—Majorana B — L—
leading to the seesaw mechanism (Sec. 2.2.1) and thermal leptogenesis (Sec. 2.2.2). The next
two sections are motivated by the following observation: Other than interesting phenomenol-
ogy, there is no compelling reason why B — L has to be broken by two units. We will show
that a spontaneous breaking by four units can lead to the interesting framework of lepton-
number-violating Dirac neutrinos, with previously undiscussed experimental signatures. We
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present effective A(B — L) = 4 operators in Sec. 2.3.1 that aid us in the search for worthwhile
processes to study in detail; an economic renormalizable model to generate these operators is
then introduced in Sec. 2.3.2. Having laid the groundwork for LNV Dirac neutrinos, we then
identify candidates for their signature nuclear decay in Sec. 2.3.3: neutrinoless quadruple beta
decay. Here we follow closely our paper “Neutrinoless quadruple beta decay” [1] (in collabo-
ration with W. Rodejohann). In Sec. 2.3.4 we will finally present a leptogenesis mechanism
for this framework, based on our paper “Leptogenesis with lepton-number-violating Dirac
neutrinos” [2].

2.3.1 Effective A(B — L) = 4 Operators

Before delving into model-specific calculations, let us make some model-independent consid-
erations. If B — L is broken by m # 2 units, neutrinos are Dirac particles, and processes
violating B — L by n, 2n, 3n, ... units are still allowed. We are interested in possible effects
of such LNV Dirac neutrinos, assuming that B — L is broken by n units at a high scale A. This
allows us to integrate out the heavy new physics, generating higher-dimensional operators
of the SM fields from Tab. 1.1 plus the RHNs required for gauged B — L (and, of course, to
form Dirac neutrinos v = vy, + vg). These operators can then be studied without knowing
the details of the high-energy completion.? What value of n = A(B — L) should be studied in
our quest for testable effects? A(B — L) = 2 operators are necessarily forbidden if neutrinos
are of Dirac type; seeing as all SM+vg fermions carry an odd B — L charge and we need an
even number of fermions in order to construct Lorentz invariant operators, there will be no
operators with odd B — L, making n = 4 = A(B — L) the dominant possible source of LNV.
As such, we will focus on these operators in the following.

Using vsvp = v and 737" vg = 0, we obtain the unique A(B — L) = 4 operator at mass
dimension d = 6:

O = T%up Tgur, (2.28)

suppressing flavor indices. This simplest A(B — L) = 4 operator describes for example the
Dirac-neutrino scattering vv — v, which violates lepton number by four units and lends
our framework its name. The tensor (/4 = 5[y*,~"]) coupling (V0" vg)(V50,,vR) can be
decomposed into operators of the form O%=° using Fierz identities. Gauge invariant d = 8
operators can be constructed with the Weinberg operator (L°H)(H'L) from Eq. (1.18):

O3 = |H|? 74 Thur, (

2.29)
038 = (T°H)(H'L) g, (2.

2
30)
A possible vector coupling is equivalent to O§=2 after a Fierz transformation, while a possible

tensor contraction in O§=° simply vanishes. There is also a coupling to the hypercharge field
strength tensor:

04=8 = F'0%0,,vr Thr, (2.31)

3AL = 2 operators up to and including mass dimension d = 11 have been derived and discussed in the

literature [90], the motivation being contributions to 0v28 and Majorana neutrino masses. We refer the
reader to these papers for a concise introduction to the underlying effective-field-theory framework of such
higher-dimensional operators.
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which is reminiscent of a magnetic-moment operator, were it not for the second fermion
bilinear. We ignore operators involving derivatives, e.g. 7%821/13 U4VR, which do not lead to
qualitatively new interactions.

As for A(B — L) = 4 operators with mass dimension d = 9, the only possibility u%d%dizy%
contains three left- and three right-handed fermions, which cannot be coupled to a Lorentz
scalar. The obvious d = 10 operators are the square of the Weinberg operator

O — (L°H)(H'L) (L°H)(H'L), (2.32)

the replacement of two v by two (H TL)C in (’)?28, making also possible a coupling to the
SU(2)r, field strength tensors W (7%, a = 1,2, 3, denote the SU(2)r Pauli matrices)

051 = |[H*(L°H)(H'L) Vg, (2.33)
Od 0 = " (L H)UW(HTL) VRVR (2.34)
O = FPY(L°H)(H'L) 70,0k , (2.35)
03=10 — W(L°H)o,,, (H' L) Tvr, (2.36)
0= = Wi (L°H)(H'tL) 740,V , (2.37)

and finally those that arise by multiplying @4=% with any term in the SM Lagrangian Lg,
as those all have mass dimension d = 4. There are even more though, as gauge and Lorentz
contractions can be more intricate. At this mass dimension, quarks also come into play,
allowing for baryon-number-violating A(B — L) = 4 operators, for example

O4=10 — (GRd%) (drHL) (ThvR) (2.38)

which describes the neutron coupling (7vy)(7%vr) at low energies and could lead to the
A(B—L) = 4 decay n — 3v, strongly constrained by experiment: 7(n — inv) > 6x10%° yr [91].
For obvious reasons we omit an exhaustive list of d > 10 operators. Note that AL = 4
operators with charged leptons and gauge bosons can be obtained using covariant derivatives:

041 = (L) (HD,L)| > (7 Wy er) (7 W Fer) (2.39)
0= = (D L) B)(HD,L)|” 5 @ Wi W, er)@WHW+es). (240

The square includes the appropriate contraction of Lorentz indices, as should be obvious.
Here we also gave the most interesting induced operator upon EWSB, in order to illustrate
the effect.

Most operators from above can be constrained using existing experimental data, but do
not offer a good detection channel for A(B — L) = 4. This is because the distinction be-
tween neutrino and anti-neutrino is a difficult experimental endeavor, making it impossible
to distinguish e.g. the A(B — L) = 4 decay n — 3v from the A(B — L) = 0 decay n — vow.
Charged leptons are required to actually observe A(B — L) = 4, so operators like O%=20 are of
particular interest. Since it is difficult to collide W bosons to test @4=2°, let us write down a
A(B — L) = 4 operator involving only charged first-generation particles, which can be easily
produced and detected. At lowest mass dimension we find the AL = 4 operator

O = (drdf uhur eher)(drdg; Thur €her) . (2.41)
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This operator should encode the prime detection process for A(B — L) = 4, and hence our
LNV Dirac neutrinos—it describes 4d — 4u +4e~, or 4n — 4p + 4e~ at baryon level.
We will show in Sec. 2.3.3 that certain nuclei could indeed be sensitive to this neutrinoless
quadruple beta decay. First off, however, we will turn away from the effective operators of
this section and present a simple renormalizable realization of LNV Dirac neutrinos.

2.3.2 Lepton-Number-Violating Dirac Neutrinos

Following our introduction, we briefly present the simplest model for lepton-number-violating
Dirac neutrinos, first brought forward in our paper [1]. We work again with a gauged B — L
symmetry, three RHNs vp ~ —1 to cancel anomalies, one scalar ¢ ~ 4 to break B — L,
and one additional scalar x ~ —2 as a mediator, all of which are singlets under the SM
gauge group. (Note that y* has exactly the same quantum numbers as S from Sec. 2.2.1; we
denote it differently here as it serves another purpose and has a distinct phenomenology.)
The Lagrangian takes a form very similar to Eq. (2.13), except for the scalar potential

1
£ = Lo+ Luansic + L7~ V6.0 = (Vg ()0 HI L+ 57m Kintx + e )
(2.42)

If x does not acquire a VEV, the neutrinos will be Dirac particles v = v, 4+ vr with mass
matrix mp = y,v/ \/5, just like in the unbroken B — L case of Sec. 2.1. The smallness of
neutrino masses is in this simple model a result of very small couplings, y, < 1071, The

symmetric Yukawa-coupling matrix K;; = Kj; is nondiagonal and complex in general, which
is important for our leptogenesis application in Sec. 2.3.4. The scalar potential takes the form

A
VH 6= > (WXIXP+AxIX) + Y EXPIYE - (0x® + e,
X=H,p,x X,iggg/,dnx

(2.43)
with symmetric couplings Axy = Ay x. Choosing the structure u?%, ,ué <0< ,ui, one can
easily realize a potential with minimum at (x) =0, (H) # 0 # (¢), which breaks SU(2)1, x
Ul)y x U(l)g_r, to U(1)gm x Z%. An exact Z% symmetry remains, under which leptons
transform as ¢ — —i/ and y — —y, making the neutrinos Dirac particles but still allowing

for AL = 4 LNV processes.* The crucial x4 term in the potential induces a mass splitting
between the two real scalars Z; contained in x = (21 +iZs)/v/2:

mi =m? —2u(d), ms5=m+2u(d), (2.44)
where m,. is a mass term common to both
m? = p} + Ay (H)? + Mg (9)* (2.45)

Note that we can choose p and (¢) real and positive w.l.o.g. using phase and B — L gauge
transformations.

“Conservation of lepton number modulo n > 2 as a means to forbid Majorana neutrino masses was also
mentioned in Ref. [92].
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Figure 2.2: Tree-level realization of the AL = 4 operator (7$vr)? describing for example the neutrino—
neutrino scattering v;vy — VRVR.

We stress again that the neutrinos in our model are Dirac particles, but we also obtain
effective AL = 4 four-neutrino operators by integrating out xy—or more appropriately the
mass eigenstates Z;—at energies £ < my a:

ﬁeAffL:4 D % <m2_2 - m1_2) (KijﬁR,iVjc'{,j)2 + h.C., (2.46)

see Fig. 2.2 for the relevant Feynman diagrams. This is precisely the d = 6 operator from
Eq. (2.28), but now with a renormalizable completion on top. We emphasize that this operator
was not difficult to construct, all we needed was one more complex scalar than in Sec. 2.2. For
simplicity, we will assume physics at the TeV scale as the source of our four-neutrino operators
throughout this thesis, i.e. only discuss the effects of effective operators like the above (2.46);
a discussion of more constrained light mediators, as well as of other and more complicated
models that generate effective four-neutrino operators with left-handed neutrinos, will be
presented elsewhere. We note that our particular example uses a gauged B — L framework;
in general however, the observation and the model building possibilities that might lead to
LNV Dirac neutrinos are, of course, much broader.

2.3.3 Neutrinoless Quadruple Beta Decay

Our model from the last section gave us the effective dimension-six AL = 4 operator (Vpr%)?,
which can lead to an interesting signature in beta decay measurements: Four nucleons undergo
beta decay, emitting four neutrinos which meet at the effective AL = 4 vertex and remain
virtual. We only see four electrons going out, so at parton level we have 4d — 4u + 4e™,
and on hadron level 4n — 4p + 4e~ (Fig. 2.3). This is precisely the signature we identi-
fied in Sec. 2.3.1 with the help of effective operators as the prime observation channel for
A(B — L) = 4. Obviously this neutrinoless quadruple beta decay (0v4(3) is highly unlikely—
more so than 0v2(, as it is of fourth order—but one can still perform the exercise of identifying
candidate isotopes for the decay and estimating the lifetime; constraining the lifetime experi-
mentally is, of course, also possible. Besides 0v4/3, one can imagine analogous processes such
as neutrinoless quadruple electron capture (0v4EC), neutrinoless quadruple positron decay
(Ov4S7T), neutrinoless double electron capture double positron decay (0v2EC231), etc. We
will find potential candidates for 0v43, 0v2EC25T, Ov3ECA™T, and 0v4EC.



44 Chapter 2 — Unflavored Symmetries

Figure 2.3: Neutrinoless quadruple beta decay v ¢
via a AL = 4 operator (7°v)? (filled circle). Ar- W c
rows denote flow of lepton number, colors are d \A\‘ ‘A\‘ u
for illustration purposes. d [ u

Candidates for Ov43

We will now identify candidate isotopes for AL = 4 processes. We need to find isotopes which
are more stable after the flip (A, Z) — (A, Z +4). Normal beta decay has to be forbidden in
order to handle backgrounds and make the mother nucleus sufficiently stable. Using nuclear
data charts [93], we found seven possible candidates: three for Ov4/, four for neutrinoless
quadruple electron capture and related decays. They are listed in Tab. 2.1, together with
their @) values, competing decay channels, and natural abundance. It should be obvious that
not all 02 candidates (A, Z) make good Ov4f candidates, as (A, Z + 4) can have a larger
mass than (A, Z); it is less obvious that there exist no Ov43 candidates with beta-unstable
daughter nuclei. Using the semi-empirical Bethe—Weizsécker mass formula, one can however
show that

MAZ -2)] - MAZ+2)]
MAZ 1) - MAZ+1)] (2.47)

where M[4Z] denotes the mass of the neutral atom “Z in its ground state. Applied to our
problem, this means that the mass splitting of the odd—odd states in Fig. 2.4 (colored in
red) is expected to be smaller than the mass splitting of the two AZ = 4 nuclei (which is
just the @ value, see below), which implies that beta-stable Ov4/ candidates will decay into
beta-stable nuclei (this simple argument is confirmed with data charts [93]).

The @ values in Tab. 2.1 can be readily calculated in analogy to 0v23. In general, the total
kinetic energy of the emitted electrons/positrons in a OvnfT decay,

AZ s AZ+n)+neT, (2.48)

is given by the @) value, and can be calculated via
QOunﬁ_ = M[AZ] - M[A(Z + n)] ) (249)
Qopnp+ = M[*Z) — M[XZ —n)] — 2nm. . (2.50)

The term —2nm. in Qg+ already makes 0v2BT very rare, but neutrinoless quadruple
positron decay Ov43™ impossible. Electron capture with the emission of up to two positrons
is however permitted, as the () value for the EC-process

A ke A Z-n)+(n—k)e" (2.51)
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Figure 2.4: Three beta-stable even—even nuclei

on their mass parabola (black). The heaviest iso-

bar (A, Zy —2) can decay either via double beta

decay into the lowest state (A, Zy), or via 0v4ds

I I I I I > (green arrow) into the medium state (A, Zo + 2).

Zo—2 Z Zo+2 7 Also shown are the “forbidden” odd-odd states
in between (red).

is given by Qourec(n—k)s+ = Qowvng+ + 2k me, allowing above all for neutrinoless quadruple
electron capture Ov4EC in four isotopes (Tab. 2.1).

Having identified all AL = 4 candidates, we discuss their experimental prospects and
challenges in more detail. Let us first take a look at the most promising isotope for Ov4j3:
neodymium 1°°Nd. The following decay channels are possible (see also Fig. 2.4):

e PONd — §3°Sm via 2028, i.e. via the forbidden intermediate odd-odd state (3°Pm.
Two neutrinos and two electrons are emitted; the electrons hence have a continuous
energy spectrum and total energy F.1 + F.o < 3.371MeV. This decay has already
been observed with a half-life of 7 x 108 yr.

e [PONd — £3°Gd via 0v43. Four electrons with continuous energy spectrum and summed

energy Qopag = 2.079 MeV are emitted. In this special case, the daughter nucleus is
a-unstable with half-life Tf‘/z(éioGd — $30Sm) ~ 2 x 10% yr.

e There is also the possibility of a decay into an excited state, $'Nd — {3°Gd* via 0v4p.
The excited final state will reduce the effective Q) value—by 0.638 MeV (1.207 MeV) for
the lowest 27 (0T) state—and produce additional detectable photons.

e We note that if neutrinos were Majorana particles, the decay égONd — égOSm via
028 would possible. Two mono-energetic electrons would be emitted with total energy
Qov2p = 3.371MeV. This decay is, of course, forbidden in our model of LNV Dirac
neutrinos.

A sketch of the summed electron energy spectrum is shown in Fig. 2.5. The Q.45 peak will
always sit somewhere in the middle of the continuous spectrum, so one would have to identify
the four electrons in order to remove the 2023 background. This still leaves other backgrounds
to be considered, e.g. the scattering of the two 202/ electrons off of atomic electrons, which
can effectively lead to four emitted electrons (and two neutrinos). Since Qo4 < Q2,23, the
sum of the electron energies will be continuously distributed and can overlap the discrete
Qovap peak. A dedicated discussion of this and other possible backgrounds goes far beyond
the scope of this thesis.

As an alternative to direct searches, one could even omit an energy measurement and
just look at the transmutation "°Nd — "°Gd, using, for example, chemical methods. The
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element Qovap other decays NA in %
%7r — 99Ru 0.620MeV /27 =2 x 10%yr 2.8
136Xe — 136Ce  0.044MeV 72727 ~2x 102 yr 8.9

1/2
BONd — §0Gd 2.079MeV 720 ~ 7 x 108¥yr 5.6
Qovarc
$24Xe — 124Sn 0.577TMeV  — 0.095

38'Ba — 13°Te  0.090MeV  7772EC ~ 107! yr 0.106
61°Gd — §o°Nd  L.138MeV 77, = T5yr -
¢'Dy — $3*Sm  2.063MeV 7, ~ 3 x 10%yr -

Qovsecs+
61°Gd — §°Nd  0.116MeV 77, = 75yt —

"Dy — 3*Sm  1.041MeV 7, ~3x106yr -

Qov2ECc28+
"Dy — §3*Sm  0.019MeV 7, ~ 3 x 10%yr —

Table 2.1: Candidates for the nuclear AL = 4 processes neutrinoless quadruple beta decay and

electron capture, the corresponding @ values, competing (observed) decay channels with half-life Tf /20

and natural abundance (NA) of the candidate isotopes.

background for 'Nd — ¥°Gd is basically nonexistent, as the SM-allowed 444 is killed
by the Q-dependence of the eight-particle phase space G445 ~ Q% (compared to the four-
particle phase space Go,ap ~ QH), and 0v25 would most likely be seen long before we ever
see the double 025 that mimics Orv4/3. Hence, this transmutation suffices to test Ov4j3. In
case of 9Nd, the instability of the daughter nucleus °Gd can even be advantageous, as the
resulting alpha particle provides an additional handle to look for the decay.? The necessary
macroscopic number of daughter elements will, of course, result in weak limits compared to
dedicated Ov4f searches in Ov25 experiments. However, for elements not under consideration
in Ov203 experiments, this could be a viable and inexpensive way to test Ov4p.

All the above holds similarly for 6Zr and '®6Xe as well. Both have much smaller @ values—
which theoretically reduces the rate—but a-stable daughter nuclei. The non-solid structure
of xenon makes it, in principle, easier to check for the transmutation into cerium; furthermore,
the EXO [94] 0v23 experiment is currently running and could check for 0v4(3, should their
detector be sensitive at these energies and not flooded by backgrounds. ?9Zr is a better

candidate due to a higher @ value, but there are no dedicated ?9Zr experiments planned.

Still, the NEMO collaboration could set limits on 6Zr 0629, 961y by reanalyzing their data

from Ref. [95]. Overall, 1°°Nd is by far the best candidate, due to the high Qovap value and
availability. Coincidentally, it also has a high Q.25 value, which makes it a popular isotope
to test for Ov2f, with some existing and planned experiments [31]. Once again, NEMO might

5The alpha decay is however too slow to be used in coincidence with 0v443.



2.3 Dirac B — L 47

< A
©
—
z
O
o
A
0283
Figure 2.5: Sum of kinetic electron energies in
the beta decays 0v25 (blue), 2028 (black),
' ! > and 0v4f (green). Relative contributions not to
Qovap Qovas Enerey  scale.

already be able to constrain *°Nd 2079, 150G with their data from Ref. [96].

The Ov4EC channels in Tab. 2.1 lead to a similar transmutation behavior as discussed
above for 0v45~, and can be checked in the same way. Note that the energy gain Qo 4pc will
here be carried away by photons instead of electrons; the captured electrons will be taken out
of the K and L shells, resulting in a subsequent cascade of X-ray photons. The @) values of
148Gd and %Dy are high enough to also undergo 0v3ECS™T; 154Dy is the only isotope capable
of 0v2EC237". This can give rise to distinguishable signatures due to the additional 511 keV
photons from electron—positron annihilation. The comparatively fast o decay of *8Gd and
154Dy—and the fact that they have to be synthesized from scratch—make them however
very challenging probes for AL = 4, despite their large Q values. >*Xe might then be the
best element to test for Ov4EC—unfortunately, the enriched xenon used by EXO contains
almost no ?4Xe, so 0v4EC is currently hard to test (dark matter experiments using xenon
can in principle be used, as they contain '*4Xe). Resonant enhancement of the 0v4EC rates,
as discussed for the 0v2EC mode (for an overview, see Ref. [97]), might boost the signal.

Following the above discussion, AL = 4 signals are apparently easier to test via the Ov43
channels, with both ?6Zr and '"°Nd as more favorable isotopes when it comes to Q) values
and natural abundance.

Rates for Ov4p3

Having identified the candidates and signatures to test 0v45 experimentally, let us estimate
some rates. Similar to 0v23, the half-life of 045 can approximately be factorized as

ovap] 1
[7'1/25} :G0u45’M0u45\2, (2.52)

where G453 denotes the phase space and My,45 the nuclear transition matrix element (in-
cluding the particle physics parameters) facilitating the process. Using an effective AL = 4
vertex (Tpv§)?/A? gives Mo,up < GT/piA?, simply by counting propagators. For the vir-
tual neutrino momentum p, we will use the inverse distance between the decaying nucleons,
Py~ |q| ~ 1fm~! ~ 100 MeV. The phase-space factor for the four final particles is the same
as the one in 223 (proportional to Q! for Q > m, [98]), which also tells us that each of the
four electrons will be distributed just like the electrons in 2023, with a different ) value, of
course. Purely on dimensional grounds we can then estimate the dependence of the half-life
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on our parameters as

1 ai )’
(ZY: A
|:T1/2 :| X Qll <q4§2> q18 ) (253)

where the last factor is included to obtain the correct overall mass dimension. The above
estimate is only valid for large ) values, as it assumes massless electrons; the low Qo445 of
most elements in Tab. 2.1 render (some of) the four electrons non-relativistic and require a
more accurate calculation of the phase space. To partially cancel the uncertainties, we can
approximate that the phase space for Ov45 and 2020 is overall similar and consider the ratio
(for 1"Nd and |q| ~ 100 MeV)

Ov4p 11
T1/2 ~ Qov2p At ~ 1046 (i)4 . (2.54)
712;’225 Qovap ¢ Gt Tev

This is, of course, only a rough estimate, and a better calculation (dropping the implicitly
used closure approximation, including effects of the nuclear Coulomb field etc.) will certainly
change this rate. To this effect we point out a difference between 0v25 and Ov45: While
the former decay proceeds via a kinematically forbidden intermediate state, the latter also
features an energetically preferred intermediate state X, only to rush past it on the mass
parabola (see Fig. 2.4). Since excited states of X can still have a lower mass than our initial
nucleus, the summation over all these states is important and cannot be approximated away
as easily as the excited states of an already forbidden intermediate state.

Finally, in our simple model from above, we generate the AL = 4 operator with RHNs,
(ﬁRVfQ)Q, so each of the neutrinos in Fig. 2.3 requires a mass-flip in order to couple to the W
bosons. The particle-physics amplitude is therefore further suppressed by a factor (m,, /q)* ~
10737, making this process all the more unlikely. These mass-flips can be avoided in left-right-
symmetric extensions of our model [99-101], at the price of replacing the four W bosons in
Fig. 2.3 with their heavier Wr counterparts.

Even with all our approximations leading to the above estimates, one can safely conclude
that the half-life for neutrinoless quadruple beta decay is very large, at least if physics at
the TeV scale is behind it in any way. This may be a too conservative approach, because
four-neutrino interactions do not suffer from such stringent constraints as other four-fermion
interactions [102]. The effective LNV operator (7v§)?/A? discussed here has not been con-
strained so far, and the contribution to the well-measured invisible Z width via Z — 4v
only gives A > 1/(0(10)/G ) ~ 20 GeV. This, of course, only holds if the mediator is heavy
enough to be integrated out in the first place. Light mediators can significantly increase the
rate, and the life-time will be minimal if the exchanged particles have masses of the order of
lg| ~ 100 MeV. For neutrinoless double beta decay the gain factor for the half-life is about
106 [103,104], and we can expect something similar here. Given that we have four neutrino
propagators, the rate might be enhanced by a sizable factor, and therefore experimental
searches for 0v48 should be pursued.

While the expected rates for Ov4/ in our proof-of-principle model are unobservably small,
more elaborate models—invoking resonances—might overcome this obstacle. Most impor-
tantly, the experimental and nuclear-physics aspects of Ov4f are completely independent of
the underlying mechanism, and can therefore be readily investigated.
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2.3.4 New Dirac Leptogenesis

Having introduced the concept of LNV Dirac neutrinos and identified possible experimental
signatures, we will show in this subsection how the associated AL = 4 interactions can give
rise to a novel Dirac leptogenesis mechanism. We have already presented a Dirac leptogenesis
mechanism in Sec. 2.1, dubbed neutrinogenesis [74], that made use of the tiny Yukawa cou-
plings v, ~ m,/(H) < 107! connecting the RHNs vp to the SM. The non-thermalization
of the vg then made it possible to hide a lepton asymmetry in the vy sector, invisible to the
sphalerons. Neutrinogenesis can therefore provide an explanation of the observed BAU for
every model in which Dirac neutrinos are light because of a small Yukawa coupling, be it put
in by hand or generated effectively.

An interesting and very different route to motivate light Dirac neutrinos has been discussed
in Refs. [59-61], where a second Higgs doublet Hj is introduced, which couples exclusively to
neutrinos [105]. A small VEV, say (Ha) ~ 1€V, is then the reason for small neutrino masses,
while the Yukawa couplings can be large. This leads to distinctive collider signatures [106],
but also makes standard neutrinogenesis impossible. In this section we will provide a new
kind of Dirac leptogenesis, which relies on thermalized RHNs and therefore works for the
neutrinophilic two-Higgs-doublet solution of small Dirac masses. Our mechanism uses the
framework of LNV Dirac neutrinos to create a lepton asymmetry from the CP-violating
decay of a heavy particle.® As such, the mechanism is actually more reminiscent of standard
leptogenesis than neutrinogenesis, even though it contains Dirac neutrinos.

Asymmetries

As seen above, neutrinos are Dirac particles in our model, yet B — L is broken, which makes
possible a real Dirac leptogenesis, where a lepton asymmetry is created by the CP-violating
AL = 4 decay of some heavy particle. In order for this to work, the decay has to take
place after B — L breaking and before the EWPT, so that sphalerons can convert the lepton
asymmetry to the baryons (assuming AB = 0 as induced in our model).

For a simple realization, we use the framework Sec. 2.3.2 and add second copies of both
the mediator scalar x = (Z; + iZ3)/v/2 and the Higgs doublet H. In order to break B — L
by only four units, both x; are required to stay VEV-less, which can be easily realized in
the scalar potential. Below the B — L breaking scale, y1 and x2 now split into four real
scalars =j, with decay channels vgovp g and vj Vg 5. The second copy x2 is necessary to
obtain CP violation in these decays (depicted in Fig. 2.6), as we will see below. The out-of-
equilibrium decay of the lightest Z; has then all the necessary qualitative features to create
an asymmetry A, in the RHNs (i.e. fulfills Sakharov-like conditions). This in itself would
not suffice for baryogenesis, as the sphalerons do not see the right-handed A,,, and the
Higgs Yukawa couplings y ~ m, /(H1) from Eq. (2.42) are too small to efficiently convert
A, to the left-handed lepton doublets. This is where the second Higgs doublet Hy comes in,
as it can have large enough Yukawa couplings waﬂzaH2yR7ﬁ to thermalize vp and transfer
A,, — Ar. From there, sphalerons take over to convert Ay, to the baryons Apg in the usual
leptogenesis fashion (see Sec. 2.2.2).

Prior to Ref. [1], it was already mentioned in Ref. [107] that LNV Dirac neutrinos could lead to interesting
effects in the early Universe.
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Figure 2.6: CP-violating vertex and self-energy loop corrections to the LNV decay Z; — vg.oVR g
relevant for leptogenesis.

The second Higgs doublet Hy will be chosen neutrinophilic, i.e. with a small VEV [61].
While this is not strictly necessary for our version of Dirac leptogenesis—for example, a
VEV-less Hy with large Yukawas would work as well, the neutrinos gaining mass via H;—it
is the most interesting two-Higgs-doublet model for our purposes, as it additionally sheds
light on the small neutrino masses. To this effect, let us mention briefly how the neutrinophilic
nature of Hy can be realized in our context. Following Ref. [60], we impose an additional
global Zg symmetry (or a U(1) as in Ref. [61]) under which only Hy and vg are charged,
forbidding all Ho Yukawa couplings except for waﬁzaH2yR7ﬁ. The new global symmetry is
broken softly by a term ,U/%QHIHQ in the scalar potential; a small 2, is technically natural
and will induce a small VEV for Hy, (Hy)/(H1) = piy/MF,, which gives naturally small
Dirac neutrino masses mp = w|(Ha)|. We stress that our additional B — L symmetry and
scalars, compared to Refs. [60,61], do in no way complicate or interfere with this realization
of a neutrinophilic Hs, so we will not go into any more details.

After these qualitative statements, let us delve into a more quantitative analysis of our
leptogenesis mechanism. The scalar potential for ¢, Hjo and x12 is more involved than
before (Eq. (2.43)), but the only qualitatively new terms are

V(g Hip,x12) DO mizXix2 + 2 ¢ xix2 + hec., (2.55)

as they lead to a mixing of the four real fields =; contained in x1 2 after breaking B — L. The
4 x 4 mass matrix for the Z; is not particularly illuminating, and a diagonalization merely
redefines the couplings ﬂiﬁ to the RHNs (see Eq. (2.42)). Since the resulting couplings are
the only relevant ones for leptogenesis, we can skip all these steps and just work with four
real scalar fields Z; with masses m; and complex symmetric Yukawa couplings VQJB = Vé o

1 . - 11— — _
L D §V;5:jVR,aV%’B+§V£B EjVR VRS (2.56)

where implicit sums are understood and Vjaﬂ = (VO{B)*.
The Z' interactions will keep the SM particles and the new scalars and RHNSs in equilibrium
above Ty ~ (/g (¢)* /Mp1)'/3, g, ~ 100 being the effective number of degrees of freedom at
temperature 7" and Mp; ~ 10" GeV the Planck mass. Below T/, the real scalars =; will only
be coupled to the SM via Higgs portal (assumed to be small for simplicity) and the RHN
interactions from Eq. (2.56). The out-of-equilibrium condition for the decay of the lightest
=; then reads
my

Mpy

I'(E; = vrvg, vivR) < H(T ~ m;) ~ 1.66 /g« (2.57)
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H(T) being the Hubble expansion rate of the Universe at temperature 7' (not to be confused
with the Higgs fields H;). As with the bulk of leptogenesis models, this condition is most
naturally fulfilled for very heavy decaying particles, as can be seen by inserting the total
decay rate I'(Z;) = tr(V'V?) m; /47, leading to

tr(V'V%) /1075 < m; /101 GeV (2.58)

which can be satisfied with either small Yukawa couplings or large masses, in complete analogy
to the standard leptogenesis with heavy right-handed Majorana neutrinos (Sec. 2.2.2).

Assuming the out-of-equilibrium condition (2.58) to be satisfied, the decay of the lightest
=; then leads to a CP asymmetry due to interference of tree-level and one-loop diagrams
(Fig. 2.6):

T (Ez — I/RI/R) - I (Ez — V}:%V}:%)
T (Ez — I/RI/R) +T (Ez — VIC%VIC%)

g =2 , (2.59)

where we already summed over flavor indices and included a factor of two because two RHNs
are created per decay. A straightforward calculation yields the asymmetries from the vertex
(¢¥) and self-energy correction (as):

1

el = F(m) Im [tr (VVA7VR)]
AT e (V'Y g i )
1 1 (2.60)
& =————— Gnklm[tr vV'vk ]
247 tr(V Vi) kzﬁ { ( )}
with n, = m?/m} < 1 and the loop functions
— log(1 2
Flay=t2leddn) o 2 o0,
.7 2 3 (2.61)
Glz)= —— =z +2° +0(2?).

1—=x

As quick crosschecks, one can easily verify that the k = i contribution to the sums in Eq. (2.60)
vanishes, because the trace of an hermitian matrix is real. One can also convince oneself that
the second Y2 is indeed necessary for the CP asymmetry, as the couplings of just one field
X = (E1 +1iZ2)/v/2 would lead to the Yukawa-coupling relation V2 = iV'! and ultimately
€% =0 = ¢". Let us consider one last limiting case before we move on: Neglecting the x1—x2
mixing terms in the scalar potential (2.55) gives x1 = (21 +1Z2)/V2, x2 = (E3 + iZ4)/V2
and the relations V2 = iV! and V* = iV3. Assuming Z; to be the lightest of the four scalars,
o does not contribute to € by the argument given above. The contributions of =3 and =4
are opposite in sign, so that ¢V oc F(n3) — F(n4) and £* o< G(n3) — G(n4). The asymmetry
therefore vanishes for mg = my, as it should, because this would imply B — L conservation.
Compared to other leptogenesis scenarios, the asymmetries from vertex and self-energy
corrections in our model depend on different flavor parameters—even in the unflavored
case—because tr(A2%) # (trA)? for a general matrix A. The asymmetries are nevertheless
qualitatively reminiscent of standard leptogenesis, with the same rough behavior

e~ 1077 (n/107%) (V/10*2)2, (2.62)
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ignoring the complex matrix structure of V' and assuming a hierarchy n. < 1. A low-scale
resonant leptogenesis is, of course, also possible in our framework, but goes beyond the scope
of this thesis.

The total lepton asymmetry, i.e. the RHN number density n,, relative to the entropy
density s = (272 /45)g. T is then given by

v S
v _ Mwp & + €
VR — .
s Jx

(2.63)

Since we assume equilibrium of the SM particles with the RHNs as well as the sphalerons, we
can use chemical potentials to describe the plasma. (Note that B — L is effectively conserved
once the =; have dropped out.) Consequently, the chemical potential for the RHNs has to be
added to the usual set of equations [86], resulting in the equilibrium condition 3B + L = 0,
or

Yp = iYB,L, Y, = —EYB,L, (2.64)
for three generations (and an arbitrary number of Higgs doublets), compared to Yz = % Yp_1
for standard leptogenesis with one Higgs doublet (Sec. 2.2.2). The condition 3B + L = 0 can
also be understood with the help of Ref. [108], where it was pointed out that 3B + L vanishes
if only left-handed fermions and the sphalerons are in equilibrium. Since we introduce fully
thermalized right-handed partners to all left-handed fermions, it is no surprise that 3B+L = 0
remains valid.

With all of the above, it should be clear that our LNV Dirac neutrinos can accommodate
the observed baryon asymmetry Y ~ 10710 (Eq. (1.25)) in this novel leptogenesis scenario.
We refrain from a parameter scan, as the Yukawa couplings V7 and masses m; are in any
way hardly constrained by other processes or related to other observables, at least for the
very heavy Z; considered here. This leptogenesis mechanism is testable nonetheless, because
it requires additional interactions for the RHNs. Let us therefore discuss the last crucial piece
of the puzzle: the thermalization of the RHNs.

Asymmetry Transfer

The v asymmetry needs to be transferred to the left-handed sector before the EWPT in
order to generate the baryon asymmetry of the Universe. Correspondingly, we need stronger-
than-usual interactions for the RHNs, in our case by means of the second Higgs doublet Hs
in wagfangR,g. At temperatures above the electroweak scale, the interaction rates go with
w?T', which equilibrates the RHNs if w > 1078 [74]. This does not lead to problems, because
below the EWPT, the interaction rate drastically changes its form; the charged Higgs H
for example mediates an T/~ < Urvp scattering with rate w4T5/m§I+, i.e. suppressed by
2

the mass. The RHN decoupling temperature Tlﬁigc is then given by the condition
5
4 d; 4 d
w (TV}:C) /mH; ~ H (Tygc), (2.65)

at least for large w. If the RHNs decouple before the left-handed neutrinos, i.e. 7, SSC > TSL‘SC ~
1 MeV, the RHN contribution to the effective number of relativistic degrees of freedom Neg
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will be diluted [61]:

]4/3 . (2.66)

Nofr 2 3+ 3 [ g (T55) /g (T52°)
We have g, (Tl‘}fc) = 43/4, and recent Planck data constrains Neg = 3.30 &+ 0.27 at 68%

C.L. [23] (dependent on the combination of data sets). The RHNs therefore have to decouple
before the QCD phase transition, TS}‘;C > 150-300 MeV, which yields with Eq. (2.65) a bound

on the Yukawa couplings [61]:
1 [ Mpuf 1/vV2
< — 2 . 2.67
w5 <1OOGeV> < Uil ) (2.67)

Earlier decoupling is, of course, possible, but we always expect some contribution of the
RHNSs to Neg, namely 3.14 < Neg < 3.29 for 150 MeV S TS}‘;C < 200 GeV, assuming only SM
degrees of freedom. These values can even explain the long-standing deviation of the best-fit
value of Neg from the SM value 3.046, as recently emphasized in Ref. [109]. Consequently,
the second Higgs doublet Hs puts the RHNs in equilibrium above the EWPT to generate
the baryon asymmetry, then naturally decouples them to satisfy and ameliorate cosmological
constraints. Taking the flavor structure of the Yukawa couplings w,g into account will modify
the discussion a bit, but goes beyond the scope of this thesis. We refer to Refs. [61,106] for
a detailed discussion of the phenomenology of the neutrinophilic Ho, which is still valid for
our extension with lepton-number-violating Dirac neutrinos.

In summary, Dirac neutrinos with lepton-number-violating interactions make possible a
new way to create a lepton asymmetry in the early Universe. In the simplest model pre-
sented here, this asymmetry resides in the RHN sector and requires a second Higgs doublet
to transfer it to the left-handed leptons and ultimately baryons. If the second doublet cou-
ples exclusively to neutrinos, its small vacuum expectation value can in addition provide a
natural explanation for the smallness of the neutrino masses without invoking small Yukawa
couplings. The unavoidable partial thermalization of the RHNs distinguishes this mechanism
from neutrinogenesis (Sec. 2.1.2), as it contributes to the relativistic degrees of freedom in
perfect agreement with the persisting observational hints. Together with the ensuing collider
phenomenology of the second Higgs doublet and, of course, the predicted absence of neutri-
noless double beta decay, this model can be falsified in current and upcoming experiments.

2.4 Conclusion

In this chapter we have studied various realizations of an abelian B — L gauge symmetry. See-
ing as this corresponds to the only unflavored subgroup of the greater symmetry G motivated
in Sec. 1.5, it is, of course, incapable to shed any light on the peculiar mixing pattern dis-
played by neutrinos; B — L is, however, directly connected to the question whether neutrinos
are Majorana or Dirac particles, and of crucial importance for understanding the matter—
antimatter asymmetry of our Universe. If the gauged U(1)p_y, is broken spontaneously by
a scalar carrying two units of B — L, Majorana masses for the right-handed neutrinos vg
are generated, which trickle down to naturally small Majorana masses for the active neutri-
nos via the seesaw mechanism—most likely inducing the signature process of this framework:
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neutrinoless double beta decay (0v20). In addition, the decay of the heavy vg can give rise to
a lepton asymmetry in the early Universe, transferred to a baryon asymmetry by sphalerons.
This well-known scenario is however not the only possible fate of the U(1)p_1. As we have
pointed out, current data is completely compatible with an unbroken B — L gauge symmetry,
the gauge boson acquiring a gauge-invariant mass by means of the Stiickelberg mechanism.
Neutrinos are then necessarily Dirac particles and there even exists a leptogenesis mecha-
nism to explain our matter—antimatter asymmetry. This neutrinogenesis relies crucially on
the non-thermalization of the right-handed neutrino partners, effectively hiding them from
the sphalerons. Unbroken B — L predicts Dirac neutrinos, the absence of 0v283, and, like all
models in this chapter, a new vector boson Z’. For unbroken B — L, however, the Z’ mass is
a completely independent parameter, and can therefore be probed not only at colliders, but
also in low-energy experiments.

Besides unbroken B — L and Majorana B — L, we also proposed here a third phenomeno-
logically interesting realization of U(1)p_r, spontaneously broken by four units. Neutrinos
are then Dirac particles (like in unbroken B — L) but lepton number is violated (similar to
Majorana B — L). These appropriately named lepton-number-violating Dirac neutrinos arise
in simple models and can mediate AL = 4 interactions (more generally A(B — L) = 4). Such
interactions unavoidably involve many particles and are even more challenging to explore
than the already difficult A(B — L) = 2 processes associated with Majorana B — L. Still,
following the same arguments that lead to neutrinoless double beta decay 0v23 as the prime
option to probe A(B — L) = 2, we consider neutrinoless quadruple beta decay (0v4j) as a
probe for A(B— L) = 4. Surprisingly, there actually are some beta-stable nuclei that could, in
principle, undergo 0v4/ (see Tab. 2.1)—always competing with the SM-allowed double beta
decay 2v23—with appreciable energy release, e.g. Qo4 ~ 2MeV in 150Nd. If the experimen-
tal challenges for the detection of such a process can be overcome, it should be possible to
use Ov4p3 to set interesting bounds on A(B — L) = 4 interactions. Alas, theoretical estimates
for the lifetime of Ov4/3 in our toy model are beyond discouraging, and it is conceivable that
even more elaborate model-building extensions cannot lead to observable rates.

Besides 0v44, lepton-number-violating Dirac neutrinos can in any case play an important
role in the early Universe. In the hot dense plasma, the A(B — L) = 4 interactions can
easily be relevant and generate a lepton asymmetry. As a simple realization, we considered
the A(B — L) = 4 decay of newly introduced scalars into two right-handed neutrinos vp,
generating an asymmetry A, .. Since the Dirac-neutrino masses are too small to transfer
this asymmetry to the left-handed fermions, a second Higgs doublet has been introduced to
thermalize the v and ultimately generate a baryon asymmetry out of A, ,. Not only is this
a novel leptogenesis mechanism for Dirac neutrinos, the necessary thermalization of the vgr
makes it testable, as they will contribute AN.g ~ 0.14-0.29 to the relativistic degrees of
freedom in the early Universe Nesf}w ~ 3.05, in perfect agreement with recent measurements.

Should the Dirac nature of neutrinos be experimentally confirmed by a combination of
neutrino-mass results, we can not conclude that lepton number is a conserved quantity, as
often stated. Lepton number, or more appropriately B — L, can be exactly conserved, but
it can also be broken by higher units than two, motivating experimental efforts to explore
these new signatures and theoretical studies to provide more testable models.



Chapter 3

Flavored Symmetries

In Sec. 1.5 we have shown that with three right-handed neutrinos in addition to the SM
particle content, the much larger group

GSM X g = SU(?))C X SU(Q)L X U(l)y X U(l)B,L X U(l)LefL# X U(l)L#,LT s (3.1)

is free of anomalies, motivating a study of G. Every U(1)’ subgroup of G is, of course, automat-
ically anomaly-free and many of them have already been discussed in the literature (for an
incomplete list see Refs. [110-118]). A discussion of the full breakdown G — nothing—and its
connection to neutrino mass and mixing—Ilies outside the realm of this thesis, as it involves
many parameters and new scalars. Instead, we focus on an effective model of a possible last
step of the breakdown G — U(1)’, i.e. we consider only U(1)" subgroups of G, generated by
Y’ a linear combination of the generators:

V'=a(B~L)+8(Le = Ly) +y(Ly — Ly). (32)

U(1)" models have the advantage of a simple scalar sector with tree-level couplings to the
RHNSs, almost identical to the case discussed in Sec. 2.2.3. A more elaborate embedding of
our U(1)" models into the larger group Ggy x G is, of course, desirable, should any of the
approaches presented in this chapter be experimentally verified. In the following, we will only
consider Majorana neutrinos and make use of the seesaw mechanism introduced in Sec. 2.2.1.
The U(1) groups considered here will then typically only allow for some select Majorana
mass terms (MRg);;, all others being induced by spontaneously breaking the U(1)" with an
SM-singlet scalar.

The question thus arises which subgroup of G should be chosen, i.e. what values «, 3, and
v in Eq. (3.2) are most interesting. We have already discussed the unflavored part (with
B =~ =0) in Ch. 2, so we will turn on the flavor in this chapter. With non-vanishing g or =,
the flavored abelian gauge symmetry U(1)" will have significant influence on leptonic mixing,
which might help us to understand the peculiar mixing pattern observed in neutrinos (see
Sec. 1.1). (Note that all U(1)" C G are unflavored when it comes to quarks, and can thus not
explain the pattern of the CKM matrix (1.8).) Symmetry origins of neutrino mixing are a
popular topic of research, typically using discrete non-abelian global symmetries to generate
precisely the observed mixing angles from Tab. 1.2 (see Ref. [20] for a review). Efforts in
this direction have reached an uncomfortably baroque complexity in order to remain valid,
with dozens of unobservably heavy particles and parameters, not to mention typical problems
such as vacuum alignment and domain walls. In this chapter we instead motivate the use of
continuous abelian local symmetries to learn something about lepton mixing, which are very
economic—few additional parameters and particles—and renormalizable.
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As far as approximate flavor symmetries in the Majorana neutrino mass matrix M, go,

three interesting cases for abelian symmetries have been identified already in Ref. [119] (see
also Ref. [120]):

e L. symmetry for normal hierarchy (NH),
e L=L.— L, — L, for inverted hierarchy (IH), and

e L, — L, for quasi-degenerate neutrinos (QD),

with corresponding neutrino mass matrices of the form

0 0 0 _ 0 x X x 0 0
M fo x x|, ME~|x 0 Of, ME-ofl0o 0 x|, (33
0 x x x 0 0 0 x 0

where x denotes a nonzero entry. Small corrections to one of these matrices can then lead to
valid neutrino mass and mixing parameters. This already hints at a deep connection between
abelian symmetries and neutrino properties, to be exploited in Secs. 3.1 (NH), 3.2 (IH),
and 3.3 (QD), where we promote the corresponding approximate global symmetries to gauge
symmetries.! Besides motivating neutrino hierarchies and the structure of mixing angles,
such local flavor symmetries bring with them a new vector boson Z’ to test the symmetry in
complementary ways outside of the neutrino sector, making them not only simple, but also
testable.

In Sec. 3.4 we will take a different approach and discuss flavor symmetries U(1)" C G that
generate texture zeros or vanishing minors in the neutrino mass matrix M,. Two independent
zeros (or vanishing minors) in the active neutrino mass matrix M, then imply four constraints
on the nine low-energy parameters (mjy,ma,ms), (623,012, 613) and (9, @1, p2) (CP violating
phases), making them in principle distinguishable with future data. Our approach not only
provides new testing ground for flavor symmetries, but also allows to check for the flavor
symmetry behind the texture zeros at the LHC.

This chapter is based on the publications “Neutrino hierarchies from a gauge symme-
try” [3], “Gauged L, — L, symmetry at the electroweak scale” [4] (both in collaboration with
W. Rodejohann), and “Vanishing minors in the neutrino mass matrix from abelian gauge
symmetries” [5] (in collaboration with T. Araki and J. Kubo), as well as the proceedings in
Refs. [6,7].

3.1 Neutrino Hierarchies: Normal Spectrum

As already mentioned in the introduction to this chapter, the mixing parameters from Tab. 1.2
for NH hint at an approximate L. symmetry in the Majorana-neutrino mass matrix M, =
UﬁiMNSdiag(ml,mg,mg)Ug,MNS, i.e. the pattern

Me ~ (3.4)

o o O
X X O
X X o

"Except for L, — L-, these symmetries have so far only been considered as global [120-129] or anomalous [130]
symmetries.
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This structure arises simply by imposing a U (1), symmetry, i.e. invariance under v, — ¢“v,
on ﬁi, oMaprr g, and leads to a massless v; = v, and two massive neutrinos v, 3 (mixtures
of v, and v;). This is a good approximation to the NH case, as can be seen already from
Fig. 1.1; corrections AM,, to /\/lfe are, of course, necessary to mix some of v, into the mass
eigenstates vy 3, i.e. generate a nonzero ¢ and 6013. For a global U (1)r,, these symmetry-
breaking corrections AM,, need to be put in by hand, because spontaneous breaking would
result in a potentially problematic Goldstone boson. Not much can be learned this way,
so we will try to impose the structure MLe by a gauge symmetry, AM, being generated
by spontaneous symmetry breaking, necessary anyways to generate the Z’ mass My /g 2
O(TeV) (similar to the bounds of Sec. 2.1.1).

3.1.1 The Right Symmetry

U(1)r, is not easily promoted to a gauge symmetry, due to the anomalies mentioned in
Sec. 1.5. We can, however, simply take the G subgroup B — 3L., which is anomaly-free
with three RHNs and has the same effect as U(1)z, in the lepton sector. Surprisingly, this
approach still fails, at least when a seesaw mechanism similar to Sec. 2.2.1 is used: The
U(1)p_3r. symmetry imposes the structure (3.4) on the right-handed mass matrix Mk,
while the Dirac mass matrix mp can be taken to be diagonal. The naive seesaw formula M, ~
—mrjp)(/\/lff)_lmp is not applicable, because Mff is not invertible. Even if we introduce small
corrections AM g that make Mp = Méﬁ + A Mg invertible, we will not end up with a matrix
M, that has an approximate L. symmetry. Roughly said, two matrices M and M~! can
only have the same approximate symmetry if M is invertible in the exact-symmetry limit.
This is not the case for the L, symmetry in Eq. (3.4).

Counterintuitively, the appropriate gauge symmetry for NH via seesaw—yielding an ap-
proximate MZe—is the anomaly-free G subgroup U(1), 13- To see this, we show the Dirac

and Majorana mass matrices in the case of unbroken B + 3L:

a 0 0 B 0 X Y
mp=10 b c|, ME=1X 0 0]. (3.5)
0 d e Y 0 O

The matrix M is again singular, so the usual seesaw formula M,, ~ —m©E (M%) ~"tmp for the
light neutrinos in the limit X,Y > (mp);; is not applicable. Instead of the 3 Might + 3 Vheavy
scheme known from seesaw, the diagonalization of the full 6 x 6 matrix leads to the hierarchy
2 Vheavy + 2 Velectroweak 1 2 Vlight, ot in agreement with experiments.

Since the model looks quite different after U(1)" breaking, let us introduce an SM-singlet
complex scalar field S ~ (1,1,0)(+6) which acquires a VEV (S) = O(TeV) in complete
analogy to the Majorana B — L scenario of Sec. 2.2. S couples to the RHNs via gﬁﬁﬁylg,e

etc. in such a way that all the zeros in Mg are filled by entries A, B, C, D, all proportional

to (S). As a result, Mp = MZR + AMp is in general an invertible matrix after B + 3L
breaking:

C?-BD DX -CY BY-CX

Y2-AD AC-XY |. (3.6)
X2 - AB

1

A X
. B .
det Mp

Y
cl, Mp'=
D

Mp =
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The scaling X,Y > (S) > (mp);; leads to the order-of-magnitude structure of the low-
energy neutrino mass matrix

2

0 0 0 e € €
M, ~ —mphMptmp ~ 1 1|+ 0 0], (3.7)
1 -0

with ¢ = (S)/X. Consequently, a low B + 3L breaking scale ¢ ~ 0.1 actually leads to a mass
matrix that approximately conserves L. (3.4), as we have claimed above (and was already
noted in Refs. [123,129]).

Our spontaneously broken U(1) 5 37, sSymmetry does however not generate the most general
L, symmetric matrix, because the zeroth-order mass matrix has the structure

0 0 0
My~ |- (@dX —bY)? (dX —bY)(eX — ) | + O(e), (3.8)
: : (eX —cY)?

which gives only one massive neutrino vz ~ (dX — bY) v, + (eX — ¢Y) v, at leading order.
This is easily understood by noting that Mp has rank 2 in the symmetry limit, i.e. only
two massive vg. The third vz gains a much smaller mass from (S) ~ AMp < ML, that
is however the dominant effect in M, ~ /\/l;zl, making one of the active neutrinos way
heavier than the other two. At leading order, the U(1), 457, Symmetry thus generates one
massive neutrino v3 = sg3v, + c23v/7, which is a good approximation for the normal neutrino
hierarchy spectrum (cf. Fig. 1.1). The solar mixing angle is still undefined at this order, due
to an accidental O(2) symmetry of the matrix—the two approximately massless neutrinos
can still be rotated into each other (see Ref. [11]). Since the symmetry allows for mixing of
u and 7, the charged lepton mass matrix is not diagonal in general and contributes to 3.
The atmospheric mixing angle will therefore receive a contribution from the charged-lepton
mixing and from the neutrino diagonalization

dX —bY

7 3.9
eX —cY’ (3.9)

tan 05; ~

so we expect large but non-maximal mixing for fo3.
Analytical expressions for the O(g) corrections to the above picture can be obtained in
a straightforward but bothersome manner. For a qualitative overview, we rather show the
distribution of the mixing angles 015 and 63 in Fig. 3.1. For these we generated random
Yukawa couplings |(mp);;j| < 1, symmetry-breaking parameters |A],|B|,--- < e, and L
symmetric Mp entries | X|,|Y| > 1 that lead to neutrino mixing parameters in their 3o
range [131].2 Here we restrict the parameters to real values for simplicity, resulting in vanish-
ing CP-violating phases in the mixing matrix. In any case, since the Yukawa couplings can
have arbitrary phases, we do not expect our model to be able to predict the CP-violating
phases. The solar angle tends to be large, while the reactor angle 613 is generally small, but
in good agreement with the recent results of sin®#;3 ~ 0.025-0.03. The units of mp and
Mg have not been specified yet, because they only fix the overall neutrino mass scale—and

2Not much would change using the newer data from Tab. 1.2.
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hence the Am?j—but not the mixing angles. In the usual seesaw manner, the magnitude
m%/Mp =~ 0.1eV does not fix the seesaw scale, but naturalness hints at a high scale.

We have thus succeeded in connecting the normal hierarchy of neutrinos to an abelian gauge
symmetry U(1) g 437~ While this approach can not predict precise values for the neutrino
parameters, it does motivate their qualitative structure—large 653 and 612, small 6;3—already
impressive considering the simplicity of the model. The size of the corrections € necessary
for viable neutrino mixing then fixes the ratio of U(1) symmetry-breaking VEV (S) to the
seesaw scale X ~ (S)/e. Note that 0v23 rates are expected to be small, seeing as mee ~ 2
in this model.

A word about previous work: The gauge symmetry U(1), 47 was proposed in Ref. [117]
as an origin for R-parity, noting that B 4 3L successfully forbids dangerous proton decay via
higher-dimensional operators such as QQQ L. This operator conserves B — L, the most pop-
ular R-parity extension, but violates B — 3, xyLy if o # 1; spontaneous symmetry breaking
of B+ 3L via S ~ 6, as necessary for viable neutrino phenomenology, then results in a rem-
nant Zg symmetry that renders the proton completely stable—a welcome additional feature
of U(1l)g 437+ It should be stressed that even though we are taking a non-supersymmetric
model for simplicity, a similar discussion holds for the supersymmetric case of Ref. [117].
Supersymmetric particles aside, the main difference is the need for a second complex scalar
(super-)field to fill the vanishing entries in the neutrino mass matrix. The model (superpo-
tential, mass spectrum etc.) is then similar to supersymmetric B — L models, which are
intensively discussed in e.g. Refs. [132-134]. Assuming similar vacuum expectation values for
both scalars makes the discussion of neutrino masses identical to our discussion here.

3.1.2 Gauge Boson

Before we move on to gauge-symmetry realizations of an inverted neutrino spectrum in the
next section, let us comment on the boson sector of our flavored U(1)" symmetries. The
scalar potential of our U(1) 5, ;7 model is the same as for U(1)p—r, in Sec. 2.2.3, because we
just introduced an SM-singlet complex scalar S ~ (1,1,0)(+6) with a VEV (S) = vg/v2—
generating a Z' mass My = 6|¢g'vg|. The mixing of Re S and the Higgs h is therefore not
particularly helpful to distinguish the various U(1)" symmetries discussed in this thesis.

The Z' phenomenology of U(1) 5, 47 is, however, different enough from U(1)p—1, to distin-
guish the cases: The coupling to quarks/baryons is identical, but the Z’ branching ratios into
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leptons will differ significantly, for example

BR (2, — e) ~ BR (251, — 7e) 50
BR(Z,, =)  BR(Z, ,—bb) '

The gauge boson of U(1), 437, can even lead to effects at energies &2 < My, for example
loop-induced deviations from lepton universality. More specifically, we expect slightly different
cross sections for electrons than for muons and tauons (which are universal under U(1) 5. o7)-
No such deviation has been observed so far, but might arise in the future. The prospects of
detecting the heavy Z’ at the LHC were discussed in Ref. [117]; for ¢’ = 0.1 the final stage
of the LHC (y/s = 14 TeV, integrated luminosity L ~ 100fb~!) can probe the model up to
My ~ 3.6 TeV via the dilepton Z’ resonance.

Let us present some actual bounds on the gauge boson of our U(1), 437, scenario after all
these qualitative considerations. Extending the SM gauge group Gsy = SU(3)¢ x SU(2) 1, X
U(l)y by U(1) leads to possible Z-Z' mixing, either from the VEV of a scalar in a non-
trivial representation of SU(2)r, x U(1)y and U(1)’, or via the kinetic mixing angle x that
connects the U(1) field strength tensors (see App. B for details). The relevant Lagrange
density £ = Lsy + Lz + Limix after breaking SU(2)r, x U(1)y x U(1) to U(1)gm then
consists of

N

é

Laoap 1o o 1 g s o &, n o
Lom = = By B — Wy, W + S M2, 2% — @JYBM - §WJSU(2)W;77
1A/ 51 1A2 1 Al Al -l Al
Lo =~ 2, 2" + M3 2,2 — § " Z,,. (3.11)

_SInX sy TSN
Emix——TZ“”BW—i—(SM ZﬂZ“.

Since the above gauge eigenstates have a non-diagonal mass matrix and kinetic terms, the
physical mass eigenstates are linear combinations of the hatted fields (App. B). Setting for
simplicity the kinetic mixing angle x to zero, the transformation to the mass eigenstates Z;
and Zo takes the simple form

Z1\ [ cos@ sind Z B IV
(Zg>_<—sin9 cose> (z) tan 20 = (3.12)

with the Z-Z' mixing angle #, modifying the couplings of the gauge bosons to fermions.
Using a modified version of GAPP [135,136] to fit our model with an arbitrary scalar sector
we obtain the 95% C.L. limit |¢g’sin 6] < 10~* (see Fig. 3.2) from electroweak precision data.
Constraints for the mass My are obtained from collider searches, as the gauge boson of
Ul)g 437, couples directly to first-generation particles. LEP-2 searches for new physics give
a stronger limit than Tevatron, namely My /g’ = 13.5TeV at 95% C.L. [66,67], because the
Z' couples strongly to the electron (Y’(e) = 3); this translates into a bound on the VEV of
vg > 2.3 TeV. Since vg is also connected to the seesaw scale via (S) ~ eMp (Eq. (3.7)), one
could also consider vg ~ 10" GeV, which would make Z’ and s pretty much impossible to
observe. It is therefore more interesting to consider the low-energy end of the seesaw scale,
which can lead to observable effects.
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Ma/g' [TeV]

Figure 3.2: x? contours in the My-sin(f) plane,

5t | | | 1 corresponding to 90%, 95%, and 99% C.L. The
-2 -1 0 1 2 horizontal dashed line is the 95% C.L. lower limit
g sin©) [1074] from LEP-2 [66,67].

We note that the non-universal lepton coupling of B + 3L also gives rise to non-standard
neutrino interactions (NSIs), which are usually parametrized by the non-renormalizable ef-
fective Lagrangian

L = _2\/§GF5£§ {JEV“Pf} [VayuPLvs] (3.13)

in our case obtained upon integrating out the heavy gauge boson Z’. Without going into
details, we can estimate

2 2 2

VEw . VEw . Viw .
fap ~ —2—— diag(1, -1, —1) = —LW diag(2,0,0) + —E_ diag(1,1,1). (3.14
o8~ Ly /g T )= iy gy 1282 0.0+ G dias(L, 1. 1) (3.14)

The magnitude is very small (¢ ~ 107%) and since the term proportional to the identity
matrix does not affect oscillations, we actually only induce &, i.e. modify the usual matter
potential, which is hard to measure.

In the following we will ignore any Z—Z’ mixing, be it mass mixing (not induced at tree-
level in our minimal model) or kinetic mixing; with Ly = 0 we can omit all the hats of
the parameters in Eq. (3.11). See App. B for a more detailed discussion of Z-Z’ mixing and
relevant references.

3.2 Neutrino Hierarchies: Inverted Spectrum

In the previous section we have found a way to connect the normal neutrino hierarchy to
an abelian gauge symmetry. For this, the G subgroup U(l)B+3(LefL#7LT) was spontaneously
broken, leading to an approximately L. symmetric neutrino mass matrix M, after seesaw.
We want to repeat this procedure to generate an inverted neutrino spectrum, i.e. an approx-
imately L = L, — L, — L; symmetric neutrino mass matrix

ML~ (3.15)

X X O
o O X
o O X

This appears as a trivial exercise after the work of Sec. 3.1, but proves to be more difficult.
We have already learned that an L symmetric Mp will not lead to an L symmetric M,
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after seesaw, but rather an L. symmetric one. Turning this around, it seems to be a good
idea to impose an L, symmetry on M pr—Dbetter yet an anomaly-free U(1)p_3z,—hoping for
an L symmetric M, after the seesaw dust has settled. This fails for the same reason that
it works in Sec. 3.1: MIL% has rank 2, so spontaneous symmetry breaking will give a mass to
the third vz much smaller than ./\/lf%. This small mass will dominate in the seesaw formula
M,y ~ M;%l, making one of the active neutrinos much heavier than the others. This is good
for NH but terrible for IH, which rather requires two almost degenerate massive neutrinos
(as can be seen from Fig. 1.1). A different approach is therefore needed to generate inverted
hierarchy from an abelian gauge symmetry.

3.2.1 Three Right-Handed Neutrinos and a Z; Symmetry

The reason for the different approximate symmetries in Mg and ./\/(}_%1 is the occurring
vanishing eigenvalue of Mp in the unbroken case. To solve this problem, we will decouple
the zero mode, i.e. forbid a coupling of the “massless” vg to the active neutrinos. The massless
eigenvector of the matrix Mﬁ (3.15) is a linear combination of vr 2 and vg 3. We can, without
loss of generality, choose to decouple vg 3 from the other v, which just corresponds to an
unphysical rotation in vgo-vg 3 space. The decoupling is accomplished with an additional
Zg symmetry under which vg 3 transforms as vr3 — —vpg 3 while all other fields are even.3
The only allowed interactions for vg 3 are then

Loy =g (0u — i(=3)g'Z),) vrs — Yy S Thavs + bec.
_ Ty o B Tomne oy ST (1 i) 3.16
5 X 1" 0ux = 592X Cy X Xﬂxcx o) (3.16)
——
M, /2

making it massive and stable after B + 3L breaking. In the last line we replaced the right-
handed Dirac fermion vg3 by a Majorana fermion x = vgr3 + v 53 and switched to unitary
gauge, in complete analogy to Sec. 2.2. The stable Majorana fermion x is therefore a can-
didate for dark matter, to be further examined in Sec. 3.2.3. Note that the stability arises
accidentally, as the Zo was only introduced to implement an inverted hierarchy for the active
neutrinos.

Back to the neutrinos: The left-handed neutrinos now couple only to vz 1 and vg 2, so at
most two active neutrinos acquire mass at tree level [137]. The B + 3L symmetry is broken
in Mp by the parameters A and B, so with the usual seesaw mechanism we find

a 0 -1 a’B —abX —acX
A X a 00 1 .
0 ¢ A

which features an interesting structure [128,138]: The decoupling of v 3 results as intended
in an invertible M%XQ, so M, now conserves L, — L, — L; in the limit A,B — 0. M, is
hence a good mass matrix for IH, with two degenerate massive neutrinos and a massless

3This can also be interpreted as an exchange symmetry vr2 <> vgr,3 by using the basis V1 ~ vgr 2 + VR 3,
Wy ~ VR2 — VR,3.
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v3 = 893V, + co3v; at leading order. This model also gives a simple explicit realization of
“scaling” [139,140], seeing as the second and third column of M, are proportional. Therefore
we have an inverted hierarchy solution with 613 = 0, whereas the atmospheric mixing angle
is once again large but not maximal, also due to the contributions of the charged leptons.
At 2-loop level radiative corrections will induce a nonzero 63, but of practically irrelevant
magnitude [141]. The solar mixing angle becomes mazimal for A, B — 0, so the breaking
scale (S) needs to be close to the bare mass term X to lower ;5.

In any case, a vanishing reactor angle 613 is by now excluded (see Tab. 1.2) and requires
a modification of our model. As it turns out, 013 and the mass of the lightest neutrino are
linked [139,140], so we simply need to make v3 massive; one solution would involve breaking
the Zj in order to couple vr3 to the active neutrinos and generate a nonzero 63, also
rendering the DM candidate y unstable, with a short lifetime compared to the age of the
Universe (estimated in our paper [3]). Solutions along this route are bothersome and typically
involve the introduction of additional scalars if IH is to be maintained, not to be discussed
further. In the next section we will rather show that a slight extension of the fermion sector
can easily generate a non-vanishing reactor angle while retaining a simple scalar sector and
the exact Zo symmetry—Ieading to IH.

3.2.2 Five Right-Handed Neutrinos and a Z, Symmetry

Since the extension by scalars is cumbersome, we seek out a different solution to generate
013 # 0. Seeing as the vanishing reactor angle is linked to the vanishing neutrino mass
ms [139,140], we should try to make all three active neutrinos massive. In the type-I seesaw
mechanism employed in this thesis, this simply requires the introduction of more right-handed
neutrinos vp ;; these need to carry lepton numbers, so we can only add them in vector-like
pairs, otherwise they would introduce U(1) 5, 57 gauge anomalies (see Sec. 1.5). The simplest
possibilities is then to introduce two more RHNs to our U(1)g, 57 model, vp4 ~ +3 and
vr5 ~ —3. The full 5 x 5 matrix Mg would, of course, again be singular in the exact L limit,
so we still have to introduce our Zs to decouple one of the right-handed neutrinos (xy = N3)
and obtain an invertible M p—leading to an approximately L symmetric M,. x will again
be our dark matter candidate, to be discussed in Sec. 3.2.3.

After symmetry breaking with the scalars H ~ (1,2,41)(0) and S ~ (1,1,0)(4+6) we
obtain the mass matrix for the active neutrinos via the seesaw mechanism

a 0 O
a b 0 O -1
M,~—=10 0 ¢ d 'AT + b 00 , (3.18)
00 ¢ f Xt B 0 ¢ e
0 d f

where X is an arbitrary 2 x 2 matrix (the gauge invariant mass terms for the RHNs) and A,
B are symmetric 2 x 2 matrices generated by spontaneous B + 3L breaking. For c¢f — ed # 0
there is no massless neutrino o v, + 3 v, so we have 613 # 0 in general. The solar mixing angle
becomes maximal for A, B — 0, so the breaking scale needs to be close to the bare mass terms
to lower 615. A large 63 in agreement with recent results also forbids too low a breaking scale,
meaning that the breaking parameter should be at least ¢ = (S)/|X| ~ 0.1 in our minimal
model. For the scatter plots in Fig. 3.3 we generated random Yukawa couplings |(mp);;| < 1,
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|(A)is], |(B)ij] < e and |(X);;] > 1. Except for the approximate L symmetry in the limit
Aij, Bij < Xy (and the corresponding inverted hierarchy) there is no further structure in
M, so we refrain from any analytical discussion. Since IH requires me, > 1072 eV, it can in
principle be completely probed in 0v23 experiments.

This accomplishes our goal to impose the inverted neutrino hierarchy by means of an
abelian gauge symmetry. Surprisingly, it is the same U(1)’ = U(1) 4 37, that lead to NH in
Sec. 3.1, albeit accompanied not only by two more RHNs, but also a Zo symmetry. This Zo
symmetry was required in the neutrino sector in order to obtain IH solutions, but accidentally
stabilizes one of the new fermions. The rest of this section is devoted to a discussion of this
naturally arising DM candidate.

3.2.3 Dark Matter

As we have seen above, our model for inverted neutrino hierarchy leads to a stable “right-
handed neutrino” y which interacts with the Z’ boson and the physical scalars ¢; via the
Lagrangian from Eq. (3.16). The measured relic density €, h? ~ 0.1 (Eq. (1.26)) can be ob-
tained around either of the scalar s-channel resonances M, ~ m;/2, but for the ¢;-resonance
one needs a rather large scalar-mixing angle a. Choosing parameters that make the model
testable at LHC and direct DM detection experiments—AM, ~ 10-100 GeV, mg ~ 100 GeV—
can lead to viable DM relic abundance in complete analogy to Refs. [142,143], where a Zy
symmetry is added to the minimal B — L model (Sec. 2.2) to make one of the RHNs stable.
We stress however that the Zs in our model was not introduced to make a particle stable,
but to generate the right flavor symmetry in the neutrino mass matrix. The stability of x
is in that sense just a welcome accident.* We show the relic abundance of x as a function
of its mass and the h—s mixing angle « in Fig. 3.4, as calculated with a modified version of
microMEGAs [144-146]. There is no difference between the B + 3L model and the B — L
model in the region M, < My of parameter space, because the Z’ plays a sub-dominant
role for the properties of the scalars, so we refer to Refs. [142,143] for exact formulae of the
relevant cross sections and discussions of direct detection signals. Additional work on B — L
in connection with dark matter can be found in Refs. [147-149].

“Note that we need an exact Zs for stable DM, while a valid IH solution could also work with a broken Zs.
This would however necessitate a more complicated model, so Occam’s razor suggests an exact Zo.
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Figure 3.4: Left: Relic density of x for the parameters m; = 125 GeV, my = 500 GeV, vg = 2.3 TeV,
g =0.25, Ny = 1.9TeV, Ny = 2.5TeV, and sina = 0.5 (blue), 0.3 (red) and 0.1 (black). This puts
the ¢1, ¢o and Z’ resonances at ~ 60 GeV, 250 GeV and 1.7 TeV, respectively. The green band shows
the 30 range measured by WMAP. Right: Relative contribution to the relic density by the processes
XX — qq (sum over all quarks), leptons (including neutrinos), ZZ, etc., for sina = 0.3.

Values around M, ~ 100 GeV are an interesting limiting case for collider searches. However,
since , Z’, and ¢9 all obtain their masses from B + 3L breaking

My = 6|g'vs|, ma ~ mg ~ \/2X\avg , M, = \/invs, (3.19)
we would naturally expect their masses to be of similar order:
MZ’ ~ Tng ~ MX . (320)

To satisfy collider constraints one needs the scale for these masses to be above 1-10TeV,
but it can, of course, be even higher. A valid relic density can be obtained yet again around
the ¢9 resonance, since we expect x and ¢ to have similar masses anyway. The important
annihilation channels are then xx — leptons, WW, ZZ and ¢1¢;. The latter three have a
fixed ratio at the resonance, because one can calculate for msy > mq, My

3
D¢y — WHW™) =~ 20(p — ZZ) ~ 20(hs — b161) ~ % sina . (3.21)
For M, =~ mgy/2 > m; there is, of course, the additional important decay into top quarks.
However, for a DM candidate this heavy, we also have a Z’ resonance M, ~ M/ /2 indepen-
dent of the mixing angle . Due to the different coupling of our Z’ compared to B — L, this
Z' resonance is particularly interesting to distinguish the models. The interactions between
fermions and Z’ are given by

3 1
L D g’Z;L( - 5%7“%)( + 3 Zﬁfy“q —3eyte + 3TyHr
? (3.22)

N w

_l’_

3 3
T (—5)Ve — 5577“(—75)% +5 Ny (+75) N1+ ... ) ,
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where y and the neutrinos are written as Majorana fermions. The structure of the effective
operators Yy"vsx ffyu f upon integrating out Z’ leads to spin-independent and spin-dependent
interactions in the non-relativistic limit, suppressed by v? (velocity) and ¢ (momentum
transfer), respectively, as discussed in Ref. [150].

Around the Z’ resonance, the relevant processes yx — Z' — ff lead to the thermally
averaged cross section (ov) ~ a + bv? with a = 0 and

29" M3 2,12
~ YY", (3.23)
3m (MZ, — AM2)? +T%, M2, ; 77X

where we neglected the fermion masses for simplicity. This can be used to calculate the freeze-
out temperature and the relic density Q,h? ~ 1/b [142,143] of x. Due to the larger coupling
of Z' to leptons compared to B — L, the annihilation channels around the Z’ resonance are
mainly ¢/, v7, and also N;N; if My, < My /2. At this point it matters whether we take x
from Sec. 3.2.1 or Sec. 3.2.2, because the models differ in the number of heavy neutrinos.
However, additional RHNs do not change the discussion qualitatively, so we will perform
our calculations with ny = 3 (Sec. 3.2.1) for simplicity, assuming any additional N; to be
heavy enough to be negligible. In Fig. 3.4 we already showed the relic density of x and the
contributing processes around the Z’ resonance.

While it is clear from Fig. 3.4 that the Z’ channel can lead to the proper relic density
(even for sin v = 0), direct detection signals from Z’ interactions are difficult to measure due
to the Lorentz structure of the effective operator }v*v5x 77# f. Since direct detection occurs
via t-channel Z’ exchange, there is no resonance boost like in the annihilation case. The
spin-dependent operators Yy"7vsx ?Wu% f—which do not suffer from ¢ or v? suppression—
can only be obtained via electroweak loops or Z—Z' mixing, which once again suppresses
them. Correspondingly, direct detection experiments will not be sensitive to Z’ exchange,
so the cross section will be dominated by the scalar-induced operator Xx gq, which gives
spin-independent cross sections proportional to sin? 2o Mi /v% We show the cross sections
for xp — xp in Fig. 3.5 (as calculated with microMEGAs) for the same parameters as in
Fig. 3.4. The observed relic density can be obtained, for example, at the ¢o resonance with
M, ~ 225GeV, which gives a cross section 7,/ sin? 2a ~ 2.5 x 1079 pb. This evades current
XENON100 bounds [151] but can be probed in future experiments like XENONI1T [142,143].
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We note that a supersymmetric extension of this model might result in o <« 1—making
the Z’ resonance crucial for relic abundance—similar to a supersymmetric extension of the
B — L model of Ref. [142,143] discussed in Ref. [149].

To summarize: The inverted hierarchy discussed in this section is harder to realize than the
normal hierarchy of Sec. 3.1. Both are connected to the abelian gauge symmetry U(1) 5 3D
but IH requires additional RHNs and a Zs symmetry to decouple one of them. On the plus
side, we find a dark matter candidate, coupled to the SM via the two new bosons Z’ and s.

3.3 Neutrino Hierarchies: Quasi-Degenerate Spectrum

In the last two sections we have shown how the approximate symmetry structures behind
normal and inverted hierarchy (cf. Eq. (3.3)) can be motivated and enforced by an abelian
gauge symmetry, in both cases U(1)z, 57 (accompanied by a Zs for TH). As already stated
in the introduction to this chapter, a different approximate symmetry arises for a quasi-
degenerate neutrino spectrum, namely L, — L,:

X
ML= 10 (3.24)
0

X © O
o X O

It is again our goal to enforce this structure, and hence QD, by means of a U(1)) C G
subgroup, similar to the previous two sections. This turns out to be very straightforward,
because the matrix ./\/(5“ ~L7 s invertible (otherwise it could hardly work as a symmetry for
QD, i.e. m1 ~ mg ~ m3 # 0). Consequently, an L, — L, symmetric M, can be obtained from
an L, — L; symmetric Mp via seesaw, without even the need to break the symmetry. This
makes it an easy symmetry to discuss; furthermore, L, — L. is already an U(1)" subgroup of
G, and can hence be promoted to a gauge symmetry without any effort. In fact, it is not even
necessary to introduce right-handed neutrinos to the SM to do this, as U(1)r,r, is already
anomaly-free with the SM particle content from Tab. 1.1, as recognized long ago [52-54].
This makes L, — L, an especially well-motivated gauge group extension of the SM, and has
consequently been discussed at length in the literature (see references in Ref. [4] and the
diploma thesis “Phenomenology of a gauged L, — L, symmetry” [152]).

3.3.1 Neutrino Masses

Let us briefly discuss a simple L, — L, model to illustrate the possible effects. An unbroken
U(1)r, -1, gauge symmetry only allows for the following Majorana mass matrix for the RHNs

X
L;L_LT —

0 O
M 0 Y|, (3.25)
Y 0

Since electron, muon, and tauon all carry different charges under our U(1)’, all leptonic

Yukawa couplings with the SM Higgs doublet—and hence all Dirac mass matrices—are di-
agonal by symmetry: M. = diag(me, m,, m.), mp = diag(m,,,m,,,m, ), in the notation of
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Figure 3.6: Scatter plots for L,, — L., spontaneously broken by two scalars with vacuum expectation
values (S;)/ Mg ~ 0.02.

Sec. 1.1. Invoking the seesaw mechanism in the form of X,Y > m,, results in the L, — L,
symmetric low-energy Majorana mass matrix for the active neutrinos

2
my

< 0 0
-1 X
MEu=Lr ~ T (Mé“ LT) mp=—| 0 0 m”NYm”T . (3.26)
0 myuymw 0

We stress here that X and Y are both allowed by the U(1)" symmetry and hence expected
to be of similar order, so we assume X ~ Y below. The same holds for the mp entries
My, , My, , and m,, . The eigenvalues of Mf’*_LT, —m2 /X and +m,,m,, /Y, are therefore
naturally of similar magnitude, i.e. there is at most a mild hierarchy between the neutrino
masses.” The atmospheric mixing angle 63 associated with this mass matrix is maximal,
i.e. sin?(fa3) = 1/2, while the other two mixing angles 613 and 15 are zero and will be induced
by breaking the U(1)r,—r, symmetry. The two degenerate neutrino masses |m,,,m, /Y| will
also be split by the breaking.

In order to break the symmetry spontaneously, we introduce two SM-singlet scalars, S7 ~
+1 and Sy ~ 42, instead of just one as in the sections above. This is convenient because
the VEVs (S;) will then fill all the zeros in Mg“_LT of Eq. (3.25), and consequently all

T

zeros in ME*IT after seesaw, with entries suppressed by ¢ = (5;)/X <« 1. Note that
the trilinear coupling ©S?S3 in the scalar potential will unavoidably induce an Sy VEV if
(S1) # 0—roughly (S2) ~ pu(S1)?/m,—and hence no dangerous Goldstone bosons arise. To
generate viable mixing angles and mass differences, only small perturbations ¢ = O(1072)
are necessary (see Fig. 3.6), so the L, — L, breaking scale (S;) should be roughly 100 times
below the seesaw scale MIL%” s

A model with just one SM-singlet scalar will be discussed in Sec. 3.4, giving rise to two
vanishing minors in M,,, and hence a relation between neutrino mixing parameters beyond

our approximate L, — L, symmetry. Using one SM-singlet scalar and one additional SU(2)r,

5Note that positive masses can be obtained by minor phase shifts of the fields; in particular, one of the
Majorana phases ¢1,2 in the PMNS matrix (1.12) is m, while the other vanishes.



3.3 Neutrino Hierarchies: Quasi-Degenerate Spectrum 69

doublet to break SU(2)r x U(1)y xU(1)r, -z, — U(1)gm gives rise to a rich phenomenology,
as discussed in our paper “Gauged L, — L, symmetry at the electroweak scale” [4] (in
collaboration with W. Rodejohann). The texture zeros in M, are then filled with entries
from AMp and Amp. This gives rise to specific lepton flavor violating signatures—r — eX
and © — eX, but not 7 — puX—and Z-Z' mixing testable at the LHC. Also discussed
in Ref. [4] is an embedding of U(1)L,r, into a non-abelian SU(2), in an effort to enforce
the required degeneracy in the neutrino mass matrices, e.g. X =Y in Eq. (3.25). Since a
discussion of this model would take us too far off track, we have to refer the interested reader
to our paper for details.

Let this suffice as a reminder of the neutrino phenomenology of L, — L. Experimentally,
we expect large Ov2( rates, close-to maximal 23, and a large neutrino-mass contribution in
cosmology, i.e. measurable values for }>;m;. Additional interesting effects arise from the Z !
discussed in the next subsection.

3.3.2 Gauge Boson

Of all the U(1)’ symmetries in this chapter, L,,— L, is the only one that requires a modified dis-
cussion of the gauge boson phenomenology. This is because the Z’ of L, — L, couples neither
to quarks nor to electrons, invalidating all limits on Mz and ¢’ mentioned in Sec. 2.1.1. In
absence of Z—Z' mixing, limits arise only from experiments with muons, seeing as tauons are
experimentally more difficult to handle. The prime observable here is the muon’s anomalous
magnetic moment a,, = (g, —2)/2, to which the Z’ contributes at one-loop level. Restricting
ourselves to gauge boson masses My > mﬂ,6 the contribution takes the simple form [154]

2 12
my g

A pr—
= Tor2 M2,

1 2
LGGV) . (3.27)

~ 290 x 107! (
Mz /g’

As it so happens, this contribution can resolve the longstanding ~ 3o deviation between
experiment and SM prediction ajj*® — aEM = 289(80) x 107! [16], where we combined the
errors in quadrature. The U(1)r, 1, gauge boson is therefore not only allowed to be lighter
than TeV, but is even strongly preferred to sit around the electroweak scale! Hadronic con-
tributions to aﬁM are however notoriously hard to calculate, resulting in a sort-of-systematic
error not taken into account here. The U(1)z, —1.-breaking VEV(s) can now be fixed by Aa,
close to the electroweak scale: My /g o (S) ~ 200 GeV. Together with our knowledge from
above about the neutrino masses, we can actually predict the seesaw scale to be roughly
Mp = O(10) TeV in this model. Since this is much too low for standard thermal leptogen-
esis, as discussed in Sec. 2.2.2, the modified version of resonant leptogenesis [84] has to be
employed, which requires the RHNs to be quasi-degenerate. While this should presumably
work nicely, seeing as we expect and need quasi-degenerate neutrinos anyways in our model,
a discussion goes beyond the scope of this thesis.

Let us briefly mention collider phenomenology; while certainly more challenging than the
search for gauge bosons with couplings to first-generation particles, there are still interesting
signatures. As noted long ago [155-157], the Z’ can be radiated off final state muons (or
tauons), with subsequent decay Z' — ppu, 77. Correspondingly, the Breit-Wigner peak of

®The long-range limit of U(1)z, -z, has been studied by us in Refs. [152,153].
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the U(1)r, 1, gauge boson could be discovered in the invariant-mass distribution of lepton
pairs in the final states 4u, 47, or 2u27. A recent reevaluation of the discovery reach at the

LHC can be found in Ref. [158].

3.4 Texture Zeros and Vanishing Minors

Time for a slight change of topics. In the previous sections, we have taken the approach to
identify approximate symmetries in the neutrino mass hierarchies and promote them to gauge
symmetries. In effect, we imposed a structure on Mp and introduced small perturbations
AMp ~ (S) by breaking the U(1)’, which then trickle down to M, via seesaw. A more
extreme approach to impose structure on the neutrino mass matrix are texture zeros and
vanishing minors. We start with an example to illustrate both the idea and the novel approach
of our paper [5]: Let us consider the U(1)" subgroup of U(1)p—r x U(1)r,—r, x U(1)L, L,
generated by

Y'=(B-L)+2(Le—L,)+2(L,—L;)=B+L.— L, —3L,, (3.28)

which is, of course, anomaly free. Since electron, muon, and tauon carry different charges
under this U(1)" gauge group, the Dirac mass matrix for the charged leptons is automatically
diagonal, as is the Dirac mass matrix of the neutrinos mp. For the right-handed neutrinos,
we can write down only one Majorana mass term, namely M7 Vg 2, which means that all
entries of Mp are zero except for (Mpg)12 = (Mp)2:1. Breaking the U(1)" with an SM-singlet
scalar S of charge Y'(S) = 2 generates, however, more Majorana mass terms:

0 x 0 x 0 X X X X
Mp=M|[x 0 0]|+(S)[0 x O0f~]|x x 0], (3.29)
0O 0 O x 0 0 x 0 0

where X again just denotes some nonzero entry. Assuming both M and (S) to be much larger
than the electroweak scale, we can use the seesaw relation (2.16) to calculate the low-energy
neutrino mass matrix

-1

X X X 0 0 x
My:—mD/\/ll_%lmDN x x 0 ~10 x x|, (3.30)
x 0 0 X X X
using the fact that mp is diagonal. Writing M, = Ugyng diag ml,mg,mg) PMNS in the
usual parametrization (2.17), we see that the two texture zeros (My)ee = (My)ey = 0
imposed by our symmetry lead to the relations
my cos? 01 cos? B35 + mo sin® 912 cos? 03¢ 1 + mg sin? 013202 = , (3.31)
my cos 019 (cos fo38in 15 + e~ % cos #12 sin 53 sin 913)
+ My sin 019 (sin 015 sin Oa3 sin O13 — € cos Oy cos 923) e ip1—10 (3.32)

— g sin fgg sin O30 %2 = 0.
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Using data from neutrino oscillation experiments for ¢;; and the mass-squared differences
Amgml (see Tab. 1.2), one can solve the two complex equations above to obtain the remaining
unknowns: the three CP-violating phases ¢, 1, and s, as well as the lightest neutrino mass
m1. In this example, one finds m; ~ 3.9meV, normal hierarchy, and a vanishing rate of
neutrinoless double beta decay, because (M, ). = 0 [159].

The above example nicely illustrates the approach of this section: We take U(1)" subgroups
of our maximal anomaly-free group G that lead to diagonal Dirac matrices. Breaking the
U(1)" spontaneously with SM-singlet scalars of appropriate charge will lead to texture zeros
in Mp, which translate into vanishing minors of M, ~ Mélfto be defined below—and
give rise to testable relations among the neutrino mixing parameters. After identifying the
seven currently allowed two-zero textures in Mp ~ M, we will show how five of them
can be realized via U(1)" symmetries in the simplest possible way, using only one SM-singlet
scalar to break the U(1); the remaining two viable two-zero textures in Mp can be realized
in a model with two scalars.

The idea of imposing texture zeros [160—-163] or vanishing minors [164,165] is, of course, not
new; typically, discrete Zy symmetries are used to forbid the mass-matrix entries, employing
a vast number of additional scalars [166]. However, it is not completely clear that discrete
global symmetries would survive quantum gravity effects [167], and moreover the spontaneous
breaking of discrete symmetries may suffer from the domain wall problem. In this sense, it
might be more convincing to adopt gauge symmetries instead of discrete ones, especially
considering our motivation for these symmetries in Sec. 1.5. Furthermore, the new U(1)’
gauge boson can be expected to have some impact on the LHC phenomenology and therefore
provide better testability.

3.4.1 Classification and Current Status

It is easy to prove that Majorana neutrino mass matrices with three or more independent
texture zeros in M,, or M, ! are incompatible with current data. We will therefore only study
two-zero textures,” listed here in the common notation [161]:

0 0 x 0 x O

Aq 0 x|, As: x x x|; (3.33)
X X X 0 x X
x x 0 x 0 X

B1 : x 0 x s 32 : 0 x X s (334)
0 x X x x 0
x 0 x x x 0

B;: 0 0 x B, : X X X |; (3.35)
X X X 0 x O

"Imposing only one zero [168] or vanishing minor [169] severely reduces the predictivity of the model and
will not be studied here. Our U(1)" approach can, however, also be useful in these cases.
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pattern of M A1 A2 B3 B4 D1 D2 Fj

pattern of M1 D, D, B, By A, A Fj

Table 3.1: Two-texture zeros of a non-singular symmetric 3 x 3 matrix M that lead to two texture
zeros in the inverse matrix M 1.

X X X X X X X X X

C x 0 x|; Dy x 0 0], Dy x x 0]; (3.36)
x x 0 x 0 X x 0 0
0 x X 0 x X 0 x X

E, x 0 x|, Es x x x|, Ej: x x 0]; (3.37)
X X x x 0 x 0 x
x 0 0 x 0 X x x 0

F,: 0 x x|, Fq: 0 x 0|, Fs: x x 0. (3.38)
0 x X x 0 x 0 0 x

In all cases, the symbol x denotes a non-vanishing entry. In some cases—listed in Tab. 3.1—
the texture zeros propagate to the inverse matrix, but in any case, two-zero textures of M
lead to two vanishing minors in M 1. We define the minor (i, 5) of an n x n matrix A as the
determinant of the (n—1) x (n—1) matrix obtained from A by removing the i-th row and j-th
column. This is a useful convention, because now the texture zeros M;; = 0 = M,,, result
in the vanishing minors (7,5) and (n,m) of M~!. We can therefore classify vanishing minors
in M, as texture zeros in M, ! and vice versa. Since our leptonic Dirac mass matrices are
diagonal on symmetry grounds, the texture-zero structure of Mz and M, 1 ~ —ml_)l./\/l Rm51
is identical, only the magnitude of the nonzero entries is different. We can therefore classify
the vanishing minors of M, as texture zeros in M, ! or texture zeros in Mp. Two-zero
texture patterns P; in M, (Mp) will be denoted with an index v (R), i.e. as P¥ (P), to
avoid confusion between the patterns.

The analysis of texture zeros in M, has been recently performed in Ref. [159], with the
result that seven patterns of M, with two independent zeros are consistent with the latest
global fit of neutrino oscillation data at the 3o level, namely A}, A5, BY, B, Bj, B,
and C”.8 Of the seven patterns, A5, AY, BY, and B translate into the following two-zero
textures in Mp (or M)

X X X X X X
DE: [ x 0 of, DE: | x x 0],
x 0 x x 0 0
(3.39)
x 0 x x x 0
B3R: 0 0 x|, Bf: X X x|,
X X X 0 x 0

8The Planck limit on the sum of neutrino masses (Sec. 1.1.2) gives additional constraints, especially on
pattern C” [170]. Since this limit depends strongly on the combined datasets, we will not use it here.
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respectively, while the other patterns BY, By, and C” do not lead to texture zeros in Mpg.
Correspondingly, there might be additional allowed zeros in Mg that do not give zeros in
M, and are therefore invisible in the analysis of Ref. [159]. Using the current values for
the mixing angles and mass-squared differences from Tab. 1.2, we checked that the following
three patterns of Mg

x x 0 x 0 x X X X
Bf: | x 0 x|, BE: o x x|, ch: | x 0 x|, (3.40)
0 x X x x 0 x x 0

are indeed also allowed at the 3o level. Consequently, we have seven allowed two-zero textures
in Mp in analogy to M,,. For convenience we list the allowed two-zero textures in M, and
Mp in terms of the notation defined above:
M, lf’ g’ lfa gaBgaBZ’CV’ 3.41

Mg : D¥ DEF BF BE BE BE CE. (3:41)

The patterns Bf admit normal as well as inverted hierarchy solutions, while Dﬁ and CT
require normal ordering. To illustrate how well the different textures perform, we filled the
non-vanishing entries in Mg with random complex numbers of magnitude < 1 and checked if
the resulting neutrino mass matrix has parameters 0;;, Am3,/Am% in the allowed 30 range.”
From the patterns D, O(10°) out of 10° random matrices were compatible with data, CTt
gave O(10%) valid matrices and the B; patterns O(10%).10 A more detailed analysis of fine-
tuning in M, texture zeros was recently performed in Ref. [171], where the least fine-tuned
patterns were identified as AY (which is our Df). Since the Mg textures of Eq. (3.40) do not
lead to texture zeros in M, they were not considered in the analysis of Ref. [171]. However,
the counting of valid random matrices suggests a similar conclusion, i.e. the patterns BZR
and CT can be considered less natural than DI, at least for normal hierarchy. Should the
mass ordering of neutrinos turn out to be inverted, we would just have the BZR textures, with
similar performance.

3.4.2 Realization via Flavor Symmetries

For each of the valid two-zero patterns from Eq. (3.41) one can solve the two resulting complex
equations to obtain the CP phases and neutrino masses either numerically or analytically.
Dedicated analyses of this sort can be found in Refs. [164, 165, we will not discuss the
implications of the texture zeros on the neutrino mixing parameters any further in this
thesis. We will rather show that all of the allowed patterns for Mp (3.41) can be derived
by family non-universal U(1)" gauge symmetries with at most two new SM-singlet scalars.
We employ U(1)" subgroups of our well-motivated gauge group G = U(1)p_ x U(1)r.—r, X
U(1)r,-r,; as already pointed out in Sec. 1.5, every such U(1)" subgroup is generated by a
linear combination of G generators, i.e. by Y = a(B— L)+ (L — L) +~v(Ly,— Ly). It turns

In our publication [5] this was not done with the values from Tab. 1.2, but with older data; the qualitative
results of this paragraph remain valid.

The exact numbers (#NH, #IH) of valid matrices for 10° random tries were: (2.9 x 10°,0) for Df, (2.8 x
10%,0) for DE, (7961, 0) for C®, (950, 54) for BT, (335,78) for BE, (543, 50) for BY and (215, 80) for BY.
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out to be convenient to distinguish the two cases o = 0 and « # 0, which we can parametrize
as

Y = YeLe + yuly — (e + yﬂ)LT (3.42)
and
Y'=B-uz.L.—x,L,— (3—x.—x,)L;, (3.43)

respectively. Due to the insignificant overall normalization of U(1)" generators it is sufficient
to consider these two two-parameter subgroups of G. Y’ = y.Le + yu L, — (Ye + yu) L7 could
be similarly split into ye = 0 (Y’ = L, — L;) and y. # 0 (Y' = Le + yu Ly — (1 + yu)Lr),
which however barely simplifies matters.

To make the connection between texture zeros and symmetries, we list the charge-matrices
of Y'(7 ;vr,;) for the two cases:

2Ye Ye + Yu —Yu —2x, —Te — Ty Ty — 3
Ye tUn  2Yu —Ye s | T3 23, Te—3 . (3.44)
~Yu “Ye  —2(Ye +Ypu) Ty—3  xe—3 2. +2x,—6

If the parameters y; (z;) are so that an entry Y’ (ﬁ%7iVR7j) is zero, the symmetry-conserving
mass term MV% ,vgj can be included in the Lagrangian. If not zero, the fermion bilinear
VR VR, can still be coupled to a scalar S of appropriate U(1)" charge. The VEV of S then
generates a nonzero entry (Mg);j. Every entry in Mg can thus be filled with at most six
scalars, but our goal here is to keep some entries zero, and also to use as few scalars as
possible for simplicity. With a little time and combinatorics, one can systematically look
for successful patterns. We note that the family non-universality—resulting in convenient
diagonal Dirac matrices—requires Ye # Yu, Ye 7 —2Yus Yu 7 —2Yer Te 7# Ty, Te # 3 — 27,
and x, # 3 — 2x.. An example has already been provided at the beginning of this section,
but let us consider one more: Imposing an exact L, — Lg symmetry results in 4 zeros and
two independent symmetry conserving entries (with scale My, _r,). A scalar with L, — Lg
charge +1 or +2 will fill two of those zeros after acquiring a VEV. Matching this to Eq. (3.39)
and Eq. (3.40) shows that only the L, — L, symmetry, with a scalar S whose charge is +1,
can lead to a valid pattern, namely C:

x 0 0 0 x X X X X
Mrp=Mp, .0 0 x|[+(S)|x 0 O0|~|x 0 x (3.45)
0 x 0 x 0 0 x x 0

The remaining zeros in this case will be filled by effective operators S? VR VR, /A, sup-
pressed by a new-physics scale A. In order for us to talk about texture “zeros,” we require
A> My, 1., (S). Furthermore, the charged-lepton mass matrix will also receive off-diagonal
elements suppressed by A”, which introduces a contribution U®L to the lepton mixing matrix
Upnmns = UCE(UY2)T (see Sec. 1.1). Correspondingly, the predictivity of the texture-zero ap-
proach goes down the drain if we allow for a low A, but the perturbations could on the other
hand be used to alleviate any tension between the predicted and observed values. Since all
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symmetry generator Y/ [Y/(S)] wvs =v2[(S)| Mr M,
L,—L, 1 >160Gev  CH -
B—L.+L,—3L, 2 >35TeV  BY Bj
B—L.—3L,+ L. 2 >48TeV  BfY By
2
2

B+ Le—L,—3L; >35TeV DAY
B+ Le—3L,— L, >35TeV  DE  AY

Table 3.2: Anomaly-free U(1)" gauge symmetries that lead to the allowed two-zero textures in the
right-handed Majorana mass matrix Mp with the addition of just one SM-singlet scalar S. Some
of the texture zeros propagate to M, ~ —m DMﬁlmD after seesaw. Classification of the two-zero
textures according to Sec. 3.4.1.

the U(1)" models we employ here are anomaly-free, our models are renormalizable and can be
valid up to the Planck scale (assuming this is where quantum gravity takes over). Potential
Landau poles below Mp| can be avoided with small enough gauge coupling ¢’, irrelevant to the
neutrino masses. In the following, we will therefore always assume these higher-dimensional
operators to be sufficiently suppressed.

Back to the possible flavor symmetries that give two vanishing minors in M,,. In the case
of ye # 0, y, # 0 and y. # —yu, we need at least three SM-singlet scalars with VEVs in
order to construct the allowed patterns of two-zero textures. All seven viable M p patterns
can be realized, but each with at least two different U(1)" symmetries, so there is no unique
symmetry behind each texture. Since the three required scalars make the models somewhat
complicated, we will not discuss them any further. A list of U(1)" symmetries with their
two-zero textures can be found in our paper [5].

Going to the B —x. L, —x, L, — (B3—x— x,,) Ly symmetry allows for a lot more patterns;
there are many assignments for x, and x,, that give one or even no zeros and can therefore
easily produce consistent phenomenology. Of interest here are the assignments that lead
to valid two-zero textures with just one scalar, a complete list is given in Tab. 3.2 (see
also the example at the beginning of this section). We see that only the patterns D{%, DQR,
B Bf and C® can be obtained in this highly economic way. The charge assignments
are summarized in Tab. 3.2 together with the lower bounds on the U(1)" breaking scale,
Mgz /g'| = |Y'(S)vs| = V2 |Y'(S) (S)], as determined by the anomalous magnetic moment
of the muon [4] or LEP-2 measurements [66,67]. The discussion of the scalar sector can be
taken directly from Sec. 2.2.1.

If we extend the scalar sector by two SM singlet scalars instead of just one, we can construct
the remaining two valid patterns of My listed in Eq. (3.40), by using for example B — L, —
5L, +3L, for Bf and B—L.+3L, —5L; for B{%, respectively. In both cases we need scalars
with charge |Y'(S1)| = 2 and |Y'(S2)| = 10. Since there is no unique symmetry behind the
patterns Bﬁg, we will not discuss them any further. Tab. 3.3 provides a complete list of the
B—xz.Le—x,L,—(3—x.—x,)L, charge assignments that yield the allowed two-zero textures
in Mp with two scalars. Some of the solutions do not allow for flavor-symmetric mass terms,
which means there are only the two breaking scales (S;) and (S3) that determine Mp. As
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Mp  symmetry generator Y’ [Y7(S;)]
DY B-—aL.—3L,+aL,,a¢ {-9,-3,0,1,3} 2lal, |3+ al
B-2L,— L, 1,2

3 9 3
B+3L.-2L, 3, 3

9 27 3 18 6

B+ Zle—FLy—5Ls T 7
B+iL.—IL,- L, 2, 2

DY D with L, < L.
BfY  D? with L. < L,
BY B with L, < L,

BY B+3L,—6L, 3, 12
B—2L,— L, 2, 3
B—3L,+ 3L 3, 3
B—6Lc+ 3L, 3, 12
B+32L.— 3L, 3, 5
B—L.—2L, 2, 3
B—L.+3L,—5L, 2, 10
B—5L¢+ 3L, — L. 2, 10

BY Bf with L, <> L,

ct B+3L.—aL,—(6—-a)L,;,a¢{-3,0,1,3,5,6,9} 5, |3 —al
B —6L, +3L, 3, 6
B —3L.+9L, F9L, 6, 12

Table 3.3: Y' =B —«2.L. —z,L, — (3 — . —x,)L, charge assignments that lead to viable two-zero
textures in the right-handed Majorana neutrino mass matrix Mg ~ M, ! after breaking the U(1)’
with two SM-singlet scalars S; of appropriate charge Y'(.S;).

can be seen in Tab. 3.3, all patterns that already work with just one scalar (Tab. 3.2) have
infinitely many realizations once another scalar is introduced. Since the patterns D{%, Dg,
B? and Bf are related by L, <+ Lg operations, we do not list them explicitly. Let us make
a brief comment on the scalar potential of these two-scalar models: If the charges Y’(S7) and
Y’(S2) are vastly different and make it impossible to write down U(1)’ invariant terms of
the form S7.S5" or ST(S3)™ with n 4+ m < 4, the scalar potential will enjoy an additional
accidental global U(1) symmetry, and the two VEVs (S} 2) will generate a massless Goldstone
boson. This is potentially problematic, but can be cured by introducing yet more scalars that
connect S7 to Se and break the accidental global U(1) symmetry of the potential. We refrain
from a more detailed discussion, and merely emphasize that the models from Tab. 3.2 are
infinitely simpler, seeing as they only require one scalar beyond the SM.

Having shown that we can construct two-zero patterns via various broken flavor symmetries,
we will now briefly comment on the involved scales. The allowed two-zero textures of M*
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typically have non-vanishing entries of similar magnitude, which means that the symmetry
breaking scales need to be comparable to the flavor symmetric mass terms, i.e. (S) ~ Mp.
To illustrate this point, we present a particularly cute solution with non-vanishing elements
of similar order:

2 2 3 00 1
Mp =M, | -2 10 = My,=myg |0 3 2], (346)
3 00 1 2 2

where we assumed mp = iv/moMpl. This mass matrix leads to normal hierarchy and the
mixing parameters take the form

1 1 5
.2 s 2

Sin” 619 ~ —, f13=—-— —= ~0.018, 3.47
sin® 017 3 sin” 013 N ( )

1 2 Am?3 1 5

.2 21

sin? g3 ~ = + —— ~ 0.59, — -2 ~0027, 3.48
373 37 Am3, 2 47 ( )

which fall in the 30 range of Tab. 1.2. It should be clear that the overall seesaw scale My is
a free parameter in our models, as a change in My can be compensated by a change in mp.
Thus, the predicted scaling (S) ~ Mg can sit anywhere from 10'° GeV to 1TeV, the latter
being obviously more interesting for collider phenomenology.

While there is no hierarchy in M,, in the case of two-zero textures, some hierarchy among
the Mg entries is present if the elements of mp = diag(a, b, ¢), are hierarchical.!’ Taking for
example our model for D{{, ie. B+ L,— 3L, — L., we find numerically the following typical
hierarchy among the nonzero elements:

Sll/CLQ ~ Slz/ab ~ Mlg/ac > 533/62 . (349)

Here and in the following, M;; denotes an Mg entry allowed by the imposed flavor symmetry
and S;; = A\ij(S) a symmetry breaking entry. The hierarchy is very mild, but we can easily
make M;; > S;; by imposing a,b < c. The same qualitative result holds for DE. An
analogous analysis of Bé% (B — Le — 3L, + L) gives

511/a2 2 Sgg/bc > 533/02 > Mlg/ac, (3.50)

the ratio of largest to smallest non-vanishing entry being ~ 15. Here we cannot make M;; >
Sij, but are drawn to the scaling M;; ~ S;; (similar for Bf). The same can be said for case
C" (L, — L), with the typical relations

Mll/a2 ~ 513/(16 ~ M23/bC > Su/(lb. (351)

However, for C* there are also solutions that naturally suggest M;; > S;;.
The above examples show that the hierarchy among the mp entries reflects the hierarchy
among the Mp entries. Similar analyses can be performed for the other patters, but the

HNote that our symmetries do not constrain the values of Yukawa couplings. In particular, we cannot explain
the hierarchy of the charged lepton masses in this framework, but have to put in the right Yukawa couplings
by hand. An extension of our model by a Frogatt—Nielsen-type mechanism [172] to explain the hierarchy
may be possible, but goes beyond the scope of this thesis.
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analysis will not change the conclusion that the Mg, patterns given in Eq. (3.41) are consistent
with the most recent data within one standard deviation.

Having discussed texture-zero realizations via continuous symmetries U(1)’, let us mention
another possibility: discrete subgroups Z, of our gauge symmetries U(1)". Such discrete gauge
symmetries are yet another way to evade the quantum gravitational breaking of discrete
symmetries [173], hence it may be interesting to explore discrete subgroups of the discussed
U(1)" gauge symmetries and see whether or not they are useful to derive the allowed two-
zero textures. Taking the B — L. + L, — 3L, symmetry as an example, we find that its Zs
subgroup with a scalar with charge 3 leads to the same phenomenology as the overlying U(1)’.
Similar discussions hold for the other symmetries that work with just one scalar. Something
new happens however for the two patterns Bf‘g that required two scalars in the above U (1)’
approach. For instance, the charge matrices of the B — L, — 5L, + 3L, symmetry and its Zs
subgroup are given by

-2 -6 2 -2 -1 2
Y'(gvrj) = | -6 —10 =2, -1 0 —2]|mod5, (3.52)
2 -2 6 2 -2 1

respectively, and we see that instead of two scalars with |Y/(S7)| = 10 and |Y'(S2)| = 2 for
the U(1)" case (Tab. 3.3), we only need one scalar with charge 2 in the Zs case to obtain
the same pattern Bg. Notice that the family non-universality is preserved even for the Zs
case, and thus the Dirac mass matrices remain diagonal. In that sense, we can conclude that
all viable two-zero textures in Mp can be obtained from a U(1)' gauge symmetry, be it
continuous or discrete, with just one additional complex scalar.

Before we conclude this section, let us make one more remark about our specific realization
of texture zeros, concerning the opportunities at colliders. The LHC phenomenology of the
B — %", zoLs gauge boson 7’ is similar to that of the B — L gauge boson (Sec. 2.1.1), so
we will not discuss it here. We do however note that the LHC has the potential to differ-
entiate between the different classes of two-zero textures in our model. The reason for the
naming scheme of the two-zero textures in Sec. 3.4.1 is the similar phenomenology at neu-
trino oscillation experiments; for example, the patterns A} and A¥f lead to almost identical
predictions for the oscillation parameters and are therefore very hard to distinguish using
only neutrino data. In our framework, however, these patterns are imposed by the gauge
symmetries B + L, — L, —3L; and B + L., — 3L, — L., respectively, which are much easier
to separate. One just needs to look at the flavor ratios of the final state Z’ — £¢ to verify or
exclude the different B — )" x4 L, models.

3.4.3 Summary of Texture Zeros

Setting entries in M, or M ! to zero in the flavor basis results in testable relations among
the neutrino mixing parameters. The study of such texture-zero patterns would not be par-
ticularly useful without a means to impose these vanishing entries. A novel framework to do
exactly this was presented in this section, using simple U(1)" gauge symmetries.

We presented numerous examples of anomaly-free gauge symmetries that lead to two-zero
textures in M i and therefore to testable predictions for neutrino parameters. We showed that
all viable patterns of Mg (D{?Q, 352,37 45 CR) can be implemented by a family non-universal
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U(1)" gauge symmetry with at most two new scalars, making these models very simple
and possibly distinguishable at collider experiments. Using instead discrete gauge subgroups
Zy C U(1) reduces the number of necessary new scalars to one. As a side product, we also
see that four of the seven allowed two-zero textures of M, can have this origin (including
the “least fine-tuned” patterns AY). The remaining three two-zero textures of M,,, namely
C", B} and B3, cannot be explained in this simple framework.

Compared to other texture-zero models, our approach requires only a modicum of new
particles; the most natural two-zero textures in Mp ~ M; ! even work with a single complex
scalar that breaks the U(1)" (see Tab. 3.2). Simplicity aside, the U(1)" approach to texture
zeros also provides a new handle to distinguish closely related patterns by means of the
underlying symmetry. The leptonic branching ratios of a future Z’ resonance could then
provide information about neutrino mixing. This is a particularly strong example of the
connection between neutrinos and abelian gauge symmetries that underlies this thesis.

3.5 Conclusion

After a careful survey of the unflavored part U(1)p_r of our well-motivated abelian gauge
group extension

Q = U(l)B_L X U(l)Le_L;L X U(l)LH_LT (353)

in chapter 2, we turned on the flavor in this chapter. Seeing as two-thirds of G contain flavor
information, it is no surprise that we find a rich connection between U(1)" C G subgroups
and the distinct leptonic mixing pattern reviewed in Sec. 1.1.

The idea is simple: U(1)" C G subgroups allow at least for diagonal Dirac mass matrices
for the charged leptons (M) and neutrinos (mp), and typically allow for some entries in the
right-handed neutrino Majorana mass matrix Mpg. Breaking the U(1)" in the most economic
way by a simple SM-singlet scalar can generate more entries in Mp, which is then used
in the seesaw mechanism to give mass to the active neutrinos M, ~ —mgMﬁlmD. If the
MR, entries generated by the U(1)" breakdown are much smaller than the “U(1)" symmetric’
mass terms—or if some entries in M p are still zero after symmetry breaking—we effectively
impose a structure on Mg that trickles down to a structure in M, (because mp is often
diagonal by symmetry). We have explored the various M, structures allowed and motivated
by current data, and their associated U(1)" C G symmetries.

Depending on the ordering of neutrino masses, M, exhibits a different approximate lepton
number symmetry: L. for normal hierarchy and L = L, — L, — L for inverted hierarchy. We
have shown that both can be realized by imposinga U(1) 5 437 C G gauge symmetry, surprising
as this might seem. In the vanilla framework, the U(1) 4 457, leads to an approximately Le
symmetric M,,, and hence enforces normal hierarchy (with large 023 and 612, and small ;3
and mee). Decoupling one of the RHNs with an additional Zy symmetry leads on the other
hand to an approximately L symmetric M, and hence inverted hierarchy (with tiny 613 but
large me. ). The latter has the interesting feature of a stable dark matter candidate, coupled to
the SM via the new gauge boson Z’ and the Higgs portal. The measured relic density can be
obtained using any of the boson resonances, and the model is testable in future experiments.
Besides normal and inverted hierarchy, quasi-degenerate neutrinos actually display an L, — L

)
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symmetry in their mass matrix, comparably easy to promote to a gauge symmetry, even
possible in the SM. This U(1)r,—r, is well studied, and leads to many interesting effects,
briefly reviewed above. Most importantly, the bounds on the Z’ boson are very weak, as
it does not couple to electrons or protons; the strongest constraint comes from the muon’s
magnetic moment, and the Z’ can actually be employed to fix the long-standing discrepancy
between the measured value and the theoretical prediction, hinting at a low U(1)" breaking
scale around 200 GeV. For neutrinos, we expect close-to maximal 23 and, of course, large
neutrino masses measurable in 023 experiments, KATRIN, and cosmology.

Beyond the three approzimate lepton-number symmetries for the neutrino mass matrix, it
is possible to use the U(1)’-induced structure in Mp and M, to enforce testable relations
among the neutrino mixing parameters. In our case this is done by imposing two texture
zeros in Mp by a suitable choice of U(1) C G and charge Y’ of the scalar breaking the
symmetry. These two zeros then lead to two (complex) constraints on the entries in the
low-energy neutrino mass matrix M, =~ —m%MElmD = UP*)MNSdiag(ml,mg,mg)UPT,MNS,
and hence to four constraints on the nine parameters m;, 0;;, 0, 1, and 2, to be checked
against the observed values. We showed that five out of the seven currently viable two-zero
textures in Mp can be obtained with U(1)" C G symmetries in the simplest possible manner,
i.e. broken only by one SM-singlet scalar, while the other viable patterns require two scalars.
Improved precision of the neutrino parameters and a determination of the mass scale can
test the predictions of the texture-zero ansatz.

Many phenomenological aspects of the models in this chapter are similar to previously
discussed B — L analyses (L, — L, aside). However, the fact that our modified gauge group
includes flavor information makes it possible to provide predictions on neutrino mixing and
their mass spectrum, which is impossible in theories based on B — L. Such “flavored B — L”
scenarios thus offer an interesting framework for connecting neutrinos and abelian gauge
symmetries. It bears repeating that abelian gauge groups offer a way to understand leptonic
mixing in a simple and testable manner, to be contrasted with the more common approach
using global non-abelian discrete symmetries.

The zoo of possible local abelian flavor symmetries U(1) presented in this chapter will
shrink significantly following the experimental determination of the neutrino mass hierarchy
and/or the neutrino mass scale. Complementary constraints arise from searches for lepton
non-universality, a generic prediction of all our models. L, — L, is particularly interesting,
as experimental data already hints at a low scale testable at the LHC.



Chapter 4
Dark Symmetries

So far in this thesis, we have been concerned with abelian gauge group extensions that are
subgroups of

Q = U(l)B_L X U(l)LE_L;L X U(l)LH_LT7 (41)

following our motivation for G from Sec. 1.5. In all cases, the new gauge groups have been
intimately connected to neutrinos, either concerning their mass hierarchies, their mixing, or
their very nature, Dirac or Majorana. In this chapter we will show that neutrino physics can
even be influenced by an additional U(1)" if none of the SM fermions are charged under it.
In our framework, the connection is realized through the mixing of active neutrinos with
states that carry charge of the spontaneously broken U(1)’, but are otherwise sterile. Such
sterile neutrinos can resolve several long-standing anomalies in neutrino experiments, should
they be light—of order eV—and sufficiently mixed. The mechanism presented here provides
a motivation for the lightness of these sterile states by putting them in the same seesaw
mechanism that generates the small masses for the active neutrinos. A consistent implemen-
tation requires the addition of anomaly-canceling fermions, which are automatically stable
and form WIMP DM—allowing us to identify U(1)" = U(1)p.

This chapter follows closely our paper “Exotic charges, multicomponent dark matter and
light sterile neutrinos” [8] (in collaboration with H. Zhang).

4.1 Light Sterile Neutrinos

The majority of neutrino oscillation data, as collected by various experiments in different
parameter regions, seems to be consistent with three massive active neutrinos, following
the arguments from Sec. 1.1. However, a couple of experimental results challenge this simple
paradigm and hint towards even more new physics in the neutrino sector, namely the presence
of sterile neutrinos at the eV scale, which do not participate in the weak interactions but
mix with active neutrinos with a mixing angle 6, ~ O(0.1) [174,175].

Specifically, the LSND [176] and MiniBooNE [177,178] short-baseline experiments have
probed the appearance channel 7,, — 7, (also v, = v, in MiniBooNE), with source-detector
distances L and neutrino energies F sensitive to Am? regions around eV2. Since this is
far above the established active-neutrino mass-squared differences (Tab. 1.2), the observed
events hint at the existence of a new neutrino vy which mixes with electron and muon neu-
trinos. Seeing as the invisible Z width is well described by just three light neutrinos [16],
the new state has to be sterile under SU(2)r, x U(1)y. Adding two sterile neutrinos with
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Amiy (V2] |Uea?  Upal*  Am2, [eV?]  [Ues”  |Ups|?
3+1 1.6 0.033  0.012 - - -
342 1.9 0.03  0.012 4.1 0.013  0.0065

Table 4.1: Results of a global fit to short-baseline data with n additional sterile neutrinos (3+n) [179].

eV masses (dubbed 3 + 2 scheme compared to the previous 3 + 1 scheme) even allows for
CP violation, a convenient ingredient to resolve discrepancies between the neutrino mode
v, — Vs — V. and its anti-neutrino counterpart. Other than LSND and MiniBooNE, there is
also the gallium anomaly, a lower-than-expected flux of electron neutrinos (v, disappearance)
in gallium-target neutrino experiments, which can be resolved by additional sterile neutri-
nos. Furthermore, recent re-evaluations of reactor anti-neutrino fluxes indicate that previous
reactor-neutrino experiments had observed a flux deficit (7, disappearance) as well. An up-
to-date global fit to the relevant short-baseline neutrino data can be found in Ref. [179], the
results for the 3 + 1 and 3 4 2 scheme are collected in Tab. 4.1; different combinations of
datasets yield improved fits and different numerical values for the mixing parameters, but the
overall qualitative picture relevant for this chapter remains. While no individual experiment
has provided a 50 discovery for sterile neutrinos yet—and there are some inconsistencies in
the data we have not addressed—the described ~ 2-3¢ hints have generated a great deal of
interest, with numerous experiments planned to clarify the situation [21]. Let us also mention
that the light-element abundances from precision cosmology and BBN seem to favor extra
radiation in the Universe, which could be interpreted with the help of one additional sterile
neutrino, albeit with a mass below €V [180,181]. As it is, cosmology apparently disfavors the
sterile-neutrino parameter space of interest for short-baseline oscillations, depending strongly,
however, on the combined datasets [182] and underlying cosmology [183]. We will comment
on this in due time. Length constraints do not allow us to elaborate further on the experi-
mental status, but an exhaustive overview of light sterile neutrinos, covering both experiment
and theory, can be found in the topical white paper in Ref. [21].

Taking these exciting hints for eV-sterile neutrinos seriously not only spawns new experi-
mental efforts to accumulate more data, but also begs for theoretical explanations and guid-
ance from model building. Note that we have encountered sterile neutrinos many times in
the previous chapters of this thesis, albeit under a different name: The right-handed neutri-
nos of the seesaw mechanism (Sec. 2.2.1) are actually nothing but sterile neutrinos, as they
are SM singlets that mix with the active neutrinos. This mixing is of order 8; ~ mp/ Mg,
too small in the natural seesaw limit mp < Mp to explain the above-mentioned anomalies.
One can however push the seesaw mechanism to a regime where it does work: Taking the
scales mp ~ 0.1eV and Mp ~ 1eV can give active (sterile) neutrino masses m, ~ 1072 eV
(mg ~ 1eV) with mixing 05 ~ 0.1 [184], in the right range to accommodate the experimental
data. The successful generation of two active-neutrino masses via seesaw requires at least
two RHNs, so an eV seesaw predicts either more than one light sterile neutrino, or a huge
hierarchy in sterile-neutrino masses, i.e. in Mp. The latter is a rather unnatural solution,
while the former is incapable to accommodate just one sterile neutrino, i.e. the 3 + 1 scheme,
and can in any case no longer explain the BAU via leptogenesis.



4.1 Light Sterile Neutrinos 83
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Figure 4.1: The goal of this
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VR chapter: to put a sterile neu-
trino v on the light side of the
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A more natural explanation for the small sterile neutrino mass scale O(eV) is hence de-
sirable. Seeing as the seesaw mechanism is one of the most popular theoretical attempts to
understand the smallness of active neutrino masses, an obvious ansatz is to use the same
seesaw mechanism to suppress sterile neutrino masses, i.e. to put the sterile neutrinos on the
same side of the seesaw as the active neutrinos (Fig. 4.1). To this end, the RHN content has to
be extended compared to that in the simplest type-I seesaw mechanism, and a specific flavor
structure, i.e. the minimal extended seesaw (MES), has to be employed in order to let the
sterile neutrino mass couplings mimic the ones of the active neutrinos [185,186]. Explicitly,
in the MES model, the SM fermion content from Tab. 1.1 is extended by adding three RHNs
VR, 1 = 1,2,3, together with one singlet fermion S, and the full Majorana mass matrix for
the neutral fermions in the basis (ve, vy, V7, Vi1 VR Vi S€) is assumed to be

0 mp 0
Muss = m% Mpr mg|. (4.2)
0 mL 0

To clear up potential confusion right away: All the fields vg ; and S; introduced in this chapter
are just right-handed fermions, sometimes referred to as singlets. We denote the S; with a
different symbol than vg; to emphasize that they are not the usual right-handed neutrinos
from the seesaw mechanism, because they carry additional (hidden) quantum numbers and
do therefore not partner up with the active neutrinos in the same way.

Let us briefly show how the MES structure can indeed lead to naturally light sterile and
active neutrinos, for a longer discussion see Ref. [186].1 The bare mass term Mg in Mygs is
unrestricted and can be large, as in the canonical seesaw case (Sec. 2.2.1). We will consider
this possibility here by setting Mpr > mp,mg, which leads to the effective low-energy
neutrino mass matrix

T Aq=1,,T T A1
mgMp mp mgMpmg

M~ (mDMlelT) mDMles> ’ (4.3)

for (v1,S5¢).2 Such a mass matrix can be diagonalized by means of a unitary transformation
as M#** = V diag(mq, ma, m3, my4) V. Phenomenologically, the most interesting situation
arises for mg > mp, since the hierarchical structure of M2**4 allows us to apply the seesaw
expansion once more, and arrive at the sterile neutrino mass

mg ~ —myMptmg (4.4)

In the MES framework, the v. <> S conversion has previously been used to solve the solar neutrino anomaly,
see Refs. [187,188].

20n a more fundamental level, one can integrate out the heavy right-handed neutrinos vr at energies E <
Mg to generate the effective dimension-five Weinberg operators (mp)ij(mp)x; Li HH' Ly /((H)* (MR);;),
w? $*S155/(MRg)si and (mp)ijw; LiHS16"/((H) (Mr);;), which were the starting point in Refs. [189-191].
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together with the mass matrix for the three active neutrinos

3x3 —1,_T —1 Tag=1,0 N=1, T pgq=1_T
M ~ —mpMpg mp +mpMp ms (mgMpg ms) mgMp mp

= U diag(my,mo, m3) U7,

diagonalized by U. The 4 x 4 unitary mixing matrix V' is approximately given by

_((1=3RRYHU R
V= ( RUT 1-1R'R) (4.6)

with the active—sterile mixing vector
R =mpMz'mg (mEMptms)™ = O(mp/ms). (4.7)

As a rough numerical estimate, for mp ~ 102 GeV, mg ~ 5x10? GeV and Mg ~ 2x 10 GeV,
one obtains the active-neutrino mass scale m, ~ 0.05eV, the sterile-neutrino mass scale
ms ~ 1.3eV together with mixing |R| ~ 0.2. This is in good agreement with the global-fit
data for the 3 4 1 scheme [175], i.e. |R1| ~ 0.15 and Am3, ~ 1.8¢V?.

Let us briefly comment on a generalization of the MES structure (4.2), promoting mp, mg
and M g to matrices of dimension n(vy) xn(vg), n(vr) xn(S) and n(vg) xn(vg), respectively.
In other words, we take n(v) active, left-handed neutrinos, n(S) will-be sterile neutrinos and
n(vgr) heavy RHNs. As far as the mass matrices are concerned, the n(S) fermions S behave
just like the SM neutrinos v;—per construction—so we can use the standard argument to
determine the number of massless states as n(vy) + n(S) — n(vg) [137]. Global fits using
neutrino oscillations with n(vy) + n(S) light neutrinos are only sensitive to mass-squared
differences, so one light neutrino is always allowed to be massless. Consequently, we need at
least 2 + n(S) heavy RHNs vg; if we want n(S) light sterile neutrinos—dubbed 3 + n(S5)
scheme. The minimal case—which lends the MES scheme its name—is then n(S) = 1 and
n(vr) = 3. This case will be discussed in the main part of this chapter, but we will also
comment on the extensions described in this paragraph.

The MES structure defined in Eq. (4.2) successfully puts some sterile neutrinos on the light
side of the seesaw (Fig. 4.1), leading to sterile neutrinos with small masses and potentially
large mixing with the active neutrinos. The main application for such light sterile neutrinos is,
of course, the solution of the reactor anomaly [21], but the framework presented here is flexible
enough to be of general interest. Our discussion so far is however vastly insufficient: The actual
MES pattern—meaning the zeros in the upper and lower right corners of Mygs—has to be
enforced and motivated by some symmetry! This is the actual challenge of this chapter: to
make a sterile neutrino light consistently, i.e. without relying on the magic occurrence of a
pattern such as Eq. (4.2). The MES structure can be obtained with discrete flavor symmetries
under which the RHNs and S carry different charges [186], but with the same uncomfortable
complexity as all models with discrete non-abelian symmetries (cf. Ref. [20]). Following the
theme of this thesis, we will show that the MES structure can also be obtained in models
with abelian symmetries. For example, one may introduce an extra U(1)" symmetry under
which all SM particles and the three RHNs vg; are neutral. One may then write down a
bare Majorana mass matrix Mp for vg, which is unprotected by the electroweak or U(1)’
scale. The right-handed singlet S on the other hand carries a U(1)" charge Y, and we further
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introduce an SM singlet scalar ¢ with charge —Y’. The gauge invariant coupling S¢vr¢ then
generates the mg matrix in Eq. (4.2) after ¢ acquires a VEV, while the Majorana mass
for S (i.e. S¢S) and a coupling to the active vy, are still forbidden by the U(1)" symmetry
at the renormalizable level. Such a simple realization of MES suffers, however, from the
problem of triangle anomalies, and can therefore only work as a global U(1)" symmetry,
whose spontaneous breaking would result in a massless Goldstone boson. This might not be
disastrous, but more interesting phenomenology arises when the U(1)" is promoted to a local
symmetry. Consequently, one has to extend the model by additional chiral fermions so as to
cancel the arising gauge anomalies. Along these lines, possible model constructions for sterile
neutrinos in the U(1)" framework have already been discussed in Refs. [189-191], using an
effective field theory approach.

In the rest of this chapter we will work in the seesaw framework and discuss minimal
renormalizable and anomaly-free U(1)" symmetries which are spontaneously broken by just
one additional scalar and reproduce the MES structure (4.2) accounting for the 3 + 1 or
3 + 2 scheme of light sterile neutrinos. In particular, we will show that the additional singlet
fermions employed for the anomaly cancellation (Sec. 4.2) turn out to be stable—due to
accidental remaining Zy symmetries—and thus form DM. In Sec. 4.3 we discuss in some
detail the phenomenology of a specific example with one light sterile neutrino (3 + 1 scheme)
and three stable DM candidates, with a focus on the novel effects inherent in our model. We
briefly discuss other interesting examples of this framework in Sec. 4.4, including an extension
to the 3 + 2 case. Finally, we summarize this chapter in Sec. 4.5.

4.2 Exotic Charges

As already mentioned in the introduction, adding just one extra right-handed singlet S
to the three RHNs vg results in triangle anomalies if only S is charged under the extra
U(1) symmetry. Instead of treating U(1)" as a global symmetry, we gauge the U(1)" in the
rest of this work, and accordingly introduce additional singlet chiral fermions to cancel the
anomalies. As we will see below, these new states need to decouple from the neutrino sector
in order not to spoil the MES structure (4.2) and automatically lead to DM candidates
without the need for additional discrete stabilizing symmetries. This is somewhat similar
to Sec. 3.2, where one singlet had to be decoupled in order to obtain the desired structure
behind inverted neutrino ordering. Here, however, we do not decouple the unwanted fermions
by introducing an additional Zs symmetry, but rather select the field content in such a way
that an exploitable Zxy C U(1)" subgroup remains automatically.

For a gauged U(1) symmetry under which all SM particles are singlets, there are no mixed
triangle anomalies (cf. Sec. 1.5), so anomaly freedom reduces to the two equations

> Y'(f)=0and Y (Y'(f)* =0, (4.8)
f f

where f stands for our new right-handed fermions. In order to cancel the contribution from
the will-be sterile neutrino S = S, more U(1)" charged chiral fermions S;>2 have to be
introduced. The solutions of Eq. (4.8) for n = 2 are simply given by Y’(S1) = —Y’(S2). In
this case, a bare mass term m.S{Sy—unconstrained by any symmetry—can be constructed,
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VRl VR2 VR3 S1 S2 S3 Sy S5 Se St ¢
Y’ 0 0 0 11 -5 -6 1 =12 2 9 11

Table 4.2: U(1)’ charge assignments of the right-handed fermions and the scalar ¢ leading to the 3+1
MES scheme.

which spoils the desired MES structure for light sterile neutrinos unless we make m very
small. There is no integer solution for n = 3 according to the famous Fermat theorem, and it
can be shown more generally that Eq. (4.8) with n = 3 only has solutions with one Y’ being
zero, effectively reducing it to the case with n = 2. In the case of n = 4, it is easy to prove
that there is no phenomenologically interesting solution since two of the S; must have U(1)’
charges of opposite sign and equal magnitude, inducing an unconstrained bare mass term as
in the case of n = 2.

For n > 5 however, there exist interesting non-trivial anomaly-free charge assignments—
dubbed exotic charges hereafter—for example the set (10, 4, —9, 2, —7) for n = 5 [189-192].
In order to make all new fermions massive at tree level with just one scalar ¢, even more chiral
singlets have to be introduced. For the 3+ 1 scheme discussed in the main text, we add seven
singlet fermions S; to the model (the 3+2 scheme discussed in Sec. 4.4 needs six). The charges
of all the ten right-handed fermions discussed in the following are listed in Tab. 4.2; they are by
no means unique, but serve as a simple illustration of this framework. We further stress that at
least three U(1)’ singlet RHNs vg; are needed in order to explain the observed light neutrino
mass-squared differences Am%,, Am%, and Am3,—as already mentioned in the introduction—
resulting in one massless active neutrino. This is however not a hard prediction of the MES
scheme; adding a fourth vg (or even more) to the model makes all light neutrinos massive and
does not qualitatively change or complicate the discussion below. Other interesting charge
assignments with similar overall phenomenology are presented in Sec. 4.4.

In the scalar sector, we adopt only one SM-singlet scalar ¢ with U (1)’ charge 11. With the
particle content from Tabs. 1.1 and 4.2 we can then write down the following renormalizable
couplings relevant for the neutrino masses

1 _
L = (mp)iVLivrj + 5(MR)ijVR VR + wi¢ S{vp,

+ 165552 + Y26 5495 + y3¢' SS7 + h.c.,

(4.9)

where appropriate sums over ¢ and j are understood. The mp terms stem from EWSB using
the usual SM Higgs doublet H (see previous chapters), while w; and y; are Yukawa couplings.
Absorbing phases into the S; we can take y; and one of the w; to be real, while Mg can
taken to be real and diagonal as well. Once ¢ acquires a VEV, all the neutral fermions in
Eq. (4.9) acquire masses, encoded in the full 13 x 13 mass matrix for the neutral fermions

_ [ (Mues) 7y 0
M = ( : X7 (MS)GX@>’ (4.10)

written in the basis

C C C C C C C C C C
V= (VL,laVL,2aVL,3’VR,1’VR,2aVR,3asla52’53’54’55’56’57)- (4.11)



4.2 Exotic Charges 87

Here, the matrix Mygs successfully reproduces the MES structure from Eq. (4.2) with
mgs = w;(¢), and Mg denotes the mass matrix of Sy 7, explicitly given as

0  w() O 0 0 0
yi(¢) O 0 0 0 0
_ | 0 0 0 (o) 0 0
Ms=1 0 0 e 0 0 0 (4.12)
0 0 0 0 0 ys(o)
0 0 0 0 y3(o) 0

Obviously S5 7 decouple from the neutrino sector and can no longer be interpreted as right-
handed neutrinos, because they do not mix with the SM neutrinos. S 7 can actually be
paired together to form three (stable) Dirac fermions Wy 23, to be discussed in Sec. 4.3. It
should be appreciated that the entire structure of M—the Mygs submatrix, the texture
zeros that decouple S5 7, and the convenient block form in Mg—is deeply encoded in the
anomaly-free exotic charges of Tab. 4.2.

The mass term mg of the MES pattern is generated spontaneously in our model, just like
the Dirac mass term mp. For Yukawa couplings of order one, the observed large active—
sterile mixing implies the scaling mg/mp ~ (¢)/(H) ~ 5-10. The new physics scale around
TeV is hence not tuned to make LHC phenomenology most interesting, but comes directly
from the neutrino sector. Actually—even though we obtain the magic TeV scale—the LHC
implications of our model are rather boring, as we only expect small mixing effects in the
Higgs and Z-boson interactions, to be discussed in the next subsection.

Let us briefly comment on thermal leptogenesis in our framework. In principle, the addi-
tional singlet fermions may spoil the ordinary picture of leptogenesis (Sec. 2.2.2) since the
RHNs might predominately decay to sterile neutrinos instead of active neutrinos. This draw-
back can be easily circumvented here by choosing the coupling of the lightest RHN vg 1 to
the new states to be small, i.e. w; < wa 3. This will not modify the desired MES structure
in the neutrino sector, but sufficiently increase the branching ratio of vr 1 into SM particles,
so standard thermal leptogenesis ensues.

Before delving into the dark matter phenomenology of our model, let us make note of a
theoretical constraint: An inherent problem in any gauge theory involving abelian factors is
the occurrence of a Landau pole, i.e. a scale at which the gauge coupling becomes so large
that our perturbative calculations break down. In our model, the one-loop beta function
of the U(1) gauge coupling ¢’ takes the form

d /_IB_ glg . g/3 22(Y’(S))2+
ding? =7 T 16227 T 1622 |3 J

(Y'(¢))2] : (4.13)
so the Landau pole of ¢’ appears around the scale

, 872
A ~ ANexp <W> , (4.14)

where A’ characterizes the U(1)" breaking scale. Inserting the U (1)’ charges given in Tab. 4.2
we find b = 315, whereas for the 3 4+ 2 scheme from Tab. 4.3 (which will be discussed later
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on in Sec. 4.4) we have b = 75. For A’ ~ 1TeV and A;, > Mp ~ 10! GeV, one obtains the
constraints ¢'(A’) < 0.08 for the 3 + 1 case and ¢'(A") < 0.17 for 3+ 2 case. Alternatively, if
we take the cutoff scale of the model to be the RHN mass scale, i.e. Ay, > Mg ~ 104 GeV,
these bounds relax to ¢'(A’) < 0.1 and ¢'(A’) < 0.2 for 3+ 1 and 3 + 2, respectively. These
upper bounds are stricter than the naive perturbativity bound ¢'* /47 < O(1)/max(Y")2.

4.3 Dark Matter

Having succeeded in implementing the MES scheme for one light sterile neutrino by means
of a simple abelian gauge symmetry U(1)’, we turn to a discussion of the new stable fermions
predicted by our model, with an emphasis on the novel effects in our framework. A brief
overview of the boson sector is in order to establish possible connections between the SM
and DM sectors. With the introduction of just one SM-singlet complex scalar, the scalar
potential W is identical to that of Sec. 2.2.3—minor renaming aside—repeated here for
convenience:

W = —pfy| H* + A [HI* = pg|of + Aglel* + 0 [H[*|o]*. (4.15)
¢ can be decomposed as
¢=(Re¢+ilm¢)/V2=((Reg) + o +ilm¢)/V2, (4.16)

Im ¢ being absorbed by the Z’ boson after symmetry breaking and in unitary gauge, giving it
a mass My = [11¢'(¢)|. Due to the ¢ term in the scalar potential, we have a generic mixing
between the remaining real scalar field ¢ and the neutral SM-Higgs h contained in H:

hi\  [cosf —sinf h
<h2> N (sinﬂ cos 6 ) <gp> ’ (4.17)

where hy and ho are the physical mass eigenstates, and the mixing angle 6 is given by

5(6)(H) 18
2 _ 2\2 2 '
VAs(0)2 = A (H)2)? + (5(H) ()

A nonzero d—and hence 6—opens the well-known Higgs portal [193] for the DM produc-
tion/annihilation, which will be discussed below.

The Higgs portal |¢|?|H|? aside, there is one more renormalizable gauge-invariant operator
that will induce a coupling between the SM and DM sectors, namely the kinetic-mixing oper-
ator sin¢ FI''F L'W (see App. B). This off-diagonal kinetic term involving the hypercharge and
U(1)' field strength tensors will induce a coupling of the physical Z’ boson to the hypercharge
current. The relevant phenomenology of the resulting interaction between the SM and DM

sin 20 =

particles can be found for example in Refs. [194-196].
As we mentioned before, the singlet fermions S5_7 in our model are DM candidates. To see
this more clearly, we write down the full Lagrangian for the right-handed singlets Sy and S3:

Ls,, = i827"(8, — i(=59")Z},)S2 + iS37" (9, — i(—69')Z,,) S5 + y1(¢ 5582 +h.c.). (4.19)
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By defining the Dirac field ¥; = S + S5, the above Lagrangian can be rewritten in unitary
gauge as

£52’3 = z‘@w“@ukﬂl — Mlﬁl\j[ll

(CO5E0 CO2CO g,y 1y,

_ (4.20)
+ 92,9 y"

After spontaneous symmetry breaking, U1 acquires a Dirac mass M; = —y;(Re ¢)/v/2. Sim-
ilarly, we can define W9 = Sy 4 S5 and W3 = S + S5 for Sy 5 and S 7, and obtain altogether
the DM Lagrangian

— - M; -
[rDM = Z Z\I/j’yﬂau\pj — Mj\Ifj\I/j — 7<R6(Zb)> o) \Ifj\I/j
j=1,2,3 (4.21)

/
g R
+EZ,:‘I’HM [(Yz/j —Y51) + (Y, + Y2/j+1)75} ‘I’g} ;

where we defined Y] = Y'(S;). The stability of these fields will be discussed below, but let
us first take a look at the interactions involving the will-be sterile neutrino S7, given by the
Lagrangian

Ls, = iSiy"(8, —i(11')Z])S: + (WN SR+ h.c.) . (4.22)

The important part is the Z’ interaction, as it allows for the annihilation ¥;¥; — Z" — S1.57.
Since the physical sterile neutrino v; = v4 consists mainly of S7, but contains a not-too-small
part of the active neutrinos v, , -, this process connects the DM to the SM sector. Specifically,
this “neutrino portal” takes the form

/
Eu—portal = %Z;L \1]1’7“(1 - 1175)\II1 + \1,2,}/#(13 - 1175)\II2 + \1,3,)/;“(_7 + 1175)\II3

. (4.23)

+11 ) ViV iy ysvy + yv;) |
3,j=1

where the four light mass eigenstates v; are written as Majorana spinors and the unitary
matrix V' is defined in Eq. (4.6).

We further note that the heavier dark matter particles can also convert to the lighter ones,
ie. ;¥; — U,;¥; via the s-channel exchange of the bosons Z’ or ¢. Moreover, ¥; may also
annihilate to Z’ and ¢, which can enhance the total annihilation cross section significantly.

The model content and relevant scales are illustrated in Fig. 4.2. The (self-interacting)
DM sector couples to the SM just like all models with a dark symmetry U(1)py, namely
through scalar mixing (Higgs portal, parametrized through ¢) and vector mixing (kinetic-
mixing portal, parametrized through ¢). However, due to the gauge interactions of the DM
with the sterile neutrinos, a new portal through fermion mixing (neutrino portal) opens up
in our model. Since this portal is not often discussed in the literature (see however Refs. [197—
199]), we will focus on it in the remainder of this chapter.
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Stability

It is fairly obvious that the U; fields in Eq. (4.21) are stable, since there exists an accidental
global U(1)? symmetry shifting the phases of W, similar to baryon and lepton number in
the SM (see Sec. 1.4). The occurrence of several stable DM particles, i.e. multicomponent
DM, results in numerous interesting effects—see Refs. [200,201] for some early work. The
underlying reason for the stability in our case is the remaining exact Z1; symmetry after the
spontaneous breakdown of the U(1)". The ¥; form representations under this discrete gauge
group with charges 6, 1 and 2 (modulo 11), which stabilizes at least the lightest of them,
even when higher-dimensional operators are considered.

While our model is renormalizable, we expect it to be only valid up to a certain cutoff
scale A, either because quantum gravity takes over, or because sooner or later we will hit the
U (1)’ Landau pole—as discussed at the end of Sec. 4.2. At the cutoff scale, higher-dimensional
operators might be generated, and in our models these will always include ¢?515§/A and
the Weinberg operator for vy-Majorana masses (Eq. (1.18)). Taking A ~ Mp; does not
destroy the discussed MES structure if (¢) < 10TeV. For the charge assignment here, there
are also dimension-six operators like 55545655/A2, which break the global U(1)3 to a U(1)
symmetry, so only one stable Dirac fermion survives. However, since these operators are
highly suppressed for A ~ Mpj, the resulting lifetimes are typically longer than the age of
the Universe, and thus we will not include them in our discussions below, but take all three
¥, to be independently stable.

4.3.1 Relic Density and Thermal History

We will now discuss the interplay of the three portals (Higgs, kinetic-mixing, and neutrino
portal) and identify some valid regions in the parameter space where the correct relic density
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(Eq. (1.26)) for ¥; can be obtained. Note that the mixing parameters § and £ are the only new
physics parameters we assume to be small in this chapter, all other couplings are somewhat
“natural.” We restrict ourselves to small mixing parameters solely for simplicity, as larger
values lead to very constrained effects, see Refs. [193-196,202].

We only consider freeze-out scenarios. Also note that we always end up with a thermalized
sterile neutrino at the epoch of neutrino decoupling, so the usual cosmological bounds on
Negr and Y m,, hold [21] (see Ch. 1). This is to be expected in models with light sterile
neutrinos, and can be solved on the astrophysics side—as the limits strongly depend on
the used datasets [182] and, of course, the underlying cosmology [183]—or by choosing a
smaller-than-eV mass for the sterile neutrino.

Case A: 6,£ = 0. To check the validity of the neutrino portal, we first turn off the Higgs
and kinetic-mixing portals by setting 6 = £ = 0 (or at least small enough to be negligible).
In this case, the only connection between the new physics sector and the SM comes from
active—sterile mixing, or, at a more fundamental level, from the exchange of heavy RHNs.
Integrating out the vg yields for example the operator LHS1¢/Mp (using order one Yukawa
couplings), which gives a rough scattering rate for LH ¢+ Si¢ around ~ T3 /Mf%—to be
compared to the expansion rate in the early Universe ~ @TQ /Mpi—which puts all particles
in equilibrium above T' > 10'° GeV. Below that temperature, the two sectors SM and DM
(the latter consisting of Z’, ¢ and S;) evolve independently, while the temperature decreases
due to expansion of the Universe in both sectors. Nothing really happens until 7' ~ TeV,
when the ¥; freeze-out occurs. For simplicity we will ignore the multicomponent structure of
the ¥; in this qualitative discussion, but will come back to it later on. For now, we assume
that the heavier ¥; annihilate sufficiently fast into the lightest ¥;, which then becomes our
DM. This can be accomplished via the mass spectrum of the ¥; and ¢, see Fig. 4.3 for
illustrations. To deplete the abundance of the remaining W; fast enough, we can make use of
the neutrino portal, i.e. the annihilation of the lightest ¥; into v around the Z’ resonance.

After freeze-out, we then have overall three decoupled sectors—SM, ¥; and v,—all with
different temperatures. Above active-neutrino decoupling, the Universe was radiation domi-
nated, so only the temperature of v; and the relativistic degrees of freedom in the SM sector
are of interest and will be calculated now. Using conservation of entropy in the two sectors
SM and DM, we have the equalities

gMToa? , (4.24)

SMm3 3 DM~3 3 DM 73 3
= O« TSMG’ and G« T a = G« TDMa’
tsep te tsep f

where ¢ denotes the effective number of relativistic degrees of freedom in sector X, a the
scale factor, tsp the time when the two sectors just separated from equilibrium (i.e. at
temperatures around 10'° GeV), and ty the final time we are interested in, namely close
to active-neutrino decoupling (e.g. when Tgy ~ 10MeV). At tf, the SM sector consists of
photons, electrons and neutrinos, while the DM sector only has the relativistic 51 ~ vg, so
we find

g2 (tsep) ng(tf))>1/3 _ (65/4 43/4 >1/3 ~ 0.98. (4.25)

T,./T: = A
o/ SM‘tf (gPM(tf) IM (Lsep 7/4 427/4



92 Chapter 4 — Dark Symmetries

10’ T T T T 10’ T T T T
M, =M, = M; = 800 GeV M, =M, = M; = 800 GeV
S M¢=1TeV M¢=5OOGeV
10° 10°F
N.C N.C
C:B- 10" C:D- 10" E
10 107 F
10-3 L L L L 10-3 L L L L
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
M. [GeV] M. [GeV]
10’ T T T T 10’ T T T T
M1 =600 GeV M1 =600 GeV
M, =800 GeV M, =800 GeV
M, =1TeV M, =1TeV
0 3 0 3
10 10 M¢ =500 GeV
N.C N.C
C:a- 10" C‘?' 10" E
10 107 F
-3 L L L L 10-3 L L L L
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
M. [GeV] M. [GeV]
10’ T T T T 10’ T T T T
M, =1TeV M, =1TeV
M, = 800 GeV M, = 800 GeV
M3 =600 GeV M3 =600 GeV
10°F - 10°} .
M¢)-1.5TeV M¢—800GeV
N.C N.C
C}Bq 10" C}B* 10"
10? 10?
10-3 " L L L 10-3 " L L L
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
M. [GeV] M. [GeV]

Figure 4.3: Relic density Qyh? versus the Z’ mass My for degenerate (top panels) and hierarchical
(middle and bottom panels) DM masses. The VEV is fixed to (¢) = 1.5 TeV, the scalar mass is indi-
cated in the plot. The red, green and blue lines show the relic density of ¥, Uy, and U3, respectively,
while the black dashed line gives the full Qgh? = j Qg h2. The horizontal pink band represents the

observed relic density from Eq. (1.26) (1o range).
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Ignoring active—sterile oscillations, this would make the sterile neutrinos slightly colder than
the active ones at decoupling, alleviating cosmological constraints to some degree (the one
sterile neutrino effectively contributes only ANeg = (T}, /Tsyn)?* ~ 0.92 additional neutrinos
to the energy density). However, for the sterile neutrino parameters relevant for the short-
baseline anomalies, i.e. mg ~ eV, 05 ~ 0.1, active-sterile oscillations will become effective
around 7' ~ 100 MeV—-1 MeV [22,203], once again connecting the SM bath and vs and thus
thermalizing the sterile neutrino at neutrino decoupling. Note that the usual discussions of
active—sterile oscillations at these temperatures are not readily applicable, as our model starts
with abundant vs and self-interactions mediated by Z’ (freezing out around Tpy ~ 10 MeV).
In any case, the cosmological bound on relativistic degrees of freedom is expected to be
approximately valid in our model.

Case B: § £ 0. Let us open the Higgs portal. The thermal evolution is similar to case A,
but values § > 10~7 will put ¢ in equilibrium with the SM at temperatures below 7" ~ 10 TeV,
because the scattering rate hh <+ ¢¢ goes with 627 /47 [196]. ¢ and the rest of the DM sector
(Z', ¥; and vs) are in equilibrium through U(1)" gauge interactions (for not too small gauge
coupling ¢'), so SM and DM are in equilibrium around DM freeze-out. For the freeze-out we
can again use the neutrino portal, i.e. resonant annihilation YW — Z" — v,vs. As ¢ and Z’
go out of equilibrium around the same time, the connection between the SM sector and v
is severed and the two evolve independently for a while, until they are reconnected around
T ~ 10 MeV by active-sterile neutrino oscillations.

In a different region of parameter space, we can make use of the resonant annihilation
of DM into SM particles via scalars, i.e. the Higgs portal in the way it is intended. The
discussion is then completely analogous to other U(1)py models, so we refer the interested
reader to Ref. [202] for a recent evaluation.

Case C: £ £ 0. A very similar discussion can be made for an open kinetic-mixing portal.
Again small values ¢ > 1077 suffice to reach thermal equilibrium of the SM and DM sectors,
e.g. through scattering Zh <+ Z'h. The thermal evolution then closely resembles that of
case B, with some minor differences: The Z’—Z mixing couples v, to the SM, so Z’ interactions
keep v, thermalized a while longer before it decouples and finally reconnects with the SM.
Furthermore, the DM annihilation around the Z’ resonance contains a small branching ratio
into SM particles.

The above discussion of the cases A, B, and C gives a qualitative overview over the behavior
of the sterile neutrino and the DM particles. In all cases, the SM and DM sectors are in
equilibrium at some point—creating DM particles, which then freeze out. Even ignoring the
Higgs and kinetic-mixing portals, we can use the neutrino portal to get the correct relic
density for W. This reheats the sterile neutrinos, but since they invariably re-equilibrate with
the active neutrinos—before active-neutrino decoupling—this does not lead to new effects.
Knowing that ¥ will have a similar temperature as the SM sector before freeze-out, and that
the final-state sterile neutrinos will re-equilibrate with the active neutrinos anyway, the most
interesting part left to discuss is then the annihilation YW — v,v. For this we again ignore
the effects of the Higgs and kinetic-mixing portals for simplicity. We are mainly concerned
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Figure 4.4: Coupling of our DM particles to lep-
tons via loops of active/sterile neutrinos, as rel- v
evant for DM detection. v 14

with the multicomponent aspect of our DM, i.e. whether the correct relic density can be
obtained for an arbitrary mass spectrum, and which ¥ will be most abundant.

In order to illustrate the feasibility of the DM candidates via the neutrino portal, we imple-
ment the model in micrOMEGASs [144-146] and evaluate the relic density of DM particles ;.
The scalar VEV is taken to be (¢) = 1.5 TeV as an example. The gauge coupling ¢’ is there-
fore obtained from the relation of Z’ mass and (¢). As shown in the upper panels of Fig. 4.3,
a resonance appears at My ~ My /2, and the relic density Qgh? ~ 0.1 (Eq. (1.26)) measured
by WMAP [36] and Planck [23] can be obtained. In the degenerate case (i.e. My ~ My ~ M3),
the Wy contribution to Qgh? is dominating because it has the smallest Z’ coupling. More-
over, in case of a small scalar mass, e.g. My = 500GeV, a new channel YU — Z’¢ opens
up for light Z’, which is observed from the upper-right panel of Fig. 4.3. For the case of
non-degenerate spectrum (i.e. My # My # Ms3), the most significant contribution to the relic
density may come from either Wi, Wy or W3, depending on the specific fermion spectrum
as well as the scalar and vector masses. As can be seen in the middle and lower panels of
Fig. 4.3, the ¥, contribution to the relic density typically dominates, but there exist model
parameters that make Wy or W3 the main DM particle.

4.3.2 Direct and Indirect Detection

The neutrino portal discussed so far does not lead to any direct detection signals, because the
cross sections are highly suppressed. Loop processes connecting ¥ to SM fermions, e.g. as in
Fig. 4.4, vanish in case of degenerate active—sterile masses, so these amplitudes are suppressed
by tiny factors like Am3,/O(100 GeV)? ~ 10-22.

Indirect detection might naively be more fruitful, because the annihilation of the ¥, in the
Galactic Center or halo leads to two back-to-back neutrinos with energies ~ M; (whichever
VU, is sufficiently abundant), which is an ideal signal for neutrino telescopes like IceCube.?
However, since we considered ¥; to be a thermal relic, the self-annihilation cross section
is already set by the relic density, which is too small to be probed [204]—even though the
branching ratio into neutrinos is ~ 100%, so the signal is as clear as it gets.

Direct and indirect detection measurements are, of course, sensitive to the Higgs and

kinetic-mixing portal parameters § and &, as discussed in the literature; Ref. [199], for exam-
ple, discusses the Higgs portal in a framework similar to the neutrino portal.

3The DM-nucleon cross section in our model is too small to efficiently capture DM inside the Sun or Earth,
so we have to rely on astrophysical objects with high DM density.
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VR1 VR2 VR3 VR4 S1 S22 S3 Sy S5 Sg¢ ¢
Y’ 0 0 0 0 -5 =5 -1 6 2 3 5

Table 4.3: Exotic U(1)’ charge assignments of the right-handed fermions and the scalar ¢ to obtain
the 3 + 2 MES scheme.

4.4 Model Variations

Having focused on one specific example using the charges from Tab. 4.2, we will now briefly
present other charge assignments with interesting phenomenology. In all cases we only intro-
duce one additional scalar ¢, so the results concerning scalar and vector interactions remain
unchanged—different numerical values for the charges aside. Only the sterile neutrino and
dark matter sector will be slightly modified.

More Light Sterile Neutrinos

The introduction of n > 2 light sterile neutrinos (3 + n scheme) increases the number of
new parameters and most importantly allows for CP-violation in the effective oscillation
analysis [205]. This feature can significantly improve the fit to neutrino oscillation data and
has been studied extensively [174,175,206]. Note that the tension with the standard model
of cosmology typically worsens, depending on the used data sets [182].

We can easily modify the above U(1)" framework to accommodate the 3 + 2 MES scheme
by choosing different charges for the singlets; we also need at least one more neutral vg 4 to
generate the necessary light mass squared differences. Now we have to find charges that treat
two of the S; the same (without loss of generality Sy and S), i.e. Y'(S1) = Y'(S2), so these
will become our two light sterile neutrinos after coupling them to a scalar ¢. We can once
again find exotic charges in such a way that the decoupled S; become massive by coupling to
the same scalar, the magic number for this to happen seems to be six. See Tab. 4.3 for a valid
anomaly-free charge assignment with the desired properties—previously used in Ref. [189].
After breaking the U(1) and the electroweak symmetry, the 13 x 13 mass matrix for the
neutral fermions takes the desired form

[ (Mugs) gy 0
M= ( ; 9%9 (Ms)4x4>’ (4.26)

where the 9x9 matrix Mygs in the basis (ve, vy, vr, VR1:VR2VR3: VRas 5S¢, S5) is the obvious

extension of the MES structure from Eq. (4.2) for the 3 + 2 scheme, while Mg denotes the
simple mass matrix of S3_g,

0
0
) (4.27)

Y2(9)

resulting in two Dirac fermions, decoupled from the neutrino sector.
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Compared to the 3 4+ 1 scheme discussed so far, the scalar sector is identical, whereas the
dark matter sector is slightly modified because we have only two stable Dirac fermions—
protected by the remaining discrete gauge group Zs—instead of three, but two light sterile
neutrinos instead of one. This does not influence the qualitative behavior significantly.

The expressions from Sec. 4.1 for the neutrino masses go through in the same manner, we
still have

M3 ~ —mpMptm], + mpMztms (mEMptmg)  tmiMptm] (4.28)
and
MZ2 ~ —mEMptmg (4.29)

for the masses, where we assumed mp < mg < Mg, and mp, mg, and Mp are 3 x 4,
4 x 2, and 4 x 4 matrices, respectively. The active—sterile mixing is again O(mp/mg), so the
required values O(0.1) put the U(1)" breaking scale naturally in the TeV range.

Let us briefly comment on the thermal evolution of the universe in this model. Seeing as the
number of degrees of freedom is smaller (larger) at ts e, (tf) compared to the 3 + 1 scheme of
Sec. 4.3.1, the sterile neutrino bath is colder than the SM bath (prior to neutrino decoupling)
by a factor of >~ 0.75. Without active-sterile neutrino oscillations, this would mean that
the two sterile neutrinos effectively only contribute ANeg ~ 0.6 additional neutrino species
to the energy density, alleviating cosmological bounds. It is, of course, to be expected that
active—sterile oscillations before neutrino decoupling generate thermal equilibrium among the
neutrinos, giving rise to the usual constraints.

For completeness, we also give an assignment for the 3 + 3 case, which has been fitted
to the neutrino anomalies in Ref. [207]. To make at least five light neutrinos massive, we
need five vgr. A possible charge assignment for nine S; is then (7,7,7,2, -9, -1, -6, —4, —=3),
with one scalar ¢ ~ 7. This leads to three light sterile neutrinos and three stable Dirac DM
particles—protected by the remaining discrete gauge group Zs.

Majorana Dark Matter

Having focused on Dirac DM in the main text for no particular reason, we will now give
an example with Majorana DM. For the 3 + 1 MES scheme, we take the exotic charges
(6,-3,-3,2,—8,—1,7) for the S; and one scalar with charge Y'(¢) = 6. The VEV of ¢
breaks U(1) — Zg, S1 will again become the sterile neutrino, while Sy and S5 share the
most general Majorana mass matrix—which we can take to be diagonal without loss of
generality—resulting in two Majorana fermions Wy 5. (S4, S5, S6, S7) share the mass matrix

y1(9) 0

0
0 0 0

0 0 y2<¢> , (4.30)
0 g 0

resulting in two Dirac fermions W3 4; all ¥; are decoupled from the neutrino sector. These
particles form representations Wy ~ 3 ~ (1,0), U3 ~ 2 ~ (0,2), and ¥4 ~ 1 ~ (1,1) under
Zg = 7o X 73, so depending on the mass spectrum, we can obtain a stable Majorana fermion.
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Unstable Dark Matter

The charges for the S; and ¢ discussed so far have been chosen in such a way that the
spontaneous breaking of U(1)" leaves a nontrivial Zy that stabilizes the DM candidates.
This is, of course, not a generic feature of exotic charges, but just a convenient choice to
obtain exactly stable particles. Let us briefly comment on unstable DM candidates: Taking
(1,-10,9,-7,6,—11,12) for the 3 + 1 scheme with a scalar ¢ ~ 1 gives three Dirac DM
candidates—W¥; = Sy + S5, Uy = Sy 4+ S5, and VU3 = Sg + S5—which are independently
stable due to an accidental global U(1)? symmetry. However, with this charge assignment,
there is no leftover Zy symmetry protecting this stability. We can study higher-dimensional
operators similar to the discussion in Sec. 4.3. For the charge assignment here, there are
already dimension-five operators

$*S355/A, $*5556 /A, $*S955 /A, (4.31)

which break the global U(1)3 to a U(1) symmetry, so only one stable Dirac fermion survives.
Even this stability is not exact, as there are operators like ¢6§§)VR /A® which break the global
U(1) and lead to DM decay. In this particular example—and for A ~ Mp—the decay would
be suppressed enough to still allow for valid DM, but in principle there are charge assignments
with decaying DM, or even no DM candidate at all.

More Less-Exotic Charges

As was shown in Ref. [192], the U(1)" anomalies from S can always be canceled by a (typically
large) number of fermions with basic charges —2 and +1, instead of the small set of exotic
charges used so far. For example, the anomaly of S; ~ 4 can be canceled with ten copies
of S72 and sixteen copies of ST, i.e. one effectively trades the large charge magnitude of a
small number of fermions with the small charge magnitude of a large number of fermions.
Since this approach might be seen as less exotic—sacrificing however the small number of
particles and parameters employed so far—we will comment on it in our framework. Seeing
as the number of fermions Sj_2 with charge —2 is not equal to the number of fermions S;fl
with charge +1 [192], it does not suffice to introduce just one more scalar ¢, ~ 1 to make
them massive, we need at least two, e.g. ¢ ~ 1 and ¢3 ~ 2. For all choices, there will be a
coupling of either S*! or S=2 to the RHNs vpg, for example gbgﬁ%S‘Q. Consequently, there
is no way of making the anomaly-canceling fermions massive without modifying the MES
structure in Eq. (4.2). As our motivation was a consistent realization of this structure, we
will not discuss these less-exotic charges any further.

4.5 Conclusion

Should light sterile neutrinos exist, as hinted at by experiments, the origin of their mass
demands a theoretical explanation. Generating small sterile neutrino masses via the same
seesaw mechanism that suppresses active neutrino masses requires a specific structure in the
neutral fermion mass matrix. We showed how this so-called MES structure can be obtained
in a simple way from a new spontaneously broken abelian gauge symmetry U(1)’, under
which the “sterile” neutrino is charged. Heavily mixed eV-scale steriles then hint at a U(1)’
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breaking scale around TeV. Additional anomaly-canceling fermions need to carry exotic U(1)’
charges in order to not spoil the MES structure, which coincidentally stabilizes one or more of
them—all without the need for any discrete symmetries. The main connection between this
multicomponent dark matter sector and the SM is the active-sterile mixing (neutrino portal).
We discussed how the dark matter annihilation almost exclusively into sterile neutrinos can
be used to obtain the measured relic density, and also the interplay with the other two portals
(Higgs and kinetic-mixing portals).

It should be kept in mind that the SM fermion content forms a chiral set (i.e. has exotic
charges) of the gauge group SU(3)c x SU(2)r, x U(1)y (Tab. 1.1), so it is a reasonable
assumption that a possible hidden sector also has a chiral structure. The simplest example
of a chiral hidden sector is then a U(1)" with exotic charges, as discussed in this chapter. We
focused on a few specific examples, but the presented framework of exotic charges obviously
provides a rich playground for model building, depending on the used charges and number
of new particles. Worthwhile extensions with U(1)’-charged SM fermions, e.g. (B — L)-type
symmetries similar to Ch. 2, can be obtained with slightly more complicated scalar sectors
and will be discussed elsewhere. See for example Refs. [208,209] for a model with an MES
sterile neutrino coupled to a gauged baryon-number symmetry.

In the greater context of this thesis, we showed in this chapter that the connection between
neutrinos and abelian gauge symmetries is not limited to the groups U(1)p— x U(1)r. -1, X
U(1)r, -1, motivated by the SM (see Sec. 1.5), but extends also to “dark” symmetries U (1)pwm.
The singlet-structure of the neutrinos under the unbroken SU (3)¢ x U(1)y allows for mixing
with singlet-like fermions from a dark sector, the details of which depend on symmetries
such as U(1)py. Compared to the previous chapters, it is now the sterile neutrinos that are
possibly connected to new symmetries, opening a window into beyond-the-SM physics by
studying these most-elusive of particles.



Chapter 5

Summary and Outlook

Experiments have by now firmly established the existence of neutrino oscillations and lepton
flavor mixing, indicating that the Standard Model of particle physics has to be extended to
include neutrino masses. Neutrinos are not only the first conclusive sign for physics beyond
the SM, they even pave the way for more; in this thesis, we discussed the intimate connection
between neutrinos and abelian gauge symmetries. The motivation stems directly from the SM,
which has the global abelian symmetry G = U(1)p—r x U(1)r,—r, x U(1),—L,. Following
the great success of the gauge principle in the SM, we can promote this global symmetry
group to a local symmetry group just by introducing three right-handed neutrinos, resulting
automatically in massive neutrinos. The link between neutrinos and U(1)’ is deeper still, as
even new abelian symmetries U(1)py in the dark matter sector—well-motivated in their own
right—can severely affect the behavior of neutrinos, which have the right quantum numbers
to act as mediators between the two realms. Putting it all together, we were inclined to study
the abelian gauge group extension of the SM (plus right-handed neutrinos, possibly with dark
matter) by

chapter 3
Glocal = U(l)B_L ><Uv(1)L€_LH X U(l)LH_LT X U(l)DM . (51)
—— ——
chapter 2 chapter 4

For simplicity we were only concerned with U(1)" subgroups of Gioca) in the various chapters
of this thesis, as indicated above, generated by specific linear combinations of the generators
B~ L, L. — L,, etc. These have the advantage of a simple symmetry-breaking sector—
often just one complex scalar in addition to the familiar Higgs doublet—and only few new
parameters overall.

In chapter 2 we studied the various realizations of U(1)p_r, the unflavored subgroup of
Glocal; both unbroken and spontaneously broken. The abelian symmetry B — L is closely
connected to the nature of neutrinos, i.e. whether they are Dirac or Majorana particles. The
latter arise from breaking the symmetry by two units, enabling the famous seesaw mechanism
for small Majorana neutrino masses—accompanied by the signature neutrinoless double beta
decay—as well as a simple thermal leptogenesis solution for the matter—antimatter asymme-
try of the Universe. While phenomenologically interesting, this “Majorana B — L” is not the
only possible fate of a local U(1)p_r. Indeed, the symmetry does actually not have to be
broken at all to be consistent with observations, as the B — L gauge boson Z’ can either be
weakly coupled or acquire a gauge-invariant Stiickelberg mass. Neutrinos are then Dirac par-
ticles just like the other known fermions, and even the baryon asymmetry can be explained
by a leptogenesis mechanism that makes use of the non-thermalization of the right-handed
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neutrino partners. Since the Z’ mass is a free parameter disconnected from other scales, the
unbroken B — L scenario can be probed at every accessible distance, from long-range astro-
physics to short-range colliders—potentially proving the existence of a conserved quantum
number besides electric charge and color.

Even if B — L is broken, it does not have to be broken by two units: The original-research
part of chapter 2 focused on breaking B — L by four units, making neutrinos Dirac particles
but still allowing for lepton-number-violating processes. We proposed neutrinoless quadruple
beta decay (0v4[3) as the signature process of the dominant AL = 4 interactions—analogous
to neutrinoless double beta decay (0v28) for AL = 2—with the prime candidate being
150Nd — '9Gd + 4e~. This nuclear decay would emit four electrons with summed total-
energy peak at the @) value 2.079 MeV, competing with the already observed double beta
decay (2v23) 1""Nd — 1%9Sm + 2e~ + 2v. The expected rates for this 0v43 decay in our
simplest model are unobservably small, but existing experiments could put a first limit on this
A(B— L) = 4 process. We have furthermore shown that the A(B — L) = 4 interactions of our
model can give rise to a new kind of leptogenesis mechanism with Dirac neutrinos, exciting
in its own right. Compared to the old mechanism, our scenario requires the thermalization of
the right-handed neutrino partners vp with the rest of the SM in the early Universe in order
to translate a vg asymmetry to the baryons. The necessary thermalization manifests itself
in a contribution to the effective number of neutrinos Neg > 3.14, providing a handle to test
this leptogenesis mechanism. The abelian gauge symmetry U(1)p_y, is hence not only linked
to the neutrino nature, but also to the origin of matter, making it an important window to
physics beyond the SM.

After elucidating the connection between abelian gauge symmetries (namely B — L) and
the nature of neutrinos, we studied the connection of U(1)’ to the neutrino mass hierarchies
and mizing angles in chapter 3, using “flavored” U(1)" subgroups of U(1)p_r x U(1)r, 1, X
U(1)r,—-r, with a minimal scalar sector. Such U(1)" symmetries basically enforce a structure
in the Majorana mass matrix of the right-handed neutrinos Mg, slightly perturbed by spon-
taneous U(1)" symmetry breaking; this structure then trickles down to the active-neutrino
Majorana mass matrix M, =~ —m%/\/(l_%lm p via the seesaw mechanism and can shed light
on the peculiar observed pattern. We have shown in particular that U(l)B+3(LefL#7LT
a good symmetry for neutrinos with normal hierarchy, as it leads to an approximately L.-
symmetric neutrino mass matrix M,,, giving rise to large neutrino mixing angles and small
0v203 rates. Inverted hierarchy, which requires an approximate L. — L, — L, symmetry in
M,,, can on the other hand be obtained by augmenting the local U(l)B+3(LefL#7LT) with a
Zo symmetry. This effectively decouples one of the right-handed neutrinos and turns it into
a dark matter candidate, which is coupled to visible matter by the new gauge boson ZL and
scalar s. The observed density of dark matter requires a resonantly enhanced annihilation
cross section, mediated by either Z’ or s.

For quasi-degenerate neutrinos, the abelian symmetry of interest is U (1), r,. Acting only
on particles of the second and third generation, the constraints on the associated gauge boson
are rather weak, allowing for a breaking scale below TeV. Not only can this symmetry provide
an explanation for the close-to-maximal atmospheric mixing angle f23 and the small reactor
angle 013, it also nicely solves the longstanding anomaly concerning the muon’s magnetic
moment; the required values My /g’ ~ 200 GeV make the model testable at the LHC. We
furthermore discussed texture zeros and vanishing minors in M, as extreme examples of

)is
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U(1)-induced structures, giving rise to falsifiable relations among the neutrino mixing angles
and masses. Many of the allowed two-zero textures can be realized in a highly economic way,
using only one complex scalar to break the U(1)’; and the predicted gauge boson Z’ can
even provide a new handle to distinguish various patterns. All in all, flavored abelian gauge
symmetries make for an economic and testable framework to understand lepton mixing, and
should be embraced as an alternative to the increasingly complicated approach of discrete
non-abelian global symmetries.

In the last chapter (4), we pointed out that a connection between neutrinos and abelian
gauge symmetries can arise even if the symmetry does not act on SM particles. Motivated by
experimental hints for sterile neutrinos with eV masses, we constructed a simple model that
explains the small sterile-neutrino masses by the very same seesaw mechanism that underlies
the active-neutrino masses. The required structure in the neutral-fermion mass matrix is
enforced by an abelian gauge symmetry U(1)’; acting only on new SM singlets. Anomaly
cancellation makes necessary the introduction of fermions which decouple from the SM and
consequently make up automatically stable multicomponent dark matter. Since both the
sterile neutrinos and the DM fermions are charged under U(1)" = U(1)pm, active—sterile
mixing connects the active neutrinos to the gauge symmetry. The existence of light sterile
neutrinos could therefore hint at a new abelian gauge symmetry connected to dark matter.

Some topics thematically adjacent to the main part have been placed in the appendices
in order to form a more coherent structure. These appendices do nevertheless contain in-
teresting original work, so let us summarize them as well: In appendix B we extended the
known framework of Z—Z' mixing to three gauge bosons, including the unavoidable kinetic
mixing. This is obviously of interest following our motivation of a multitude of abelian groups
(Eq. (5.1)) and can lead to intricate couplings between the gauge bosons, dark matter, and
neutrinos.

Kinetic mixing is but one oddity of abelian groups, the Stiickelberg mass mechanism an-
other: Abelian gauge symmetries are special in the sense that they permit a massive gauge
boson without symmetry breaking, a fact that we employed in appendix A to motivate a
massive photon. Although experimentally constrained to be very light, a massive photon
can conceivably decay into the lightest neutrino—connecting yet again neutrinos and abelian
gauge symmetries—or particles beyond the SM. We have provided the first lower bound
on the lifetime of the photon using the well-measured black-body spectrum of the cosmic
microwave background: a mere three years in the photon’s rest frame.

With all of the above, we could hopefully convince the reader of the claimed connection
between neutrinos and abelian gauge symmetries. As far as possible future improvements
of our results go, some work has already been laid out for us. Following our motivation,
a discussion of the full gauged symmetry group G and its breakdown to one of the viable
U(1)" subgroups presented here should be a worthwhile endeavor. Such a top-down approach
will typically be more restrictive than our bottom-up framework, making it more predictive
and testable. As we have seen in this thesis, some symmetries work well with very high
breaking scales, e.g. Majorana B — L, while others sit comfortably around the electroweak
scale (L, — Ly and DM symmetries), a feature that should be addressed by the scalar sector
behind the breaking G — nothing. Going even further up the ladder, an embedding of the
flavored part U(1)r, -1, x U(1)z,—r, into the non-abelian SU(3), is possible and replaces
the somewhat arbitrary U(1)? by a factor that explains why there are three generations.
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This comes at the prize of a more elaborate scalar sector to generate the charged-lepton
mass hierarchies. A more ambitious extension of the above framework could take the quark
families into account, too, i.e. look for an explanation of the quark mixing by means of
a gauged U(1) symmetry. This would basically constitute a renormalizable realization of
the Froggatt—Nielsen mechanism, with accompanying bosonic and fermionic mediators. A
challenging approach for sure, but certainly one with rich phenomenology to explore.

Going back to the bottom-up approach, there are actually still several issues that deserve
attention before we put more new physics on top. We have been careful to address the matter—
antimatter asymmetry over the entire B — L landscape, but have rarely commented on this
issue in the later chapters. For the flavored symmetries employed in chapter 3, the impact on
leptogenesis should be clarified, especially in low-scale models such as L, — L,. The additional
constraints coming from successful baryogenesis can then further increase the testability of
our U(1)" approach to lepton mixing. Furthermore, the family non-universal structure of
these gauge symmetries can manifest itself not only at the LHC in different ratios of leptonic
final states, but also at low energies as loop-induced lepton flavor violation. The prospects
to distinguish the different motivated U(1)" groups in this way should be studied in order to
make use of the high precision in existing experiments looking for decays such as p — e7.
A quite different kind of limit not covered in this thesis comes from the scalar sector of
our models; it has been shown that the introduction of an additional complex scalar to the
Standard Model can solve the meta-stability issue, stabilizing the vacuum up to the Planck
scale. While not a problem of immediate concern, any guidance on the parameters of our
models is welcome and should be used. In the same vein, renormalization-group running of
high-scale parameters are obviously of interest in all models that make use of precise data.

Switching topics, the newly introduced framework of lepton-number-violating Dirac neu-
trinos provides the theoretical motivation to continue the search for LNV even if neutrinos
turn out to be of Dirac type. We have seen that the dominant AL = 4 processes are in-
herently challenging to probe experimentally due to the large number of involved particles,
so the main task of future work is to find clean signatures, as well as to provide testable
models. The simplest models for LNV Dirac neutrinos presented here employ a gauged B — L
symmetry, which lends itself to an embedding into a left-right symmetric framework. Such
an extension will significantly increase the intriguing AL = 4 cross sections and give rise to
new signatures, which might be testable at the LHC or future linear colliders.

We close with a literal outlook. The upcoming years might see the determination of the
remaining unknowns in the neutrino sector—mass scale, hierarchy, nature, and CP violation.
Along the way, most of the models presented and discussed in this thesis will be ruled out,
while some may survive. Hopefully, the ideas presented here will nonetheless be of use in our
common quest for knowledge, if only as a snapshot of these exciting times.



Appendix A
Stiickelberg Mechanism

This appendix is devoted to a discussion of the Stiickelberg mechanism for abelian gauge
boson masses. After a brief technical discussion of the mechanism in Sec. A.1 we will study
the implications for the photon, namely a nonzero mass and finite lifetime, in Sec. A.2. The
latter is taken almost verbatim from the paper “How stable is the photon?” [9].

A.1 Gauge Boson Mass

A quantum field theory with abelian gauge group U (1) and some charged Dirac fermions V¥ is
part of most textbooks on relativistic quantum mechanics, as it is not only simple enough for
calculations, but works as an amazingly good approximation for electromagnetic interactions
under the name of quantum electrodynamics (QED). The gauge boson A, associated to the
group U(1)gym is then called the photon, the fermions for example electron or muon. The
Lagrangian for this renormalizable theory takes the form

L= —iF“”FW + Z@j (i — gQ; A —my) ¥y, (A.1)
J

with the mass m; and charge Q; of the fermion V¥, g being the U(1) coupling strength. This
Lagrangian is invariant under the local gauge transformation

U, — exp[—igQ;0(x)|¥;, A, — A, —0.0(x), (A.2)

f(x) being an arbitrary real scalar function of the position four-vector z,,.

Adherence to gauge invariance then seems to forbid the inclusion of a mass term %mQAMA“
for the gauge field A,,; it was however noted long ago that such a gauge boson mass does not,
in fact, destroy the renormalizability of the theory but leads to a perfectly valid quantum
field theory (a good technical and historical overview can be found in Ref. [210]). The reason
for this is the Stiickelberg mechanism [211], which reinstates gauge invariance by replacing

the seemingly problematic mass term with a coupling to a new field o

1 1

§m2A“AM — AL= 5 (mA* 4 0%0) (mA, + 0,0) . (A.3)
The so-called Stiickelberg field o is a real scalar field which transforms as

oo =0c+mb(x) (A.4)
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under gauge transformations, rendering AL gauge invariant. Note that AL automatically
contains the kinetic term for o, and that no additional couplings, e.g. to the fermions ¥, are
allowed due to the affine gauge transformation (A.4).

The full Lagrangian £+ AL is then again invariant under local gauge transformations, and
renormalizability and unitarity follow from standard arguments [210]. Gauge invariance of
physical results allows us to perform calculations in a gauge of our choosing, and we can in
particular choose o'(z) = 0 at every point z,, which completely eliminates the Stiickelberg
scalar from the theory and leaves us with £ + %mQAﬂA“, i.e. the Proca Lagrangian [212] for
a massive abelian vector boson. The Stiickelberg mechanism therefore illuminates why we
can give a mass to the gauge boson of an abelian symmetry without breaking said symmetry:
The mass term should not be viewed as breaking gauge invariance, it should be viewed as
merely fixing a gauge.

We stress that the Stiickelberg mechanism does not break the U(1) gauge symmetry in
any way, and that the mass m is a free new parameter. A small new scale m is technically
natural [65], in that all radiative corrections are again proportional to m. We also point out
that the above procedure does not extend to non-abelian symmetries, and is therefore not
useful to explain the masses for the Z and W™ bosons—the only known way to generate
masses for non-abelian gauge bosons is spontaneous symmetry breaking.

Connection to Higgs

It might be worthwhile to provide an interesting view on the Stiickelberg mechanism from the
more familiar perspective of the Higgs mechanism. The connection presented here is strictly
speaking unnecessary for our purposes and hopefully neither distracting nor confusing. We
take again our QED-like Lagrangian £ from Eq. (A.1), but also introduce a complex scalar
S with U(1) charge ¢:

9\ 2
L'=L+(0 - iquu)S‘Z - A (‘5‘2 - %) ) (A.5)
leaving out any Yukawa couplings of S to the fermions of the theory. The scalar potential
exhibits a minimum at (S) = v/v/2, allowing us to parametrize the complex scalar S in terms
of two real scalar fields h and y as

S(z) = —= [v+ h(z)] e X@)/v (A.6)

Sl

yielding the Lagrangian
1 1
L =L+ gﬁu)(@“x + gquA, 0t x + 592q202AﬂA“

+ %a“ha“h — Mv?h? — Avh? — i)\h‘* (A7)

R\ 1 /h\?
000" X + 20qvA,0"x + g0’ A, A l(ﬂ) "2 (5) 1 '

We find the usual: a massless Goldstone boson x, a massive vector boson A, (m? = ¢%¢*v?),

a massive Higgs particle h (m% = 2)\v?), and many interaction terms. Let us now consider
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the limits v — oo and ¢ — 0, keeping the gauge boson mass m x qv and g constant. In this
limit, all factors h/v vanish, and the Higgs particle h becomes infinitely heavy and decouples
from the theory. Only the first line in Eq. (A.7) survives, which is simply the Stiickelberg
Lagrangian from before: £ — £+ AL. Hence, the gauge boson mass stays finite and y can be
readily identified as the Stiickelberg scalar o from above. Since the symmetry-breaking VEV
v is put to infinity, the U(1) is actually not broken. The Stiickelberg mechanism in this light
also nicely illustrates why it only works for abelian gauge groups: In order to keep the gauge
boson mass m = |gqv| finite in the limit v — 0o, we have to let the scalar charge ¢ go to zero.
This is allowed because there are no restrictions on the U(1) charges of particles—anomaly
cancellation among chiral fermions aside. In comparison, the charge ¢ of a scalar under a
non-abelian gauge group is replaced by a set of representation matrices, without any free
continuous parameters. The masses of the non-abelian gauge bosons therefore depend only
on the free parameters g and v, so a finite mass in the limit v — oo would require ¢ — 0 and
hence decouple the gauge bosons from all other particles.

A.2 Photon Mass and Lifetime

The previous section can be summarized as follows: Gauge bosons of abelian symmetries
are permitted to have mass by means of the Stiickelberg mechanism—retaining gauge invari-
ance, unitarity, and renormalizability. In Sec. 2.1 we have already applied this mechanism
to U(1)p—r, the only subgroup of the SM’s symmetry group G = U(1)p—r x U(1)r.—, X
U(1)r, -1, that is phenomenologically allowed to be unbroken. There is, however, another
unbroken abelian symmetry of interest in Ggy X G: U(1)gy. So, as another application of the
Stiickelberg mechanism, we can give a mass m to the most famous of abelian gauge bosons:
the photon. Following our above discussion, there is no theoretical prejudice against a small
m over m = 0, so the question of a photon mass in QED is purely experimental, and there
already are impressive upper limits of

m<1078eV ~ 2 x 107 kg ~ (2 x 10" m) ! (A.8)

from astrophysical observations, specifically the magnetic field in the solar wind [16,213]. Even
stronger limits exist on galactic-sized fields, but suffer from systematic uncertainties [214].
However, we already know that QED is just the low-energy approximation of the Glashow—
Weinberg—Salam model of electroweak interactions, so our above motivation for a nonzero
photon mass might be in danger. Fortunately, the electroweak gauge group SU(2)r, x U(1)y
still features an abelian factor—the hypercharge U(1)y—that can be used in a Stiickelberg
mechanism. The resulting mass for the hypercharge gauge boson eventually generates again
a massive photon [215].1 A detailed discussion of this procedure and its implications can
be found in Ref. [210]. Since the Stiickelberg mechanism only works for abelian groups, the
grand unification of the SM gauge group SU(3)c x SU(2)r, x U(1)y into a simple non-abelian
group like SU(5), SO(10), or Eg would necessarily result in a truly massless photon [216].

!The same trick works, for example, in simple left-right symmetric models [99-101], where the hypercharge
U(1)y itself results from the breakdown of SU(2)r x U(1)p—r: A Stiickelberg mass of the B — L boson
trickles down and makes the photon massive.
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Turning this around, the discovery of a massive photon would exclude a huge number of
GUTs—and, obviously, be a spectacular finding in its own right.

Let us now move on to the key point of this section: If one can constrain the mass of a
photon, one should also be able to constrain its lifetime. Massless photons in QED are stable
purely due to kinematical reasons, there are no additional quantum numbers that forbid
a decay. Recalling the tight upper bound on the photon mass though (A.8), there are not
many possible final states—indeed, only one known particle could be even lighter than the
photon: the lightest neutrino 4. This is because current neutrino-oscillation experiments can
only fix the two mass-squared differences Amgl and Am3; of the three neutrinos, leaving the
absolute mass scale undetermined (see Sec. 1.1). Kinematically, this opens up the possibility
of a decay v — vqv1—should m; < m/2 hold.2 We thus find once more a connection between
neutrinos and abelian gauge symmetries, making the discussion in this section relevant to
the topic of the thesis. The loop-suppressed process v — r1v; can be calculated in the SM
(using e.g. a seesaw mechanism (see Sec. 2.2.1) to make neutrinos massive in a renormalizable
way ), and is, not surprisingly, ridiculously small [219]—being suppressed by the small photon
mass, the heavy particles in the loop and maybe the smallest neutrino mass, depending on
the operator that induces this decay. We also note that one of the side effects of a massive
hypercharge boson—besides a massive photon—are tiny electric charge shifts of the known
(chiral) elementary particles [210,215]. The neutrino then picks up an electric charge @,
em? /MI%V, which gives rise to a correspondingly small tree-level decay rate v — vqvq. Still,
unmeasurable small SM rates have never stopped anyone from looking for a signal, as it
would be a perfect sign for new physics.

Particles beyond the SM could not only increase the rate v — 11, but also serve as final
states themselves, as some SM extensions feature additional (close to) massless states; exam-
ples include sterile neutrinos, hidden photons, Goldstone bosons and axions (cf. Ref. [70]).
These weakly interacting sub-eV particles are less constrained than neutrinos, and photon
decay might be an indirect effect of these states. Although mainly of academic interest, we
also mention that a massive photon provides the possibility of faster-than-light particles—and
a decaying photon even predicts them. The question of photon decay is therefore obviously
relevant even if the lightest neutrino turns out to be an inaccessibly heavy final state.

Following the above motivation, we set out to find limits on the photon mass m and lifetime
7, as model-independent parameters. Most importantly, we do not care about the daughter
particles for now. Because of the small allowed values for m, all measurable photons around us
are highly relativistic, making a decay hard to observe due to time dilation. Correspondingly,
a good limit on 7, requires a large number of low-energy photons from well-known far-away
sources. Seeing as we have access to very accurate measurements of the CMB—consisting
of the oldest photons in the visible Universe—we will take m and 7., as parameters that
will modify the black-body radiation law—given by the Planck spectrum—and fit the CMB
spectrum to obtain bounds on both parameters. Similar analyses have been performed to
obtain a limit on the neutrino lifetime in the channels v; — yv; [220]. In our case, we are

2The naive prototype model—augmenting the SM by only two right-handed neutrinos (SM+42vg)—is prob-

lematic, as the initially massless 11 will unavoidably pick up a finite mass at loop level [217], which can
be too large for our purposes [218]. Fine-tuned solutions aside, we can obtain a simple valid model by
imposing a B — L symmetry on the SM+2vg, resulting in two Dirac neutrinos and one exactly massless
Weyl neutrino.
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not looking for a spectral line on top of the CMB, but rather a diminished overall intensity
and change of shape.

Before delving into the details, let us present a back-of-the-envelope estimate: CMB pho-
tons with low energies around meV have a lifetime 7 = 71,7, that is increased by a relativistic
Lorentz factor 71, = E/m ~ 1meV/10718eV = 10%. This lifetime has to be compared to
the age of the Universe tq ~ 13.8 x 10° yr (or the corresponding comoving distance). Seeing
as an improved accuracy A in the measurements will increase the bound, we can estimate
Ty 2 to/7A. We therefore expect a lifetime constraint in the ballpark of years from the
very precise CMB measurements (A ~ 10~%), which will be confirmed by the more refined
analysis below.

The photon mass m modifies the dispersion relation p?> = E? — m?, which changes the
spectral energy density of black-body radiation to

1 E3dE | m2

but it is unclear how to include the decay width. The expansion of the Universe also needs
to be taken into account, as the black-body spectrum no longer stays in shape for m # 0.
Let us therefore give a brief derivation of the energy spectrum of massive unstable photons
during cosmic expansion.

Ignoring the width for a moment, the number density of massive photons right after de-
coupling (at the time of last scattering ¢z, ~ 400 000 years) is given by [221]

dmgp® dp/(2m)?
2 ’ A.10
T

where p = pr, a(tr)/a(t) is the redshifted momentum, 7" the temperature at time ¢, and g
the number of spin states. We take g = 2, because only the transverse modes are excited
before decoupling—this implicitly constrains m, as discussed below. The chemical potential
of massless photons is zero, and since we assume that as our initial condition at ¢, we set it
to zero in all our calculations.

Including the width, we can write down the differential equation for the time evolution of
the number density n(p,t)

3
no(p,t)dp = (%) no(pr.tr)dpr =

gn(p,t) = ino(p,t) —T'(p)no(p,t). (A.11)

dt Cdt
The first term on the right-hand side describes the number density dilution due to the
expansion of the Universe, while the second one is due to photon decay. The width can
be obtained from the rest-frame width T'g = 1/7, by a Lorentz boost: I'(p) >~ I'p"*. We use
the boundary condition n(p,tr) = no(p,tr,) and obtain the number density today

to

n(p,to) = no(p,to) — Fo/%no(l?,t) de. (A.12)

tr
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Figure A.1: CMB spectral distribution for m = 107'%eV and 7, = oo (black), 7, = 1d (dashed red),
and 7, = 1 h (dotted blue) using Eq. (A.15), as well as the COBE data (error bars multiplied by 10?
to be visible).

The integral can be evaluated to

to to
m m a(t m

/—no(p,t) dt = —no(pL,tL)/ ( L) dt = —no(p,to) dr, , (A.13)
p pL p

tr, tr

with the comoving distance of the surface of last scattering dj, = ﬁLO a(to)/a(t) dt ~ 47 billion
lightyears. Overall we have:

m m
n(p,to) =~ no(p, to) <1 - FOEdL> ~ ng(p, to) exp <_FOEdL> . (A.14)

The energy density relevant for the CMB spectrum is then obtained by multiplying n(p, to)

with B = /p? + m?:

1 E3dE m?2 m
~ 0 I A A.15
p(E,T)dE ~ 2 T ] 1 72 eXP ( FOEdL) ) ( )

where we approximated

\/p2 +m? <acf€tL))>2 ~ VE?2 —m2 (A.16)

because a(tr)/a(tg) ~ 8 x 107*. Because of this approximation, the limit p(E — m,T) is
nonzero, which is, however, of no importance for our CMB analysis.

Equation (A.15) is the key equation of this section and will now be used to set constraints
on m and I'g = 1/7,. For illustrative purposes we show the spectrum for various values in
Fig. A.1. As expected from time-dilation arguments, the low-energy part of the spectrum
shows the strongest deviations, which fortunately also features the smallest experimental
error bars. Using the COBE (COsmic Background Explorer) data set of the CMB [222,223]
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Figure A.2: Constraints on photon mass m and lifetime 7., from the CMB spectrum.

we can construct a simple x? function to fit the spectrum from Eq. (A.15).3 The best fit
values are at m = 0 = I'g, so we can only obtain exclusion ranges, shown in Fig. A.2. The
limit on the photon mass is not competitive with other experiments—m < 3 x 107%eV—but
for the photon width we find the only existing (and model-independent) bound

m

at 95% C.L. This would correspond to a photon lifetime of only three years, should the photon
mass be close to its current bound (A.8). Another useful form of the constraint is given by

m FO
1. A18
(10—18 eV) (7.5 x 1024 eV) = ( )

For two-particle fermionic final states X, the decay rate v — X X from (effective) interactions
like gXv,X A" will be of the form I'g ~ g*m/4m [219]. With Eq. (A.18) we can constrain
g < 0.03e, which corresponds to a very large effective electric charge and is excluded by
other experiments [225].4 In particular, final state neutrinos are far better constrained by
their electric properties to be relevant in photon decay (see for example Ref. [220] for a
recent review). Our complementary and model-independent approach should be interesting
nonetheless, as it constitutes the only direct constraint on the photon lifetime as of yet.

Let us make a couple more comments to illustrate some issues with our above analysis. Our
approach basically assumed a vanishing or negligible number density of Stiickelberg scalars
o and daughter particles X prior to photon decoupling. To ensure this, m and I'g need to be
small: o has only the interaction mA*9,,0, so for small mass m, it will not be in equilibrium
with the rest of the SM. The creation rate of o via ey <+ eo is proportional to a?m? /T, which
has to be smaller than the expansion rate of the Universe H(T) ~ T?/Mp—at least before
weak decoupling around 7" ~ 1 MeV—in order to not put ¢ in thermal equilibrium during
BBN. For m < 1073 eV, only the transverse polarizations of the photon are excited, making it

3Ground-based and balloon experiments probe the CMB down to energies ~ 107 eV, which typically have
much larger errors. Additionally, there is an excess at low energies that is not understood yet [224], so we
do not include those data.

41t is of course trivial to reinterpret bounds on millicharged particles [225] in terms of photon decay.
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okay to treat the photon as massless before BBN. For the initial condition of our black-body
calculation, however, we need to ensure that only the two transverse degrees of freedom
of the photon are excited at the surface of last scattering at 7" ~ 0.25eV. This requires
m < 5 x 107 eV, making our approach a little inconsistent, because at these low masses
the primordial plasma—consisting mainly of partly ionized hydrogen and helium—cannot be
ignored. We will remark on this below.

On to the daughter particles: The interaction rate of photons with their will-be daughter
particles at temperature 7" will be something like I'gT'/m, as it should be finite in the limit
m — 0. This rate has to be smaller than the expansion rate of the Universe at BBN—unless
the final daughter particles are neutrinos. This gives the condition I'g < 1072*m < 10740 eV,
which is far stronger than the bound we obtained from the CMB analysis above, directly
related to the fact that the minicharge of new ultralight particles is tightly constrained [225].
One should be careful with the above constraint though, because additional degrees of free-
dom at BBN are currently still allowed by cosmological observations [23].

Having discussed the initial conditions of our analysis—which degrees of freedom are
present at recombination—it is time to scrutinize our main assumption: that the photons
are free streaming. This is usually a very good approximation, as the density of ionized hy-
drogen is rather small after recombination, but it is still large enough to induce a plasma
mass as large as 107? eV to the photon. Further complications arise from the non-ionized hy-
drogen and helium, as they effectively make the Universe a refractive medium—changing the
dispersion relation of on-shell photons even further. This has been emphasized in Ref. [226],
where CMB constraints on photon oscillations into hidden photons [227] have been discussed.
Their analysis (and phenomenology) is very similar to our discussion of photon decay, but
in our case the inclusion of the plasma is more difficult. The photon in a medium requires
a careful treatment, as it becomes just one of several quasiparticles that can be excited. (A
well-studied example relevant to our discussion is the decay of plasmons—effectively massive
photons—into neutrinos as a mechanism to cool stars [220].) This makes it difficult, if not
impossible, to constrain the properties of a free photon—mnamely, m and 7.,—through a study
of these quasiparticles, certainly not in the model-independent way we aspired to. Naively
reinterpreting 7, as an effective coupling of the daughter particles to the photons—and fur-
ther ignoring the vacuum mass m in the dense plasma—would lead back to the usual bounds
on millicharged particles [225].

In conclusion, a massive photon sounds crazy and exotic, but it really is not. A massless
photon is neither a theoretical prediction nor a necessity, but rather a phenomenological
curiosity. We should try to understand why this parameter in the Lagrangian (that we can
just write down) is so small. This is similar to the strong-CP problem [228], and in both cases
experiments so far have only come up with upper bounds for these parameters. Independent
of its actual value, a nonzero photon mass immediately opens up the possibility of photon
decay—even in the SM—which can, and should, also be constrained. Using the long-lived
low-energy photons of the cosmic microwave background, we were able to derive the first
direct bound on the photon lifetime in this section. Adopting the largest allowed value for
the photon mass from other experiments, m ~ 107'% eV, we find a lower limit of about 3yr
on the photon rest-frame lifetime; for photons in the visible spectrum, this corresponds to a
lifetime around 10 yr. A study of the challenging, but important, effects of the primordial
plasma on this limit has to be left for future work.



Appendix B
Gauge Boson Mixing

In this appendix we provide a brief discussion of kinetic mixing [73] and, more generally, Z-Z’
mixing. This topic is relevant far beyond the topic of this thesis, i.e. the abelian gauge symme-
tries motivated in Sec. 1.5, as it pertains to all SM extensions by abelian gauge groups, be it
motivated by GUTs (for a review and a list of early references see Ref. [72]), flavor symmetries
(early treatments of abelian and non-abelian gauged flavor groups include Refs. [229-232]),
and DM models [194,195,233].

After a brief discussion of the simplest case—kinetic mixing of just two abelian gauge
bosons, one of them coupled to hypercharge—we extend the framework to three abelian
groups, including also mass mixing. This second part follows closely our paper “Kinetic and
mass mixing with three abelian groups” [10] (in collaboration with W. Rodejohann). Note
that we will for the most part represent the new gauge boson(s) by X, instead of ZL in this
appendix, in order to avoid a cluttered notation.

B.1 Kinetic Mixing

Let us first consider the simplest Z—Z' mixing scenario, induced only by a kinetic-mixing
term sin x Fy” F},,. Since the field strength tensors F{" and F},, are gauge invariant under
the associated abelian gauge groups U(1)y and U(1)’, such a cross-coupling term is always
allowed in the Lagrangian.! Even if the kinetic-mixing angle y is zero at some scale, it will
typically be generated radiatively [73]. In models where scalar fields carry charges under both
U(1)y and U(1)’, mass mixing terms like §M?Z" X, will be generated by their VEVs, further
complicating Z—Z" mixing. Since we only considered U(1)" breaking via SM-singlet scalars
in this thesis, there is no mass mixing at tree level, allowing us to use the calculations from
below. The effect of mass mixing—and more than one U(1)" group—is considered in more
generality in Sec. B.2.

The Lagrangian of interest after breaking our extended gauge group Gsm x U(1) to
SU(3)c x U(1)gm is composed of the parts [234]

A N
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!Since kinetic mixing relies on two abelian factors in the gauge group, the embedding of Gy in a simple
non-abelian group like SO(10) in the context of GUTs would render our discussion mute.
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with the would-be Weinberg angle éw and Sy = sin éW, Cw = cos éw. The hypercharge
gauge boson and field strength tensor are denoted by B, and B, respectively. The currents
are defined as

1 — - 1 — -
])!ﬁ— ) Z [Lg'y“Lg—i—ZfRfy“fR} +6 Z {QL’Y‘HQL—FZlﬂR’y“uR—QdR’}/”dR},
l=e,u,T quarks

= > Le* —LH- > QY QL7

l=e,p,T quarks
(B.2)

with the left-handed SU(2), doublets @1, and Ly and the Pauli matrices 0. We also define the
electromagnetic current jpy = j‘?}V + jy and the weak neutral current jnc = 2]'%[/ — 25%4/ JEM,
while the new current j associated to the U(1 ) is left unspecified for now. We furthermore
introduce the fields A = cWB + Swwg and Z = CWW3 - SwB corresponding to the photon
and the Zgy boson in the absence of L,;x. Here and in the following we will often omit the
Lorentz indices on the currents and gauge fields, expressions such as jA are to be read as
JrAL.

In our discussion it is actually irrelevant how the U(1)" mass term M)Q(X HX # is generated,
be it via spontaneous symmetry breaking or the Stiickelberg mechanism (App. A), the latter
leaving the group U(1)" unbroken. On to the actual mixing: The Lagrangian £ = Lgy +
Lx + Lmix + ... is written in terms of the gauge eigenstates (denoted by hatted fields),
but for calculations we need the mass eigenstates with definite kinetic terms. To diagonalize
the kinetic terms, we define the new fields X* = cos XX“ and B = BH + tan x X H—with
corresponding field strength tensors—with standard kinetic terms:

1 1
Bu X" = 2B B — 2 X, X" (B.3)

The neutral vector fields B, X, and W3 = W3 now have properly normalized diagonal kinetic
terms, but share a non-diagonal symmetric 3 x 3 mass matrix, to be read off of Eq. (B.1):

) 83, M%Z —ewswM2 —38%, tan xM%
_ 22 12 Ao r2
Mpws x = : Cyy Mz Cw Sw tan x M7 . (B.4)

]\;I)Q(/ cos? x + 8%, tan? X]\;I%

It is easy to check that this matrix has one vanishing eigenvalue, corresponding to a massless
leftover photon A,. The other two eigenvalues M12,2 correspond to the masses of the two
massive neutral vector bosons Z; 2. An orthogonal transformation is used to rotate (B, W3, X)
into the mass eigenstates (A, Z1, Z,) without re-introducing off-diagonal kinetic terms:

Ay = éwBy + swW;,
7y, = cos€ (éwwj’ - §WBﬂ) +sinéX,, (B.5)
Ty = cosEX,, —sin€ (ewWj — swBy),

¢ being a mixing angle that depends on x and the other parameters in M% ws x 1234]. The
limit €& — O0—induced by x — O0—obviously brings us back to the SM definition of photon
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and Z boson (and the Weinberg angle éw), the new X boson being decoupled. For & # 0, the
coupling strength of the vector boson Z; studied at LEP will be reduced by cos? ¢ compared
to the SM, and the famous relation p = M3, /M2c}, = 1 is modified as well, resulting in
constraints on ¢; typically, the model-dependent limits are of order |¢| < 1072-1073 [72].
Other effects of this Z—Z' mixing can be found in the literature [73,234-237].

Let us consider the most common limit y <« 1 and M)Q( > M%, leading to a highly
suppressed mixing angle £ ~ —§Wxﬂ 2/ M)Q(, and the massive vector bosons Z; and Zs have
masses My ~ M 7 and My ~ M x, respectively. We can identify é = e, and in this limit
Sw =~ sw. The dominant effect is then an induced coupling of the new field Zy ~ X ~ X to
the hypercharge current:

S . c .
9" Xy — G5" Zay — XJJ{?ZM - (B.6)

This is, of course, most exciting for models where jy contains particles not found in the
U(1) current j—as is the case for the DM symmetries discussed in Ch. 4—making the Z5
a mediator between two sectors. For the B — L symmetries discussed in Ch. 2, the above
kinetic mixing will induce axial couplings to the otherwise vector-like jp_7 .

A quite different limit arises for M)Z( < M%, i.e. a light neutral vector boson. Assuming
further that the U(1)" current j, contains no SM particles, only the small kinetic-mixing angle
X ~ &/sw < 1 will induce a coupling of X, ~ Xu to SM particles. In physical processes with
energies far above M, both photons and X bosons can then be emitted, and will actually
start to oscillate into each other in complete analogy to neutrino oscillations (Sec. 1.1). Such
an oscillation of photons into “hidden photons” can be searched for in various ways, for
example by trying to shine light through opaque walls (cf. Ref. [237]).

Let this suffice as an introduction to kinetic mixing; more can be found in Refs. [73,234,235],
and in the next section.

B.2 Kinetic and Mass Mixing with Three Abelian Groups

The mixing of two abelian groups—one of them being the hypercharge gauge group U(1)y—
is well studied and widely used in model building, but the generalization to more abelian
factors is seldom discussed, even though this structure naturally occurs in some string theory
and GUT models [238-241], not to mention the symmetry group G motivated in Sec. 1.5 and
studied in this thesis. Renormalizability of the theory requires the gauge group to be free
of anomalies, which drastically limits the allowed additional U(1)" groups, unless additional
fermions are introduced; the condition of anomaly freedom is, of course, even more constrain-
ing in gauge extensions with several new abelian factors. Even without tapping into the var-
ious GUT-inspired symmetries, there are several interesting combinations of well-motivated
symmetries that lead to valid models, e.g. U(1)r x U(1)p [242-245], U(1)p x U(1)pwm, or
U(l)B_L X U(l)LH_LT cq.

We will present the generalization of the well-studied gauge group Gsm x U(1) to Ggm X
U(1)" x U(1)"”, which introduces three kinetic-mixing angles and three mass-mixing parame-
ters. To demonstrate possible applications in model building we show that U(1)p x U(1)pm
generates isospin-dependent nucleon-DM scattering and that U(1)p—z x U(1)r, -, can in
principle induce non-standard neutrino interactions.
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B.2.1 Kinetic and Mass Mixing

In complete analogy to Sec. B.1, we can parametrize the most general effective Lagrange
density after breaking Ggy x U(1)1 x U(1)2 to SU(3)e x U(1)gm as L= Lsm+ Lx, + Lx, +
Loix, With

A A

1~ 4 v, Loms o € np € anyq
Lom = _ZB yB* — ZWEVWGM + §MZZHZM - QJY H §W]WWE,

1. ~ PRTS .
Lx, :—zX SR MXX Xt =9l Xi, =12, (B.7)
Emix = S B ij SIHIBB ng - SlnfyXl MVXé“/

+m? Zqu + m2 ZMXQ +m3 X, XY

«, [, and v are kinetic-mixing angles, while mj2 are mass-mixing parameters potentially
induced by the spontaneous breakdown of U(1)y x U(1); x U(1)a.

Due to our parametrization of the kinetic-mixing angles, the hypercharge field strength
tensor Euy and the field strength tensors X of U(1); x U(1)y share the symmetric mixing
matrix

1 1 sina sinf B;w
Lo =g (B & &)1 sy | | K (B:3)
1 Xo

In complete analogy to Sec. B.1, we can transform the gauge fields (E , X1, Xg) into a basis
(B, X1, X2) with canonical (diagonal) kinetic terms by means of a non-unitary transformation

A

B 1 —to (tasy—sg/ca)/D B
X1 | =10 1/eca (tasg—sy/ca)/D| | X1 ], (B.9)
X, 0 0 ca/D Xo

where D = \/1 — 82 — 5% — 82{ + 25,535, 8, = sinz, ¢, = cosx, and t, = tanx. The trans-

formation (B.9) diagonalizes the kinetic terms and yields the massless photon A and the
mass matrix for the massive neutral fields in the basis (Z, X7, X»)

M= MR [k +Swta (2m1 + MZSWSa)/Ca M3y | (B.10)
' M3,

with the three extra long expressions
Mis - caD = (]\2[%§W(55 — Sa8y) +mi(sa55 = 57) +m3c3)
M3y - iD= M)Q(l(saszs — 5y) + MZ8fysa(s5 — sas,) + misw(sg — 25asy + 5553)
+ mQSWsac + mgci , (B.1)
M, RD? = W13,k + VB, (5, — 505 + N353y (55 — 55,
— 2mi3w (sass — 57)(sasy — 55) + 2m3ca8w (55 — 5asy)
+2m3c; (5055 — 54)
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M? is a real symmetric matrix and can therefore be diagonalized by an orthogonal matrix U
via UT M2U = diag(M?, M3, M2), M; being the masses of the physical fields. This diagonal-
ization introduces in general three more mixing angles &; that are connected to the entries
in M?2. The gauge cigenstates A, Z, X1, and X, couple to the currents éjpnm, dzinc,> G171,
and §ojo, respectively, and are connected to the physical mass eigenstates A, Zy, Z3, and Z3
via

A 1 0 —éwta éw(sasy—sg)/caD\ (1 0 0 0\ [A
Z | 10 1 38wty Sw(sg—sasy)/caD 0 71 (B.12)
Xi| |0 0 1/ca (a8 —5y)/caD 0 U Zy |’ '
X 00 0 ¢a/D 0 Zs

or, inverted:
A 10 0 0\ /1 0 éwse ewsg A
Zl . 0 0 1 _<§W3a —§W85 Z
Zol {0 ur 0 0 Ca (84— sasp)/ca | | X1 (B.13)
Zs 0 0 0 0 D/cy X

Due to our parametrization, we can identify é = e = /4wragy with the usual electric charge.
The physical Weinberg angle is defined via

2 o _ magm(Mi)
Swew = )
V2GR M?

which leads to the identity sy ew My = &wéw My [234].

The general case is complicated to discuss and hardly illuminating, which is why we will
work with several approximations from here on out. In the limit m? < M %,M)Q(j, and
a, 3,7 < 1, the mass matrix (B.10) simplifies to

(B.14)

My Mzdwa+mi Mz3wp+m3

9 A A
M2~ | M% —M% y+m3 | (B.15)
2
. M3,
Diagonalization leads to the resulting connection between gauge and mass eigenstates
1 0 —Cwa —Cwp
A 0 1 swolly, tmi awBMi, tmi | /4
5 g, N3 N2 -NIZ 7
2= o LdweMiimd 1 gm0 (B.16)
! M, T3 2,7, | |7
ol _sweNiamy IR, o . 8
M3, =Mz Mg, —Mg,
and one can calculate the mass shift of the Z boson
(éwa—i—m%/M%)Q (éwﬁ—i—m%/M%)Q
M3E/MZ ~1+ (B.17)

1— Mgﬁ/z\%g 1— M§2/M§

2Here we defined the coupling strength of the Z boson gz = €/2¢w Sw.
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With this formula we can express M% in terms of measurable masses:

9 2 2
My _sively |, (swatmi/MP)" (swf+m3/MP) (B.18)
ME &y &y L — M3/M; L—Mg/Mg '

The direction of the shift depends on the hierarchy of M 2 and M)Q(i; a cancellation is possible
for M)Q(I < M% < M)Q(Q, which would reduce stringent constraints from the p parameter
(hiding one Z’ with another). A different way of relaxing the limits on a Z’ model by adding
additional heavy bosons with specific charges was discussed in Ref. [246]. For completeness
we show the effects of heavy Z’ bosons in terms of the oblique parameters S and T, which
can be read off the modified Z; couplings to jl?/’V and jgy in the limit g, o = 0 [234]:

Bya? — /M 382 — m/h}

T ~
AEM 1— M2/M? 1- MZ/MT (B.19)
2 2 2 2 :
o swa+mi/Mj 5 o swhB+m3/Mj
annS = dswdiya Sy e Howel S T

B.2.2 Applications

We will now show some applications of the framework laid out above. It is not our intention
to examine the models in complete detail, but only to consider a few interesting effects. In
most cases it suffices to work with the approximation in Eq. (B.16), which is used to read off
the couplings of the mass eigenstates to the different currents/particles. Once a proper model
is defined by additional scalars and fermions, one can perform more sophisticated analyses
which make use of numerical diagonalization of the neutral boson mass matrix in Eq. (B.10).
In particular, loop-induced kinetic mixing angles can be calculated in specific models.

Crossing the Streams

Model building with mixing between U(1); and U(1)2 often makes use of the induced coupling
of currents, i.e. Lnix ~ €Jj172, which connects the two gauge sectors even if no particle is
charged under both groups. We will now derive a necessary condition for such a non-diagonal
term at tree level. Taking all of the mixing parameters in Eq. (B.7) to be zero except for mg
and -y, we obtain the coupling of the mass eigenstates Z5 and Z3 to the currents

P ~ - 1 —t»y Cg —85 ZQ o ~ . A - Z2
L D —(91]1, 92]2) (0 1/&{) <S§ C§><Z3 :—<91]1, 92]2) V,Ue 74 (B.20)

where Uy diagonalizes the mass matrix. Integrating out the heavy mass eigenstates yields an
effective four-fermion interaction of the form

1, o 1/M3 0 7,7 (9171
Log = 3 (91117 9232) Vi Ue ( 0 1/M3 U Vs 9272
2

- (B.21)
o 1 A . A . ]\4}(1 m3 gljl
= B (gljl? 92]2) ( mg M)Q(Q 92]'2 .
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It is obvious that the coupling matrix is diagonal if m3 = 0, independent of «. An analogous
calculation can be performed for the coupling of j; to jnc via m; and «, [, respectively,
although it is a bit more tedious because of the additional Weinberg rotation. Neverthe-
less, the result is the same: An off-diagonal effective coupling j; jnc only arises for m; # 0,
i.e. Leg m%,Q J1,2 jnc- Since the Weinberg rotation induces a coupling of j; to the electro-
magnetic current (first row in Eq. (B.16)), interesting couplings can arise even for m; o = 0.

Up until now we discussed only one nonzero m; and kinetic mixing angle at a time, corre-
sponding to the well-known case of Z—Z' mixing. A more general analysis including all our
mixing parameters from Eq. (B.7) yields the effective four-fermion interactions

-1

~ . T ~ n .
gzJjxc M; mi m3 gzJjNc
Legg = —3 J1J1 — eCw SaJEM - Mg, omj3 g1j1 — etwsajim | - (B.22)
G272 — €Cw SgJEM . - ME, G2J2 — eCw SgJEM

Because the 3 x 3 coupling matrix takes the explicit form

03wt w3\ T (NI, —md mdmd— w3V, mdm — 313, m3
1\4)2(1 in% = A6 . ZM%M)%2 — m% mim%— M%m% ,
(B.23)

with A6 = M%M)Q(IM)QQ — M%m% — M)Q(Qm% — ]\2)2(2771‘11 + 2m?m3m3, we end up with new
off-diagonal couplings like m3m3 j1 jnc, even if there is no direct coupling m3 j1 jnc.-

Isospin-Violating Dark Matter

In our introduction to dark matter in Sec. 1.3 we have claimed that direct-detection experi-
ments provide strong limits on DM—nucleon cross sections, without mentioning the existing
hints for actual DM observation by DAMA [247] (sodium and iodine target), CoGeNT [248]
(germanium), CRESST [249] (calcium tungstate), and CDMS [250] (germanium and silicon).
Even though the positive signals at these experiments all point to a similar region in pa-
rameter space—dark matter mass O(10) GeV, spin-independent DM—proton cross section
107%2-107%% cm? —they are overall incompatible with each other. Furthermore, such large
spin-independent DM-nucleon cross sections are naively excluded by xenon-based DM ex-
periments like XENON100 [43] and, most recently, LUX [251]. There are obviously some
problems with at least one of the mentioned experiments, and it is not our intention to select
the most reputable of the bunch or discuss experimental issues. Taking seriously any one
of the hints for DM, we are faced with the stringent exclusion limits from the xenon-based
experiments. This tension can, however, be alleviated if DM were xenophobic, i.e. would
couple weaker to xenon than to other elements. A ridiculous idea at first, but due to the
different proton-to-neutrino ratio in the relevant elements, it actually goes a long way to
consider isospin-violating DM [252], which is not as far fetched. The destructive interference
of the DM scattering off protons and neutrons can then be used to reduce the effective DM
coupling to xenon, with less pronounced reduction in light elements like germanium. Due to
the variety of xenon isotopes employed by the experiments, it is impossible to obtain truly
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xenophobic DM in this way, but taking a DM coupling to neutrons and protons in the ratio
fn/fp = —0.7 [252-254] at least weakens the xenon constraints by some orders of magnitude.
It is not our intention to review the current state of this approach (see e.g. Ref. [255] for
that), let us rather demonstrate our Z—Z'-Z" mixing ansatz at the slightly outdated example
of DAMA /CoGeNT and XENON100.

Many models have been brought forward to alleviate the tension between the potential
DM signals in DAMA /CoGeNT and the null results in XENON100 using isospin-dependent
couplings of nucleons to dark matter [252-254,256-261]. One of the models used in Ref. [262]
to explain this coupling is based on gauged baryon number U(1); = U(1)g.> With dark
matter charged under this gauge group, the resulting cross section turns out to be too small to
explain the observed events, unless the coupling of Z’ to dark matter is significantly stronger
than to quarks (i.e. DM carries a large baryon number). However, in a model with another
gauge group U(1l)e = U(1)pm—acting only on the DM sector—the dark matter coupling
constant gpy can be naturally large compared to ¢gp, which allows for a sizable cross section
as long as the mass mixing between the groups is not too small.* We therefore consider vector
boson mixing with the gauge group U(1l)y x U(1)g x U(1)pm; we only introduce one DM
Dirac fermion x, so the U(1)s current takes the simple form j§ = jii,;, = X7*x. For clarity
we take all mixing parameters in Eq. (B.7) to be zero—except for ms and f—and assume
Zy3 to be light (M2273 < M?) to generate a large cross section. Eq. (B.16) then gives the
approximate couplings

2
€ . . . m .
LD — ( JNc + /BSWQDM]DM) Z1 — | 9BjB — 9pM~—5———5jpM | Zo
QCWsW M3 - M2
(B.24)
2
- oM — Bewelem + 9B~z ip | Z5.
gDM.JDM M§ — M22

These terms couple dark matter to nucleons via mg, and because of 3, proton and neutron
couple differently, i.e. the interaction is isospin dependent. Integrating out all the gauge
bosons gives the effective vector—vector interactions in the usual parametrization

Leg O foXvuXPV'p+ fuXyuxmtn, (B.25)
with the ratio of the neutron and proton couplings
1 B Mj
=1 ith 7~ ecw——. B.26
fn/fp 1+7"’ Wi r echB mg ( )

We can easily find parameters to generate f,/f, ~ —0.7, corresponding to r ~ —2.4. The
overall DM-neutron cross section can be calculated to be [267]

2 2
1 MMy 5 m2 m3 9 (1 GeV>4 _31 9
= [—x ~ 3 | ~2 =) 10
On = o (mx+mn> Fo ™ o 9BIDM 7y 2 apmf M cm?,
(B.27)

It was pointed out in Ref. [263-265] that a gauge boson coupled to the baryon number B can be light.
The drawback of such a symmetry is the unavoidable introduction of new chiral fermions to cancel occur-
ring triangle anomalies. An anomaly-free symmetry (SM + right-handed neutrinos) with similarly weak
constraints is U(1)p—3z, [110-112,115], a subgroup of G from Eq. (1.52).

*A similar model was proposed in the same context in Ref. [266].
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where we defined apy = 912)1\/[ /4 and assumed my > my. To obtain the last equation we
replaced gpm3 with the demanded value for r from Eq. (B.26). For 8 ~ 1073 it is possible
to generate the required DAMA /CoGeNT cross section o, ~ 1073810737 cm? [252,252-254,
257-261] without being in conflict with other constraints [69,263-265,268]. We note that the
dark matter fine-structure constant apy is not restricted to be small.

Due to the required nonzero m3 we will have a non-trivial scalar sector that also serves
as a mediator between the SM and the dark sector. We assume these scalars to be heavy
enough not to alter our foregoing discussion.

Aside from the group U(1) g x U (1)pm discussed above, further interesting models using this
framework in the dark matter sector could be build using leptophilic groups like U(1)r, 1, X
U(1)pm, with the possibility to resolve the PAMELA positron excess via the small leptophilic
admixture [269].

Non-Standard Neutrino Interactions

We have shown in Sec. 1.5 that the group Gsm x U(1)p—r x U(1)r,—r, x U(1)L, -1, is free
of anomalies after introducing three right-handed neutrinos vg. Having focused on U(1)
subgroups of U(1)p—r x U(1)r,—r, X U(1)L, -1, in the main part of this thesis, let us take
a look at the effect of a U(1); x U(1)2 subgroup. This group is necessarily flavored, be-
cause there is only one unflavored U(1) subgroup (B — L, as discussed in Ch. 2). We choose
U(l)y = U(1)p-r and U(1)2 = U(1)r,—r, for the flavored part, L, — L, being favored
over any other U(1)’ € U(1)r, -z, X U(1)r, L, because of a more reasonable structure of
the neutrino mass matrix (see Sec. 3.3). The gauge boson Zy = Zp_ is highly constrained
by collider experiments (Mp_1/gp_1 = 7TeV from Sec. 2.1.1),° but Z3 = Zr,-L, can
have a mass around the electroweak scale and there is actually a preferred region around
M Lu—Lr / 9L, —L, == 200 GeV that ameliorates the tension between the theoretical and experi-
mental values for the muon’s magnetic moment (see Sec. 3.3.2).

InU(1)p-rxU(1)r, -, models with non-vanishing mass mixing the parameter m3 induces
an effective coupling of the currents jr, 1, and jp_r (see Sec. B.2.2), which leads for exam-
ple to non-standard neutrino interactions, usually parametrized by the non-renormalizable
effective Lagrangian [270]

P |7 —
£ = —2v2Gpell] [Py P [FaruPLys). (B.28)
The model at hand induces eﬁﬁ = —¢fF | easily read off from Eq. (B.21):
geV ~ 1 m%

a _QﬁGFgngMgM:?
" 1p-6 L ( ms >2<7TeV)2<200GeV>2 (B.29)

g192 10 GeV Mg/gl Mg/gg
S = i = sl 3

which are in general too small to be observable in current experiments [270]. Larger NSIs can
be generated at the price of introducing mass mixing of Zr, 1. with Zsy via mg (using the

®The limits from LEP-2 and Tevatron have strictly speaking been derived under the assumption of just one
additional gauge boson, but still hold approximately when additional bosons are included [246].
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more general Eq. (B.22)). Even though this kind of mixing is highly constrained by collider
experiments, the arising NSIs are testable in future facilities for My < Mj [4]. Substituting
U(1)p—r in Eq. (B.29) with less constrained symmetries like U(1)p_3r. or U(1)p (including
fermions to cancel arising anomalies) allows for lighter gauge bosons and therefore also larger
NSIs; a recent discussion of additional constraints on Z’ bosons with non-universal couplings
to charged leptons can be found in Ref. [271]. This framework comes down to Z'-Z" mixing;
it does not involve mixing with the SM gauge bosons—at least at tree level-—so the bounds
on the mixing parameters are less stringent.

B.2.3 Conclusion

The extension of the Standard Model by an additional abelian factor U(1)" is a well moti-
vated and frequently discussed area in model building. It is not far fetched to extend this even
further to Ggm x [U(1)']"—especially following our motivation in Sec. 1.5—provided the full
gauge group stays free of anomalies. We discussed the most general low-energy Lagrangian
for the case n = 2, including kinetic mixing among the abelian groups, n > 2 being hardly
more difficult. We showed how the mixing among several gauge groups—such as U(1)p_1,
U(1)L,-r,, and U(1)py——can lead to interesting effects like non-standard neutrino interac-
tions and isospin-dependent dark matter scattering, opening up new and exciting possibilities
in model building.
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0v2B8 oo Neutrinoless Double Beta Decay

0vdp oo Neutrinoless Quadruple Beta Decay

G oo Ul)p-r xU)p.—r, xU1)L, L.
Lo, L.—L,—L;

B oo Baryon Number

GSM wveveiiieann, Standard Model Gauge Group SU(3)c x SU(2)r, x U(1)y
Lo Lepton Number

Mpy oo Planck Mass, approx. 1.22 x 1019 GeV
BAU ... Baryon Asymmetry of the Universe

BBN ... Big Bang Nucleosynthesis

CL. ..o, Confidence Level

CDMS ............... Cryogenic Dark Matter Search

CKM ................ Cabibbo—-Kobayashi—-Maskawa

CMB ................ Cosmic Microwave Background

COBE ............... COsmic Background Explorer

CoGeNT ............. Coherent Germanium Neutrino Technology
CP ... Charge Parity

CRESST ............. Cryogenic Rare Event Search with Superconducting Thermometers
DAMA .............. DArk MAtter Collaboration

DM ...l Dark Matter

EC ... Electron Capture

EM ...l ElectroMagnetism

EWPT .............. ElectroWeak Phase Transition
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EWSB ............... ElectroWeak Symmetry Breaking

EXO ..ol Enriched Xenon Observatory

GAPP ...l Global Analysis of Particle Properties

GERDA ............. GERmanium Detector Array

GUT ... Grand Unified Theory

IH ... Inverted Hierarchy

KATRIN ............ KArlsruhe TRItium Neutrino Experiment

LEP ................. Large Electron—Positron Collider

LHC ................. Large Hadron Collider

LNV Lepton Number Violation

LSND ............... Liquid Scintillator Neutrino Detector

LUX ..o Large Underground Xenon experiment

MES ...l Minimal Extended Seesaw

MiniBooNE .......... Mini Booster Neutrino Experiment

NA . Natural Abundance

NEMO .............. Neutrino Ettore Majorana Observatory

NH ... Normal Hierarchy

NSI ..o Non-Standard Neutrino Interaction

PAMELA ............ Payload for Antimatter—-Matter Exploration and Light-nuclei Astro-
physics

PMNS ...l Pontecorvo-Maki-Nakagawa—Sakata

QCD ... Quantum ChromoDynamics

QD ... Quasi-Degenerate Spectrum

QED ... Quantum ElectroDynamics

RHN ................ Right-Handed Neutrino

SM ..o Standard Model

VEV ... Vacuum Expectation Value

WIMP ............... Weakly Interacting Massive Particle

WMAP ... Wilkinson Microwave Anisotropy Probe
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