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ABSTRACT	
	
In	 modern	 neuroscience	 there	 is	 general	 agreement	 that	 brain	 function	 relies	 on	

networks	and	that	connectivity	is	therefore	of	paramount	importance	for	brain	function.	
Accordingly,	the	delineation	of	functional	brain	areas	on	the	basis	of	diffusion	magnetic	
resonance	imaging	(dMRI)	and	tractography	may	lead	to	highly	relevant	brain	maps.	
Existing	 methods	 typically	 aim	 to	 find	 a	 predefined	 number	 of	 areas	 and/or	 are	

limited	to	small	regions	of	grey	matter.	However,	it	is	in	general	not	likely	that	a	single	
parcellation	 dividing	 the	 brain	 into	 a	 finite	 number	 of	 areas	 is	 an	 adequate	
representation	of	the	function‐anatomical	organization	of	the	brain.	
In	 this	 work,	 we	 propose	 hierarchical	 clustering	 as	 a	 solution	 to	 overcome	 these	

limitations	 and	 achieve	 whole‐brain	 parcellation.	 We	 demonstrate	 that	 this	 method	
encodes	 the	 information	 of	 the	 underlying	 structure	 at	 all	 granularity	 levels	 in	 a	
hierarchical	 tree	or	dendrogram.	We	develop	 an	optimal	 tree	building	 and	processing	
pipeline	that	reduces	the	complexity	of	the	tree	with	minimal	information	loss.	We	show	
how	these	trees	can	be	used	to	compare	the	similarity	structure	of	different	subjects	or	
recordings	and	how	to	extract	parcellations	from	them.	
Our	novel	 approach	yields	 a	more	 exhaustive	 representation	of	 the	 real	 underlying	

structure	and	successfully	tackles	the	challenge	of	whole‐brain	parcellation.		
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ZUSAMMENFASSUNG	
	
In	 den	 modernen	 Neurowissenschaften	 ist	 allgemein	 anerkannt,	 dass	 die	

Gehirnfunktionen	 auf	 dem	 Zusammenwirken	 von	 verschiedenen	 Regionen	
in	Netzwerken	beruhen	und	die	strukturelle	Konnektivität	daher	großer	Bedeutung	ist.	
Daher	 kann	 die	 Abgrenzung	 funktioneller	 Hirnbereiche	 auf	 der	 Grundlage	 der	
Diffusions‐Magnet‐Resonanz‐Tomographie	(dMRT)	und	der	Traktografie	zu	wertvollen	
Hirnkarten	führen.	
Existierende	 Verfahren	 versuchen	 eine	 fest	 vorgegebene	 Anzahl	 von	 Regionen	 zu	

finden	 und/oder	 sind	 auf	 kleine	 Bereiche	 der	 grauen	 Substanz	 beschränkt.	 Im	
Allgemeinen	ist	es	jedoch	unwahrscheinlich,	dass	eine	einzelne	Parzellierung	des	Kortex,	
eine	 ausreichende	 Darstellung	 der	 funktio‐anatomischen	 Organisation	 des	 Gehirns	
erlaubt.		
In	 dieser	 Arbeit	 schlagen	 wir	 eine	 hierarchische	 Clusteranalyse	 vor	 um	 diese	

Einschränkungen	 zu	überwinden	und	das	 gesamte	Gehirn	 zu	parzellieren.	Wir	 zeigen,	
dass	 dieses	 Verfahren	 die	 Eigenschaften	 der	 zugrundeliegenden	 Struktur	 auf	 allen	
Granularitätstufen	des	hierarchischen	Baums	(Dendrogramm)	kodieren	kann.	Weiterhin	
entwickeln	 wir	 eine	 optimale	 Verarbeitungspipeline	 zur	 Erstellung	 dieses	 Baums,	 die	
dessen	Komplexität	mit	minimalem	Informationsverlust	reduziert.	Wir	zeigen	wie	diese	
Datenstrukturen	 verwendet	 werden	 können	 um	 die	 Ähnlichkeitstruktur	 von	
verschiedenen	 Probanden	 oder	 Messungen	 zu	 vergleichen	 und	 wie	 man	 daraus	
verschiedene	Parzellierungen	des	Gehirns	erhalten	kann.	
Unser	neuer	Ansatz	liefert	eine	ausführlichere	Analyse	der	anatomischen	Strukturen	

und	bietet	eine	Methode	zur	Parzellierung	des	ganzen	Gehirns.	
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ABBREVIATIONS	
	
	
ADC		 apparent	diffusion	coefficient.	

DSI		 diffusion	spectrum	magnetic	resonance	imaging.	

CNS	 central	nervous	system.	

CPCC	 cophenetic	correlation	coefficient.	

cXX	 centroid	method	with	XX	neighborhood.	

dMRI	 diffusion	magnetic	resonance	imaging.	

FA	 fractional	anisotropy.	

fMRI	 functional	magnetic	resonance	imaging.	

fODF	 fiber	orientation	density	function.	

FT	 Fourier	transform.	

GPU	 graphics	processing	unit.	

GRAPPA	 generalized	auto‐calibrating	partially	parallel	acquisitions.	

HARDI	 high	angular	resolution	diffusion	imaging.	

IFG	 inferior	frontal	gyrus.	

IPCC	 inferior	parietal	cortex	convexity.	

MRI	 magnetic	resonance	imaging.	

NMR	 nuclear	magnetic	resonance.	

PAS	 persistent	angular	structure.	

PICo	 probabilistic	index	of	connectivity.	

PLS	 polarized	light	imaging.	

SMA	 supplementary	motor	area.	

SNR	 signal	to	noise	ratio.	

SS	 spread	vs.	separation	

tCPCC	 tree	cophenetic	correlation	coefficient.	

TE	 echo	time.	

TR	 repetition	time.	

wTriples	 weighted	triples	similarity.	
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1. INTRODUCTION	
	

1.1 Overview	
	
This	 chapter	 contains	 an	 overview	 of	 prior	 knowledge	 needed	 to	 understand	 the	

framework	of	this	thesis.	In	particular,	basics	of	human	brain	anatomy	and	structure,	the	
rationale	 behind	 brain	 parcellation,	 the	 role	 and	 organization	 of	 brain	 anatomical	
connectivity,	and	a	short	description	of	the	techniques	that	can	measure	 it.	Finally,	we	
highlight	 the	 possibilities	 and	 current	 limitations	 of	 in‐vivo	 connectivity‐based	
parcellation	 and	 the	motivation	 of	 our	 work	 in	 order	 to	 overcome	 them,	 present	 the	
contribution	of	our	developed	method,	and	give	an	outlook	on	the	contents	of	remaining	
chapters	in	this	thesis.	
Overall,	this	introductory	chapter	is	inspired	from	atlases,	books	and	thesis	chapters	

from:	Gray	 (1918),	Brodmann	 (1909),	 Johansen‐Berg	and	Behrens	 (2009),	Descoteaux	
(2010),	Jones	(2011)	and	Sporns	(2011a).	They	are	great	sources	for	the	understanding	
of	human	brain	anatomy,	structure	and	connectivity.	
	
	

1.2 The	human	brain	
	
The	brain	is	the	main	structure	of	the	central	nervous	system	(CNS),	and	regulates	all	

human	 activity.	 From	 an	 embryonic	 development	 standpoint,	 it	 consists	 of	 hindbrain,	
midbrain	 and	 forebrain.	 This	 latter,	 which	 is	 the	 most	 recently	 evolved,	 can	 be	
subdivided	 into	diencephalon	 (which	contains	among	other	 structures	 the	 thalamus,	a	
critical	 relay	 for	 sensory	 information,	 and	 the	hypothalamus,	the	 central	 organizing	
structure	for	the	regulation	of	the	body’s	many	homeostatic	functions		such	as	feeding,	
and	thermoregulation)		and	telencephalon	or	cerebrum	(formed	by	the	basal	ganglia	and	
cerebral	hemispheres).	
The	 cerebral	 hemispheres	 control	 all	 voluntary	 actions	 in	 the	 body	 and	 are	

responsible	 for	 higher	 cognitive	 functions.	 In	 humans,	 they	 are	 proportionally	 larger	
than	 in	any	other	mammals,	and	have	characteristic	 folds	called	gyri	 (singular,	gyrus).	
The	 grooves	 dividing	different	 gyri	 are	 the	 sulci	 (singular,	 sulcus).	 Although	 the	 gyral	
patterns	may	vary	across	 individuals,	 there	are	 some	 features	 that	 consistently	divide	
the	 hemispheres	 morphologically	 into	 four	 lobes,	 named	 after	 the	 cranial	 bones	 that	
overlie	them	(Figure	1.1).	The	two	hemispheres	of	the	brain	are	separated	by	the	central	
fissure.	
The	frontal	lobes	extend	from	the	central	sulcus	to	the	anterior	part	of	the	brain	and	

are	 involved	 in	 numerous	 functions	 including	 conscious	 thought,	 planning,	 motor	
control	and	 language.	The	parietal	 lobes,	 located	between	the	central	and	the	occipital	
sulci,	are	important	for	sensory	information	integration	and	processing	of	visual‐spatial	
stimuli.	 The	 temporal	 lobes	 are	 the	most	 lateral	 parts	 of	 the	 cortex,	 delimited	 by	 the	
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lateral	 fissure,	 and	are	 responsible	 for	processing	auditory	 stimuli	 and	 some	 language	
related	 functions.	Lastly,	 the	occipital	 lobes	are	 in	 the	posterior	part	of	 the	cortex	and	
process	 visual	 stimuli.	 It	 is	 notable	 that	 although	 the	 hemispheres	 exhibit	 strong	
bilateral	 symmetry	(in	 both	 structure	 and	 function)	 it	 is	 not	 complete.	 As	 a	 structural	
example,	 the	left	 hemisphere	 has	 generally	 a	 larger	 lateral	 sulcus	 than	 the	 right	 one.	
Functionally,	Broca's	 area	and	Wernicke's	 areas	 (involved	 in	 the	 understanding	 and	
generation	 of	 speech;	 Broca,	 1861;	 Wernicke,	 1874)	are	 present	 only	 in	 the	 left	
hemisphere	in	most	of	the	population	(Amunts	et	al.,	1999).	
	

	
	
Figure	1.1:	 Reproduction	from	“Gray’s	Anatomy	of	the	Human	Body”	showing	the	four	brain	lobes	and	the	

cerebellum	 below	 (belonging	 to	 the	 hindbrain).	 (vectorized	 image	 from	 (Gray,	 1918),	 from	
http://commons.wikimedia.org/wiki/File:Gray728.svg)			

	
At	 a	 microscopic	 scale,	 neurons	 constitute	 the	 basic	 building	 block	 of	 the	 nervous	

system.	These	are	highly	 specialized	cells	 capable	of	 transmitting	 information	 through	
electrical	 and	 chemical	 signals.	 Within	 the	 cell,	 information	 is	 transmitted	 along	 its	
surface	 via	 changes	 in	 the	 membrane	 potential.	 Between	 neurons,	 information	 is	
exchanged	 through	 specialized	 connections	 called	 synapses,	 mediated	 by	 chemical	
signals.	A	typical	neuron	consists	of	the	cell	body,	dendrites,	and	an	axon.	The	cell	body	
contains	 the	 nucleus	 and	most	 of	 the	 cell	metabolic	machinery.	 Dendrites	 are	 narrow	
structures	elongating	 from	 the	 cell	body,	often	branching	 in	a	 tree‐like	 shape,	 and	are	
responsible	 for	 receiving	 incoming	 signals.	 The	 axon	 is	 another	 special	 neuron	
elongation	that	usually	extends	for	longer	distances,	transmitting	the	signal	to	the	next	
cell.	
Neurons	do	not	work	in	an	isolated	way,	they	are	organized	into	circuits	that	process	

specific	 kinds	 of	 information	 and	 provide	 the	 foundation	 for	more	 complex	 functions	
(Figure	 1.2).	 Neural	 circuits	 are	 formed	 from	 three	 types	 of	 neuronal	 cells:	 afferent	
neurons	carry	sensory	input	towards	the	brain	or	spinal	cord	or	bring	information	up	to	
the	 brain	 cortex	 from	 lower	 structures;	 efferent	 neurons	 transmit	 information	 away	
from	their	neural	circuit	(or	away	from	the	CNS);	interneurons	regulate	circuits	locally,	
reinforcing	or	inhibiting	certain	signals.		
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Figure	1.2:	 Depiction	of	a	basic	neural	circuit.	The	cell	 in	 the	center	 represents	a	pyramidal	neuron,	 the	

main	type	of	information	processing	neuron	in	the	cortex.	
	
In	the	brain,	neuronal	cell	bodies	reside	in	what	is	called	gray	matter,	and	the	axons	

form	the	white	matter,	named	so	for	the	color	these	different	tissues	have	in	preserved	
brains	(they	also	produce	a	different	signal	contrast	under	magnetic	resonance	imaging	
[MRI]).	Axons	are	often	called	nerve	fibers,	and	bundles	of	these	axons	are	called	fiber	
tracts.	It	is	in	the	gray	matter	where	the	processing	of	information	takes	place,	and	the	
white	matter	is	responsible	for	transmitting	the	information	inside/outside	of	the	brain	
and	between	regions	of	the	grey	matter.	In	the	cerebral	hemispheres,	the	grey	matter	is	
situated	in	the	outermost	layer,	denominated	the	cortex.		
There	is	evidence	that	in	many	areas,	the	cerebral	cortex	is	organized	in	small	patches	

of	 neuronal	 ensembles	 (Hubel	 and	Wiesel,	 1968;	Mountcastle,	 1957;	 for	 a	 review	 see	
Horton	 and	 Adams,	 2005).	 These	 ensembles	 are	 coordinated	 through	 their	 local	
connections	and	work	coherently,	achieving	functional	integration	(Varela	et	al.,	2001).	
At	 the	 end	of	 the	 scale,	 higher	 cognitive	 functions	 arise	 from	 the	 coordinated	work	of	
these	 neuronal	 populations,	 many	 times	 located	 in	 different	 parts	 of	 the	 brain	 and	
connected	 through	 the	 white	 matter,	 forming	 brain	 networks	 (Bullmore	 and	 Sporns,	
2009;	Dosenbach	et	al.,	2007).	

 

“The	nervous	system	is	organized	on	multiple	scales,	from	synaptic	connections	between	
single	cells,	 to	 the	organization	of	cell	populations	within	 individual	anatomical	 regions,	
and	 finally	 to	 the	 large‐scale	 architecture	 of	 brain	 regions	 and	 their	 interconnecting	
pathways.	Different	 techniques	are	 sensitive	 to	different	 levels	 of	organization.	This	 last	
point	 deserves	 to	 be	 emphasized.	 The	 multi‐scale	 aspect	 of	 the	 nervous	 system	 is	 an	
essential	feature	of	its	organization	and	network	architecture.	Descriptions	of	the	brain	at	
large	 scales	 should	not	be	 regarded	as	poorly	 resolved	approximations	of	an	underlying	
microscopic	 order.	 Instead,	 brain	 connectivity	 at	 the	 large	 scale	 (among	 regions	 and	
systems)	describes	neural	processes	that	are	the	outcome	of	dynamic	coordination	among	
smaller	 elements.	 (…)	 Perhaps	 the	most	 fundamental	 distinction	 is	 between	 structural	
connectivity	as	a	wiring	diagram	of	physical	links	and	functional	connectivity	as	a	web	of	
dynamic	interactions."	(Sporns,	2011a).		
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1.3 Structural	mapping	and	parcellation	
	
(Summarized	 from	 the	 chapter	 “Connectivity	Fingerprinting	of	Gray	Matter”	 written	

by	 J.	 Klein,	 T.	 Behrens	 and	 H.	 Johansen	 Berg	 from	 the	 book	 on	 diffusion	 magnetic	
resonance	imaging	(dMRI)	by	Johansen‐Berg	and	Behrens	[2009]).	
The	 concept	 that	 functions	 in	 the	 brain	 are	 localized	 in	 regions	 has	 important	

implications	 for	 neuroscience.	 The	 work	 of	 Korbinian	 Brodmann,	 published	 in	 1909,	
represents	one	of	the	first	comprehensive	studies	aiming	to	parcellate	the	cortex	(Figure	
1.3;	 Brodmann,	 1909).	 In	 his	 atlas,	 he	 observed	 the	 cytoarchitecture	 (the	 layering	 of	
cells)	 and	 myeloarchitecture	 (properties	 of	 white	 matter)	 of	 the	 human	 cortex	 and	
identified	 52	 different	 areas.	 	 Other	 scientists	 such	 as	 Von	 Economo	 (1929)	 also	
produced	 detailed	 atlases	 of	 the	 brain,	 but	 these	 have	 not	 established	 themselves	 as	
broadly	 as	 the	 Brodmann	 parcellation	 scheme.	 Brodmann’s	 atlas	 still	 remains	 widely	
used	in	modern	neuroscience,	despite	its	age.	Using	Brodmann’s	parcellation	as	a	guide,	
researchers	have	filled	this	map	with	other	anatomical	or	functional	results	(as	well	as	
earlier	 findings	 that	 predated	 his	 atlas:	 Broca,	 1861;	 Wernicke,	 1874;	 Exner,	 1881;	
Campbell,	1904).	
	

	
	
Figure	1.3:	 Regions	of	 the	human	 cerebral	 cortex	as	delineated	by	Korbinian	Brodmann	on	 the	basis	of	

cytoarchitecture.	(reprint	from	(Brodmann,	1909)).	
	
On	 a	 microscopic	 level,	 boundaries	 between	 gray	 matter	 regions	 are	 commonly	

characterized,	 along	 with	 the	 already	 mentioned	 cyto‐	 and	 myeloarchitecture,	 by	
patterns	of	neuronal	 chemistry	 and	by	 the	patterns	of	 receptors	present	or	absent	on	
cells.	 Functional	 localization	 can	 be	 obtained	 using	 a	 range	 of	 techniques	 and	
experiments	 such	 as	 observation	 of	 symptoms	 in	 patients	 with	 specific	 lesions	 or	
localized	 epileptic	 seizures	 or	 electrode	 stimulation	 techniques	 in	 human	 subjects	
undergoing	 brain	 surgery.	 More	 recently,	 the	 non‐invasive	 functional	 magnetic	
resonance	imaging	(fMRI)	has	become	the	most	widely	used	tool	for	functional	studies	
in	the	brain.	
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Sometimes,	 microscopically	 characterized	 borders	 are	 not	 well	 defined	 (e.g.	
Brodmann	 area	 43	 gradually	 transitioning	 into	 area	 40).	 But	 even	 in	 some	 clearly	
defined	areas,	distinct	functional	regions	can	be	observed	within	a	single	Brodmann	area	
(Zilles	et	al.,	1996).	Choosing	when	two	areas	of	the	cortex	are	different	enough	to	merit	
being	 considered	 separate	areas	 is	 an	arbitrary	decision.	 It	 is	not	 surprising	 then	 that	
some	of	Brodmann’s	areas	have	been	proposed	for	further	subdivision	(Vogt	and	Vogt,	
1919;	 Geyer	 et	 al.,	 2000a).	 Also,	 there	 is	 no	 formal	 proof	 that	 cytoarchitectonically	
distinct	 regions	 are	 also	 functionally	 different	 (however,	 functional	 specialization	 is	
evident	 in	 the	 layering	 of	 cells	 in	 the	 examples	 of	 primary	motor	 and	 visual	 cortices;	
Brodmann,	1909;	Passingham,	2007).	
In	summary,	there	is	a	clear	need	for	parcellation	of	the	cortex	for	neuroanatomical	

studies.	Cytoarchitecture	is	hypothesized	to	be	strongly	related	to	localized	function,	and	
has	 therefore	 been	 one	 of	 the	 most	 important	 tools	 to	 relate	 function	 between	
individuals	and	between	species.	However,	 as	 cytoarchitecture	 is	usually	not	available	
for	 a	 given	 individual	 subject,	 other	 techniques	 are	 needed	 to	 provide	 in‐vivo	
parcellations	of	the	brain.		
	

1.4 Anatomical	connectivity	
	
1.4.1 Connectivity	as	a	structural	trait	
	
There	 are	 two	 important	 competing	 factors	 that	 describe	 a	 network	 in	 network	

theory:	its	efficiency	and	its	cost	(Latora	and	Marchiori,	2001,	2003).	Efficiency	relates	
to	how	well	interconnected	the	elements	of	a	network	are	(so	that	if	information	is	to	be	
exchanged	between	any	 two	elements,	 the	path	will	be	as	direct	 and	 fast	as	possible).	
Cost	relates	to	how	expensive	the	network	layout	is	(as	each	direct	connection	between	
elements	has	an	associated	cost,	and	usually	this	cost	is	higher	for	faster	connections).	A	
fully	interconnected	network,	where	each	element	has	a	direct	link	to	any	other	element	
will	be	very	effective,	but	also	very	expensive.	In	the	case	of	the	human	brain,	the	cost	
for	 each	 link	 is	 related	 to	 energy	 consumption,	 and	mostly,	 to	 volume	 required:	 each	
axon	 needs	 space,	 and	 more	 the	 wider	 it	 is	 and	 the	 thicker	 the	 myelin	 sheath	
surrounding	it	(both	of	which	enable	faster	signal	transmission).	In	an	organ	as	complex	
and	 compact	 as	 the	 human	 brain,	 this	 means	 that	 neurons	 cannot	 be	 fully	
interconnected	with	each	other.	
Given	 the	 brain	 organization,	 the	 only	 information	 a	 neuron	 can	 process	 is	 that	

directly	received	through	 its	afferents,	and	this	 information	can	only	affect	neurons	or	
circuits	 directly	 linked	 with	 it.	 Therefore	 it	 seems	 reasonable	 to	 assume	 that	 areas	
participating	 in	 the	 same	 function	 need	 to	 be	 connected	 with	 each	 other	 and	 have	
similar	connectional	patterns	to	the	rest	of	the	brain.	Furthermore	the	specific	patterns	
of	this	connectivity	strongly	influence	the	function	of	neural	networks,	enabling	complex	
neuropsychological	 tasks	 and	 cognitive	 abilities	 (Mesulam,	1990,	 1998).	To	be	 able	 to	
decode	brain	 function	we	need	not	 only	 a	 good	understanding	 of	 its	 components,	 but	
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also	to	comprehend	how	these	components	connect	with	each	other,	and	on	the	reverse	
side,	how	these	connection	patterns	might	help	shed	light	on		their	function.	
	
1.4.2 The	organization	of	white	matter	
	
As	introduced	before,	there	are	several	scales	at	which	anatomical	connectivity	can	be	

described:	 at	 the	 micro‐scale,	 neurons	 communicate	 through	 synaptic	 connections	
forming	 neural	 circuits;	 at	 the	 meso‐scale,	 neuronal	 populations	 interconnect	 into	
networks	 of	 ensembles;	 and	 at	 the	 macro‐scale,	 large	 numbers	 of	 these	 ensembles	
interconnect	through	fiber	pathways,	constituting	the	white	matter.	It	 is	on	the	macro‐
scale	connectivity	that	we	will	focus	on	this	thesis.	
	
In	 the	white	matter,	 axons	 can	 be	 diffusely	 distributed	 or	 concentrated	 in	 bundles	

called	fiber	tracts.	There	are	three	different	types	of	tracts.	
Projection	 tracts:	 they	 extend	 vertically	 establishing	 connections	 between	 the	

cerebral	cortex	and	subcortical	structures,	such	as	 the	basal	ganglia	and	the	 thalamus.	
Afferent	 projection	 tracts	 carry	 information	 from	 different	 parts	 of	 the	 body	 to	 the	
cerebral	cortex.	Efferent	projection	tracts	carry	commands	from	the	cortex	down	to	the	
brainstem	and	the	spinal	cord.	
Commissural	 tracts:	 bundles	 of	 axons	 connecting	 a	 region	 in	 one	 hemisphere	 to	

another	region	of	the	opposite	hemisphere.	
Association	 tracts:	 these	 connect	different	 cortical	 areas	within	a	 given	hemisphere	

(Figure	 1.4),	 and	 can	 be	 divided	 into	 two	 categories.	 Long	 association	 fibers	
communicate	 between	 different	 cerebral	 lobes	 whereas	 short	 association	 tracts	
establish	 connections	within	 a	 given	 lobe	 and	 adjacent	 gyri.	 The	 smallest	 of	 these	 are	
called	 U‐fibers,	 as	 they	 link	 adjacent	 cortical	 zones	 separated	 by	 a	 sulcus,	 forming	 a	
characteristic	“U”	shape.		
	

	
	
Figure	1.4:	 Dissection	 (left)	 and	 diagram	 (right)	 of	 the	cerebral	 cortex	 showing	 principal	 systems	 of	

association	fibers.	(reprint	from	(Gray,	1918)).	
	
“Anatomical	connections	at	all	levels	of	scale	are	both	specific	and	variable.	Specificity	is	

found	in	the	arrangement	of	individual	synaptic	connections	between	morphologically	and	
physiologically	 distinct	 neuronal	 types	 and	 in	 long‐range	 connectivity	 between	 neural	
structures	such	as	cell	nuclei	or	brain	regions.	Variability	is	found	in	the	shape	of	individual	
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neurons	and	their	processes,	as	well	as	in	the	size,	placement	and	interconnection	of	large‐
scale	structures.	Variability	may	be	measured	between	corresponding	structures	in	brains	
of	individuals	of	the	same	species.	In	addition,	neural	structures	within	the	same	individual	
vary	 across	 time,	 as	 a	 result	 of	 experiential	 and	 developmental	 processes	 of	 growth,	
plasticity	and	repair.	It	is	 likely	that	anatomical	variability	is	one	of	the	main	sources	for	
functional	variability,	expressed	in	neural	dynamics	and	behavioral	performance.”	(Sporns,	
2007).	
	
It	 is	 important	 then,	 to	 develop	methods	 that	 can	 characterize	 variability	 of	 white	

matter	patterns	along	the	cortex	in	individual	brains	(in‐vivo),	and	that	allow	systematic	
comparison	 of	 changes	 in	 these	 patterns	 across	 individuals,	 or	 across	 different	 time	
points.	
	
1.4.3 Measuring	anatomical	connectivity	
	
The	 following	descriptions	 of	 invasive	 tracing	methods	 are	 a	 summarized	 from	 the	

chapter	“Invasive	methods	from	tracing	white	matter	architecture”	written	by	H.	Axer	for	
the	book	on	dMRI	by		Jones	(2011).	
	

‐ Fiber	dissection	
In	 1935,	 Klingler	 (1935)	 described	 a	 technique	 to	 dissect	major	 fiber	 tracts	 in	 the	

human	brain.	It	allowed	the	fibers	to	be	carefully	separated	using	fine	surgical	tools,	and	
through	 this	 method,	 the	 course	 of	 the	 major	 fiber	 tracts	 could	 be	 shown.	 Current	
knowledge	 about	 fiber	 tracts	 in	 the	 human	 brain	 is	 based	mainly	 on	 such	 dissection	
studies.	However,	 the	process	only	allows	for	 investigation	of	single	tracts	of	 fibers,	as	
other	tracts	must	be	cut	away.	Although	the	method	is	not	best	suited	for	searching	new	
unexpected	 neuroanatomy,	 it	 is	 useful	 for	 proving	 hypothesis	 obtained	 through	 other	
techniques.	
	

‐ Fiber	degeneration	
Degeneration	of	the	nerve	fibers	after	transection	of	the	axons	was	first	described	by	

Waller	 (1850)	 and	 first	 observed	 in	 the	brain	by	Ramón	y	Cajal	 (1928).	Degenerating	
fibers	arising	 from	 local	 lesions	 in	 specific	brain	areas	can	be	detected,	 and	 therefore,	
their	 tracts	 somehow	 traced.	 This	 principle	 can	 be	 applied	 to	 animal	 brains	 in	
experimental	 settings,	 and	 human	 cadaver	 brains	 can	 be	 dissected	 after	 brain	 injury	
(Dhanarajan	et	al.,	1977;	Brodal,	1978).	With	MRI,	Wallerian	degeneration	has	also	been	
detected	in	living	brain	(Axer	et	al.,	2008;	Uchino	et	al.,	1990;	Pierpaoli	et	al.,	2001);	
	

‐ Tract	tracing	
In	 tract	 tracing	 a	 tracer	 substance	 is	 injected	 into	 a	 specific	 brain	 region	 and	 is	

transported	 via	 the	 axons	 into	 connected	 brain	 areas.	 Most	 of	 these	 techniques	 are	
based	on	active	transport	mechanisms	in	the	living	cell.	Different	substances	can	be	used	
to	achieve	anterograde	or	retrograde	transport	(respectively,	 from	the	cell	body	to	the	
synapse	 or	 the	 other	 way	 around).	 As	 working	 cell	 mechanisms	 are	 necessary,	 the	
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method	is	limited	to	experiments	in	living	animals	or	dead	human	brains	with	very	short	
postmortem	delays	before	injection	(Haber,	1988).	Some	substances	can	potentially	be	
applied	to	fixed	brain	tissue	as	they	are	transported	passively	along	the	myelin	sheaths,	
but	maximal	distance	of	diffusion	is	limited	and	waiting	time	can	be	as	long	as	half	a	year	
(Lukas	et	al.,	1998).	
	

‐ Myelin	staining	
Different	methods	of	myelin	stains	can	be	used	to	visualize	part	of	the	myelin	sheaths	

and	 the	 axons,	 using	 compounds	 that	 bind	with	 different	 target	molecules.	 The	 basic	
method	 was	 initially	 described	 by	 Weigert	 (1897).	 Currently,	 the	 Luxol	 fast	 blue	
approach	 is	 the	one	most	 often	used	 (Klüver	 and	Barrera,	 1953)	because	 it	 is	 easy	 to	
apply.	However,	with	this	method	intermingling	fibers	with	distinct	orientation	cannot	
be	 clearly	 distinguished,	 so	 the	 fine	 architecture	 of	 white	 matter	 cannot	 be	 exactly	
analyzed.	Myelin	stains	are	preferably	used	 in	 the	gray	matter,	where	 the	nerve	 fibers	
are	separated	from	each	other	(Schmitt	et	al.,	2004).	
	

‐ Confocal	laser	microscopy	
Through	the	use	of	confocal	laser	scanning	microscopy	and	a	special	fluorescent	dye,	

it	 is	 possible	 to	 make	 serial	 optical	 sections	 through	 fiber	 bundles	 with	 high	
magnification.	This	technique	collects	 information	from	well‐defined	tissue	sections	by	
sequentially	 illuminating	 only	 a	 narrow	 slide	 of	 tissue	 volume	 (Wright	 et	 al.,	 1993).	
Afterwards,	a	3D	image	with	high	resolution	information	about	fiber	orientation	can	be	
reconstructed.	The	drawback	of	such	high	detail	is	a	narrow	field	of	view.	It	is	therefore	
not	suitable	for	analyzing	large‐scale	architectural	patterns.	
	

‐ Polarized	light	imaging	
Polarized	 light	 imaging	 (PLI)	 allows	 the	 visualization	 of	 anisotropic	 fiber	 bundles	

with	 a	 lower	 magnification	 than	 confocal	 laser	 microscopy	 but	 a	 larger	 field	 of	 view	
(Axer	 et	 al.,	 2000;	 Larsen	 et	 al.,	 2007).	 PLI	 can	 selectively	 visualize	 anisotropic	
structures	 with	 birefringent	 properties,	 such	 as	 nerve	 tissue.	 As	 with	 confocal	 laser	
microscopy,	sections	are	analyzed	separately	and	later	3D	images	can	be	reconstructed	
(Axer	et	al.,	2002).	However	 in	 this	 technique	separate	sections	of	60	 to	100	µm	thick	
must	 first	 be	 carefully	 cut.	 Difficulties	 arise	 mainly	 from	 the	 elaborate	 histological	
processing	of	the	tissue	and	the	access	to	the	large	cryotome	machines	required.	
	

‐ Diffusion	MRI	
dMRI	 was	 first	 developed	 in	 the	 1980s	 (Le	 Bihan	 and	 Breton,	 1985;	 Taylor	 and	

Bushell,	1985).	It	is	based	on	the	property	that	water	does	not	freely	diffuse	in	tissue,	as	
it	 is	 hindered	 by	 obstacles	 such	 as	 membranes	 and	 macromolecules.	 Microscopic	
properties	 and	 architecture	 of	 tissues	 can	 then	 be	 obtained	 by	 observing	 how	water	
diffuses	in	them.	This	is	specially	so	in	nerve	tissue,	where	water	can	diffuse	more	freely	
along	the	direction	of	the	axons	and	the	myelin	sheaths,	than	in	the	perpendicular	plane,	
where	 it	 is	restricted	by	 the	cell	membrane.	As	will	be	explained	 in	more	detail	 in	 the	
next	chapter,	in	dMRI	the	hydrogen	atoms	in	the	water	molecules	are	spatially	encoded	
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in	 a	 specific	 direction	 by	 their	 spin	 phase	 through	 specialized	 electromagnetic	 pulses	
while	in	a	strong	magnetic	field.	The	molecules	then	emit	the	energy	absorbed	through	a	
process	 called	 relaxation	 and	 their	 signal	 is	 captured.	 If	 the	 water	 molecules	 diffuse	
spatially	 in	 the	 encoded	 direction,	 the	 spin	 phases	 of	 the	 hydrogen	 atoms	 at	 a	 given	
point	will	not	all	be	in	phase,	and	it	will	translate	into	a	decrease	of	the	detected	signal.	
Repeating	the	process	for	different	directions	a	3D	image	encoding	the	water	diffusion	
patterns	at	each	point	in	the	brain	can	be	reconstructed.	By	application	of	models	to	this	
water	diffusion	pattern	that	relate	to	the	underlying	tissue	microstructure,	several	types	
of	informative	data	can	be	obtained,	such	as	fractional	anisotropy	(FA)	maps	(thought	to	
be	influenced	by	fiber	density,	axonal	diameter,	and	myelination	in	white	matter;	Basser	
and	 Pierpaoli,	 1996)	 and	 fiber	 tractography	 (3D	 reconstruction	 the	 main	 nerve	 fiber	
paths,	 which	 will	 be	 the	 basis	 of	 the	 connectivity	 information	 that	 the	 methods	
developed	in	this	thesis	will	analyze	and	characterize;	Basser	et	al.,	2000;	Stieltjes	et	al.,	
2001;	Koch	et	al.,	2002).	
However,	 diffusion	 tractography	 cannot	 provide	 the	 same	 level	 of	 evidence	 as	

invasive	 tracing:	 “Essentially,	we	are	looking	at	diffusion	of	water	within	the	brain,	not	at	
the	actual	fibers	we	are	really	interested	in.	Diffusion	tractography	cannot	decide	whether	
a	reconstructed	pathway	 is	a	direct	one	or	 involves	one	or	more	synapses,	as	 there	 is	no	
signature	of	synapses	 in	the	diffusion	signal.	Also,	as	we	are	dealing	with	water	diffusing	
along	the	paths	of	the	axons,	diffusion	tractography	cannot	provide	information	about	the	
polarity	of	connections.”	(Johansen‐Berg	and	Behrens,	2009).	
Diffusion	 tractography	still	 remains,	despite	 these	shortcomings,	 the	only	 technique	

available	 to	 assess	 brain	 anatomical	 connectivity	 in‐vivo	 in	 humans,	 making	 it	 most	
valuable.	
	

1.5 Connectivity	based	brain	parcellation	
	
Tractography	enables	us	to	obtain	connectivity	fingerprints	or	patterns	from	different	

points	of	 the	cortex.	These	fingerprints	can	then	be	compared	in	other	to	analyze	how	
similar	are	the	connectivity	patterns	of	two	given	points.	This	information	can	be	used	
by	 clustering	 algorithms	 in	 order	 to	 generate	parcellations	 that	 group	 together	points	
with	similar	patterns	in	the	same	parcel,	while	keeping	points	with	distinct	patterns	in	
different	ones.	This	is	the	basis	for	all	methods	for	in‐vivo	anatomical	connectivity	based	
parcellation	in	humans	(i.e.:	Johansen‐Berg	et	al.,	2004;	Anwander	et	al.,	2007).	
However,	while	all	methods	follow	this	basic	scheme,	there	are	many	possible	ways	

to	 implement	 tractography,	 compute	 similarity	 between	 tractograms,	 and	 define	 and	
perform	 the	 clustering	 and	 parcellations.	 In	 the	 following	 chapter,	 we	 will	 review	 in	
more	detail	the	different	choices	available	and	being	used	today.	
	
It	 is	 unlikely	 that	 a	 single	 parcellation	 dividing	 the	 brain	 into	 a	 finite	 number	 of	

functional	areas	would	be	an	adequate	representation	of	the	functional	organization	of	
the	brain,	in	the	same	way	that	a	political	map	subdividing	the	earth’s	land	surface	is	not	
a	perfect	representation	of	the	cultural	differences	and	kinships	amongst	its	people.	The	
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measurable	changes	of	properties	on	the	cortical	surface	are	often	gradual	rather	than	
abrupt.	 In	 these	cases,	we	might	 find	different	partitions	depending	on	how	we	define	
the	 minimum	 structural	 difference	 that	 merits	 that	 these	 points	 belong	 to	 different	
regions,	 that	 is,	 on	 the	 level	 of	 granularity	 of	 the	 partition.	 Also,	 even	 in	 cases	where	
these	 changes	 are	 sharp	 and	 a	 partition	 remains	 constant	 for	 a	 wide	 range	 of	
granularities,	 there	 can	 still	 exist	 nested	divisions	within	 the	 regions	 of	 this	 partition.	
This	is	exemplified	by	the	cytoarchitecture	work	of	Caspers	and	colleagues	(2008)	and	
the	 tractography	work	of	Ruschel	 and	 colleagues	 (2013),	where	Brodmann’s	 areas	39	
and	 40	 were	 further	 subdivided.	 A	 partition	 should,	 therefore,	 be	 seen	 as	 an	
approximation	 of	 the	 similarity	 structure	 (i.e.,	 expressed	 by	 a	 correlation	 matrix)	 of	
some	structural	property.		
	

1.6 Main	contribution	and	overview	of	this	thesis	
	
In	 this	 work,	 we	 propose	 hierarchical	 clustering	 as	 a	 solution	 to	 overcome	 the	

challenge	 of	 whole‐brain	 high‐resolution	 multi‐granularity	 parcellation.	 We	 aim	 to	
demonstrate	that	hierarchical	clustering	is	a	promising	means	by	which	to	characterize	
the	connectivity	similarity	structure	of	 the	human	brain,	where	 the	 information	of	 the	
underlying	 structure	 at	 all	 granularity	 levels	 is	 encoded	 in	 a	 hierarchical	 tree	 or	
dendrogram.	 The	 idea	 is	 that	 these	 trees	 can	 then	 be	 sampled	 to	 obtain	 partitions	 at	
different	 granularity	 levels,	 and	 are	 more	 suitable	 for	 whole‐brain	 parcellation	 that	
other	available	methods.	
We	 compared	 the	 performance	 of	 several	 classical	 hierarchical	 methods	 and	

implemented	 our	 own	 method	 specially	 tuned	 for	 the	 challenge	 of	 whole	 brain	
parcellation	 based	 from	 highly	 dimensional	 tractograms.	 Our	 method	 combines	
hierarchical	centroid	linkage	clustering	with	a	physical	neighborhood	restriction,	and	an	
initial	 homogeneous	merging	 stage.	 It	 proved	 to	 be	 the	 best	 performing	 algorithm	by	
data‐fit	and	computational	cost	criteria.	
Once	trees	are	obtained,	interpreting	the	large	amount	of	data	encoded	and	extracting	

the	most	relevant	information	is	not	an	easy	task.	To	aid	this	process,	a	dendrogram	pre‐
processing	pipeline	was	designed	and	implemented	that	reduces	the	complexity	of	 the	
resulting	trees,	while	keeping	most	of	its	information,	to	facilitate	further	analysis.	
We	 then	 show	 how	 the	 trees	 can	 be	 used	 to	 compare	 the	 similarity	 structure	 of	

different	 subjects	 or	 time	points,	 all	while	 remaining	 in	 the	 subject	 space	without	 the	
need	to	transform	the	data	to	a	common	space	prior	to	partitioning.	
Global	comparison	can	be	achieved	using	the	full	connectivity	structure	information	

through	dendrogram	comparison.	For	 this	purpose,	 tree	 leaves	must	 first	be	matched:	
we	devised	and	 implemented	a	method	to	achieve	 leaf	matching	 in	connectivity‐based	
trees	and	then	applied	dendrogram	comparison	methods	present	in	the	literature.	
We	also	compare	the	trees	at	selected	granularity	levels	through	the	use	of	partition	

finding	algorithms.	We	apply	the	some	common	partition	methods	and	propose	a	new	
partition‐quality	measure	 coupled	with	 an	 effective	 tree	 search	 algorithm	 in	 order	 to	
find	relevant	partition	ranges.	
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In	the	following	table	the	original	contributions	of	this	thesis	are	listed:	

	
	
Original	contributions	of	this	thesis.	
	
1	 –	Brought	 the	 concept	of	 full	multi‐granularity	 clustering	 into	brain	anatomical	 connectivity	
parcellation.	
	
2	 –	 Built	 a	 framework	 that	 allows	 for	 whole‐brain	 multi	 granularity	 parcellation	 from	 high	
resolution	 data	 (1mm)	 based	 on	 connectivity	 by	 bringing	 together	 existing	 fast	 probabilistic	
tractography	with	hierarchical	clustering	used	in	other	fields	such	as	genetics	and	parcellation	of	
functional	data.	
	
3	 –	 Replaced	 the	 traditional	 Pearsons	 correlation	 measure	 for	 tractogram	 similarity	 with	 a	
normalized	dot‐product	more	suitable	 for	describing	the	similarity	of	non‐negative	anatomical	
tractograms.	
	
4	 –	 Optimized	 a	 hierarchical	 algorithm	 for	 probabilistic	 tractogram	 clustering	 by	 applying	
neighborhood	 restrictions	 to	 the	 centroid	method	 and	 using	 an	 initial	 size‐restricted	 stage	 in	
order	to	obtain	an	early	set	of	homogenous‐sized	clusters.	The	resulting	algorithm	captures	as	
much	information	as	the	best	performing	of	the	traditional	methods	and	reduces	the	number	of	
needed	 tractogram	 distance	 computations	 by	 two	 orders	 of	 magnitude	 compared	 to	 the	
traditional	methods	(therefore	drastically	reducing	the	time	needed	for	building	the	tree).	It	also	
facilitates	posterior	processing	and	comparison	of	the	resulting	trees.	
	
5	–	Implemented	a	dendrogram	preprocessing	pipeline	in	order	to	reduce	the	complexity	of	the	
resulting	 trees	 while	 minimizing	 the	 information	 loss.	 The	 pipeline	 consists	 of	 the	 following	
steps:	monotonicity	 correction,	 limiting	of	maximum	granularity,	 and	detecting	and	collapsing	
non‐binary	 structures	 in	 the	 tree.	 This	 pipeline	 successfully	 reduces	 tree	 complexity	 by	 90%	
while	keeping	the	information	loss	below	0.05%.	
	
6	–	 Introduced	the	 idea	of	 leaf‐matching	 in	order	to	enable	the	application	of	 tree‐comparison	
algorithms	and	through	them	the	possibility	of	full	connectivity	similarity	structure	comparison	
(using	 the	 information	 from	 all	 levels	 of	 granularity)	 across	 subjects	 or	 measurements.	
Implemented	a	first	proof‐of‐concept	method	by	using	greedy	matching	of	mean	tractograms	for	
the	 leaf‐matching	 and	 tree	 cophenetic	 correlation	 and	 triples	methods	 for	 comparison	 of	 the	
matched	trees.	
	
7	 –	 Implemented	 a	 Spread	 vs.	 Separation	 based	 partition	 quality	 measure	 that	 uses	 only	
information	contained	in	the	tree	and	is	therefore	very	fast	to	evaluate	the	quality	of	a	partition	
(as	 opposed	 to	 using	 the	 original	 data,	 typically	 done	 in	 the	 literature).	 Combined	 with	 a	
hierarchical	 search	 algorithm	 this	 allows	 to	 search	 for	 the	 optimal	 quality	 partition	 for	 each	
possible	granularity	and	to	obtain	a	profile	of	most	relevant	granularities	based	on	this	quality	
measure.	
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8	–	Developed	a	tool	for	interactive	exploration	of	the	hierarchical	trees	and	real‐time	projection	
of	 results	 onto	 freesurfer	 brain	 surfaces	 (within	 the	 OpenWalnut	 developer	 framework).	 The	
implemented	tree‐processing	and	partition	selection	algorithms	were	included	along	with	some	
of	the	most	common	ones	from	the	literature.	
	
9	 –	Realized	a	proof‐of‐concept	pilot	 study	with	4	healthy	 subjects	applying	all	 the	developed	
techniques,	analyzed	the	results	and	contrasted	with	some	other	techniques	from	the	literature.	
	
10	 –	 Replicated	 the	 clustering	 divisions	 obtained	 by	 Ruschel	 and	 colleagues	 (2013)	 on	 the	
inferior	 parietal	 cortex	 convexity	 (IPCC)	 of	 20	 healthy	 subjects	 in	 3	 clusters	 through	 the	
application	of	our	algorithm	to	their	tractography	data.	
	

	
	
This	document	is	organized	as	follows:	
	
The	 first	 chapter	 has	 been	 an	 introduction	 to	 the	 human	 brain	 organization	 and	

function,	along	with	 the	need	 for	brain	parcellation	and	specifically	parcellation	based	
on	connectivity.	
	
In	 Chapter	 2,	 the	 technical	 foundations	 of	 dMRI,	 methods	 for	 diffusion‐based	

tractography	 and	 a	 review	of	 the	main	 connectivity‐based	 parcellation	 algorithms	 are	
presented.	 The	 rationale	 for	 using	 hierarchical	 clustering	 to	 overcome	 some	 of	 their	
limitations	is	introduced.	
	
Chapter	 3	 details	 the	methods	 used	 and	 implemented	 in	 this	 thesis,	 as	well	 as	 the	

different	methodological	 hypothesis	 and	 choices	 considered	during	 the	 research.	 First	
we	 describe	 the	 traditional	 hierarchical	 clustering	 algorithms,	 and	 present	 a	 new	
modified	method	more	suitable	for	clustering	anatomical	connectivity.	A	tree	processing	
pipeline	 is	 then	presented	 that	maximizes	 information	compression	 in	 the	 trees	while	
minimizing	 information	 loss.	 Next	 tree‐matching	 and	 tree‐comparison	 algorithms	 are	
described	 that	 allow	 comparison	 of	 the	 full	 connectivity	 similarity	 structure	 across	
datasets.	Finally,	different	schemes	for	partition	selection	within	the	tree	are	presented.	
	
The	methods	described	are	then	applied	to	datasets	obtained	from	a	small	cohort	of	

healthy	subjects	in	Chapter	4.	The	fit	to	the	data	of	the	different	hierarchical	algorithms	
is	 tested	 and	 the	 best	 performing	 method	 is	 chosen.	 Then,	 it	 is	 shown	 how	 the	 tree	
processing	pipelines	 successfully	 reduces	 tree	 complexity	without	 loss	 of	 information.	
Next,	the	results	of	the	tree	comparison	scheme	are	presented	and	discussed,	and	finally,	
the	partitions	obtained	with	the	different	partition‐selection	methods	are	explored	and	
compared.	
	
Chapter	 5	 discusses	 the	 possible	 approaches	 and	 challenges	 faced	when	 validating	

clustering	data	from	dMRI.	Two	small	studies	are	proposed	and	carried	out	to	increase	
the	degree	of	confidence	in	the	proposed	method.	



1.Introduction	 	 13	
	

	
Chapters	 6	 and	 7	 discuss	 the	 findings	 of	 our	 work,	 and	 compare	 them	with	 other	

methods	 in	 the	 current	 literature.	 The	 advantages	 and	weaknesses	 of	 the	method	 are	
pointed	out,	 and	possible	ways	of	 improvement.	A	 summary	of	 the	work	done	on	 this	
thesis	is	then	offered,	and	future	development	and	potential	applications	are	suggested.	
	
The	Appendix	at	the	end	of	the	document	contains	extra	figures	not	 included	in	the	

main	chapters.	Namely,	results	of	the	circumstantial	validation	study	for	all	20	subjects	
of	 the	 original	 study,	 and	 the	 partitions	 obtained	 with	 the	 four	 different	 partition‐
selection	methods	used	and	developed	in	both	hemispheres	of	the	five	datasets	acquired.	
	
Part	of	 the	methods	and	 results	presented	 in	 this	 thesis	have	been	published	as	an	

article	in	the	scientific	journal	Human	Brain	Mapping	(Moreno‐Dominguez	et	al.,	2014a)	
and	in	posters	and	talks	at	international	conferences	(Anwander	et	al.,	2012;	Knösche	et	
al.,	2012;	Moreno‐Dominguez	et	al.,	2013,	2012a,	2012b,	2011a,	2011b,	2011c).	
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2. BRAIN	ANALYSIS	BASED	ON	WATER	
DIFFUSION	MEASURED	BY	MRI	

	

2.1 Overview	
	
This	chapter	deepens	in	the	technical	concepts	needed	to	understand	the	choices	and	

challenges	faced	during	the	work	developed	in	this	thesis,	and	where	the	data	it	is	based	
on	 comes	 from	 (in	 particular,	 dMRI,	 fiber	 orientation	 modeling,	 and	 tractography	
techniques).	 It	 also	 contains	 a	 review	 of	 the	 literature	 in	 dMRI‐connectivity	 based	
parcellation	 algorithms,	 and	 points	 out	 the	 main	 limitations	 of	 these	 particular	
techniques	when	 faced	with	 a	whole	 brain	 approach,	which	 inspired	 the	work	 of	 this	
thesis	in	an	effort	to	overcome	them.	
This	current	methods	chapter	 is	 inspired	 from	materials,	books	and	thesis	chapters	

from:	Hornak	(1996),	Koch	(2000),	Mori	(2007),	Johansen‐Berg	and	Behrens	(2009)	and	
Jones	(2011).	They	are	great	sources	for	the	understanding	of	magnetic	resonance	and	
dMRI‐based	techniques.	
	

2.2 dMRI	imaging	
	
2.2.1 Basics	of	MRI	
	
Before	 explaining	 how	 it	 is	 possible	 to	 measure	 the	 amount	 of	 water	 diffusion	 in	

tissue,	we	must	first	understand	the	principles	of	conventional	MRI.	MRI	makes	use	of	a	
physical	phenomenon	called	nuclear	magnetic	resonance	(NMR)	 in	order	 to	detect	 the	
nuclei	 of	 atoms	 in	 a	body	placed	within	 the	MRI	 scanner.	Due	 to	NMR,	when	an	atom	
nucleus	 is	 placed	 in	 a	 strong	 magnetic	 field,	 it	 can	 absorb	 and	 then	 re‐emit	
electromagnetic	energy	at	a	 frequency	determined	by	 the	magnetic	 field	 strength.	The	
strong	magnetic	field	is	generated	by	the	great	ring‐shaped	scanner	magnet	(Figure	2.1),	
and	the	excitation	energy	is	transmitted	to	the	nuclei	and	detected	upon	re‐emission	by	
specialized	transmitter	and	receiving	coils	in	the	scanner.	If	the	magnetic	field	strength	
is	not	uniform	but	changes	in	dependence	with	position	in	space	through	a	field	gradient,	
then	 the	 amount	 of	 energy	 re‐emitted	 by	 the	 nuclei	 at	 different	 positions	 can	 be	
disentangled	based	on	 the	 frequency.	Applying	a	similar	principle	 in	order	 to	vary	 the	
phase	of	the	wave	emitted	based	on	position,	two	different	dimensions	can	be	encoded	
and	a	2D	 image	can	be	obtained.	This	2D	 image	 is	usually	encoded	perpendicularly	 to	
the	 direction	 of	 the	 strong	 magnetic	 field	 (to	 the	 magnet	 ring	 axis).	 Using	 a	 third	
magnetic	 field	 gradient	 in	 the	 third	 dimension	 before	 the	 excitatory	 pulse	 is	 applied,	
only	 incoming	 energy	 pulses	 at	 a	 certain	 frequency	will	 be	 absorbed	 by	 the	 nuclei	 at	
each	position	 (along	 that	dimension).	This	way	 slice	 selection	 can	be	 achieved,	 only	 a	
slice	of	nuclei	will	be	excited	by	each	pulse	and	generate	a	2D	image.	Adding	all	the	slices	
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a	 full	 3D	 image	 is	 reconstructed.	Hydrogen	 in	 its	 single	 proton	 isotope	 is	 the	 nucleus	
most	 widely	 used	 when	 performing	 MRI,	 as	 it	 is	 the	 most	 widely	 present	 in	 tissue	
through	 water	 molecules.	 With	 this	 technique	 we	 can	 obtain	 what	 is	 called	 proton	
density	 images	 as	 the	 amount	 of	 signal	 received	 from	 each	 volume	 depends	 on	 the	
density	of	hydrogen	nuclei	present	in	them.	
	

	
	

Figure	2.1:		 Siemens	MT‐Trio	 3T	MR	 scanner	 (used	 to	 acquire	 the	 data	 used	 in	 this	 thesis),	Max	 Planck	
Institute	for	Human	Cognitive	and	Brain	Sciences.	

	
But	 there	 are	 also	 other	 types	 of	 image	 that	 can	 be	 obtained,	 producing	 other	

contrasts	 or,	 so	 called,	 weightings.	 This	 requires	 some	 further	 explanation	 on	 the	
magnetic	properties	of	nuclei.	Atom	nuclei	generate	a	magnetic	field,	and	at	any	instant	
time,	 the	magnetic	 field	 generated	by	 atom	nuclei	 in	 a	 certain	 volume	 (subjected	 to	 a	
homogenous	 outside	 magnetic	 field)	 can	 be	 represented	 by	 a	 magnetization	 vector.	
When	 in	 equilibrium,	 this	 vector	 is	 aligned	with	 the	 applied	magnetic	 field	 (the	 field	
created	by	the	 large	MRI	magnet),	and	its	magnitude	determined	by	the	field	strength.	
When	an	electromagnetic	pulse	is	absorbed	by	the	nuclei,	it	changes	their	magnetization	
vector,	and	through	a	process	called	relaxation,	the	magnetization	vector	returns	back	to	
its	equilibrium	state,	releasing	energy	in	the	process	which	will	be	detected	(Figure	2.2).	
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Figure	2.2:		 a)	 In	 equilibrium,	 the	magnetization	 vector	M	 is	 aligned	 with	 the	 scanner	 axis	 (usually	 z	
dimension).	b)	when	a	pulse	 is	applied	and	absorbed	by	 the	nuclei,	 this	magnetization	vector	
changes,	the	component	of	the	new	vector	in	the	xy	plane	is	the	transversal	component	MT,	and	
the	one	in	the	z	direction	is	the	longitudinal	component	MZ.	
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However,	 relaxation	 times	 in	 the	 longitudinal	 and	 transversal	 directions	 to	 the	
equilibrium	 one	 depend	 on	 different	 characteristics	 of	 the	 sample,	 and	 using	 specific	
pulses	to	change	the	magnetization	vector	in	one	or	other	direction	can	reveal	different	
information	of	 the	tissue.	The	relaxation	time	 in	the	 longitudinal	direction	depends	on	
the	mobility	of	 the	 lattice	(the	nuclei	surroundings)	and	is	denominated	spin‐lattice	or	
T1	relaxation.	Exploiting	this	relaxation	gives	rise	to	T1‐weighted	images	(Figure	2.3	left),	
which	in	brain	imaging	show	a	good	contrast	between	gray	and	white	matter.	Relaxation	
time	 in	 the	 transverse	 direction	 depends	 on	 molecular	 interactions,	 is	 denominated	
spin‐spin	 or	 T2	 relaxation	 and	 gives	 rise	 to	 T2‐weighted	 images	 (Figure	 2.3	 right).	 In	
these	 images	 fluids	 show	 a	 very	 bright	 contrast	 and	 they	 are	 useful	 to	 detect	
pathological	brain	tissue.	
	

	
	

Figure	2.3:		 Sagittal	view	of	a	healthy	young	volunteer	in	a	T1	weighted	image	(left)	and	T2	weighted	image	
(right),	Max	Planck	Institute	for	Human	Cognitive	and	Brain	Sciences.	

	
2.2.2 Measuring	diffusion	
	
Molecules	in	a	fluid	in	equilibrium	do	not	stay	fixed	or	static,	but	move	respect	to	each	

other	 in	 a	 random	 pattern	 called	 Brownian	 motion.	 This	 property,	 which	 water	
molecules	also	share,	is	called	diffusion.	This	can	be	exemplified	by	a	drop	of	ink	falling	
into	a	water	container:	at	first	the	ink	particles	will	remain	localized	close	to	the	point	
where	 it	dropped,	but	with	time	they	will	slowly	spread	randomly	and	evenly	through	
the	container.	The	distance	that	water	molecules	in	tissue	diffuse	in	a	given	time	can	be	
described	by	the	equation	(Einstein,	1956):	

	 2 2x Dt 	 (2.1)	

where	 x	 is	 the	 mean	 diffused	 distance	 in	 a	 time	 t	 and	 D	 is	 a	 constant	 called	 the	
diffusion	coefficient.	
	
This	diffusion	constant	can	be	measured	 in	MRI	by	applying	special	additional	 field	

gradients.	The	magnetization	vectors	of	hydrogen	nuclei	are	actually	rotating	around	an	
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axis	 aligned	 at	 the	 strong	 magnetic	 field	 direction,	 this	 vector	 rotation	 is	 called	
precession.	
	
If	 after	 the	 initial	 excitation	 (where	 all	 the	 magnetization	 vectors	 have	 the	 same	

orientation)	special	gradients	are	applied,	vectors	at	different	locations	can	be	made	to	
precess	 at	 different	 speeds.	 If	 after	 a	 certain	 time	 T	 the	 direction	 of	 precession	 is	
suddenly	reversed	(with	a	specialized	energy	pulse),	all	the	vectors	will	be	at	the	same	
orientation	again	exactly	after	a	time	T	since	the	inversion	(that	is,	2T	since	the	original	
application	of	the	special	gradients,	called	diffusion	gradients).	To	understand	this	with	
an	analogy,	if	at	a	race	each	runner	has	a	constant	but	different	speed,	and	at	a	certain	
moment	T	all	simultaneously	turn	around,	they	will	all	reach	again	the	starting	point	at	
the	 same	 instant	which	will	 be	 2T	 (as	 the	 slower	 runners	were	 closer	 from	 the	 start	
when	 they	 turned	 around).	 If	 all	 the	 magnetization	 vectors	 within	 each	 measurable	
volume	 (called	 voxel)	 are	 aligned,	 the	 net	 magnetization	 will	 be	 the	 addition	 of	 the	
magnetization	vectors	of	the	contained	nuclei,	and	upon	relaxation	the	full	signal	will	be	
received,	as	if	the	gradients	had	never	been	applied	(Figure	2.4).	
	

	
	

Figure	2.4:		 Example	of	 the	application	of	a	dephase‐rephase	gradient	 sequence	 in	 the	absence	of	water	
diffusion.	The	red,	green	and	blue	circles	indicate	three	water	molecules	at	different	positions.	
Thick	arrows	indicate	the	strength	of	the	magnetic	field	applied	and	narrow	arrows	within	the	
circles	 indicate	 the	magnetization	 vector	orientation	 form	 each	molecule.	 Image	 taken	 from	
“Introduction	to	Diffusion	Tensor	Imaging”.	(reprint	from	(Mori,	2001)).	

	
However,	 the	 scenario	 just	 portrayed	 does	 not	 take	 into	 account	 the	 diffusion	 of	

water	 molecules.	 If	 diffusion	 occurs,	 a	 nucleus	 from	 a	 position	 with	 precession	 at	 a	
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certain	 speed	might	move	 to	 a	 different	 position	were	 original	 precession	 speed	was	
different.	As	a	result,	when	the	instant	2T	arrives,	the	magnetization	vectors	in	a	voxel	
will	not	all	be	aligned,	but	there	will	be	small	directional	difference	in	the	vectors.	Parts	
of	these	vectors	will	cancel	each	other,	and	the	net	magnetization	vector	will	be	smaller	
the	greater	the	mixing	of	hydrogen	atoms	with	different	precession	speeds	(that	is,	the	
greater	 the	 mean	 diffusion	 distance	 was).	 As	 the	 net	 magnetization	 vector	 will	 have	
smaller	magnitude	 than	 in	absence	of	diffusion,	 the	 signal	 received	upon	 relaxation	 in	
will	also	be	smaller	(Figure	2.5).	
	

	
	

Figure	2.5:		 Effect	of	water	diffusion	on	the	dephase‐rephase	sequence	pictured	in	Figure	2.4.	Thick	arrows	
indicate	 the	 strength	 of	 the	 magnetic	 field	 applied	 and	 narrow	 arrows	 within	 the	 circles	
indicate	 the	magnetization	 vector	 orientation	 form	 each	molecule.	 This	 orientation	 is	 also	
indicated	 by	 gradation	 of	 colors.	Water	 molecules	 that	 diffused	 away	 from	 their	 original	
positions	 are	 highlighted	 by	 boxes.	 Image	 taken	 from	 “Introduction	 to	 Diffusion	 Tensor	
Imaging”.	(reprint	from	(Mori,	2007)).	

	
When	 water	 can	 diffuse	 without	 restriction	 in	 all	 directions,	 the	 displacement	 of	

water	molecules	 follows	a	Gaussian	distribution,	and	a	 single	diffusion	coefficient	D	 is	
enough	 to	 characterize	 it.	 In	 tissue,	 however,	 water	 diffusion	 can	 be	 hindered	 by	 big	
molecules,	 and	 differently	 in	 each	 direction	 (depending	 on	 the	 microstructure	 of	 the	
tissue	 at	 each	 point).	 In	 this	 case,	 what	 is	 measured	 for	 each	 direction	 is	 called	 the	
apparent	 diffusion	 coefficient	 (ADC).	 Approximating	 the	 displacement	 of	 the	 water	
molecules	 in	 tissue	 as	 a	 Gaussian	 distribution	 (as	 in	 unrestricted	 free	 diffusion),	 and	
following	Equation	2.1,	 the	 attenuation	of	 the	measured	 signal	due	 to	diffusion	 can	be	
described	by:	

	
0

exp( , )bI b ADC
I
  	 (2.2)	
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where	I0	and	Ib	are	the	intensities	of	the	signals	received	without	diffusion	weighting	
and	with	 a	 diffusion	weighting	 equal	 to	 b,	 respectively	 (Le	 Bihan,	 1986;	 Stejskal	 and	
Tanner,	1965).		
With	this	technique,	using	a	diffusion	gradient	in	a	specific	direction	we	can	measure	

the	 apparent	 diffusion	 constant	 in	 that	 direction,	 translated	 in	 a	 decay	 of	 the	 signal	
respect	 to	 the	 full	 signal	 obtained	without	 a	 gradient.	 Repeating	 the	measurement	 in	
different	gradient	directions	we	can	obtain	a	map	of	how	water	diffuses	at	each	point	in	
the	brain	and	for	each	direction	in	space.	The	sensitivity	of	the	measurement	to	diffusion	
(that	is,	how	much	the	signal	decays	with	the	mean	diffusion	distance)	depends	on	the	
strength	of	the	diffusion	gradients	applied,	on	the	time	this	gradients	are	active,	and	on	
the	 time	 T	 were	 the	 precession	 inversion	 is	 forced.	 These	 parameters	 are	 usually	
combined	in	a	single	one	called	the	b‐value.	
But	how	many	measured	directions	are	enough	to	fully	characterize	water	diffusion	

in	tissue?	As	will	be	seen	 in	the	next	section,	 this	depends	on	the	mathematical	model	
used	to	represent	water	diffusion	properties	at	each	point	 in	space,	and	in	the	angular	
resolution	and	accuracy	desired.	The	number	of	acquired	directions	ranges	from	6	(the	
minimum	 number	 of	 directions	 necessary	 for	 the	 simplest	 model)	 to	 256	 (very	 high	
angular	resolution).	
	
2.2.3 Modeling	fiber	orientation	

	
2.2.3.1 The	diffusion	tensor	

	
When	diffusion	is	not	equal	in	all	directions	it	is	said	that	the	medium	is	anisotropic.	

White	matter	tissue	is	highly	anisotropic	given	that	water	molecules	within	the	neurons	
diffuse	 fairly	 unrestricted	 along	 the	 axons	 but	 cannot	 diffuse	 well	 across	 the	 cellular	
membrane.	The	water	molecules	in	the	extracellular	matrix	are	also	less	restricted	in	the	
direction	of	the	axons	than	in	the	perpendicular	one.	dMRI	data	from	white	matter	can	
therefore	provide	information	about	the	orientation	of	the	nerve	fibers.	
	
But	 in	 order	 to	 obtain	 measures	 that	 describe	 interpretable	 properties	 of	 the	

underlying	microstructure	 of	 the	 tissue,	 and	more	 importantly,	 to	 be	 able	 to	 use	 the	
information	to	reconstruct	fiber	paths	(which	will	be	explained	in	the	next	section)	first	
we	 need	 to	 define	 a	mathematical	model	 that	 can	 integrate	 the	 information	 from	 the	
diffusion	images	into	a	more	practical	and	usable	form.	The	information	of	the	diffusion	
coefficient	 in	 different	 directions	 in	 space	 is	 called	 the	 diffusion	 propagator.	 The	
simplest	 model	 to	 describe	 it	 is	 the	 diffusion	 tensor.	 It	 can	 be	 represented	 by	 a	 3x3	
matrix	of	numbers	in	the	form:	

	
xx xy xz

yx yy yz

zx zy zz

D D D

D D D D

D D D

 
   
  

	 (2.3)	

The	elements	on	the	diagonal	(Dxx,	Dyy	and	Dzz)	correspond	to	the	diffusivities	on	the	x,	
y	 and	 z	 axes	 of	 the	 dMRI	 images,	 while	 the	 other	 elements	 describe	 the	 correlation	
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between	the	diffusivity	on	those	axes.	The	matrix	is	symmetrical,	so	the	elements	below	
the	diagonal	are	equal	to	those	elements	above	(inverting	the	order	of	the	subscripts).	A	
more	intuitive	way	to	understand	the	diffusion	tensor	is	through	its	graphical	ellipsoid	
representation	(Figure	2.6).	The	surface	of	this	ellipsoid	represents	the	points	where	a	
water	molecule	situated	at	the	origin	would	diffuse	to	with	equal	probability.	Usually	a	
reference	 frame	 aligned	with	 the	 axes	 of	 the	 ellipsoid	 (rather	 than	 the	 image	 axes)	 is	
used	 for	 simplicity.	 This	 coordinate	 system	 is	 called	 eigensystem.	 The	 axes	 of	 the	
ellipsoid	are	described	by	the	eigenvectors	(ε1,	ε2	and	ε3),	and	the	lengths	of	these	axes	
by	 the	 squared	 root	 (as	 by	Equation	2.1)	 of	 the	 eigenvalues	 (λ1,	λ	2	 and	 λ	3),	 where	 λ1	
corresponds	to	the	largest	eigenvalue	and	λ	3	to	the	smallest.	
	

	
Figure	2.6:		 Schematic	of	the	diffusion	tensor	ellipsoid.	With	εi	indicating	the	tensor	eigenvectors	and	λi	the	

tensor	eigenvalues.	
	

If	the	axes	of	the	ellipsoid	coincide	with	the	axes	of	the	image	acquisition,	then	all	the	
off‐diagonal	elements	in	Equation	2.3	equal	zero	and	the	diagonal	elements	correspond	
to	the	eigenvalues.	As	the	tensor	matrix	is	symmetrical,	there	are	six	unknown	variables	
to	characterize	(or	seen	graphically,	3	variables	for	the	main	direction	of	the	ellipsoid	in	
space,	plus	3	more	for	the	length	each	axis).	Six	is	then	the	minimum	amount	of	diffusion	
encoded	 images	(in	different	directions)	 that	must	be	measured	in	order	to	obtain	the	
diffusion	tensor	(plus	an	extra	image	without	diffusion	weighting).	However,	it	is	usual	
to	acquire	a	greater	number	of	images	and	later	fit	the	data	into	the	tensor	in	order	to	
reduce	the	effects	of	noise	and	obtain	more	precise	data	(Jones,	2004).	
	
Intuitively,	 for	 white	 matter	 the	 diffusion	 tensor	 for	 each	 voxel	 gives	 us	 the	 main	

direction	of	the	fibers	going	through	that	voxel,	and	also	how	strong	is	the	directionality	
of	 the	 diffusion.	 Several	magnitude	measures	 have	 been	 developed	 from	 the	diffusion	
tensor	in	order	to	allow	intuitive	and	easy	exploration	of	diffusion	data.	
The	 measure	 most	 used	 in	 the	 clinical	 setup	 is	 the	 mean	 diffusivity	 (average	

diffusivity	in	a	voxel	regardless	of	the	direction).	It	is	computed	as	the	averaged	sum	of	
the	three	diagonal	elements	(or	averaged	sum	of	the	eigenvalues)	and	is	represented	by	
the	symbol	λ.	

	    1 2 3

1 1

3 3xx yy zzD D D         	 (2.4)	
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Although	it	can	be	useful	to	detect	abnormal	or	injured	tissue,	this	measure	does	not	
give	any	information	on	how	anisotropic	is	the	tissue.	Fractional	anisotropy	(FA)	is	the	
most	widely	used	anisotropy	index,	and	it	is	given	by	the	equation	(Basser	and	Pierpaoli,	
1996):		

	
2 2 2

1 2 3

2 2 2
1 2 3

( ) ( ) ( )3

2
FA

     

  

    


 
	 (2.5)	

Where	 λ	 is	 the	 aforementioned	mean	 diffusivity.	 FA	 is	 thought	 to	 be	 influenced	 by	
fiber	density,	axonal	diameter,	and	myelination.	A	typical	FA	image	can	be	seen	in	Figure	
2.7.	Other	types	of	anisotropy	indices	and	their	properties	can	have	been	discussed	by	
Papadakis	and	colleagues	(1999).	
	

	
Figure	2.7:		 FA	 image	 of	 a	 healthy	 young	 volunteer	 (sagittal	 view).	 The	 subject	 and	 the	 position	 of	 the	

image	are	the	same	as	in	those	shown	in	Figure	2.3.	Max	Planck	Institute	for	Human	Cognitive	
and	Brain	Sciences.	

	
Acquiring	diffusion	 tensor	 images	 from	dMRI	data	has	 thus	become	a	 very	popular	

practice:	 it	enables	the	quantification	of	diffusion	anisotropy	(an	index	of	white	matter	
integrity)	and	estimates	the	main	direction	of	nerve	fibers,	needed	for	tractography.	

	
2.2.3.2 Modeling	multiple	fibers	

	
Although	 the	 diffusion	 tensor	 is	 a	 powerful	 tool,	 it	 has	 one	 key	 limitation:	 as	 it	

estimates	only	one	main	fiber	direction	per	voxel,	 it	cannot	model	fiber	crossings.	This	
should	be	carefully	considered	when	performing	tractography	and	connectivity	analysis.	
There	are	other	alternative	models	and	algorithms	that	aim	to	overcome	this	limitation	
by	extracting	more	exhaustive	information	about	the	fiber	orientations.		
	
‐ Multi‐tensor	
The	multi	tensor	model	is	a	simple	extension	of	the	diffusion	tensor.	In	this	case	the	

diffusion	propagator	is	approximated	by	a	number	n	of	Gaussian	density	functions	(the	
number	 of	 tensors),	 which	 at	 the	 same	 time	 model	 n	 different	 fiber	 populations	 in	
different	orientations.	This	assumes	that	the	water	molecules	stay	within	one	population	
and	do	not	diffuse	into	the	others.		
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‐ Ball	and	stick	
The	ball	and	stick	model	(Behrens	et	al.,	2003b;	Hosey	et	al.,	2005)	can	be	considered	

a	special	case	of	the	multi	tensor	model.	It	assumes	that	water	molecules	are	contained	
in	two	different	types	of	compartments:	one	with	restricted	diffusion	within	and	around	
fibers	(the	“stick”),	and	one	with	free	diffusion	that	does	not	interact	with	the	restricted	
one	(the	“ball”).	In	its	simplest	version	the	sticks	are	modelled	as	tensors	in	which	only	
one	of	the	eigenvalues	is	non‐zero,	that	is,	water	molecules	have	Gaussian	diffusion	and	
only	in	one	direction.	The	ball	is	modelled	as	a	spherical	tensor	with	isotropic	diffusion.	
Multiple	 fibers	 can	 be	 considered	 by	 including	 multiple	 sticks,	 same	 as	 in	 the	 multi‐
tensor	model.	
	
These	methods	have	some	disadvantages:	the	large	number	of	parameters	to	be	fitted	

can	 cause	 instability,	 and	 as	 they	 try	 to	 fit	 a	 certain	 number	 of	 orientations	 they	 are	
unable	to	differentiate	fanning/bending	fibers	from	fibers	running	in	parallel.	In	order	to	
avoid	this,	other	methods	try	to	obtain	what	is	called	fiber	orientation	density	function	
(fODF)	from	the	dMRI	measurements,	which	contains	more	detailed	information	of	the	
fiber	 configuration.	 They	 can	 be	 referred	 as	 non‐parametric	 methods	 as	 they	 try	 to	
reconstruct	 the	 fODF	 directly	 from	 the	 data	 without	 constraining	 its	 shape	 to	 a	
particular	parametric	model.	
	
	
‐ Diffusion	spectrum	imaging	
Diffusion	 spectrum	 imaging	 relies	 on	 the	 fact	 that	 if	 infinitesimally	 short	 gradient	

pulses	 are	used	 in	 the	 acquisition	of	 the	dMRI	 image,	 the	diffusion	propagator	 can	be	
obtained	by	performing	the	Fourier	transform	(FT)	of	the	measurement	data	(Wedeen	
et	 al.,	 2000;	 Tuch,	 2002).	 This	 way	 no	 assumptions	 are	 made	 on	 the	 tissue	
microstructure	or	in	the	shape	of	the	fODF.	The	main	disadvantage	of	this	method	is	the	
long	 acquisition	 time	 due	 to	 the	 high	 number	 of	 diffusion	 images	 needed	 (usually	 an	
order	of	magnitude	higher	 than	with	other	methods).	Also,	 the	Fourier	relationship	 to	
the	data	is	an	approximation:	in	reality	gradient	pulses	are	not	ideal	and	have	a	duration	
in	 the	 same	 order	 of	magnitude	 as	 the	 diffusion	 time,	 which	 constitutes	 a	 significant	
deviation	from	the	original	assumptions.	
	
‐ QBall	imaging	
This	method	approximates	the	dODF	obtained	in	diffusion	spectrum	imaging	by	using	

less	measurements	 through	a	 special	 acquisition	 scheme.	The	approximation	 relies	on	
using	a	transform	function	called	the	Funk‐Radon	transform	instead	of	the	Fourier	one	
(Tuch,	 2004;	 Tuch	 et	 al.,	 2003).	 This	 way	 fewer	 images	 need	 to	 be	 obtained	 and	
acquisition	requirements	are	reduced.	The	approximation	however,	translates	into	some	
blurring,	 which	 can	 affect	 the	 precision	 of	 the	 detected	 peak	 directions	 and	 reduce	
angular	resolution.	
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‐ Spherical	deconvolution	
In	spherical	deconvolution,	 the	measured	 image	 is	considered	as	 the	convolution	of	

the	fODF	and	the	signal	that	a	single	fiber	population	would	create.	In	order	to	obtain	the	
fODF	a	deconvolution	of	 the	measurements	and	 the	 single	population	 signal	 (which	 is	
required	 beforehand	 by	 the	 method)	 must	 be	 performed	 (Anderson	 and	 Ding,	 2002;	
Tournier	 et	 al.,	 2004).	 In	 addition,	 some	 techniques	 have	 recently	 been	 developed	 to	
extract	 the	properties	of	 the	different	peaks	 in	order	 to	obtain	measures	analogous	 to	
the	 FA	 in	 the	 diffusion	 tensor	 for	 each	 separate	 direction	 and/or	 tract	 (Riffert	 et	 al.,	
2014).	A	limitation	of	spherical	deconvolution	is	that	noise	may	cause	spurious	peaks	in	
the	 resulting	 fODF.	Regularization	 techniques	 eliminate	 these	 spurious	peaks	but	 they	
also	reduce	angular	resolution.		
	
In	 summary,	 these	 presented	 techniques	 expand	 and	 improve	 the	 directional	 fiber	

density	information	provided	by	the	diffusion	tensor,	but	they	still	have	limitations	and	
also	require	further	validation	work.	Also,	there	is	an	implicit	trade‐off	between	number	
of	acquisitions	and	 image	resolution.	 In	 the	 future,	 it	might	be	possible	 that	with	high	
enough	resolution	a	basic	model	will	be	enough	as	each	voxel	would	contain	only	one	
fiber	 population	 (although	 this	 is	 still	 not	 possible	 with	 current	 in‐vivo	 technology).	
Finally,	while	 these	 techniques	 do	 succeed	 in	 describing	 fiber	 crossings,	 they	 are	 still	
unable	to	distinguish	them	from	bending	fibers	and	cannot	properly	characterize	fiber	
fannings.	

	

2.3 	Tractography	
	
2.3.1 Deterministic	tractography	
	
Tractography	 is	a	method	 that	 lets	us	 reconstruct	 the	main	 fiber	pathways	 through	

the	white	matter	from	diffusion	data.	Compared	to	techniques	that	measure	connectivity	
directly	in	the	brain	(presented	in	section	1.4.3)	tractography	is	indirect,	more	difficult	
to	 interpret	 and	 error‐prone.	 It	 is	 however,	 the	 only	 method	 available	 to	 study	
anatomical	connectivity	in‐vivo,	and	is	therefore	an	important	technique	to	understand	
function	in	normal	and	diseased	brain.	
In	 order	 to	 reconstruct	 fiber	 tracts,	 tractography	 methods	 rely	 on	 the	 fiber	

orientation	descriptive	models	presented	in	section	2.2.3,	and	they	all	try	to	find	paths	of	
minimal	hindrance	 to	diffusion	using	this	 local	voxel‐wise	orientation	 information,	but	
there	are	different	strategies	to	integrate	local	information	into	a	path.	
	
Deterministic	tractography	tries	to	recover	the	most	likely	single	path	from	a	chosen	

starting	point,	and	it	is	based	on	the	streamline	concept:	in	the	presence	of	a	continuous	
vector	field,	a	streamline	is	a	curve	that	is	always	tangential	to	the	direction	of	the	vector	
field	 at	 each	 point.	 This	 can	 be	 applied	 to	 tractography	 using	 as	 vector	 field	 the	
calculated	principal	fiber	directions.	That	is,	choosing	a	starting	seed	point,	we	can	guide	
the	streamline	 looking	at	 the	principal	 fiber	direction	at	each	step.	An	example	of	 this	
process	is	shown	in	Figure	2.8.	
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Figure	2.8:		 Example	of	streamline	tractography	following	orientations	of	least	hindrance	to	diffusion	and	

being	terminated	at	voxels	of	low	anisotropy	(in	darker	tone).	(reprint	from	(Mori	and	Zhang,	
2006)).	

	
	

The	mathematical	formula	guiding	the	streamline	can	be	written	as:	

	
( )

( ( ))
dr s

r s
ds

 	 (2.6)	

Where	║ is the parallel operator, ε	 is	the	tangent	to	the	vector	field	at	position	r(s)	and	
r(s)	 in	 turn	represents	 the	position	of	 the	streamline	curve	 in	3D	space	at	a	distance	s	
along	 the	 streamline	 from	 the	 starting	 point	 (Basser	 et	 al.,	 2000).	 If	 the	 local	 fiber	
orientation	is	described	by	a	diffusion	tensor,	the	tangent	to	the	curve	has	to	be	parallel	
to	this	direction,	i.e.,	it	has	to	be	parallel	to	the	principal	eigenvector	of	the	tensor	at	that	
point.	It	should	be	noted	that	as	it	is	a	differential	equation,	it	is	not	possible	to	directly	
calculate	 the	 position	 of	 the	 streamline	 for	 a	 particular	 value	 of	 s	 without	 previously	
calculating	the	intermediate	values	sequentially	from	the	beginning.	In	other	words,	the	
streamline	propagates	from	the	seed	voxel.	An	important	implication	of	this	fact	is	that	
any	errors	that	may	occur	during	the	tracking	will	propagate	and	compound	through	the	
rest	of	the	streamline,	there	is	however	a	lot	of	literature	on	differential	equations	about	
strategies	to	minimize	this.	
So	 far	 we	 have	 assumed	 a	 continuous	 vector	 field	 of	 principal	 fiber	 directions.	 In	

practice,	 we	 only	 possess	 one	 principal	 direction	 for	 each	 measured	 voxel	 and	 must	
therefore	infer	their	values	for	a	continuous	field.	Early	methods	simply	assign	the	same	
value	 to	 the	space	covered	by	 its	 respective	voxel	 (Mori	et	al.,	1999)	but	 that	 leads	 to	
significant	 propagation	 errors	 (Lazar	 and	 Alexander,	 2003).	 Improved	 approaches	
interpolate	information	from	neighboring	voxels	in	order	to	obtain	a	smooth	vector	field,	
either	 combining	 data	 directly	 from	 the	 diffusion	 image	 or	 the	 obtained	 diffusion	
propagators	(Pajevic	et	al.,	2002).	
There	 are	 three	 possible	 error	 sources	 during	 tractography:	 noise	 in	 the	 diffusion	

image	 (causing	wrong	 estimation	 of	 fiber	 directions),	modeling	 errors	 (the	 particular	
local	model	fails	to	properly	characterize	the	structure	at	that	point)	and	errors	caused	
by	the	approximation	to	the	specific	fiber	direction	at	each	continuous	point	through	the	
interpolation	scheme.	
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In	order	to	reduce	compounding	propagation	errors	(and	to	finish	the	tractogram	at	
some	point)	 streamline	 termination	criteria	are	applied.	There	are	 two	common	ones:	
minimum	 FA	 value	 (in	 tensor	 tractography)	 and	 maximum	 rate	 of	 direction	 change	
(minimum	streamline	curvature	radius).	A	very	low	FA	value	indicates	that	there	is	a	lot	
of	uncertainty	in	the	principal	diffusion	direction,	and	therefore	a	lot	of	potential	error	
(that	would	propagate	and	compound	if	the	streamline	was	continued).	It	can	also	mean	
that	 the	 streamline	 has	 reached	 grey	 matter,	 and	 therefore	 the	 pathway	 target.	
Maximum	 curvature	 follows	 the	 idea	 that	 major	 white‐matter	 pathways	 are	 usually	
smooth	and	do	not	bend	sharply.	The	presence	of	a	sharp	bend	is	highly	likely	due	to	an	
error	 source,	 rather	 than	 a	 representation	 of	 the	 real	 microstructure,	 and	 such	 a	
streamline	should	be	stopped.	
There	are	 adaptations	of	 the	 streamline	 concept	 to	other	multiple	 fiber	methods	 in	

order	to	allow	tracking	through	regions	with	crossings	(Wedeen	et	al.,	2008;	Descoteaux	
et	al.,	2009;	Malcolm	et	al.,	2010;	Tournier	et	al.,	2012;	 for	a	 review	see	Lenglet	et	al.,	
2009).		

	
2.3.2 Probabilistic	tractography	

	
Deterministic	tractography	has	some	limitations	on	its	capability	to	describe	the	fiber	

bundles	 as	 it	 only	 follows	 the	 central	 line	 of	 fanning	 fibers,	 or	 the	 “strongest”	 path	 of	
bifurcating	ones.	In	points	where	multiple	equally	probable	directions	are	possible,	only	
one	is	selected	and	the	rest	neglected.	Therefore	this	approach	is	not	suitable	to	assess	
connectivity	 between	 arbitrary	 regions.	 Probabilistic	 tractography	 aims	 to	 overcome	
this	limitation	(Koch	et	al.,	2002;	Behrens	et	al.,	2003b;	Anwander	et	al.,	2007;	Kaden	et	
al.,	2007;	Jeurissen	et	at.,	2011).	
	
In	 order	 to	 understand	 the	 principles	 behind	 it,	 we	 will	 focus	 on	 the	 algorithm	

developed	by	Koch	(2000)	to	perform	probabilistic	tractography	in	a	2D	slice.		
	
“For	 the	 assessment	 of	 anatomical	 connectivity	 between	 arbitrary	 regions	 an	

algorithm	 is	 needed	 that	 differentiates	 between	 trajectories	 in	 highly	 aligned	 bundles	
and	 paths	 through	 almost	 isotropic	 matter.	 In	 order	 to	 find	 a	 numerical	 measure	
meeting	 this	 requirement,	 a	Monte‐Carlo	 type	 algorithm	was	 implemented.	 Imagine	 a	
particle	in	one	of	the	voxels	of	a	cortical	region	‘A’	that	jumps	in	a	random	manner	from	
voxel	 to	voxel.	 It	will	perform	a	random	walk	 through	the	set	of	voxels.	Let	us	 further	
make	the	probability	of	a	jump	to	a	neighboring	voxel	dependent	on	the	diffusion	tensor	
in	 the	 current	 (and	 in	 the	 neighboring)	 voxel,	 such	 that	 the	 probability	 is	 higher	 the	
larger	the	diffusion	coefficient	in	the	jump	direction.	Then	our	particle	will	move	with	a	
higher	 probability	 along	 a	 fiber	 direction	 than	 perpendicular	 to	 it.	 If	we	 perform	 this	
“experiment”	many	times	and	count	how	often	our	particle	starting	 in	a	region	 ‘A’	has	
reached	 region	 ‘B’,	 we	 obtain	 a	 (relative)	 measure	 of	 the	 anatomical	 connectivity	
between	 regions	 ‘A’	 and	 ‘B’.	 For	 each	 elementary	 jump	 the	 probabilities	 for	 the	 eight	
possible	jump	directions	to	a	neighboring	voxel	(the	particle	motion	was	confined	to	the	
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imaging	slice)	were	calculated	from	the	diffusion	tensors	in	the	start	voxel	(m)	and	the	
target	voxel	(n)	according	to	
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where	p(m	→	n)	is	the	probability	for	a	jump	from	voxel	m	to	voxel	n,	d(rmn,m)	is	the	
‘diffusion	coefficient’	defined	in	in	voxel	m	for	the	direction	from	the	center	of	voxel	m	to	
the	center	of	voxel	n,	and	a	=	7.	The	sum	of	the	probabilities	over	the	eight	possible	n	is	1.	
The	 exponent	 a	 was	 introduced	 to	 make	 the	 probability	 distribution	 sufficiently	

localized	at	the	directions	corresponding	to	the	fiber	orientation.	With	a	=	1	the	particle	
path	 was	 not	 confined	 to	 the	 fiber	 direction.	 The	 objective	 of	 the	 simulation	 was	 to	
obtain	a	numerical	measure	of	the	subjective	impression	of	thickness	and	coherence	of	a	
fiber	tract.	Thus	the	exponent	a	was	adjusted	to	keep	the	majority	of	the	particle	paths	
in	the	voxels	that	constituted	a	 fiber	on	the	diffusion	tensor	fiber	orientation	map.	For	
the	same	purpose	only	jumps	in	the	“fiber	direction”	in	the	previous	voxel	and	the	two	
directions	that	deviated	from	it	by	±45°	were	allowed.	The	fiber	direction	in	a	voxel	was	
defined	 as	 that	 among	 the	 8	 directions	with	 the	 largest	 in‐plane	 diffusion	 coefficient.	
Among	these	two	opposite	directions	that	direction	was	chosen	that	did	not	include	an	
acute	angle	with	the	direction	of	the	jump	to	the	current	voxel.	If	the	angle	was	90 	then	
the	choice	was	arbitrary.		
A	 pseudo‐random	 integer	 number	 between	0	 and	7	with	 the	 calculated	probability	

distribution	was	generated	by	the	transformation	method	(Press	et	al.,	1992),	and	used	
to	select	the	jump	direction.	The	particle	path	was	terminated	if	a	voxel	with	a	FA	<	0.2	
was	 reached	 or	 a	 maximum	 number	 of	 jumps	 had	 been	 performed.	 	 The	 maximum	
number	of	elementary	jumps	was	chosen	to	be	sufficiently	large	to	allow	the	particle	to	
reach	 the	neighboring	gyri	when	starting	on	a	gyral	crown.	The	 frequency	with	which	
each	voxel	was	hit	(as	a	result	of	any	particle	 jump	during	a	path	or	at	 its	terminating	
point)	was	recorded.	This	number	was	normalized	to	the	maximum	over	all	considered	
pixels	in	the	slice.”	(Koch,	2000;	Figure	2.9).	
	

	
	

Figure	2.9:		 Example	 for	the	result	of	the	particle‐jump	probabilistic	tract	algorithm	 from	Koch.	The	start	
pixel	is	shown	in	blue	and	marked	with	an	arrow.	Normalized	visitation	values	are	indicated	by	
red‐to‐yellow	 colors.	 Uncolored	 pixels	 were	 never	 reached	 by	 the	 particle.	Main	 local	 fiber	
orientation	is	also	depicted	for	each	voxel.	(reprint	from	(Koch,	2002)).	
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A	3D	extension	of	 this	method	was	developed	by	Anwander	and	colleagues	 (2007).	

The	resulting	tractograms	are	often	viewed	as	three	dimensional	images,	and	the	values	
in	each	voxel	(ranging	from	0	to	1)	indicate	the	plausibility	of	an	anatomical	connection	
between	that	voxel	and	the	starting	seed	voxel.		Tractograms	can	also	be	rearranged	as	a	
one	dimensional	vector	with	as	many	elements	as	tractography	target	voxels	(the	voxels	
in	the	white	matter)	in	order	to	facilitate	computations	of	tractogram	similarity.	

 

We	have	used	this	particular	algorithm	as	example	as	it	will	be	the	one	used	to	obtain	
the	connectivity	fingerprints	used	in	this	thesis	(see	chapter	3	and	discussion	section	6.1	
for	 detailed	 arguments	 on	 that	 choice).	 However,	 there	 are	 also	 implementations	 of	
probabilistic	 tractography	that	use	the	same	basic	principles	applied	to	the	other	 local	
models	of	diffusion	previously	presented	(Behrens	et	al.,	2007;	Descouteaux	et	al.,	2009).	
	
2.3.3 Global	tractography	
	
Global	tractography	methods	aim	to	find	an	alternative	to	the	sequential	step	scheme	

in	order	to	avoid	the	compounding	propagation	errors.	This	has	been	pursued	in	several	
different	ways.	One	type	of	approach	uses	self‐organizational	principles	to	join	multiple	
particles	modeled	into	each	voxel	and	build	all	the	tractograms	at	the	same	time	(Kreher	
et	al.,	2008;	Fillard	et	al.,	2009;	Reisert	et	al.,	2011).	Other	approaches	model	pathways	
by	preselecting	 target	points/areas	 and	obtaining	 smooth	 curves	 between	 them	using	
cubic	splines.	These	splines	are	optimized	through	the	vector	field	of	orientations,	also	
adding	or	removing	 intermediate	control	points	during	 this	process	 (Tuch,	2002).	The	
resulting	curves	represent	the	most	probable	pathways	between	the	predefined	points	
assuming	that	a	connection	does	exist.	In	the	approach	by	Jbabdi	and	colleagues	(2007)	
a	 Bayesian	 framework	 is	 used	 to	 obtain	 the	 most	 probable	 course	 using	 different	
parameters	 (local	 diffusion,	 fiber	 orientations,	 anisotropy…).	 A	 comparison	 between	
deterministic,	 probabilistic	 and	 global	 tractography	 can	 be	 found	 at	 (Bastiani	 et	 al.,	
2012).	
A	recently	proposed	Plausibility	Tracking	method	(Schreiber	et	al.,	2014),	combines	

and	extends	some	of	the	previous	methods	and	introduces	new	approaches	to	quantify	
the	directional	alignment.	 	 It	proposes	a	multi‐stage	approach:	 first,	a	close‐to‐optimal	
initialization	of	the	spline	parameters	is	obtained	by	probabilistic	tractography.	Second,	
the	parameters	of	 the	spline	describing	the	pathway	are	optimized	in	accordance	with	
the	relative	local	fODF	derived	from	constrained	spherical	deconvolution	(Tournier	et	al.,	
2007).	
It	was	chosen	not	 to	use	global	 tractography	 to	obtain	 the	 tractograms	used	 in	 this	

thesis,	as	 in	most	algorithms	both	 the	start	and	 finishing	 target	areas	of	 the	pathways	
must	be	set,	and	in	any	case	require	significant	computational	power	that	would	make	
our	 whole‐brain	 approach	 unfeasible	 in	 the	 required	 timeline.	 Therefore	 the	 fast	
implementation	 of	 probabilistic	 tractography	 from	 Anwander	 and	 colleagues	 (2007)	
was	chosen	instead.	
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2.4 	dMRI		connectivity	based	parcellation	
	

2.4.1 Basis	of	connectivity	based	parcellation	
	

The	tools	presented	in	this	chapter	offer	the	possibility	to	characterize	the	changes	in	
the	 long	 range	 connectivity	 patterns	 of	 different	 patches	 of	 gray	 matter,	 or	 in	 other	
words,	for	human	anatomical	connectivity	based	parcellation	in	vivo.	
The	process	of	connectivity	based	parcellation	involves	typically	four	main	steps:	first,	

the	connectivity	properties	of	a	point	or	patch	of	gray	matter	are	characterized	in	what	
is	called	the	connectional	fingerprint	of	that	region;	secondly,	these	fingerprints	must	be	
somehow	 compared	 or	 evaluated,	 the	 usual	 way	 is	 defining	 a	 measure	 between	
fingerprints,	 that	 can	 numerically	 account	 for	 their	 similarity;	 next,	 a	 clustering	
algorithm	 is	 applied	 on	 the	 properties	 of	 these	 fingerprints	 or	 on	 their	 similarities,	
which	yields	as	result	a	partition	that	characterizes	the	main	connectivity	changes	of	the	
studied	 region;	 lastly,	 the	partitioning	obtained	 is	projected	back	 into	 the	grey	matter	
points	 from	 where	 they	 originated	 and	 their	 relevance,	 meaning	 and	 validity	 is	
discussed.	
There	 are	 many	 different	 possible	 approaches	 when	 deciding	 what	 a	 fingerprint	

consists	 of,	 how	 to	measure	 their	 similarities,	 and	what	 clustering	 algorithms	 to	 use,	
each	with	their	own	advantages	and	limitations.	Many	times,	the	specific	decision	taken	
on	 one	 steps,	 has	 an	 influence	 in	 the	 choices	 available	 for	 the	 rest,	making	 them	 not	
completely	independent	from	one	another.	In	order	to	explore	the	different	possibilities,	
in	 the	 next	 section	 we	 will	 go	 through	 the	 main	 solutions	 that	 can	 be	 found	 in	 the	
literature	up	to	date.	

	
2.4.2 Review	of	current	dMRI‐based	parcellation	methods	

	
The	 term	 connectional	 fingerprint	 was	 first	 used	 by	 Passingham	 and	 colleagues	

(2002)	 where	 connectivity	 in	 the	 macaque	 brain	 was	 studied	 through	 tracer	 data	
(however	the	term	fingerprint	had	already	been	used	to	define	the	properties	of	a	point	
in	 the	 brain	 by	Hudspeth	 and	 colleagues	 [1976]	 regarding	 cell	 density	 across	 cortical	
layers).	 In	 their	 work,	 Passingham	 and	 colleagues	 characterized	 the	 connection	
strengths	 between	 12	 different	 points	 of	 the	 prefrontal	 cortex.	 These	 strengths	 were	
coded	 with	 a	 number	 from	 0	 (non‐existent)	 to	 4	 (strong),	 and	 the	 fingerprints	
represented	 through	radial	diagrams	 (Figure	2.10).	The	 fingerprints	obtained	can	also	
be	 viewed	 as	 12‐dimensional	 vectors	 (where	 each	 dimension	 is	 the	 connectivity	
strength	to	each	of	the	other	points)	with	4	possible	different	values	at	each	dimension.	
Once	the	fingerprint	is	represented	as	a	vector	in	multidimensional	space	it	is	possible	
to	 define	 a	 vector‐based	 similarity	 measure	 such	 as	 the	 Euclidean	 distance	 or	 a	
correlation	 coefficient,	 as	 done	 in	 the	 study.	 The	 resulting	 matrix	 of	 correlations	
(containing	a	correlation	value	 for	each	possible	pair	of	 fingerprints)	was	subjected	 to	
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clustering,	 showing	 areas	 sharing	 similar	 connectivity	 patterns,	 dubbed	 connectional	
‘‘families’’.	
	

	
Figure	2.10:		 Dissimilar	connectional	fingerprints	in	two	different	areas	of	macaque	prefrontal	cortex	(note	

that	the	distinction	between	afferent	connections	[carrying	information	input	to	that	area]	and	
efferent	connections	[transporting	processed	output	to	a	different	area]	cannot	be	made	from	
dMRI	data).	(reprint	from	(Passingham	et	al.,	2002)).	

	
This	work	 opened	 the	 door	 to	 anatomical	 connectivity	 based	 parcellation.	 Behrens	

and	 colleagues	 (2003a)	 were	 the	 first	 ones	 to	 use	 diffusion	 generated	 tracts	 for	 this	
purpose.	In	their	approach,	they	generated	probabilistic	tractograms	from	each	voxel	in	
the	 thalamus,	 and	assigned	 the	voxels	 to	one	or	other	 cluster	based	on	which	 cortical	
area	 they	 reached	 with	 a	 stronger	 connection.	 As	 pre‐requisite	 then,	 a	 predefined	
division	of	cortical	targets	was	needed.	The	number	of	these	divisions	would	define	the	
number	of	regions	 in	which	 the	 thalamus	would	be	clustered	(Figure	2.11).	This	work	
was	also	extended	to	study	the	variability	of	the	parcellations	obtained	across	subjects	
(Johansen‐Berg	et	al.,	2005).	
	

	
Figure	2.11:		 Cortical	 target	 atlas	 a)	 and	 connectivity	 target‐based	 parcellation	 of	 the	 Thalamus	 b,c,d).	

(reprint	from	(Behrens	et	al.,	2003a)).	

	



2.	Brain	analysis	based	on	water	diffusion	measured	by	MRI	 31	
	

The	 first	 reported	 parcellation	 of	 cortical	 regions	 based	 on	 diffusion	 tractography	
corresponds	 to	 the	 work	 of	 Johansen‐Berg	 and	 colleagues	 (2004).	 The	 whole	 white	
matter	 volume	 was	 chosen	 as	 target	 space	 for	 the	 tractography,	 meaning	 that	 the	
strength	 of	 connectivity	 at	 each	 voxel	 in	 the	 white	 matter	 was	 used	 to	 define	 the	
fingerprint,	instead	of	only	the	values	at	the	cortical	ends.	The	tractograms	were	seeded	
from	grey	matter	voxels	of	 the	medial	 frontal	 cortex	and	 the	connectivity	values	were	
binarized	 to	 reduce	 storage	 requirements.	Correlation	was	used	as	 similarity	measure	
between	 fingerprints	 (by	 previously	 representing	 the	 connectivity	 values	 as	 a	 vector,	
this	 time	 with	 as	 many	 dimensions	 as	 voxels	 in	 the	 white	 matter).	 The	 resulting	
correlation	matrix	was	processed	through	spectral	reordering.	This	algorithm	permutes	
the	 positions	 of	 the	 rows/columns	 and	 makes	 the	 existence	 of	 clusters	 apparent	 by	
visual	inspection	of	the	reordered	matrix.	Using	this	technique	a	change	in	connectivity	
profile	and	the	corresponding	boundary	was	 found	between	the	supplementary	motor	
area	(SMA)	and	pre‐SMA	(Figure	2.12)	
In	 contrast	 to	 the	 approach	 used	 by	 Behrens	 and	 colleagues	 to	 parcellate	 the	

thalamus,	this	one	does	not	require	a‐priori	knowledge/assumptions	on	the	connectivity	
patterns	(such	as	each	point	connecting	primarily	to	one	area	of	a	predefined	atlas).	This	
type	of	clustering	is	called	 ‘blind’	or	 ‘free’	clustering.	Although	in	this	case,	the	process	
was	 not	 automated	 as	 it	 required	 visual	 inspection	 to	 define	 the	 number	 of	 regions	
yielded	and	the	exact	boundaries	of	these	regions.	
	

	
Figure	2.12:		 Spectral‐reordering	 parcellation	 of	medial	 frontal	 cortex.	 (a	 and	 b)	Result	 of	 parcellating	 a	

sagittal	(a)	and	axial	(b)	slice	in	a	single	subject.	Original	(Left)	and	reordered	(Center)	cross‐
correlation	matrices	are	shown.	(reprint	from	(Johansen‐Berg	et	al.,	2004)).	

	
An	 unsupervised	 method	 for	 defining	 boundaries	 between	 cortical	 regions	 was	

employed	 by	 Anwander	 and	 colleagues	 (2007)	 by	 using	 k‐means	 clustering	 to	 divide	
Broca’s	 area	 in	 different	 regions	 based	 on	 connectivity	 similarity	 (of	 fingerprints	
considering	also	whole	white	matter	as	target	space	and	correlation	as	similarity).	
In	 this	 type	 of	 clustering,	 the	 concept	 of	 distance	 between	 fingerprints	 is	 used	

(distance=1‐similarity).	 After	 the	 distance	 matrix	 is	 obtained,	 several	 fingerprints	 are	
randomly	chosen	as	cluster	centers	and	the	remaining	ones	are	assigned	to	the	cluster	
with	 the	 closest	 center	 fingerprint.	 Once	 all	 fingerprints	 are	 assigned,	 new	 cluster	
centers	 are	 computed	 for	 each	 cluster	 by	 finding	 the	 fingerprint	with	minimum	 total	
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sum	 of	 squares	 distance	 to	 the	 other	 fingerprints	 in	 the	 same	 cluster.	 Then,	 the	
reassignment	phase	starts	again	and	the	process	is	iterated	until	the	cluster	centers	do	
not	 change	 across	 integrations.	While	 there	 is	 no	 more	 need	 for	 visual	 inspection	 to	
define	boundaries,	the	number	of	initial	centers,	and	therefore	the	number	of	clusters	to	
be	found,	must	be	set	in	advance.	
Some	 other	 interesting	 considerations	 were	 taken	 in	 this	 work:	 the	 connectivity	

probability	values	of	the	tractograms	were	not	binarized,	but	this	raised	the	issue	of	the	
intrinsic	 bias	 of	 probabilistic	 tractography	 to	 result	 in	 lower	 values	 of	 connectivity	
probability	 the	 further	away	a	 target	voxel	 is	 from	the	original	 seed	voxel.	 In	order	 to	
compensate	for	this	bias,	a	 logarithm	transform	was	applied	to	the	connectivity	values	
and	these	were	then	normalized.	
	
k‐means	 has	 become	 possibly	 the	most	 popular	 clustering	method	 for	 connectivity	

based	 parcellation.	 Tomassini	 and	 colleagues	 (2007)	 used	 it	 to	 identify	 dorsal	 and	
ventral	 sub‐regions	 in	 the	 lateral	 premotor	 cortex	 (also	 compensating	 for	 the	 bias	 in	
connectivity	 probability	 values	 mentioned	 above	 by	 adding	 an	 Euclidean	 constraint	
matrix	to	the	correlation	matrix,	thus	reducing	the	effective	similarity	for	voxels	closer	
to	the	seed).	Klein	and	colleagues	(2007)	followed	up	on	the	work	by	Johansen‐Berg	and	
colleagues	 (2004),	 studying	 the	 reproducibility	 of	 pre‐SMA/SMA	 connectivity	 based	
boundary	 by	 applying	k‐means	 to	 the	 original	 tractography.	 	 Schubotz	 and	 colleagues	
(2010)	applied	the	methods	defined	in	(Anwander	et	al.,	2007)	to	parcellate	the	lateral	
premotor	cortex.	Mars	and	colleagues	(2011)	studied	the	parietal	cortex	with	k‐means	
applied	 to	 tractograms	 obtained	 as	 per	 (Johansen‐Berg	 et	 al.,	 2004),	 and	Ruschel	 and	
colleagues	(2013)	used	the	methods	defined	in	(Anwander	et	al.,	2007)	to	subdivide	the	
inferior	parietal	cortex	further	than	the	Brodmann	divisions.	
	
Despite	 its	popularity,	k‐means	suffers	 from	the	 important	 limitation	of	needing	the	

number	of	resulting	clusters	as	a	parameter	(Hartigan,	1975).	This	means	that	either	the	
number	of	expected	regions	to	be	found	has	to	be	previously	known,	or	that	a	range	of	
possible	numbers	have	to	be	tested	and	the	best	result	somehow	decided.		
Jbabdi	 and	 colleagues	 (2009)	 offer	 a	 quite	 different	 approach	 in	 order	 to	

automatically	optimize	the	number	of	clusters	directly	from	the	data.	Instead	of	defining	
a	similarity	measure	between	fingerprints	and	clustering	according	to	these	values,	they	
assume	that	the	different	fingerprints	originate	from	a	mixture	of	Gaussian	distributions	
(again	we	must	interpret	these	fingerprints	as	points	in	multidimensional	space).	In	this	
Bayesian	 setting,	 using	 a	 non‐parametric	 model	 where	 the	 number	 of	 parameters	
(priors)	 can	 change	 adaptively	 depending	 on	 the	data,	 a	 posterior	 distribution	 can	be	
estimated	directly	from	the	data.	This	also	means	estimating	the	number	of	distributions	
that	presumably	generate	the	data	observed,	that	is,	the	number	of	clusters.	The	model	
can	also	be	extended	to	cluster	several	subjects	simultaneously	(through	what	is	called	a	
hierarchical	 mixture	 of	 Dirichlet	 processes),	 with	 the	 further	 advantage	 of	 direct	
correspondence	 of	 clusters	 across	 subjects	 and	 of	 using	 a	 population	 to	 estimate	 the	
optimal	number	of	clusters	rather	 than	a	single	subject.	They	successfully	applied	 this	
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method	 to	 parcellate	 thalamus	 and	 SMA	 data	 from	 (Behrens	 et	 al.,	 2003a)	 and	
(Johansen‐Berg	et	al.,	2004).	
	
The	studies	presented	above	focus	on	parcellation	of	localized	areas	of	the	brain,	but	

when	 aiming	 for	 parcellation	 of	 the	 full	 cortex	 new	 challenges	 arise.	Namely,	 that	 the	
sheer	increment	in	data	to	be	clustered	and	in	expected	number	of	clusters	dramatically	
increases	 memory	 and	 computation	 requirements,	 making	 typical	 algorithms	 not	
directly	 scalable	 (there	 is	 a	 fair	 amount	 of	 whole‐brain	 parcellation	 literature	 for	
resting‐state	 fMRI	 studies,	 but	 the	 data	 volumes	 involved	 in	 this	modality	 are	 far	 less	
restrictive).	
Perrin	 and	 colleagues	 (2008)	 approach	 this	 issue	 through	 a	 double	 dimensionality	

reduction	 of	 the	 problem.	 Firstly,	 the	 cortical	 sheet	 is	 split	 into	 36	 large	 gyri	 using	 a	
sulcus	recognition	system	(that	then	are	subdivided	using	the	connectivity	information	
through	 k‐means).	 Secondly,	 q‐ball	 probabilistic	 tractography	 is	 computed	 from	 each	
voxel	in	the	cortex,	but	only	their	overall	connectivity	to	each	of	the	36	gyri	is	used	as	a	
fingerprint	for	clustering.	The	problem	is	then	simplified	to	36	smaller	datasets	where	
the	connectional	fingerprints	have	only	36	dimensions.		
Roca	 and	 colleagues	 (2009)	 also	 tackle	 the	 connectivity‐based	 parcellation	 but	

through	a	different	set	of	dimension	reductions.	Firstly,	the	algorithm	is	applied	only	to	
connectivity	 profiles	 from	 the	 top	 of	 the	 cortical	 gyri.	 Secondly,	 the	 raw	 connectivity	
matrix	is	smoothed	to	allow	for	enough	overlap	across	profiles.	Thirdly,	the	clustering	is	
not	 performed	 on	 a	 whole	 brain	 basis	 but	 with	 an	 iterative	 patch	 by	 patch	 strategy	
(Figure	2.13).	Lastly,	the	connectivity	profiles	are	collapsed	in	an	adaptive	way	for	each	
patch	to	be	parcellated:	“the	segmentation	for	collapsing	is	based	on	the	catchment	basins	
of	 the	 watershed	 of	 the	 density	 of	 connection	 to	 the	 patch	 computed	 on	 the	 cortical	
surface”	(Roca	et	al.,	2009).	The	clustering	algorithm	used	on	each	patch	is	a	variation	of	
the	 k‐means	 method	 (k‐medoids)	 tested	 for	 several	 output	 cluster	 numbers	 and	
choosing	 the	 one	 that	 optimizes	 its	 silhouette	 (refer	 to	 paper	 for	more	 details	 on	 the	
method).	
	

	
	

Figure	2.13:		 Dimension	 reduction	 steps	 taken	 in	 the	 work	 of	 Roca	 and	 colleagues	 for	 whole	 brain	
parcellation.	(reprint	from	(Roca	et	al.,	2009)).	

	
All	 the	 clustering	 approaches	 so	 far	 reviewed	 tend	 to	 neglect	 the	 possibility	 of	 a	

hierarchical	 architecture	 underlying	 the	 cortex,	 but	 brain	 networks	 are	 more	
appropriately	conceived	of	as	forming	nested	modules	(Bassett	et	al.,	2010;	Bassett	and	
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Gazzaniga,	 2011).	 In	 the	 work	 of	 Gorbach	 and	 colleagues	 (2011)	 particular	 effort	 is	
made	to	characterize	the	hierarchical	properties	of	cortical	connectivity	structure.	The	
method	proposed	works	 in	two	steps.	First,	a	global	partition	 is	made	that	defines	the	
hierarchical	 level	 of	 maximum	 division.	 For	 that	 purpose	 it	 is	 assumed	 that	 in	 each	
cortical	 subunit	 a	 representative	 tractogram	 can	 be	 chosen	 that	 summarizes	 the	
connectivity	pattern	of	the	entire	cortical	subunit.	The	number	of	parcels	in	this	global	
partition	is	determined	by	testing	the	robustness	of	 the	clustering	solution	against	 the	
uncertainty	in	the	data,	in	order	to	let	this	uncertainty	drive	the	choice	of	representative	
tractograms	 (and	 therefore	 the	 finest	 level	 of	 the	hierarchy).	Rate	distortion	 theory	 is	
used	 to	 stochastically	 map	 remaining	 tractograms	 to	 exemplars	 allowing	 for	 a	 fuzzy	
partition	 between	 cortical	 areas	 (the	 amount	 of	 “fuzziness”	 can	 be	 controlled	 with	 a	
parameter	called	temperature,	T).	Secondly,	to	represent	the	nested	structure	of	cortical	
subunits	(making	the	prior	assumption	that	such	a	structure	does	indeed	exist)	the	so‐
called	 information	 bottleneck	method	 is	 used.	 This	method	 selects	 the	mergers	 to	 be	
made	on	the	basis	of	preserving	as	much	information	about	the	partitioning	as	possible	
in	the	new	level	with	respect	to	representative	tractogram	(Figure	2.14).	
	

	
	

Figure	2.14:		 Information	rate	plotted	against	 inverse	temperature.	As	the	 information	rate	 increases	 finer	
structure	 is	 accounted	 for,	 and	 as	 temperature	 decreases,	 partitions	 are	 less	 fuzzy.	 (reprint	
from	(Gorbach	et	al.,	2011)).	

	
2.4.3 Limitations	of	the	current	methods	and	motivation	for	this	work	
	
In	 the	 previous	 section,	 we	 have	 reviewed	 the	 state	 of	 the	 art	 approaches	 on	

diffusion‐based	 connectivity	 parcellation.	 However,	 for	 the	 purpose	 of	 whole	 brain	
characterization	of	connectivity	similarity,	as	is	our	goal	and	motivation,	they	all	suffer	
from	limitations.	
Target‐based	 clustering	 (Behrens	 et	 al.,	 2003a)	 makes	 the	 strong	 assumption	 that	

each	parcel	should	be	mainly	connected	to	one	target	area,	and	it	requires	the	previous	
delineations	 of	 such	 targets.	 This	 is	 not	 applicable	 in	 the	 scenario	 of	 a	 whole	 brain	
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parcellation,	where	the	particular	connectivity	properties	of	less	studied	regions	are	not	
known	and	where	considering	the	connectivity	to	only	one	target	might	not	be	enough	
to	 characterize	 differences	 between	multiple	 regions.	 Furthermore	 the	 use	 of	 a	 prior	
delineation	of	main	cortical	targets	defeats	the	purpose	when	the	targets	coincide	with	
the	seeds	to	be	clustered,	as	would	be	this	case.		
On	 the	other	hand,	 free‐clustering	algorithms	do	not	make	 this	assumption,	but	 the	

number	 of	 expected	 parcels,	 average	 size	 of	 clusters,	 or	 a	 similar	 parameter	must	 be	
known	 in	 advance	 (Anwander	 et	 al.,	 2007;	 Tomassini	 et	 al.,	 2007;	 Klein	 et	 al.,	 2007;	
Schubotz	et	 al.,	 2010;	Mars	et	 al.,	 2011;	Ruschel	 et	 al.,	2013),	posing	a	 classical	model	
selection	 problem.	 Furthermore,	 the	 most	 popular	 of	 these	 algorithms,	 k‐means,	 has	
been	 shown	not	 to	work	 effectively	 on	high	dimensional	 data	 (Keim	and	Hinnenburg,	
1999),	and	to	be	dependent	on	the	particular	initialization	centers	(Nanetti	et	al.,	2009),	
it	is	possible	to	solve	this	issue	via	a	Monte‐Carlo	approach,	but	the	repetitions	required	
for	would	grow	with	the	expected	number	of	clusters	and	render	it	 impractical	 for	the	
scales	of	a	whole‐brain	scenario.	
	
Also,	most	of	 the	algorithms	presented	make	the	 implicit	assumption	that	there	 is	a	

parcellation	that	can	be	considered	a	reasonably	unique	and	complete	representation	of	
the	connectivity	similarity	structure,	which	 is	rarely	 likely	 to	be	the	case.	Ultimately,	a	
parcellation	 is	 an	 approximation	 to	 the	 connectivity	 properties	 of	 the	 data,	 and	 even	
when	 attempting	 to	 find	 an,	 in	 some	 sense,	 optimal	 parcellation	 purely	 from	 the	 data	
(Jbabdi	 et	 al.,	 2009)	 this	 might	 account	 for	 only	 a	 very	 small	 part	 of	 the	 underlying	
structure.	When	faced	with	a	whole‐brain	approach,	the	challenge	of	not	only	having	a	
high	and	unknown	expected	number	of	areas,	but	also	that	number	being	subject	to	the	
desired	 granularity	 of	 the	 partitioning,	 arises.	 Current	 whole	 brain‐approaches	 only	
provide	a	 two	 level	hierarchy	(Perrin	et	al.,	2008;	Roca	et	al.,	2009).	We	would	 like	 to	
aim	for	a	whole‐brain	partitioning	that	is	based	purely	on	connectivity	information,	and	
is	capable	of	characterizing	the	connectivity	similarity	structure	at	multiple	granularity	
levels.	
	
In	order	to	achieve	this,	we	think	it	is	important	to	use	high	resolution	diffusion	data,	

and	 to	 keep	 this	 resolution	 as	 high	 as	 possible	 in	 the	 connectivity	 fingerprints,	 as	 it	
might	be	a	key	element	in	obtaining	high	sensitivity	to	a	change	in	connectivity	pattern.	
This	 brings	 a	 further	 important	 challenge	 to	 overcome,	 as	 in	 high	 resolution	both	 the	
fingerprint	 dimensionality	 and	 the	 number	 of	 points	 to	 cluster	 increase	 dramatically,	
with	the	corresponding	strain	in	computation	and	memory	requirements.	
While	 the	 approach	 from	 Gorbach	 and	 colleagues	 (2011)	 has	 many	 interesting	

features	 (like	 possibility	 of	 fuzzy	 partitions	 and	 inclusion	 non‐linear	 dependencies	 in	
tractogram	similarity)	and	can	account	 for	hierarchical	 structure	 in	 the	data,	 it	 is	 also	
computationally	more	expensive	and	 it	 remains	 to	be	seen	 if	 it	 can	scale	up	 for	a	 full‐
brain	scenario	of	high	resolution	data.	
	
In	 order	 to	 comply	 with	 our	 goals	 of	 a	 full	 cortical	 clustering	 that	 accounts	 for	

multiple	granularity	 levels	and	is	applied	over	high	resolution	and	high	dimensionality	
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data,	we	propose	the	use	of	an	agglomerative	hierarchical	clustering	approach.	This	type	
of	 algorithms	 start	 by	 considering	 each	 point	 in	 the	 data	 a	 single	 cluster	 and	 then	
iteratively	merge	these	points	until	only	one	cluster	remains	including	all	the	dataset.	As	
output	a	hierarchical	tree	or	dendrogram	is	obtained,	which	encodes	the	information	of	
the	 similarities	 between	 datapoints	 in	 a	 much	 reduced	 dimensionality,	 and	 contains	
within	parcellation	 information	at	 all	 granularity	 levels,	plus	 the	hierarchical	 relations	
between	these	parcels.	
While	 to	 our	 knowledge	 this	 solution	 has	 to	 date	 not	 yet	 been	 implemented	 for	

diffusion	 based	 connectivity	 cortical	 clustering,	 it	 has	 been	 already	 used	 for	 white	
matter	clustering	and	for	the	parcellation	of	resting‐state	fMRI	data.	However,	although	
the	 core	 clustering	 algorithm	 may	 be	 the	 same,	 the	 challenges	 and	 particular	
requirements	 for	 cortical	 based	 parcellation	 are	 very	 different	 than	 for	 these	 other	
modalities.	Nevertheless	it	is	interesting	to	briefly	mention	a	few	of	these	approaches.	
	
As	a	curiosity	note	the	work	of	Passingham	and	colleagues	(2002;	the	first	reported	

cortical	 parcellation	 using	 tracer	 anatomical	 connectivity)	 already	 featured	 a	
hierarchical	clustering	algorithm	in	order	to	study	relationships	between	connectivities,	
although	 this	 was	 very	 low	 dimensionality	 data.	 In	 dMRI,	 agglomerative	 hierarchical	
clustering	 has	 been	 used	 to	 perform	 parcellation	 of	 white	 matter	 pathways	
(Wassermann	et	 al.,	 2010).	These	were	 computed	 from	deterministic	 tracts	 smoothed	
via	Gaussian	processes	to	allow	for	overlap,	and	once	the	tree	was	built	a	partition	was	
chosen	through	best	fit	to	a	predefined	cortical	target	atlas.	
Guevara	and	colleagues	(2011)	also	used	hierarchical	clustering	for	two	of	the	steps	

in	their	multi‐stage	white	matter	clustering	solution	(decomposition	of	fibers	according	
to	 presence	 in	 left/right	 hemisphere;	 length‐based	 segmentation;	 agglomerative	
hierarchical	 voxel‐based	 clustering;	 extremity‐based	 clustering;	 hierarchical	 fascicle	
merging).	
In	the	field	of	resting‐state	fMRI,	hierarchical	clustering	has	been	used	more	widely.	

The	 first	appearance	corresponds	 to	 the	work	of	Cordes	and	colleagues	 (2002)	where	
functional	time	courses	were	clustered	using	their	correlation	as	similarity	measure.	In	
their	work	however	a	single	partition	is	selected	from	the	tree	out	as	final	solution.	This	
work	 was	 followed	 up	 by	 Stanberry	 and	 colleagues	 (2003)	 were	 the	 trees	 were	
processed	 a	 posteriori	 in	 order	 to	 improve	 the	 resulting	 parcellation,	 an	 interesting	
concept	that	we	also	explore	in	our	work.	
As	 a	 final	 example,	 the	 recent	 work	 of	 Blumensath	 and	 colleagues	 (2013)	 also	

features	a	whole	brain	hierarchical	 clustering	of	 resting	 state	data.	Although	 the	main	
focus	 of	 this	work	 lies	 on	 a	 region	 growing	 algorithm	 to	 find	 a	maximum	 granularity	
parcellation,	upon	which	the	tree	is	built.	
	
In	 the	 following	 chapter,	we	will	 take	 some	of	 the	 principles	 already	 used	 in	 these	

works	 and	 apply	 and	 specialize	 them	 for	 the	 objective	 of	 high	 resolution	 tract‐based	
cortical	parcellation.		
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3. A	HIERARCHICAL	METHOD	FOR	WHOLE‐
BRAIN	CONNECTIVITY‐BASED	PARCELLATION		

	

3.1 Overview	
	

In	 this	work,	 the	concepts	of	parcellation	and	different	scales	of	brain	structure	are	
brought	together,	and	hierarchical	clustering	 is	proposed	as	a	solution	to	overcome	the	
limitations	 exposed	 in	 the	 previous	 chapter.	We	 aim	 to	 demonstrate	 that	 hierarchical	
clustering	 is	 a	 promising	 means	 by	 which	 to	 characterize	 the	 connectivity	 similarity	
structure	of	the	whole	human	brain,	where	the	information	of	the	underlying	structure	
at	all	granularity	levels	is	encoded	in	a	hierarchical	tree	or	dendrogram.	The	idea	is	that	
these	trees	can	then	be	sampled	to	obtain	partitions	at	different	granularity	levels.	This	
chapter	 will	 introduce	 the	 methods	 proposed	 and	 implemented	 along	 with	 their	
mathematical	 formulation.	 Part	 of	 the	 methods	 presented	 in	 this	 section	 have	 been	
published	 as	 an	 article	 in	 the	 scientific	 journal	 Human	 Brain	 Mapping	 (Moreno‐
Dominguez	et	al.,	2014a)	and	in	posters	and	talks	at	international	conferences	(Moreno‐
Dominguez	et	al.,	2012a,	2012b,	2011b,	2011c).	

	

3.2 Data	acquisition	and	preprocessing	
	
High	resolution	dMRI	images	as	well	as	T1	and	T2	weighted	images	were	acquired	for	

4	young	and	healthy	participants	(3	males	and	a	female)	on	a	Siemens	TimTrio	scanner	
with	a	32‐channel	array	head	coil	and	maximum	gradient	strength	of	40	mT/m.	For	one	
of	 the	 participants,	 a	 second	 set	 of	 images	 was	 acquired	 after	 a	 one‐week	 interval.	
Written	informed	consent	was	obtained	from	the	subjects	in	accordance	with	the	ethical	
approval	from	the	University	of	Leipzig.	
The	 dMRI	 data	 was	 acquired	 using	 spin‐echo	 echo‐planar	 imaging,	 with	 time	

repetition	(TR)	=	11s,	echo	time	(TE)	=	90ms,	85	axial	slices,	resolution	1.5	mm	isotropic,	
GRAPPA/3,	 and	 3	 acquisitions.	We	 used	 60	 diffusion	 gradient	 directions,	 which	were	
evenly	distributed	over	the	half‐sphere	(b‐value	=	1000	s/mm²).	The	diffusion‐weighted	
volumes	were	 interspersed	by	acquisitions	with	no	diffusion	weighting	 (b0	 images)	at	
the	beginning	and	after	each	block	of	10	volumes	(7	volumes).	The	 total	scan	time	 for	
the	dMRI	protocol	was	approximately	45	min.		
	
As	 a	 first	 preprocessing	 step,	 the	 3D	 T1‐weighted	 (magnetization	 prepared‐rapid	

gradient	echo,	TR	=	1300	ms,	time	to	inversion	=	650	ms,	TE	=	3.93	ms,	resolution	1.0	x	
1.0	x	1.5	mm,	2	acquisitions,	 reconstructed	 to	1mm	 isotropic	 resolution)	 images	were	
reoriented	 to	 the	mid‐sagittal	 plane	 through	 the	 anterior	 and	 posterior	 commissures	
and	the	brain	volume	was	segmented	using	the	Lipsia	software	package	(Lohmann	et	al.	
2001).	 The	 21	 images	 without	 diffusion	 weighting	 were	 used	 to	 estimate	 motion	
correction	 parameters	 using	 rigid‐body	 transformations	 (Jenkinson	 et	 al.,	 2002),	
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implemented	in	FSL	(FMRIB	Software	Library,	Oxford,	UK).	Motion	correction	parameters	
were	interpolated	for	all	201	volumes	and	combined	with	a	global	registration	to	the	T1	
anatomy	 using	 a	 mutual	 information	 registration	 algorithm.	 The	 diffusion	 gradient	
direction	for	each	volume	was	corrected	using	the	rotation	parameters.	The	registered	
images	were	 linearly	 interpolated	 to	 the	 new	 reference	 frame	with	 an	 isotropic	 voxel	
resolution	 of	 1	mm	 and	 the	 three	 corresponding	 acquisitions	 and	 gradient	 directions	
were	averaged.	Next,	the	diffusion	tensor	was	calculated	for	each	voxel	after	logarithmic	
transformation	 of	 the	 signal	 intensities	 (Basser	 et	 al.,	 1994).	 Finally,	 the	 fractional	
anisotropy	of	 the	 tensor	 in	each	voxel	was	subsequently	determined,	and	a	multi‐slice	
FA	 image	 (Basser	 and	 Pierpaoli,	 1996)	was	 created.	 The	 combined	motion	 correction	
and	 registration	 to	 the	 individual	 T1	 anatomy	 provided	 some	 advantages.	 A	 simple	
motion	 correction	 to	 the	 first	 image	 in	 the	 diffusion	 weighted	 sequence	 would	 have	
introduced	a	variable	amount	of	smoothing	caused	by	the	interpolation	of	the	images	to	
the	 reference	 image.	 E.g.	 the	 first	 images	 in	 the	 sequence	 would	 have	 needed	 less	
interpolation	 and	 the	 reduced	 smoothing	would	 have	 caused	 a	 directional	 bias.	 Using	
the	 independent	 orientation	 of	 the	T1	 image	 as	 reference	 removed	 this	 potential	 bias.	
Additionally,	the	sampling	of	the	data	with	a	higher	spatial	resolution	(1mm	instead	of	
1.5mm)	 allowed	 keeping	more	 details	 of	 the	 data	 compared	 to	 a	 resampling	with	 the	
original	 resolution.	 In	 this	 way,	 interpolation	 of	 the	 raw	 data	 provided	 some	
methodological	advantages	in	the	following	tractography	step.	
It	is	possible	to	acquire	fieldmaps	in	order	to	unwarp	the	diffusion	images	and	correct	

for	distortion	(Jenkinson,	2004;	Jezzard	and	Balaban,	1995)	(although	in	this	study	they	
were	 not	 available	 for	 all	 datasets).	 In	 these	 cases,	 the	 transformation	 matrices	 for	
motion	 correction,	 distortion	unwarping,	 and	 registration	 to	T1	 anatomy	 are	 obtained	
independently	 and	 combined	 into	 a	 single	 transformation	 using	 the	 fugue	 and	
convertwarp	utilities	of	FSL	(in	addition	to	those	introduced	in	the	previous	paragraph).	
The	dMRI	data	was	then	transformed	using	this	single	transformation	in	order	to	avoid	
multiple	interpolation	steps	and	unnecessary	smoothing	of	the	diffusion	data.	
	
The	 brain	 volume	 was	 segmented	 into	 white	 and	 gray	 matter	 compartments	 by	

means	of	FA	thresholding	(white	matter:	FA	≥	0.15)	and	interactive	corrections	for	deep	
white	matter	 imperfections.	Using	an	FA	based	mask	allows	 to	define	seed	voxels	at	a	
clearly	defined	white	matter	boundary.	This	precession	would	not	have	been	possible	
using	 the	white	matter	mask	 from	 the	 segmented	T1	 image,	 since	 the	 diffusion	 image	
shows	small	non‐linear	distortions.	Each	white	matter	voxel	that	neighbored	a	cortical	
gray	matter	voxel	was	used	as	a	seed	voxel	for	the	probabilistic	dMRI	tractography	(that	
is,	 each	single	grey	matter/white	matter	boundary	voxel	at	1	mm	resolution,	between	
130,000	 and	 200,000	 seed	 voxels	 per	 brain	 depending	 on	 size),	 as	 proposed	 by	
Anwander	 and	 colleagues	 (2007).	 	 The	 tractography	 algorithm	 computed	 a	 transition	
probability	of	a	simulated	particle	jumping	from	one	voxel	to	the	next	from	the	diffusion	
data.	Next,	 the	probabilistic	 tractography	started	100.000	particles	 in	each	seed	voxel.	
The	 particles	 propagated	 in	 the	 white	 matter	 as	 guided	 by	 the	 local	 transition	
probabilities,	 defined	 by	 the	 probability	 density	 function	 from	 the	 diffusion	 tensor	
model.	The	target	space	was	the	whole	white	matter	volume	with	a	resolution	of	1	mm3.	
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The	diffusion	data	was	not	interpolated	in	this	step	and	used	the	interpolation	of	the	raw	
diffusion	 data	 as	 computed	 in	 the	 preprocessing	 steps.	 Finally,	 a	 visitation	 map	 was	
computed	 from	 the	 number	 of	 particles	 which	 cross	 each	 voxel.	 The	 tractography	
algorithm	was	parallelized	and	implemented	on	a	consumer	PC	graphic	board	(GPU)	and	
took	only	a	few	seconds	per	seed	point.	
The	3D	distribution	 of	 the	 connectivity	 values	 (visitation	map)	 of	 a	 particular	 seed	

voxel	with	all	voxels	in	the	brain	is	called	a	tractogram.	In	these	tractograms,	which	we	
use	 as	 connectivity	 fingerprints,	 the	 value	 associated	 with	 a	 particular	 white	 matter	
voxel	represents	the	visitation	fraction,	that	is,	what	proportion	of	all	particles	started	at	
the	seed	voxel	went	through	that	particular	voxel.	The	visitation	values	ranging	between	
0	and	100,000	were	 log	 transformed	to	reduce	the	dynamic	range	(in	order	to	palliate	
the	 intrinsic	bias	that	visitation‐based	connectivity	values	have	towards	favoring	short	
connections	 against	 longer	 distance	 ones,	 which	 are	 especially	 problematic	 for	 the	
computation	of	similarities	between	tractograms)	and	scaled	between	0	and	1	(1	means	
all,	0	means	none	of	the	started	streamlines	touched	the	voxel).	These	values	are	taken	
as	a	correlate	for	the	anatomical	connectivity	between	that	voxel	and	the	seed	voxel	of	
the	 tractogram.	 Although	 based	 on	 a	 simple	 local	 model	 (diffusion	 tensor),	 this	
probabilistic	 tractography	can,	 to	a	certain	extent,	account	 for	 fanning	 fibers	and	 fiber	
crossings.	 This	 provides	 tractograms	with	 enough	 overlap	 area	 to	 detect	 connectivity	
pattern	 differences	 between	 voxels	 at	 the	 discrimination	 level	 required	 for	 successful	
parcellation.	
The	tractograms	obtained	constitute	the	data	points	for	our	clustering	method.	At	the	

resolution	of	1mm3	which	we	will	use,	a	typical	dataset	will	consist	of	around	100,000	
points	 (tractograms	 from	 seed	 voxels	within	 one	 hemisphere)	 in	n‐dimensional	 space	
with	n	having	a	value	between	600,000	and	800,000	(number	of	white	matter	voxels	in	
the	brain).	
To	 analyze	 the	 effects	 of	 a	 reduced	 signal‐to‐noise	 ratio	 (SNR)	 onto	 the	 developed	

analysis	methods,	a	second	set	of	tractograms	was	obtained	for	the	first	three	subjects	
using	 just	 a	 single	 acquisition	 of	 the	 diffusion	 data	 (in	 contrast	 to	 averaging	 the	 3	
available	acquisitions).	
	
Despite	 this	 particular	 choice	 of	 tractography,	 the	 effort	 of	 this	 thesis	 is	 on	 the	

characterization	of	 the	 connectivity	 similarity	 structure	based	on	 tractography,	not	on	
the	tractography	itself.	The	methods	developed	to	that	objective	aim	to	be	valid	for	any	
particular	 tractography	 technique	 chosen	 (tuning	 possibly	 the	 distance	measure	 used	
tone	that	properly	captures	the	changes	between	the	particular	tractograms	yielded	by	
that	technique).	Therefore	a	change	to	different	tractography	could	be	easily	introduced	
in	 the	method	pipeline.	 If	 the	description	of	connectivity	similarity	 is	enhanced	by	 the	
new	technique	it	would	only	further	improve	the	results	of	our	analysis.	
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3.3 Tractogram	distance	measure	
	

In	 order	 to	 perform	 any	 kind	 of	 clustering	 a	 distance	measure	 between	 the	 object	
points	 must	 first	 be	 defined.	 This	 distance	 quantifies	 the	 similarity	 between	 the	
connectivity	 patterns	 of	 two	 seed	 points.	 It	 must	 satisfy	 the	 properties	 of	 symmetry,	
non‐negativity	and	identity	of	indiscernibles:	

	 Symmetry:			d(x,y)	=	d(x,y)	for	any	x,y.	 (3.1)	

	 Non‐negativity:			d(x,y)	≥	0	for	any	x,y.	 (3.2)	

	 Identity	of	indiscernibles:			d(x,y)	=	0,	if	x	=	y.	 (3.3)	

	If	the	triangle	inequality	is	also	satisfied	the	distance	measure	is	also	a	metric.	

	 Triangle	inequality:	d(x,y)	≤	d(x,z)	+	d(y,z)	for	any	x,y,z.	 (3.4)	

While	 the	 Euclidean	 distance	 is	 one	 of	 the	 most	 commonly	 used	 ones	 for	 low‐
dimensional	data,	it	does	not	score	well	for	scaling	patterns	or	very	high	dimensionality	
(Wang	et	al.,	2002,	Beyer	et	al.,	1999).	
The	 correlation	 coefficient	 is	 a	 convenient	 way	 to	 measure	 the	 linear	 dependency	

between	two	variables	and	it	has	been	previously	used	as	a	similarity	measure	between	
tractograms	with	successful	results	(Anwander	et	al.,	2007).		
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where	xi	 is	 the	 ith	 element	 of	 tractogram	X,	 and	n	 is	 the	number	of	 elements	 in	 the	
tractogram.	
Correlation	 as	 such	 can	 also	 produce	 negative	 values,	 which	 cannot	 be	 sensibly	

interpreted	 for	 spatial	 connectivity	 patterns	 (two	 uncorrelated	 patterns	 are	 just	 as	
dissimilar	as	two	negatively	correlated	ones).	That	is	why	we	modified	the	measure	by	
omitting	the	centering.	That	is,	the	similarity	between	tractograms	would	be	calculated	
as	 their	 dot	 product	 normalized	 by	 the	 multiplication	 of	 the	 norms,	 following	 the	
equation:	
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The	 working	 principle	 in	 this	 measure	 is	 the	 same	 as	 in	 the	 traditional	 correlation,	
widely	 established,	with	 the	 difference	 that	negative	 correlations	 are	 disregarded	 and	
the	 discerning	 power	 is	 focused	 in	 positive	 correlations	 that	 have	 no	 negative	 linear	
dependencies,	which	is	better	suited	for	comparison	of	anatomical	tracts.	Geometrically	
speaking,	 the	 proposed	measure	 relates	 to	 the	 scaled	 projection	 of	 one	 vector	 on	 the	
other,	while	the	correlation	relates	to	the	cosine	of	the	angle	between	the	vectors.	Both	
measures	are	closely	related.	As	our	tractograms	contain	very	many	zeroes,	this	causes	
the	mean	values	to	be	very	small.	In	consequence	the	differences	between	our	measure	
and	classical	Pearson’s	correlation	are	minimal.	
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A	 third	option	 for	calculating	 tractogram	similarity	 is	 to	use	 the	measure	known	as	
mutual	 information.	This	measure	has	 the	 advantage	of	 also	 capturing	not	 only	 linear	
dependencies,	but	also	higher	order	dependencies	between	the	vectors.	It	has	also	been	
successfully	used	for	measuring	anatomical	connectivity	similarity	(Gorbach	et	al.,	2011)	
and	is	defined	as:	
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This	measure	 is	 also	 computationally	more	expensive	 than	 the	previous	 two.	Given	
that	we	aim	to	achieve	whole‐brain	parcellation	in	our	work,	where	computation	load	is	
a	 great	 challenge,	 that	 the	 distance	 measure	 is	 the	 main	 contributor	 to	 the	 method	
complexity,	and	that	linear	measures	have	given	good	results	in	the	past	for	the	specific	
tractograms	 that	we	will	be	using,	a	normalized	dot	product	based	distance	 is	chosen.	
The	tractogram	distance	would	then	be	defined	as:	

	 ( , ) 1 ( , )d X Y NDP X Y  	 (3.8)	

Notwithstanding,	we	would	like	to	point	out	that,	as	with	the	choice	of	tractography,	
the	 hierarchical	 method	 developed	 in	 this	 thesis	 should	 remain	 valid	 for	 different	
choices	of	distance	measure,	as	long	as	the	combination	of	tractography	and	distance	is	
able	 to	 capture	 the	 connectivity	 pattern	 dissimilarity	 between	 different	 points	 of	 the	
cortex.	If	with	higher	availability	of	computational	and/or	time	resources	a	study	wished	
to	 be	made	 using	mutual	 information,	 it	would	 be	 possible	 to	 implement	 this	 change	
without	changing	the	basic	workings	of	the	method	proposed.	
A	distance	based	on	any	of	the	above	proposed	similarities	would	not	be	a	complete	

metric	since	it	would	not	be	guaranteed	to	satisfy	the	triangle	inequality,	but	this	does	
not	lead	to	any	shortcomings	for	clustering	purposes.	
In	 order	 to	 render	 the	 similarity	 measure	 robust	 to	 random	 artifacts	 in	 the	

probabilistic	 tractography,	 connectivity	 values	 smaller	 than	 0.4	 (less	 than	 100	 out	 of	
100,000	seeded	particles,	as	visitation	values	are	 log	 transformed	and	normalized)	are	
set	to	0	prior	to	computing	the	similarity	(Anwander	et	al.,	2007).	This	value	was	chosen	
in	order	to	eliminate	only	minimal	noise	and	remain	conservative	(as	any	target	voxel	
visited	 by	 more	 than	 0.1%	 of	 the	 seeded	 particles	 will	 be	 considered),	 but	 the	 best	
threshold	 for	 probabilistic	 tractography	 is	 still	 an	 open	 question	 in	 literature	 (Jones,	
2010).		
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3.4 Hierarchical	clustering	
	
3.4.1 Agglomerative	vs.	divisive	hierarchical	clustering	
	
Hard	clustering	methods	(methods	where	a	point	either	belongs	or	doesn’t	belong	to	

a	certain	cluster)	can	be	classified	 into	partitional	algorithms	(dividing	 the	data	 into	a	
single	partition)	and	hierarchical	algorithms	(which	obtain	a	series	of	nested	partitions).	
It	 is	 our	 hypothesis	 that	 a	 series	 of	 nested	 partitions	 would	 be	 better	 suited	 to	
characterize	 the	 connectivity	 similarity	 information	 of	 a	 whole	 brain,	 being	 able	 to	
capture	it	a	different	granularity	levels.	
	
Hierarchical	 algorithms	 are	 further	 subdivided	 into	 agglomerative	 and	 divisive	

algorithms.	 Agglomerative	 (bottom‐up)	 hierarchical	 clustering	 starts	 by	 considering	
every	 object	 in	 the	 dataset	 as	 a	 separate	 cluster,	 then	 it	merges	 the	 closest	 (i.e.,	most	
similar)	pair	of	clusters,	according	to	some	similarity	criterion,	and	 iterates	until	all	of	
the	data	points	belong	 to	one	 single	 cluster.	The	 result	 is	 essentially	a	binary	 tree.	An	
outline	of	the	clustering	process	applied	to	anatomical	connectivity	can	be	seen	in	Figure	
3.1.	
	

	
Figure	3.1:	 Schema	 of	 the	 hierarchical	 clustering	 process:	 a)	 Select	 gray‐matter/white‐matter	 interface	

voxels;	b)	Generate	probabilistic	 tractograms	of	 seed	voxels;	c)	Compute	 similarities	between	
tractograms;	d)	Build‐up	connectivity	tree;	e)	Select	partitions	within	the	tree	and	map	back	to	
the	cortex.	
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On	the	other	hand,	divisive	(top‐down)	hierarchical	clustering	works	in	the	opposite	

fashion.	Starting	with	a	 single	cluster	 covering	 the	whole	dataset,	 further	 subdivisions	
are	 obtained	 iteratively	 using	 a	 secondary	 partitional	 algorithm.	 Divisive	 clustering	 is	
conceptually	 more	 complex	 than	 agglomerative	 clustering	 since	 a	 second	 clustering	
algorithm	 is	 needed	 as	 a	 “subroutine”.	 Also,	 although	 both	 types	 of	 hierarchical	
clustering	 suffer	 from	 the	 disadvantage	 of	 any	 merging/division	 decision	 being	
irreversible	 and	 any	 errors	 being	 dragged	 through	 the	 rest	 of	 the	 hierarchy,	 this	 is	
critical	 in	 the	 top‐down	 case,	 as	 boundary	 errors	 in	 an	 early	 stages	 span	 across	 a	 big	
portion	of	the	dataset	and	will	more	dramatically	affect	the	following	partition	decisions.	
In	 some	 cases	 where	 only	 the	 coarser	 granularity	 levels	 are	 desired,	 the	 top‐down	
method	 can	 have	 the	 advantage	 of	 being	 more	 efficient,	 as	 instead	 of	 obtaining	 the	
hierarchy	 all	 the	 way	 down	 to	 individual	 datapoints	 some	 stopping	 criterion	 is	
implemented	and	unwanted	computations	are	avoided.	However	for	very	large	datasets	
(as	 is	our	case)	 the	secondary	partitioning	algorithm	 is	more	 likely	 to	have	significant	
errors	in	the	early	stages,	or	require	more	complex	computations	reducing	or	nullifying	
the	previously	mentioned	advantage.	For	this	reason	a	divisive	approach	is	discarded	for	
our	particular	objective,	in	favor	of	an	agglomerative	one.	
	
But	 even	 within	 the	 bottom‐up	 approach,	 several	 modalities	 exist;	 differing	 in	 the	

way	new	distances	are	computed	to	a	third	element	once	two	elements	have	been	joined	
(linked;	 Murtagh,	 1983).	 Several	 possible	 solutions	 were	 implemented	 and	 tested,	 in	
order	to	 find	 the	method	that	best	performs	when	clustering	whole	brain	connectivity	
data.	
	
3.4.2 Graph	methods	
	
There	 are	 two	 main	 groups	 of	 agglomerative	 hierarchical	 clustering	 methods.	 The	

first	of	these	is	integrated	by	the	graph	methods,	stemming	from	graph	theory,	where	a	
cluster	 can	 be	 represented	 by	 a	 subgraph	 of	 interconnected	 points.	 	 There	 are	 four	
possible	linkages	within	the	graph	methods:	

	
In	the	single	linkage	method	(Florek	et	al.,	1951;	Sneath,	1957),	the	new	distance	to	a	

third	cluster	will	be	the	smaller	of	the	two	distances	from	any	of	the	joining	elements	to	
that	cluster	before	the	merge:	
	 dSL(xy,z)	=	min(	d(x,z),	d(y,z)	)	 (3.9)	

where	x	and	y	are	the	clusters	being	merged,	xy	is	the	resulting	new	cluster	and	z	is	a	
cluster	not	being	merged	at	that	particular	step.	

	
In	 the	complete	linkage	method	(Johnson,	1967),	 the	new	distance	to	a	 third	cluster	

will	be	the	greater	of	the	two	distances	from	any	of	the	joining	elements	to	that	cluster	
before	the	merge:	
	 dCL(xy,z)	=	max(	d(x,z),	d(y,z)	)	 (3.10)	
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In	 the	average	linkage	method	(Jain	and	Dubes,	1988),	 the	new	distance	will	be	 the	
mean	of	the	distances	from	the	joining	clusters	weighted	by	the	number	of	data	points	
each	 cluster	 holds,	 in	 other	 words,	 the	 new	 distance	 will	 be	 the	 average	 of	 all	 the	
pairwise	distances	between	de	points	 contained	 in	 clusters	x	 and	y	with	 the	points	 of	
cluster	z	.	

	 dAL(xy,z)	=	(	Sx∙d(x,z)	+	Sy∙d(y,z)	)	/	(Sx+	Sy)	 (3.11)	

where	Si	is	the	size	or	number	of	data	points	contained	in	cluster	i.	

	
In	the	weighted	linkage	method	(Jain	and	Dubes,	1988),	the	new	distance	will	be	the	

unweighted	mean	of	the	distances	from	the	joining	clusters.	
	 dWL(xy,z)	=	(	d(x,z)	+	d(y,z)	)	/2	 (3.12)	

	
In	 all	 four	 of	 these	 methods,	 it	 is	 necessary	 to	 calculate	 the	 pairwise	 distances	

between	 all	 data	 points.	 After	 obtaining	 the	 full	 connectivity	 distance	matrix,	 the	 two	
most	 similar	 elements	 are	 joined	 and	 the	 corresponding	 rows	 and	 columns	 are	
combined	into	a	new	row	and	column	as	per	the	desired	linkage	equation.	The	process	is	
then	iterated	until	the	tree	is	completed.	The	main	disadvantage	of	the	graph	methods	is	
that	computing	the	full	distance	matrix	can	prove	costly	when	there	is	a	large	number	of	
elements	and	the	points	are	in	a	very	high	dimensional	space,	as	is	the	case	considered	
here.	Additionally,	once	obtained,	the	matrix	should	be	fully	loaded	in	the	random	access	
memory	in	order	for	the	algorithm	to	be	efficient,	which	can	amount	to	a	considerably	
large	volume	typically	only	available	in	computing	servers.	

	
3.4.3 Centroid	Method	
	
3.4.3.1 Basic	method	
	
The	second	type	of	agglomerative	clustering	methods	is	 integrated	by	the	geometric	

methods,	 where	 a	 cluster	 is	 represented	 by	 a	 center	 point.	 In	 order	 to	 reduce	 the	
computation	and	memory	requirements,	we	elected	to	use	a	fifth	method	based	on	one	
of	 the	geometric	methods:	 the	centroid	linkage	method	 (Jain	and	Dubes,	1988).	 In	 this	
method,	each	cluster	is	defined	by	its	centroid:	a	data	point	that	represents	all	the	points	
included	in	the	cluster.	 In	the	study	presented	here,	 the	centroid	was	computed	as	the	
average	 of	 the	 non‐thresholded	 tractograms	 in	 natural	 space	 of	 the	 contained	 data	
points.	 In	 this	 scenario,	 when	 two	 clusters	 merge,	 the	 mean	 tractogram	 of	 the	 new	
cluster	is	computed,	and	the	new	distances	to	the	rest	of	the	clusters	are	recalculated.	A	
newly	merged	point	is	then	defined	as:	
	 xy	=	Σi	(Sx∙xi	+	Sy∙yi	)	/	(Sx+	Sy)	 (3.13)	
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3.4.3.2 Neighborhood		restriction	
	
In	 principle,	 the	 centroid	 method	 involves	 an	 extra	 computing	 effort,	 as	 the	 new	

distances	that	must	be	calculated	in	every	merging	step	involve	normalized	dot	products	
high‐dimensional	mean	tractograms	(Equation	3.13),	opposed	to	max,	min,	or	averaging	
operations	 of	 distance	 values	 in	 the	 graph	methods.	 However,	 it	 can	 also	 be	 used	 to	
avoid	 the	 necessity	 of	 calculating	 the	 whole	 pairwise	 distance	 matrix	 by	 means	 of	
applying	 a	 neighborhood	 restriction.	 If	 the	 assumption	 is	 made	 that	 a	 connectivity	
defined	region	in	the	brain	must	always	be	a	connected	patch	of	gray	matter,	then	only	
mergers	between	neighboring	clusters	are	allowed,	and	only	those	distances	have	to	be	
computed,	 drastically	 reducing	 the	 cost	 of	 the	 algorithm	 (a	 neighborhood	 restriction	
may	 also	 be	 used	 in	 the	 graph	methods	 in	 order	 to	 force	morphologically	 continuous	
clusters,	 but	 the	 whole	 distance	matrix	 must	 still	 be	 calculated	 and	 thus	 it	 yields	 no	
computational	 advantage).	The	 concept	of	 spatially	 constrained	hierarchical	 clustering	
has	also	been	exploited	 for	 fMRI	data	(Blumensath	et	al.,	2013),	a	modality	where	this	
particular	restriction	has	proved	of	advantage	for	parcellation	in	the	past	(Craddock	et	
al.,	2012).	
Several	 neighborhood	 levels	 may	 be	 chosen.	 The	 following	 neighborhoods	 were	

implemented	in	this	study:	18	(dv	=	√2),	26	(dv	=	√3),	32	(dv	=	2),	92	(dv	=	2√2)	and	124	
(not	defined	by	a	value	of	dv)	where	dv	stands	for	the	maximum	distance	(in	voxel	units)	
of	a	neighbor	voxel	from	the	seed	voxel	(Figure	3.2).	
	

	

Figure	3.2:	 Neighborhoods	 model	 implemented:	 18,	 26,	 32,	 92,	 124.	 92	 and	 124	 neighborhoods	 are	
obtained	through	the	convolution	of	two	18	or	26	neighborhood	kernels,	respectively.	

	

As	we	worked	with	high	resolution	1mm	images,	 there	 is	no	risk	of	adjacent	voxels	
corresponding	to	the	grey	matter	–	white	matter	interface	of	opposite	gyri.	In	the	case	of	
the	92	and	124	neighborhoods,	however,	which	expanded	to	non‐adjacent	voxels,	there	
was	a	risk	of	considering	an	element	as	a	neighbor	that	resides	in	a	different	gyrus.	To	
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avoid	 this,	 the	 algorithm	 was	 implemented	 as	 the	 convolution	 of	 two	 smaller	
neighborhoods	 kernels:	 18*18	 yields	 a	 92	 neighborhood,	 while	 26*26	 leads	 to	 124	
neighbors.	In	this	sense,	the	smaller	neighborhood	was	scanned,	and	if	neighbors	were	
detected,	the	respective	neighborhood	of	each	one	of	them	was	considered	as	well.	This	
way,	neighbors	are	considered	as	such	only	if	they	form	a	continuous	sheet	around	the	
seed	 voxels.	 The	 results	 are	 analogous	 to	 what	 would	 be	 obtained	 through	 surface	
analysis	with	only	a	fraction	of	the	cost.	

	
3.4.3.3 Homogeneous	merging	
	
One	of	the	advantages	of	using	a	hierarchical	method	is	the	possibility	of	comparing	

the	 full	 connectivity	structure	across	datasets	 through	 tree	comparison,	which	we	will	
further	develop	in	a	later	subsection.	In	order	to	do	this,	the	terminal	elements	or	leaves	
of	the	trees	to	be	compared	must	first	be	matched.	With	this	in	mind,	an	extra	restriction	
was	 applied	 to	 the	 centroid	 method	 during	 the	 initial	 iterations	 of	 the	 tree	 building	
process.	The	objective	was	to	ensure	that	at	the	lower	levels	of	the	tree	(that	is,	the	ones	
with	highest	granularity)	 the	clusters	were	 joined	 in	a	homogenous	way,	with	roughly	
equal	 sizes,	 until	 a	 certain	number	of	 clusters	had	been	 reached.	As	will	 be	 explained	
later,	this	allowed	for	easier	matching.	There	is,	however,	no	restriction	upon	the	shape	
of	 these	 clusters,	 and	 their	 merging	 is	 still	 guided	 by	 connectivity	 pattern	 similarity.	
Although	 this	 restriction	 mathematically	 involves	 a	 certain	 loss	 of	 information	 in	
comparison	 with	 the	 restriction‐free	 algorithm,	 it	 was	 expected	 that	 the	 information	
contained	at	these	very	high	granularity	levels	would	be	very	low	due	to	the	sensitivity	
limits	of	the	tractogram	distance	measure	(which	is	shown	in	chapter	4).	This	step	will	
improve	 matching	 as	 the	 homogeneous	 clusters	 produce	 wider	 and	 smoother	 mean	
tractograms	 that	 overlap	 better	 across	 datasets.	 A	 conceptually	 similar	 2‐stage	
clustering	approach	has	also	successfully	been	used	by	Gorbach	and	colleagues	(2011)	
and	 Blumensath	 and	 colleagues	 (2013)	 to	 partition	 dMRI	 and	 fMRI	 data,	 respectively	
(where	 first	 a	 maximum	 granularity	 partition	 is	 obtained	 from	 which	 to	 build	 the	
hierarchical	 tree,	 although	 their	 particular	 implementations	 differ	 greatly	 with	 our	
solution.	See	section	2.4.2).	
For	 simplicity,	 from	 this	 point	 on,	 this	modified	 algorithm	 including	 neighborhood	

restriction	and	initial	homogeneous	merging	stage	will	just	be	referred	to	as	the	centroid	
method	or	cXX	where	XX	indicates	the	neighborhood	level	used	(Pseudocode	3.1).	
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Pseudocode	3.1:	 Pseudocode	for	the	final	modified	centroid	method	devised	and	implemented,	including	an	

initial	homogeneous	merging	stage	and	neighborhood	restriction.	

	
3.4.4 The	hierarchical	tree	or	dendrogram	
	
As	an	output	of	these	algorithms	(both	graph	and	centroid)	a	binary	tree	(also	called	

bifurcating	rooted	tree	or	fully	resolved	dendrogram)	is	obtained	(like	the	one	shown	in	
Figure	3.1d).	This	tree	encodes	the	connectivity	similarity	structure	of	the	dataset	at	all	
granularity	 levels,	 transforming	 into	 a	 much‐reduced	 dimensionality	 (2n,	 n	 being	 the	
number	 of	 seed	 elements)	 the	 information	 of	 the	 distance	 matrix	 (dimension	 n2)	
obtained	 from	 the	 tractogram	 space	 (dimension	 n∙m,	m	 being	 the	 number	 of	 white	
matter	voxels).	
The	terminal	elements	of	the	tree	(those	at	y	=	0)	represent	the	original	data	points	

(single	 seed	 voxel	 tractograms)	 and	 are	 called	 leaves	 of	 the	 tree	 (therefore	 in	 our	
plotting	 convention	 the	 bottom	 of	 the	 tree	 represents	 the	 highest	 granularity).	 The	
intermediate	 points	 of	 the	 tree,	where	 two	 elements	 join,	 are	 called	nodes	 of	 the	 tree	
(and	 in	 the	 centroid	 method	 are	 also	 identified	 by	 the	 mean	 tractogram	 of	 their	
contained	leaves).	In	a	binary	tree,	like	the	ones	obtained	with	the	methods	described,	a	
node	is	always	formed	by	joining	two	elements.	Trees	can	also	be	non‐binary	(also	called	
partially‐resolved	 dendrograms)	 where	 a	 node	 can	 be	 formed	 by	 the	 simultaneous	
joining	of	any	number	of	elements.	
The	 x	 axis	 of	 the	 tree	 identifies	 a	 specific	 data	 point	 (y	 =	 0).	 However,	 data	 point	

positions	 are	 not	 absolute,	 that	 is,	 a	 tree	 obtained	 from	 the	 same	 data	 set	 but	with	 a	
different	algorithm	might	not	have	the	same	leaves	at	the	same	x	locations,	as	these	may	
have	been	reorganized	in	order	to	be	able	to	plot	the	tree	without	line	crossings.	The	y	
axis	of	 the	tree	 indicates	 the	distance	value	between	the	elements	 joining	at	a	node	at	
that	particular	level.	It	also	encodes	the	distance	between	any	pair	of	leaves	that	meet	in	
a	node	at	that	 level	(tracking	their	path	upwards	through	any	number	of	 intermediate	
nodes).	

	

smallestSize = 1; 
activeSize = 1; 
// homogeneous merging stage 
while ( cluster# < N ) { 
 Find most similar neighboring cluster pair where size1 == smallestSize and size2 <= activeSize; 

if ( no pair matches the conditions ) { 
 if ( there are no more clusters with size == smallestSize )  { 
  ++smallestSize; 

   activeSize = smallestSize; 
} 
else { 
 ++ activeSize; 
} 

} 
else { 

Merge clusters and recalculate distances to neighbors; 
} 

} 
// unrestricted stage 
while (active clusters > 1 ) { 
 Find most similar neighboring cluster pair; 
 Merge clusters and recalculate distances to neighbors; 
} 
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3.5 Assessing	the	quality	of	the	trees	
	
In	 order	 to	 choose	 the	 hierarchical	 clustering	 method	 that	 best	 represents	 the	

information	 in	 the	original	 dataset,	 a	 validity	measure	has	 to	 be	defined	 to	 assess	 the	
goodness	 of	 fit	 of	 the	 obtained	 dendrogram.	 The	 cophenetic	 correlation	 coefficient	
(CPCC)	 (Farris,	 1969)	 serves	 this	 purpose	 by	 calculating	 the	 degree	 of	 agreement	
between	 the	 distances	 encoded	 in	 the	 tree	 (named	 cophenetic	 distances,	 obtained	 by	
looking	at	the	distance	value	of	the	merger	where	the	desired	elements	are	found	in	the	
same	 cluster	 for	 the	 first	 time)	 and	 the	 pairwise	 distances	 obtained	 from	 the	 original	
tractograms.	It	is	defined	as	
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where	n	is	the	total	number	of	elements	and	dij	and	cij	are	the	distance	values	between	
elements	 i	 and	 j,	 as	 computed	 from	 the	 tractograms	 or	 obtained	 from	 the	 tree,	
respectively.	The	range	of	CPCC	is	[−1,	1].	The	higher	the	value,	the	better	the	fit	between	
the	tree	and	the	data,	a	value	of	1	indicating	that	the	matrix	and	the	tree	contain	exactly	
the	same	information	(there	is	a	linear	dependence	between	both,	which	is	not	possible	
unless	 the	distances	between	all	 the	 tractograms	are	equal)	 and	a	value	of	0	meaning	
that	 the	 tree	 contains	 none	 of	 the	 original	 information	 (due	 to	 the	 nature	 of	 the	
hierarchical	agglomerative	method,	negative	CPCC	values	will	not	occur).		

	

3.6 Tree	processing	
	
3.6.1 Confounds	and	challenges	for	dendrogram	interpretation	

	
The	 resulting	 dendrograms	 serve	 two	 purposes:	 On	 the	 one	 hand	 they	 are	 a	

compression	of	the	pairwise	similarities	between	connectional	fingerprints,	and	on	the	
other	 hand	 they	 also	 hold	 information	 on	 the	 similarities	 between	 clusters	 at	 every	
possible	granularity	and	the	hierarchical	relationships	between	them,	allowing	for	easy	
and	 quick	 partition	 generations.	 They	 are,	 however,	 complex	 structures	 and	 their	
interpretation	 and	 partition	 selection	 are	 not	 always	 straightforward.	 In	 addition,	
several	factors	might	add	confounds	and	complicate	the	analysis.	
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‐ Artefactual	datapoints	
As	in	most	types	of	clusterings,	these	can	produce	unwanted	outliers	that	obscure	the	

data	 and	 introduce	 errors	 in	 the	 analysis.	 In	 our	 particular	 case	 errors	 and	 spatial	
discontinuities	 in	 the	 mask	 of	 seed	 voxels	 might	 result	 in	 unusable	 tractograms	
characterized	by	a	very	limited	number	of	target	voxels	reached.	This	results	 in	a	very	
low	similarity	of	these	tractograms	to	the	rest.	
	
‐ Non‐monotonicity	
In	 the	 most	 widely	 used	 linkage	 methods,	 the	 distance	 between	 a	 newly	 merged	

group	 of	 elements	 and	 the	 rest	 of	 the	 set	 are	 computed	 as	 a	weighted	 average	 of	 the	
distance	 between	 elements	 (as	 in	 the	 graph	 methods,	 where	 the	 type	 of	 weighting	
defines	the	type	of	linkage).	This	means	that	this	distance	is	always	equal	or	greater	than	
the	 distance	 between	 the	 groups	 that	 existed	 prior	 to	 the	 merge,	 resulting	 in	 a	
monotonic	 tree.	 In	 the	 centroid	method,	however,	 this	 is	not	 always	 the	 case.	As	 each	
group	of	elements	is	represented	by	a	new	representative	centroid,	this	centroid	could	
be	 closer	 to	 other	 elements	 than	 any	 of	 its	 components	 were	 before	 the	 merging	
(Morgan	and	Ray,	1995),	which	is	called	an	inversion.	In	other	words,	it	can	happen	that	
the	 intra‐cluster	 distance	 exceeds	 the	 inter‐cluster	 distance.	 These	 inversions	 or	 non‐
monotonic	steps	can	appear	when	more	 than	two	points	 in	 the	data	have	very	similar	
distances	to	each	other,	and	indicate	areas	with	no	clear	binary	cluster	structure	(Gower,	
1990).	As	a	toy	example,	if	we	consider	points	in	2D	space	positioned	like	vertices	of	a	
roughly	equilateral	triangle	and	use	Euclidean	distance,	the	centroid	of	2	merging	points	
will	be	closer	to	the	third	point	than	any	of	them	were	before	(Figure	3.3).	While	these	
inversions	do	contain	information	about	the	distances	encoded	(when	the	tree	is	seen	as	
a	compression	of	the	similarity	matrix)	they	do	not	provide	any	additional	information	
on	 the	 hierarchy	 structure,	 and	 they	 make	 interpretation	 of	 the	 hierarchy	 and	 tree	
analysis	difficult	and	inconvenient	(Murtagh,	1985).		
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Figure	3.3:	 Toy	example	of	a	centroid	linkage	merging	leading	to	a	non‐monotonic	step	in	a	hierarchical	
tree.	The	first	two	point	would	merge	first	as	their	distance	is	the	smallest,	and	the	distance	of	
their	centroid	to	the	third	point	is	even	smaller	than	any	of	the	initial	distances.	
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‐ Hierarchy‐resolution	limitation	at	highest	granularities	
The	 proposed	 method	 produces	 connectivity	 profiles	 with	 a	 very	 high	 spatial	

sampling	resulting	from	seeding	tractography	at	the	white	matter	boundary	with	a	voxel	
resolution	of	1mm.	This	produces	an	oversampling	of	the	diffusion	profiles	compared	to	
the	 limited	 spatial	 resolution	 of	 the	 diffusion	 acquisition	 and	 the	 uncertainty	 of	 the	
tractogram	computation.	As	a	 result	 seed	points	with	a	very	high	 similarity	 cannot	be	
distinguished	 (for	 this	 reason,	 neighboring	 seed	 points	 with	 very	 high	 similarity	 are	
grouped	 together	 to	 base‐areas	 as	 part	 of	 the	 proposed	 tree‐building	 algorithm).	 The	
hierarchical	 relationships	 within	 these	 base‐areas	 are	 characterized	 by	 several	
consecutive	mergers	with	very	small	distance	change	indicating	the	non‐separability	of	
these	regions	and	the	irrelevance	their	internal	structure	for	the	hierarchical	tree,	while	
adding	to	the	complexity	of	the	tree.	
Forced	binary	structure	
	
As	 mentioned	 before,	 the	 iterative	 nature	 of	 the	 clustering	 process	 forces	 the	

dendrogram	to	always	have	binary	bifurcations,	whereas	in	reality	the	dataset	may	have	
structures	nested	in	a	non‐binary	way.	This	means	that	some	of	the	nodes	in	the	tree	do	
not	contribute	 to	any	real	 information	about	 the	similarity	structure	and	are	merely	a	
by‐product	of	the	pair‐wise	agglomerative	method.	

	
3.6.2 Dendrogram	preprocessing	pipeline	

	
In	 order	 to	 address	 these	 problems	 and	 ease	 the	 information	 extraction,	 four	

dendrogram	 preprocessing	 steps	 were	 developed:	 outlier	 elimination,	 monotonicity	
correction,	 limiting	 the	 maximum	 encoded	 granularity	 and	 collapse	 of	 non‐binary	
structures.	These	steps,	detailed	below	and	exemplified	in	Figure	3.4,	effectively	reduce	
the	 number	 of	 branchings,	 and	 in	 turn	 reduce	 the	 tree	 complexity	 and	 possible	
confounds	 in	 the	 dendrogram,	 while	 still	 maintaining	 maximum	 usable	 information	
(shown	quantitatively	in	section	4.3).		

	

	

Figure	3.4:	 Dendrogram	pre‐processing:	example	raw	tree	(a),	monotonicity	correction	(b),	limiting	the	
highest	granularity	encoded	(c)	and	collapse	of	non‐binary	structures	(d).	
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‐ Outlier	elimination	
Isolated	 leaves	 resulting	 from	 faulty	 tractograms	 can	 easily	 be	 detected	 and	

eliminated	without	negative	influence	on	the	whole	brain	coverage.	Data	points	with	a	
distance	 value	 compared	 to	 their	most	 similar	neighbor	higher	 than	 a	 threshold	were	
discarded	and	removed	from	the	analysis.	This	step	was	actually	implemented	as	part	of	
the	tree	building	algorithm,	in	order	to	prevent	the	outliers	from	affecting	the	value	of	
the	centroids.	Removing	 these	outliers	 in	general	stabilizes	 the	 tree	and	the	clustering	
result	and	simplifies	its	interpretation.	
	
‐ Monotonicity	correction	
As	inversions	occur	when	more	than	two	elements	are	at	similar	distances	from	each	

other,	 it	 is	possible	 to	 transform	the	non‐monotonic	 trees	of	 the	centroid	method	 into	
monotonic	ones	with	little	information	loss.	This	is	accomplished	by	merging	every	two	
nodes	where	an	inversion	occurs,	creating	a	non‐binary	branching	with	more	than	two	
nodes	 joining	 simultaneously	 into	 one	 (Figure	 3.4b).	 This	 non‐binary	 structure	 more	
parsimoniously	 describes	 the	 original	 information	 present	 in	 the	 data.	 For	 each	
correction,	the	level	value	of	the	simplified	node	is	calculated	as	the	mean	of	the	levels	of	
the	 original	 nodes,	 weighted	 by	 their	 respective	 sizes	 in	 terms	 of	 number	 of	 leaves.	
Corrections	are	applied	starting	at	the	root	node	and	working	through	the	tree	down	to	
the	leaf	level.	
	
‐ Limiting	maximum	granularity	
In	terms	of	tree	processing,	the	small	differences	between	the	leaves	in	the	base‐areas	

are	ignored	and	the	tree	is	transformed	in	a	so‐called	rose	tree,	where	the	meta‐leaves	
branch	 into	 single	 voxels	 (leaves,	 Figure	 3.4c).	 The	 partition	 defined	 by	 these	 meta‐
leaves	 would	 then	 represent	 the	 maximum	 effective	 granularity	 achievable	 from	 the	
data.	While	 rose‐trees	 can	 be	 computed	 directly	 from	data	 (Blundell	 et	 al.,	 2010),	 the	
computation	costs	are	far	greater	than	with	the	method	proposed	here.		
In	our	implementation,	the	meta‐leaves	are	the	homogenous	clusters	obtained	during	

the	first	stage	of	the	proposed	centroid	algorithm.	All	branchings	within	those	nodes	are	
then	 eliminated	 and	 their	 contained	 data	 points	 joined	 simultaneously	 at	 the	 original	
node	 level.	 Additionally,	 this	 grouping	 sharpens	 the	 connectivity	 profiles	 of	 the	meta‐
leaves	and	allows	for	a	better	 identification	of	connectivity	similarities	and	differences	
between	neighboring	regions.	A	detail	showing	the	meta‐leaves	obtained	for	part	of	the	
tree	of	one	of	the	subjects	studied	in	this	thesis	is	presented	in	Figure	3.5.	
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Figure	3.5:	 Detail	of	the	clusters	contained	by	the	sub‐tree	covering	the	IFG	region	of	the	left	hemisphere	of	

subject	A	(upper	left)	and	its	position	in	the	complete	tree	(lower	left)	as	well	as	a	view	of	the	
zoomed‐in	sub‐tree	(lower	center).	The	meta‐leaves	contained	in	the	mentioned	sub‐tree	have	
been	projected	onto	the	inflated	surface	(upper	right)	and	the	zoomed‐in	sub‐tree	(lower	right).	

	

‐ Collapse	of	non‐binary	structures	
Cases	 where	 non‐binary	 structures	 are	 present	 in	 the	 data	 are	 generally	

characterized	in	the	tree	by	merges	where	the	distance	change	is	much	smaller	than	the	
absolute	distance	level	of	the	nodes	being	merged	(when	not	resulting	in	an	inversion).	
The	 dependency	 on	 the	 distance	 level	 accounts	 for	 the	 fact	 that	 the	 significance	 of	
distance	 change	 is	 the	 lower	 the	higher	 a	node	 stands	 in	 the	 tree	hierarchy.	A	 similar	
leveling	concept	to	the	one	used	with	the	non‐monotonic	steps	was	used	here,	flattening	
any	merging	with	 a	distance	 change	 smaller	 than	a	 certain	proportion	of	 the	absolute	
distance	 value	 of	 the	 node	 considered.	 Constant	 and	 square	 dependencies	 were	 also	
considered,	 but	 the	 linear	 solution	 proved	 the	 best	 trade‐off	 between	 complexity	
reduction	and	information	loss.	The	resulting	tree	will	be	a	better	representation	of	the	
original	data	and	will	have	a	considerably	reduced	number	of	internal	nodes,	making	it	
easier	to	identify	natural	divisions	in	the	data	(Figure	3.4d).	
	
The	preprocessing	methods	described	in	this	section	effectively	reduce	the	number	of	

branchings,	 which	 in	 turn	 reduces	 the	 tree	 complexity	 and	 possible	 confounds	 in	 the	
dendrogram,	while	still	maintaining	maximum	usable	information	(shown	quantitatively	
in	 the	 Results	 section).	 This	 also	 facilitates	 the	 task	 of	 the	 information	 extraction	
algorithms,	introduced	in	the	following	sections.	
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3.7 Dendrogram	comparison	
	
3.7.1 Introduction	
	
Once	 the	 connectivity	 similarity	 structure	 of	 a	 brain	 is	 encoded	 in	 a	 dendrogram,	

there	 is	 the	 possibility	 of	 using	 the	 information	 from	 the	 whole	 tree	 to	 assess	 the	
structural	differences	in	brain	connectivity	between	different	subjects	or	measurements.	
Dendrogram	 comparison	 techniques	 are	 already	 in	 use	 in	 other	 fields,	 with	 most	

efforts	 being	 dedicated	 in	 the	 field	 of	 genetics	 (Critchlow	 et	 al.,	 1996;	 Restrepo	 et	 al.,	
2007).	 However,	 these	 techniques	 are	 used	 to	 compare	 different	 trees	 built	 over	 the	
same	dataset,	relying	on	a	perfect	match	between	the	leaf	elements	of	both	trees.	In	the	
scenario	of	brain	connectivity	trees	from	different	measurements,	this	would	only	be	the	
case	if	the	dendrograms	being	compared	originate	from	the	same	brain,	and	only	if	there	
have	not	been	significant	changes	in	morphology	nor	the	data	acquisition	method.	
	
3.7.2 Leaf	matching	across	trees	
	
In	order	to	be	able	to	apply	these	comparison	methods	when	assessing	connectivity	

structure	variability	across	subjects,	the	problem	of	leaf	identification	had	to	be	tackled.	
Potentially,	there	are	different	possible	criteria	for	the	identification	of	associated	pairs	
of	leafs	in	two	dendrograms,	for	example	the	amount	of	spatial	proximity	after	a	more	or	
less	sophisticated	co‐registration	of	 the	 images	or	cortical	surfaces	derived	from	these	
images.	 However,	 as	 the	 dendrograms	 to	 be	 compared	 are	 based	 on	 the	 similarity	 of	
tractograms,	it	seems	appropriate	to	use	the	same	criterion	for	finding	matched	pairs	of	
leafs.	The	solution	provided	involved	several	steps:	

 First,	 the	 trees	 are	 pre‐processed	 with	 the	 techniques	 previously	 introduced,	 in	
order	to	reduce	the	number	of	leaves	and	provide	a	maximum	granularity	partition.	
These	maximum	granularity	partitions	are	 fine‐tuned	so	 that	all	 the	 trees	have	 the	
same	 number	 of	 meta‐leaves.	 This	 number	 is	 chosen	 to	 obtain	 meta‐leaves	 big	
enough	 to	produce	wider	and	smoother	mean	 tractograms	 that	will	 overlap	better	
across	 datasets	 and	 make	 matching	 easier,	 and	 also	 provide	 an	 acceptable	
complexity	reduction	(the	lower	the	number	of	meta	leaves	in	each	tree,	the	smaller	
the	matching	 distance	matrix	 that	 needs	 to	 be	 computed	 will	 be)	 while	 incurring	
minimal	information	loss	due	to	the	elimination	of	highest	granularity	levels.	

 Mean	 tractograms	 corresponding	 to	 each	 of	 the	 meta‐leaves	 are	 obtained	 for	 all	
subjects.	The	mean	tractogram	of	any	given	node	is	calculated	as	the	log‐transformed	
average	 of	 the	 raw	 (not	 log‐transformed)	 seed	 tractograms	 contained	 in	 the	
respective	node.	

 The	 subject	 FA	 images	 are	 non‐linearly	 registered	 to	 a	 common	 space,	 and	 this	
transformation	was	applied	to	the	mean	tractograms.	The	registration	is	performed	
through	the	ANTS	package	(SyN	registration	algorithm;	Avants	et	al.,	2008;	Klein	et	



54	 3.A	hierarchical	method	for	whole‐brain	connectivity‐based	parcellation	
	

al.,	2009).	The	mean	tractograms	are	then	transformed	to	the	same	common	space	
using	the	deformation	fields	obtained	from	the	FA	image	registration.	

 For	each	pair	of	 trees	being	compared,	a	 tractogram	distance	matrix	between	their	
corresponding	meta‐leaves	is	obtained.	

 Matching	of	 the	meta‐leaves	of	 the	trees	 is	done	by	applying	a	greedy	algorithm	to	
the	 distance	matrix:	 The	 two	 tractograms	with	 the	 highest	 similarity	 are	matched	
and	their	entries	are	eliminated	from	the	data.	This	step	is	iterated	until	there	are	no	
more	entries	in	the	matrix.	In	order	to	avoid	poor	matches,	restrictions	on	minimum	
tractogram	 similarity	 and	 maximum	 Euclidean	 distance	 between	 cluster	
morphological	 centers	 are	 applied	 (minimum	mean‐tractogram	 similarity:	 0.1	 and	
minimum	 spatial	 distance	 between	 cluster	 centers:	 2	 cm)	 Clusters	 for	 which	 no	
suitable	 correspondence	 can	 be	 made	 are	 discarded	 and	 not	 considered	 in	 the	
comparison.	There	are	other	matching	algorithms	available,	 such	as	 the	Hungarian	
method	(Kuhn,	1955),	which	tries	to	optimize	the	matching	in	terms	of	global	rather	
than	 local	 distance	 between	 matched	 elements.	 However,	 this	 also	 means	 higher	
computation	time	and	resources.	For	a	first	implementation	and	proof	of	the	method,	
we	chose	the	simpler	greedy	matching	with	reduced	computation	time.	

	

The	leaf	matching	process	is	outlined	in	Figure	3.6.	

	
Figure	3.6:	 Leaf‐identification	 pipeline:	maximum	 effective	 granularity	 partitions	 are	 obtained	 for	 each	

subject,	i.e.,	Subjects	A	and	B	(a);	a	mean	tractogram	is	computed	for	each	cluster	(b);	all	tracts	
are	registered	to	a	common	space	(c);	pairwise	tract	similarity	matrix	is	computed	between	the	
subjects	 (d);	a	greedy	algorithm	 is	used	 to	extract	 the	cluster	correspondence	 table	 from	 the	
matrix	(e).	These	clusters	will	become	the	new	leaves	of	the	trees.	

	
3.7.3 Matching	quality	
	
The	smaller	the	distance	between	matched	clusters,	the	most	similar	they	are.	These	

distances	can	be	used	to	obtain	an	overall	quality	value	for	the	matching	of	the	trees.	By	
obtaining	the	mean	distance	of	the	matched	clusters,	weighted	by	their	size,	we	obtain	a	
normalized	average	distance	between	seed	voxels	of	both	trees.	
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were	M	is	the	number	of	matched	pairs	across	the	trees,	T1i	is	the	mean	tractogram	of	
the	matched	meta‐leaf	i	in	tree	1,	and	S1i	is	the	size	of	that	meta‐leaf	(the	number	of	data	
points	it	represents).	We	will	use	this	value	as	our	matching	quality	coefficient	for	that	
certain	tree	pair.	The	higher	the	matching	quality,	the	more	reliable	the	tree	comparison	
results	will	be.	
	
3.7.4 Tree	cophenetic	correlation	coefficient	(tCPCC)	
	
Once	the	leaves	of	two	trees	have	been	matched,	it	is	possible	to	apply	tree	comparison	
algorithms.	The	first	of	these	we	implemented	is	the	tCPCC.	The	principle	and	equation	
used	for	the	tree	quality	assessment	(CPCC;	Farris,	1969,	Equation	3.14)	can	be	adapted	
for	 tree	comparison.	 In	 this	case,	 instead	of	evaluating	 the	distance	values	encoded	by	
the	 tree	 against	 the	 ones	 obtained	 by	 the	 original	 tractograms	 for	 each	 pair	 of	 seed	
voxels,	the	distance	values	encoded	by	each	of	the	trees	for	each	pair	of	corresponding	
meta‐leaves	were	compared.	However,	as	different	meta‐leaves	may	have	different	sizes	
(in	 the	 sense	 of	 containing	 a	 different	 number	 of	 seed	 voxels),	 the	 CPCC	 factor	 was	
modified	in	order	to	include	a	weighting	with	cluster	size.	This	way	the	relevance	of	the	
distance	 value	 between	 two	meta‐leaves	was	 proportional	 to	 the	 fraction	 of	 the	 total	
seed	 voxels	 contained	 in	 them.	 The	 mathematical	 formula	 for	 the	 tCPCC	 resulted	 as	
follows:	
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where	xij	 is	the	distance	between	meta‐leaves	 i	and	 j	as	encoded	in	tree	X	and	Sxij	 is	
the	sum	of	the	sizes	of	meta‐leaves	i	and	j	for	tree	X.	

As	with	the	CPCC,	a	value	of	1	would	indicate	that	the	distance	values	between	single	
meta‐leaves	 encoded	 by	 both	 trees	 are	 linearly	 dependent	 (meaning	 that	 both	 trees	
contain	the	same	information	encoded	in	their	distance	values),	and	a	value	of	0	means	
that	the	trees	do	not	share	any	common	information.	
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3.7.5 Weighted	triples	similarity	(wTriples)		
	
An	alternative	tree	comparison	method,	described	in	detail	by	Bansal	and	colleagues	

(2011),	consists	of	comparing	the	 joining	order	of	all	possible	 triples	of	 leaves	of	each	
tree.	The	number	of	triples	for	which	the	joining	order	is	exactly	the	same	is	divided	by	
the	total	number	of	possible	triples;	obtaining	a	value	ranging	between	0	and	1.	As	with	
the	tCPCC,	a	weighting	was	included	to	account	for	meta‐leaf	size,	and	the	final	formula	
was	expressed	as:	
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The	 tCPCC	 and	wTriples	 comparison	methods	 are	 (partially)	 complementary:	while	
the	former	stresses	the	similarity	of	the	distance	values	encoded	by	both	trees,	the	latter	
focuses	on	 the	 similarity	of	 the	hierarchical	 topologies	of	both	 trees,	 regardless	of	 the	
numerical	values	encoded.	

	
3.7.6 Restricting	compared	structure	based	on	matching	quality	
	
When	using	the	tree	comparison	algorithms	mentioned	above,	we	are	assuming	that	

the	 leaf	matching	 is	correct	and	optimal,	and	contrasting	 the	 tree	structures	across	all	
granularities	 and	 levels.	 However,	 it	 might	 be	 argued	 that	 if	 the	 matching	 distance	
between	 two	 leaves	 is	not	optimal,	 	 this	means	 that	we	 can	only	 identify	 these	 leaves	
within	 a	 granularity	 lower	 than	 the	maximal,	 and	 therefore	 we	 should	 not	 use	 these	
leaves	for	comparing	structures	in	the	trees	that	are	above	such	granularity.	
In	 order	 to	 address	 this	 concern,	 and	 to	 test	 how	 the	 results	 could	 vary	 from	 it,	 a	

modification	was	 built	 into	 the	 tCPCC	 as	 an	 extra	method,	 that	 we	will	 call	 matching	
quality	restricted	comparison,	or	simply	restricted	comparison.		
In	this	modification,	a	binary	function	is	embedded	into	the	formula	of	Equation	3.16,	

at	both	numerator	and	denominator	sums.	This	function	follows	the	formula:	
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where	α	 is	 the	 scaling	 factor,	dT1(i,j)	 is	 the	distance	between	meta‐leaves	 i	 and	 j	 as	
encoded	in	tree	1,	and	dM(i)	is	the	matching	distance	of	leaf	i	across	trees.	Note	that	all	
four	conditions	must	be	met,	otherwise	the	function	will	be	0,	and	that	particular	 leaf‐
pair	will	have	no	influence	in	the	value	of	the	restricted	tCPCC.		
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As	only	a	subset	of	all	possible	pairs	will	contribute	to	the	index	value,	this	could	be	
understood	as	comparing	trees	with	smaller	number	of	leaves,	and	therefore	with	lower	
highest	granularity.	In	order	to	characterize	this	we	can	define	the	effective	granularity	
of	a	particular	comparison	as:	
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where	N	is	the	number	of	leaves	of	each	of	the	trees	being	compared	and	P	is	the	
number	of	pairs	that	contributed	to	the	tCPCC.

	

	

	
	

3.8 Interpretation	of	hierarchical	information	
	
3.8.1 Introduction	
	
As	argued	above,	 the	tree	 is	suitable	 for	assessing	the	structural	map	of	the	cortical	

sheet	 as	 a	 whole.	 However,	 in	 order	 to	 fully	 appreciate	 the	 function‐anatomical	
organization	of	the	cortex,	we	also	need	to	map	this	information	back	onto	the	cortical	
surface.	 Because	 the	 tree	 is	 a	multidimensional	 structure,	 it	 cannot	 be	 fully	 projected	
directly	onto	this	2‐dimensional	space.	Some	strategies	have	been	proposed	that	allow	
including	 some	degree	 of	multi‐granularity	 information	 into	 surface	mapping,	 such	 as	
using	similar	color	hues	 for	subclusters	of	a	bigger	cluster	(for	example	using	reddish,	
greenish	 and	 bluish	 hues	 for	 subclusters	 of	 3	 main	 divisions)	 or	 hierarchical	 “space‐
blobs”	 (Cachia	 et	 al.,	 2003).	 These	 approaches,	 however,	 are	 not	 suitable	 for	 the	 very	
high	 range	 of	 granularities	 and	 high	 number	 of	 nodes	 present	 in	 our	 trees.	 As	 an	
alternative,	representative	parcellations	(being	equivalent	to	a	complete	cut	of	the	tree	
that	severs	all	connections	between	the	top	node	and	any	leaf)	may	be	found	that	best	
approximate	 the	 information	 encoded	 in	 the	 tree.	 It	 is	 very	 unlikely	 that	 a	 single	
partition	 can	 represent	 the	 entire	 similarity	 structure	 of	 the	 data.	 Using	 a	 series	 of	
partitions	at	different	granularity	levels,	which	in	this	case	would	also	be	hierarchically	
nested,	might	be	a	better	way	to	achieve	it.	
	
3.8.2 Partition	extraction	algorithms	
	
3.8.2.1 Dendrogram	partitioning	
	
Many	different	methods	 for	comparing	and	assessing	partitions	can	be	 found	 in	 the	

literature	 (i.e:	 Halkidi	 et	 al.,	 2002;	 Rand,	 1971;	 Theodoridis	 and	Koutroumbas,	 1999).	
However,	 these	 methods	 usually	 refer	 to	 the	 original	 data,	 which	 in	 our	 case	 would	
involve	 operations	 with	 high	 dimensional	 tractograms,	 making	 them	 computationally	
expensive	 and	 slow.	 Limiting	 the	 data	 used	 to	 that	 contained	 in	 the	 tree	 allows	 fast	
partition	assessment	algorithms	to	be	implemented.	There	is	also	literature	available	on	
tree	partitioning	algorithms	(Jain	and	Dubes,	1988;	Langfelder	et	al.,	2008;	Zahn,	1971),	
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but	these	methods	did	not	translate	 into	meaningful	partitions	 in	the	case	of	the	brain	
connectivity	 trees	 studied	 here.	 The	 most	 traditional	 case	 for	 tree	 partitioning	 does,	
however,	deserve	introduction.		

	
3.8.2.2 Minimum	guaranteed	intra‐cluster	similarity	(Horizontal	cut)	
	
By	definition,	if	a	horizontal	cut	is	made	through	a	dendrogram	the	partition	obtained	

is	the	one	that	guarantees,	for	a	given	number	of	clusters,	a	maximum	lower	bound	for	
the	 intra‐cluster	 similarity.	Therefore,	 this	 cut	yields	 regions	with	high	 consistency.	 In	
order	 to	 select	 a	 partition,	 either	 a	 number	 of	 desired	 clusters,	 or	 the	 distance	 level	
where	the	horizontal	cut	shall	be	made	must	be	chosen.	

	
3.8.2.3 Cluster	spread	vs.	separation	(SS)	index	
	
The	horizontal	cut	method	only	 takes	 into	account	 the	distance	 level	of	 the	clusters	

involved	in	the	partition,	that	is,	the	encoded	distance	between	the	elements	contained	
in	 those	clusters	 (which	relates	 to	 spread	or	scatter	of	 the	clusters).	A	more	complete	
partition	 selection	 method	 should	 also	 factor	 in	 the	 distance	 between	 such	 clusters	
related	 to	 their	 spread.	 Furthermore	 the	 horizontal	 cut	may	 only	 be	 used	with	 a	 pre‐
defined	granularity	 level	 and	 is	unable	 to	 assess	 the	quality	of	 a	partition.	 In	order	 to	
tackle	these	shortcomings,	we	introduced	a	second	algorithm	presented	below.	
The	 overall	 spread	 of	 the	 clusters	 in	 a	 partition	 can	 be	 quantified	 through	 the	

formula:	
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where	 di	 and	 Si	 are	 the	 distance	 level	 and	 size	 of	 cluster	 i,	 respectively.	 N	 is	 the	
number	of	clusters	in	the	partition,	and	ST	the	sum	of	all	clusters	sizes	in	the	partition.	
On	the	other	hand,	the	distance	level	of	the	parent	of	a	given	node	in	the	tree	encodes	

the	 separation	between	 the	 center	of	 that	 cluster	and	 that	of	 its	 closest	neighbor.	The	
average	 separation	 between	 neighboring	 clusters	 for	 a	 given	 partition	 can	 then	 be	
expressed	as:	
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where	dp(i)	is	the	distance	level	of	the	parent	of	node	i.	
Using	these	two	formulas,	a	partition	quality	measure	is	obtained	by	calculating	the	

ratio	 between	 the	 mean	 spread	 of	 clusters	 in	 the	 partition	 and	 the	 mean	 separation	
between	neighboring	clusters:	the	SS	index.	
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A	higher	value	will	indicate	that,	for	that	partition,	the	mean	separation	of	clusters	is	
high	 compared	 to	 the	 separation	 of	 elements	 within	 the	 clusters.	 This	 index	 can	 be	
coupled	with	a	required	number	of	clusters,	in	order	to	find	the	best	possible	partition	of	
a	 given	 desired	 granularity.	 Alternatively,	 it	 can	 also	 be	 used	 to	 find	 global	 or	 local	
maxima	 in	 the	 SS	 values	 across	 the	 tree,	 thus	 revealing	 partitions	 of	 particular	
significance.		

	
3.8.2.4 Minimum	cluster	size	difference	
	
Due	 to	 the	nature	of	 the	 tractogram	 similarity	measure	used,	 areas	 that	 share	 long	

common	pathways	(like,	 for	example,	 the	 longitudinal	 fasciculus)	will	 tend	to	be	more	
similar	 to	 their	 surrounding	 areas	 sharing	 these	 large	 connections	 than	 to	 those	with	
shorter	pathways	or	more	 local	 connectivity	 fingerprints	 (such	as	 the	superior	 frontal	
lobe).	 Such	 highly	 cohesive	 areas	 tend	 to	 remain	 less	 partitioned	 by	 the	 spread‐
separation	scheme	than	areas	with	local	connectivity.	Depending	on	the	purpose	of	the	
partitioning,	 it	 may	 be	 useful	 to	 circumvent	 this	 side‐effect	 by	 obtaining	 partitions	
guided	 by	 the	 connectivity	 structure	 encoded	 in	 the	 tree	 but	 with	 an	 emphasis	 on	
clusters	of	 similar	 sizes.	This	 can	be	accomplished	by	 finding	partitions	 that	minimize	
the	mean	square	size	difference	for	a	given	number	of	clusters.	The	objective	function	to	
be	minimized	is	expressed	as:	

	
1

2

1

2
( )

( 1)

N N

i j
i j i

SizeDiff S S
N N



 

 
   	 (3.23)	

	
3.8.2.5 Efficient	hierarchical	search	of	partitions	
	

The	data	size	and	the	extremely	high	number	of	possible	partitions	contained	in	the	
trees	 means	 that	 an	 exhaustive	 assessment	 of	 the	 SS	 or	 minimum	 cluster	 difference	
values	for	all	possible	cuts	(even	if	only	those	with	a	certain	number	of	clusters)	would	
result	 in	 a	 very	 slow	 algorithm	 not	 usable	 in	 real	 time.	 In	 order	 to	 obtain	 partition	
selection	methods	fast	enough	to	be	integrated	into	an	interactive	tree	exploration	tool,	
a	 top‐down	 hierarchical	 search	 algorithm	 was	 implemented	 here.	 This	 means	 that,	
starting	 at	 the	 partition	 defined	 by	 the	 first	 branching	 of	 the	 tree	 (or	 sub‐tree),	 all	
possible	 subdivisions	 of	 each	 cluster	 going	 down	 up	 to	 four	 branching	 levels	 are	
considered,	and	the	resulting	partitions	are	evaluated.	The	best	performing	partition	is	
identified,	 and	 the	 corresponding	 cluster	 from	 which	 division	 it	 had	 derived	 is	
subdivided	down	one	level.	The	process	is	iterated	until	the	desired	number	of	clusters	
has	been	obtained	or	until	the	maximum	granularity	partition	has	been	reached.	
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3.8.2.6 Stable	boundaries	
	
The	methods	 described	 above	 focus	 on	 finding	 complete	 partitions	 in	 the	 tree,	 but	

information	 can	 also	 be	 extracted	 from	 the	 tree	 that	 does	 not	 involve	 a	 complete	
partition	 of	 the	 dataset.	 As	 each	 bifurcation	 in	 the	 tree	 represents	 the	 separation	
between	 two	 clusters	 (i.e.,	 a	 boundary),	 a	 technique	 could	 aim	 at	 finding	 the	 most	
relevant	or	persistent	boundaries	rather	than	entire	parcellations.	An	idea	would	be	to	
look	at	the	branch	lengths	of	the	nodes	involved.	The	 longer	the	branch,	 the	wider	the	
range	 of	 granularities	 at	which	 the	 boundary	 for	 that	 region	 remain	 stable.	 This	way,	
important	boundaries	would	be	mapped	on	the	cortex,	rather	than	entire	parcellations.		
Procedurally,	 the	 branch	 lengths	 of	 all	 nodes	 are	 checked	 (the	 distance	 level	

difference	between	a	node	and	its	parent	node),	and	those	above	a	given	value	entered	
as	parameter	are	selected.	Their	corresponding	nodes	will	not	necessarily	constitute	a	
partition	(and	they	might	be	nested)	and	their	edges	will	delimit	more	stable	boundaries	
than	 those	 not	 detected	 for	 that	 given	 parameter.	 Also,	 the	 branch	 length	 could	 be	
normalized	 by	 the	 node	 height	 from	 which	 it	 stems	 (and	 multiplied	 by	 a	 tuning	
coefficient),	 as	 at	higher	 granularities	 the	node	branches	 are	usually	much	 shorter,	 so	
the	 same	absolute	 value	might	have	different	meaning	 at	 different	 granularity	 ranges.	
However,	this	principle	requires	more	study,	and	the	algorithm	and	results	presented	in	
this	study	are	only	preliminary.	
	
3.8.3 Visualization	of	clustering	results	
	
In	 order	 to	 interpret	 clustering	 results	 via	 sets	 of	 partitions	 (or	 selected	 clusters),	

these	 must	 be	 visualized	 in	 the	 hierarchical	 tree	 and	 in	 the	 brain	 surface.	 A	 simple	
dendrogram	 drawing	 algorithm	 allowing	 an	 input	 of	 cluster	 identifiers	 and	 desired	
colors	was	 implemented	 for	 partition	 projection	 onto	 the	 tree.	 To	 project	 our	 results	
onto	 the	 brain,	 we	 desired	 to	 use	 the	 surface	 generated	 from	 the	 T1	 images	 by	 the	
Freesurfer	package	(surfer.nmr.mgh.harvard.edu),	however,	our	clustering	results	refer	
to	seed	voxel	coordinates	from	the	diffusion	image.	
For	 the	 datasets	 where	 a	 diffusion	 field	 map	 had	 been	 acquired	 and	 the	 diffusion	

image	unwarped,	we	used	a	nearest	neighbor	 interpolation	 to	project	our	results	onto	
the	original	Freesurfer	image	(corresponding	to	the	gray	matter/white	matter	interface,	
same	as	our	seed	voxels).	Each	vertex	 in	 the	original	 surface	 is	assigned	to	the	cluster	
the	nearest	data	point	belongs	to.	Freesurfer	generates	several	surfaces	from	each	brain,	
original	 (grew	 matter/white	 matter	 surface	 used	 to	 generate	 the	 rest),	 pial	 (cortical	
surface),	 inflated	 (allowing	 clearer	 view	 of	 the	 sulci	 and	 insula),	 sphere,	 etc.	 All	 these	
surfaces	 have	 1‐to‐1	 correspondence	 between	 their	 vertices,	 so	 once	 the	 results	 are	
projected	onto	the	original	surface,	they	can	also	be	projected	into	any	of	the	other	ones,	
most	commonly	pial	surface	(Figure	3.7).	
	
As	 all	 the	 clustering	 analysis	 is	 done	 in	 the	 diffusion	 image,	 in	 those	 cases	 where	

diffusion	field	maps	are	unavailable	and	therefore	unwarping	cannot	not	be	performed	
the	 results	 would	 have	 some	 distortion	 with	 respect	 to	 the	 T1.	 In	 order	 to	 minimize	
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projection	errors,	 an	extra	processing	 step	 is	 included.	After	generating	 the	Freesurfer	
surfaces,	 the	 T1	 image	 histogram	 is	 normalized	 to	 the	 FA	 image,	 and	 non‐linearly	
registered	to	it	using	ANTS.	The	transformation	matrix	obtained	is	then	used	to	unwarp	
the	 surface	 with	 unwarping	 tool	 from	 the	 CBS	 toolset	 within	JIST	
(www.cbs.mpg.de/institute/software/cbs-hrt;	 Landman	 et	 al.,	 2013).	 The	 nearest	
neighbor	interpolation	is	then	used	with	this	surface,	and	the	results	are	finally	shown	in	
the	unchanged	ones	(as	there	is	still	1‐to‐1	correspondence).	Still	it	must	be	noted	that	
in	 some	cases	 small	projection	errors	might	 still	 occur,	 these	 can	be	 seen	as	 irregular	
boundaries,	or	as	small	“spots”	near	the	boundaries	with	the	color	of	an	adjacent	cluster	
(see	for	example	the	boundaries	between	purple	and	cyan	clusters	and	purple	and	green	
clusters	in	the	rostral	part	of	Figure	3.7d).	
	

	
	
Figure	3.7:	 Visual	example	of	the	intermediate	steps	of	the	partitional	results	before	being	presented	in	the	

final	 surfaces:	 cluster	 results	 in	 dMRI	 seed	 voxels	 (a);	 nearest‐neighbor	 projection	 onto	
Freesurfer	original	surface	(b);	visualization	on	pial	(c)	or	inflated	(d)	surfaces.	

	
3.8.4 Interactive	hierarchical	exploration	module	
	
The	 visualization	 algorithms	 described	 above,	 along	 with	 the	 partition	 selection	

methods	 of	 section	 3.8.2	 and	 the	 dendrogram	 processing	 tools	 of	 section	 3.6	 were	
included	as	part	of	a	 fast	 interactive	exploration	and	visualization	tool	 for	hierarchical	
characterization	of	 brain	 connectivity.	With	 a	 tree	 file	 and	 the	brain	 surfaces	 as	 input	
our	 tool	 allows	 for	 real‐time	 exploration	 of	 the	 tree	 and	 partition	 selection,	 while	
visualizing	 the	 results	 simultaneously	on	 the	3D	brain	 surface	and	 in	 the	dendrogram	
plot	(Figure	3.8).	This	tool	was	implemented	as	modules	of	the	open‐source	OpenWalnut	
framework	(www.openwalnut.org)	and	can	be	freely	downloaded	from	the	website.	
An	implementation	of	the	same	tools	is	also	planned	for	the	visualization	tool	BrainGL	

(code.google.com/p/braingl).	
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Figure	3.8:	 Snapshot	of	the	interactive	hierarchical	exploration	tool	implemented	in	OpenWalnut.	

	

The	tree	building	method	(including	also	tree	processing),	CPCC	algorithm,	and	tree	
comparison	methods	were	 implemented	 using	 C++	 as	 standalone	programs	 to	 be	 run	
through	bash	command	line	in	a	linux	system.	
	
3.8.5 Partition	color	matching	across	datasets	
	
As	our	trees	potentially	contain	very	high	granularity	partitions,	it	was	not	viable	to	

implement	a	morphological	or	atlas	based	coloring	scheme.	Instead,	in	the	OpenWalnut	
module	each	node	of	the	tree	is	assigned	a	specific	color.	Starting	at	the	top	of	the	tree	
(lowest	granularity)	a	primary	color	is	assigned	to	the	first	node,	at	every	branching,	the	
node	 color	will	 be	 inherited	by	 its	 biggest	 children	node	 (larger	 number	 of	 contained	
data	 points),	 and	 the	 other	 nodes	 will	 be	 given	 new	 colors	 trying	 to	 maximize	 color	
distinctiveness.	This	process	is	iterated	until	every	node	in	the	tree	has	been	assigned	a	
color.	
Unfortunately,	 this	 means	 that	 when	 comparing	 partitions	 across	 datasets,	 cluster	

colors	 of	 similar	 areas	 would	 not	 necessarily	 match,	 which	 would	 makes	 visual	
comparison	 less	 intuitive.	However,	 if	 the	 trees	 have	 been	matched	 using	 the	method	
described	in	section	3.7.2,	this	information	can	be	used	to	bring	a	certain	degree	of	color	
matching	to	the	partitions.	
The	 following	 algorithm	 was	 implemented	 and	 used	 when	 comparing	 partitions	

across	 subjects	 and	 datasets.	 Separately	 for	 each	 tree,	 each	 cluster	 of	 the	 desired	
partition	 to	 be	 color‐matched	 is	 identified	 with	 the	 cluster	 of	 the	 partition	 from	 the	
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other	 tree	 with	 which	 the	 overlap	 of	 leaves	 is	 maximal.	 In	 cases	 when	 identification	
between	 two	 clusters	 agrees	 bi‐directionally,	 the	 cluster	 of	 the	 second	 partition	 is	
colored	 using	 the	 first	 one	 as	 template.	 In	 cases	 where	 clear	 multiple‐to‐one	
identification	is	obtained,	the	clusters	are	assigned	different	colors	but	of	a	similar	hue	
to	 the	 color	of	 the	one	 cluster	matched.	 In	 the	 remaining	 cases	 the	original	 colors	are	
kept.	
When	contrasting	partitions	from	different	datasets,	the	information	obtained	when	

matching	leafs	on	different	trees	can	be	exploited	to	give	the	same	color	to	overlapping	
clusters	across	matched	trees	and	ease	visual	interpretation.	
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4. A	PROOF‐OF‐PRINCIPLE	STUDY	ON	MULTI‐
GRANULARITY	dMRI‐BASED	WHOLE‐BRAIN	
CHARACTERIZATION	

	

4.1 Overview	
	
In	this	section	we	will	test	the	developed	method	on	a	small	group	of	healthy	young	

subjects.	 The	 datasets	 consist	 of	 four	 young	 healthy	 participants	 and	 a	 repeated	
measurement	of	the	fourth	participant	(denominated	A,	B,	C,	D1	and	D2	respectively,	see	
section	3.2	for	details	on	acquisition	and	preprocessing).	The	results	obtained	with	each	
of	the	methods	proposed	in	the	last	section	will	be	presented	and	contrasted.	Part	of	the	
results	 presented	 in	 this	 section	 have	 been	 published	 as	 an	 article	 in	 the	 scientific	
journal	Human	Brain	Mapping	 (Moreno‐Dominguez	 et	 al.,	 2014a)	 and	 in	 posters	 and	
talks	at	international	conferences	(Anwander	et	al.,	2012;	Knösche	et	al.,	2012;	Moreno‐
Dominguez	et	al.,	2013,	2011a).	

	

4.2 Selecting	a	linkage	method	
	
Pairwise	 tractogram	 distance	 matrices	 were	 obtained	 for	 both	 hemispheres	 of	

subjects	A,	B	and	C	 (i.e.,	 6	datasets).	Hierarchical	 trees	were	built	over	 these	matrices	
using	each	of	the	graph	methods	proposed	in	section	3.4.2.	Trees	were	also	built	directly	
from	the	tractograms	using	the	centroid	method	presented	in	section	3.4.3.	for	each	of	
the	 different	 neighborhood	 levels	 implemented,	 with	 and	 without	 the	 initial	
homogeneous	merging	stage.	 	For	 the	centroid	 trees,	 several	values	 for	 the	number	of	
target	 clusters	 where	 to	 stop	 the	 homogeneous	 merging	 phase	 (top	 of	 the	 sub‐trees	
being	grown)	were	 tested	on	one	of	 the	datasets.	5000	was	selected	as	 the	best	value	
that	 incurring	 in	 minimal	 information	 loss	 while	 facilitating	 many	 steps	 of	 the	 tree	
processing.	As	will	be	shown	below,	the	information	loss	was	also	minimal	for	the	rest	of	
the	datasets,	and	the	parameter	was	accepted	as	valid.	
In	order	to	test	the	outcome	of	the	tree	building	algorithms	over	unstructured	data,	a	

set	of	artificial	tractograms	(equal	in	number	to	those	obtained	from	the	real	datasets)	
was	 generated	 in	 a	 way	 that	 they	 would	 yield	 a	 distance	 matrix	 of	 random	 values	
uniformly	 distributed	 between	 0	 and	 1	 (that	 is,	 a	 dataset	 absent	 any	 hierarchical	
structure).	 This	 was	 achieved	 by	 creating	 tractograms	 representing	 points	 uniformly	
distributed	over	 the	 surface	of	 a	 sphere	 in	n‐dimensional	 space.	However,	 in	 order	 to	
ensure	 this	 uniformity	 in	 a	 reasonable	 generation	 time,	 the	 dimension	 of	 the	 random	
tractograms	was	 limited	 to	n	=	10.	When	 testing	 the	centroid	method	(which	requires	
physical	 neighborhood	 information),	 each	 of	 the	 three	 random	 tractogram	 sets	 was	
assigned	coordinates	from	a	different	real	dataset.	
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The	 computation	 time	 for	 obtaining	 one	 full	 distance	matrix	 needed	 for	 the	 graph	
methods	 amounted	 to	 two	 full	 weeks	 on	 a	 dual‐core	 computer.	 After	 the	 matrix	 is	
obtained,	the	tree	building	processes	are	quick	(within	15	minutes)	but	require	a	large	
amount	of	available	RAM	memory	(in	excess	of	20	Gb)	for	loading	the	full	matrix.	With	
the	 centroid	 method	 these	 requirements	 are	 reduced	 to	 an	 average	 of	 48	 hours	 of	
computing	 using	 4	 Gb	 of	 RAM.	 We	 would	 like	 to	 note	 that	 in	 our	 study	 we	 have	
emphasized	 working	 with	 high	 resolution	 images	 in	 order	 to	 obtain	 the	 maximum	
quality	 and	 granularity	 possible	 while	 maintaining	 a	 reasonable	 computing	 time.	
However,	 if	 faster	 processing	 would	 have	 priority,	 working	 with	 lower	 resolution	
images	 would	 drastically	 cut	 down	 the	 required	 computation	 times	 and	 memory	
requirements,	 taking	days	to	obtain	a	 full	matrix	 instead	of	two	weeks,	and	only	a	 few	
hours	for	a	centroid	tree.	
It	 is	not	possible	to	detect	significant	differences	in	the	overall	topology	of	the	trees	

obtained	with	the	different	methods	by	mere	visual	inspection,	except	perhaps	that	the	
distance	values	for	the	single	and	complete	linkage	methods	tend	to	be	much	lower	and	
much	higher,	respectively,	than	the	ones	for	the	other	methods	(Figure	4.1).	Numerical	
analysis	 is,	 therefore,	 necessary	 to	 assess	 their	 fit	 to	 the	 data.	 For	 this	 purpose,	CPCC	
values	were	computed	for	all	obtained	dendrograms.	In	order	to	set	a	baseline	level	for	
the	 CPCC	 values,	 trees	 were	 also	 built	 from	 unstructured	 datasets	 (using	 artificially	
generated	 tractograms	 that	 yield	 random	 uniformly	 distributed	 distance	 matrices,	 as	
explained	in	the	previous	subsection),	and	their	CPCC	values	computed.	The	results	are	
shown	in	Figure	4.2.	
	

	
Figure	4.1:	 Trees	obtained	from	the	left	hemisphere	data	of	subject	A	for	each	of	the	graph	methods	plus	

the	centroid	method	with	a	26	neighborhood.	Note	that	a	particular	position	in	the	x‐axis	does	
not	identify	a	particular	seed	voxel,	this	may	change	in	order	to	allow	for	the	representation	of	
the	structure	in	tree	form	without	any	line	crossings.	
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Figure	4.2:	 Average	CPCC	values	for	trees	obtained	from	each	hemisphere	of	subjects	A,	B,	and	C,	and	from	
the	 three	 random	 tractogram	 sets	 using	 the	 graph	methods	 (top),	 restriction‐free	 centroid	
method	(middle),	and	centroid	method	with	initial	homogeneous	merging	phase	(bottom).	The	
cyphers	 in	 the	 centroid	 method	 labels	 indicate	 the	 different	 degrees	 of	 neighborhood	 (see	
section	3.4.3.2	for	more	details).	The	error	bars	indicate	the	standard	deviations.	

	

The	results	show	that,	for	the	real	datasets,	the	single	linkage	method	performs	worst,	
the	complete	and	weighted	linkage	methods	are	not	a	very	good	match	to	the	data	either.	
The	 average	 and	 centroid	methods	 provide	 the	 best	 fit	 to	 the	 original	 data,	 obtaining	
high	and	very	similar	CPCC	scores,	with	no	statistically	significance	difference	between	
them.	 Moreover,	 there	 was	 no	 significant	 improvement	 in	 quality	 using	 wider	
neighborhoods	in	the	centroid	method.	Also,	there	was	no	significant	change	observed	in	
the	 CPCC	 value	 between	 restriction‐free	 centroid	 methods	 and	 those	 with	 initial	
homogeneous	 merging	 stage,	 indicating	 this	 process	 (carried	 out	 with	 the	 selected	
parameter)	did	not	deteriorate	 the	quality	of	 the	obtained	trees	(overall	average	CPCC	
difference	was	 of	 0.75%	with	 a	 standard	 deviation	 of	 0.65%).	 In	 all	 cases	 the	 values	
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obtained	were	well	above	their	baseline	levels,	especially	in	the	case	of	the	full	centroid	
method.	 Given	 that	 there	 was	 no	 significant	 information	 loss	 by	 applying	 the	 initial	
homogeneous	merging	stage	to	the	centroid	method,	from	this	point	on	we	discard	the	
restriction‐free	algorithm,	in	favor	of	the	one	including	all	the	features.	
The	computational	 load	 incurred	for	obtaining	each	tree	was	empirically	derived	as	

the	number	of	 tractogram	similarities	 computed,	 and	 the	 results	 are	plotted	 in	Figure	
4.3.	 As	 can	 be	 seen,	 an	 average	 of	 4.3∙104		N	 tractogram	 similarity	 operations	were	
necessary	to	build	up	the	graph	linkage	trees	(value	out	of	axis	range),	with	N	being	the	
size	 of	 the	dataset	 from	which	 the	 trees	were	 computed	 (the	 complexity	 of	 the	 graph	
methods	is	N(N‐1)/2	and	the	datasets	used	are	in	the	range	of	6.5∙104	to	10∙104	points).	
On	the	other	hand,	centroid	methods	required	only	15N	to	50N	operations,	three	orders	
of	magnitude	less	than	the	graph	methods.	

	

	

Figure	4.3:	 Average	 computational	 complexity	 (expressed	 as	 the	 number	 of	 tractogram	 similarity	
operations	performed	normalized	by	 the	 size	of	 the	dataset	N)	of	 the	 tree	building	methods	
applied	to	the	real	datasets	(graph	linkage	in	red,	centroid	method	with	different	neighborhood	
levels,	 18	 to	 124,	 in	 blue).	 For	 interpretability,	 the	 bar	 for	 the	 graph	 linkage	 methods	 is	
truncated	and	the	numerical	value	is	indicated.	Error	bars	show	the	standard	deviation.	

	

It	is	clear	from	these	results	that	from	the	methods	considered,	average	and	centroid	
linkages	 are	 the	 best	 fit	 to	 the	 data,	 with	 the	 latter	 having	 the	 further	 advantage	 of	
incurring	 far	 less	computational	 load.	Within	 the	centroid	methods,	 the	computational	
load	increased	almost	linearly	with	the	number	of	neighboring	voxels	considered.	
The	26	neighborhood	centroid	method	with	initial	homogeneous	merging	stage	(c26)	

was	 chosen	 as	 the	 optimal	 trade‐off	 between	 the	 quality	 of	 the	 tree	 and	 the	
computational	cost,	and	was	the	only	method	used	for	the	remainder	of	the	study	(while	
the	 c18	method	 showed	 slightly	 lower	 complexity,	 it	 also	 showed	 slightly	 lower	CPCC	
mean	 scores	 and	 higher	 CPCC	 standard	 deviation,	 so	 c26	 was	 deemed	 the	 most	
conservative	choice	among	the	two).	
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4.3 Cleaning	the	dendrograms	
	
The	 tree	 preprocessing	 steps	 described	 in	 section	 3.6	 were	 applied	 to	 the	 c26	

dendrograms	of	each	hemisphere	from	subjects	A,	B,	and	C.	
Firstly,	 those	 data	 points	with	 distances	 greater	 than	 0.1	 to	 their	 nearest	 neighbor	

were	considered	as	outliers	and	excluded,	resulting	in	a	rejection	of	an	average	of	0.5%	
of	 the	 data	 points	 (as	 indicated	 in	 the	 methods	 section,	 this	 step	 was	 actually	 taken	
during	the	tree	building	process,	but	for	clarity	of	structure	we	present	it	in	this	section)	.	
Following,	 non‐monotonicity	 was	 corrected	 and	 the	 maximum	 granularity	 was	

limited	by	merging	all	inner	nodes	of	the	5000	homogeneous	sub‐trees	obtained	during	
the	first	phase	of	tree	construction,	effectively	transforming	these	nodes	into	non‐binary	
meta‐leaves;	non‐binary	structures	at	all	 levels	of	the	tree	were	detected	and	flattened	
using	a	parameter	of	l	=	0.05	(nodes	with	branches	shorter	than	5%	of	the	node	height	
were	eliminated).	These	parameters	were	selected	empirically	in	order	to	obtain	some	
added	 complexity	 reduction	 at	 higher	 levels	 of	 the	 tree	 (measuring	 complexity	 as	 the	
number	of	branchings	or	 inner	nodes	 in	 the	 tree)	while	keeping	 the	 total	 information	
loss	in	the	same	order	range	(<1%).	
As	 with	 the	 number	 of	 homogeneous	 sub‐trees,	 these	 parameter	 values	 were	

optimized	 for	 one	 of	 the	 datasets	 by	 testing	multiple	 values	 and	 selecting	 those	who	
performed	best,	achieving	further	complexity	reduction	without	significantly	adding	any	
information	loss.	As	the	performance	of	these	parameter	values	was	similar	for	the	rest	
of	the	datasets,	the	values	were	accepted.	Although	a	wider	and	more	strict	testing	could	
be	performed	to	better	optimize	parameter	values,	and	would	make	 for	an	 interesting	
future	study,	significant	changes	would	not	expected	and	a	considerable	computational	
effort	 and	 time	 resources	would	 be	 necessary,	which	were	 deemed	more	worthwhile	
spending	in	the	following	sections	of	this	study.	
	
In	order	 to	quantitatively	 assess	 the	 complexity	 reduction	and	 the	 information	 loss	

caused	by	the	pre‐processing,	inner	node	count	and	CPCC	values	were	obtained	for	the	
trees	at	each	processing	step,	and	their	relative	changes	in	relation	to	the	previous	states	
were	 evaluated	 (Figure	 4.4).	 The	 results	 show	 that	 neither	 of	 the	 first	 two	 steps	
(monotonicity	 correction	 and	 limiting	 of	 maximum	 granularity)	 significantly	 reduced	
the	 amount	 of	 information	 contained	 in	 the	 trees,	 while	 the	 second	 step	 achieved	 a	
complexity	reduction	of	almost	90%.	The	third	step	(flattening	of	non‐binary	structures)	
further	 reduced	 the	 complexity	 by	 5%,	 while	 introducing	 an	 average	 of	 0.2	 %	 of	
information	 loss	 (without	 statistical	 significance).	 Overall,	 the	 whole	 pre‐processing	
pipeline	achieved	a	complexity	reduction	of	more	than	90%	with	a	loss	of	information	of	
less	than	0.5%	(0.15%	on	average),	making	it	a	remarkably	efficient	and	useful	tool	for	
improving	the	performance	of	partition	finding	and	tree	comparison	algorithms.	 It	can	
also	ease	interpretation	of	the	trees	through	visual	inspection,	although	this	still	remains	
a	 challenging	 task.	 Visual	 changes	 on	 tree	 structure	 caused	 by	 the	 pre‐processing	 are	
exemplified	in	Figure	4.5.		
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Figure	4.4:	 Average	Tree	Complexity	Reduction	(left)	and	Information	Loss	(right)	of	each	step	in	the	pre‐
processing	pipeline,	relative	to	the	previous	step.	The	last	column	of	each	chart	represents	the	
overall	added	effect	of	 the	complete	pipeline.	Complexity	 reduction	 is	measured	as	being	 the	
relative	number	of	inner	nodes	eliminated	in	each	step.	Information	loss	is	measured	as	being	
the	relative	decrease	in	CPCC	index	value.	Error	bars	show	the	standard	deviation.	

	
	

	
	
	
Figure	4.5:	 Tree	corresponding	to	the	connectivity	structure	of	the	left	hemisphere	of	subject	A	before	(left)	

and	after	(right)	preprocessing.		
	
	

4.4 Comparing	whole	connectivity	structure	across	datasets	
	
The	connectivity	structure	information	encoded	in	the	cleaned	trees	can	be	used	as	a	

whole,	 to	 compare	 changes	 in	 this	 structure	 across	 datasets.	 Following	 the	 steps	
described	 in	 section	 3.7.2,	mean	 tractograms	were	 obtained	 for	 each	meta‐leaf	 of	 the	
processed	 trees	 and	 non‐linearly	 transformed	 to	 a	 common	 space,	 guided	 by	 FA	
registration.	In	this	instance	the	data	of	subjects	A	and	B	was	registered	into	the	space	of	
subject	 C.	 For	 the	within‐subject	 comparisons	 across	 hemispheres,	 the	 tractograms	 of	
the	right	hemisphere	were	flipped	and	transformed	into	the	left	hemisphere;	also	guided	
by	a	previous	FA	registration,	as	in	the	inter‐subject	case.	Next,	the	tractogram‐distance	
matrices	were	obtained	and	the	greedy	leaf‐matching	algorithm	was	applied,	restricted	
to	a	maximum	Euclidean	distance	between	matched	cluster	centers	of	2	cm.	Using	the	
resulting	 leaf‐matching	 tables,	 the	 tCPCC	 and	 the	 wTriples	 similarity	 values	 were	
obtained.	As	a	relative	indication	of	the	matching	quality,	the	mean	tractogram	distances	
between	matched	clusters	as	well	as	the	mean	Euclidean	distances	between	the	matched	
clusters’	geometrical	centers	were	computed.	
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In	 order	 to	 test	 the	 reliability	 of	 the	method	 and	 its	 robustness	 against	 noise,	 the	
whole	process	(starting	at	tractogram	computation	and	tree	building)	was	repeated	with	
a	noisier	version	of	the	same	dataset,	using	only	one,	instead	of	three	repetitions	of	the	
dMRI	 acquisition.	 Test‐retest	 performance	 was	 also	 assessed	 using	 two	 datasets	
obtained	from	a	fourth	subject	within	a	short	period	of	time	(1	week),	referred	to	as	D1	
and	D2.	
In	 order	 to	 establish	 a	 baseline	 level	 for	 the	matching	 values,	 a	 random	matching	

scheme	was	set	up,	in	which	each	meta‐leaf	of	the	first	tree	was	matched	at	random	to	a	
meta‐leaf	 of	 the	 second	 tree	 whose	 cluster	 center	 was	 not	 further	 than	 2cm	 away.		
Afterwards,	 tCPCC	 and	wTriples	 values	were	obtained.	This	 process	was	 repeated	100	
times	 for	 each	 possible	 subject	 combination	 and	 the	 average	 value	 obtained.	 Distinct	
baseline	 values	 from	 both	 tCPCC	 and	 wTriples	 were	 computed	 for	 inter‐subject	
comparisons,	left	vs.	right	hemisphere	comparisons	and	high	vs.	low	SNR	comparisons.	
	

	

Figure	4.6:	 Tree	similarity	values	plotted	against	matching	quality	for	tree	comparisons.	Baseline	levels	for	
the	corresponding	matchings	are	 shown	below	 their	datapoints	 in	 the	 same	color,	 solid	 lines	
correspond	to	tCPCC	baselines,	and	dotted	lines	to	wTriples	ones.	

	

The	results	are	shown	in	Figure	4.6	where	tCPCC	and	wTriples	are	plotted	against	the	
leaf	 matching	 quality	 between	 the	 compared	 data	 sets.	 Several	 observations	 can	 be	
made:	

 All	tree	comparison	values	obtained	are	well	above	the	baseline	levels,	rejecting	the	
hypothesis	that	the	leaf‐matching	obtained	might	have	completely	failed,	making	the	
comparison	 values	 meaningless.	 This	 confirms	 that	 there	 are	 indeed	 non‐random	
structural	similarities	between	the	trees	that	can	be	detected.	
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 For	tCPCC,	 the	 information	 loss	by	 lower	SNR	and	the	variability	between	separate	
measurements	 of	 the	 same	 subject	 are	 smaller	 than	 the	 differences	 between	
different	hemispheres	or	subjects	(i.e.	the	values	are	higher	and	their	spread	smaller	
for	the	full	green	circles	than	the	red	squares	or	blue	triangles).	This	 indicates	that	
differences	in	leaf	similarity,	as	encoded	in	the	trees,	are	not	generally	obscured	by	
noise	 and	 can	 be	 interpreted.	 In	 contrast,	 wTriples,	 which	 only	 measures	 tree	
topology	(joining	orders),	seems	to	be	much	more	susceptible	to	noise,	as	the	values	
are	 always	 lower	 and	 the	 spread,	 especially	 in	 the	 intra‐subject	 high	 vs.	 low	 SNR	
measurements	is	increased.	

 The	similarities	between	the	same	hemispheres	in	different	subjects	(high	SNR)	and	
those	between	different	hemispheres	in	the	same	subjects	are	within	the	same	order	
of	magnitude	(between‐hemispheres	slightly	lower,	but	not	significant).	

 Same‐subject	comparisons	 features	much	better	 leaf‐matching	quality	compared	to	
between‐hemispheres	 comparisons,	 which	 in	 turn	 match	 better	 than	 between‐
subject	comparisons.	

 When	 comparing	 across	 subjects	 using	 lower	 SNR	 datasets,	 comparison	 values	
slightly	decrease.	Spread	and	matching	quality	however,	remain	almost	unchanged.	

	

	
	
Figure	4.7:	 Relationship	 between	 matching	 quality	 and	 Euclidean	 distance	 between	 geometric	 cluster	

centers.		
	
In	Figure	4.7	the	matching	quality	is	shown	against	the	mean	Euclidean	distance	(in	

the	morphology)	 between	matched	 cluster	 centers,	 and	 an	 inverse	 linear	 relationship	
can	 be	 observed	 between	 the	 two.	 This	 is	 to	 be	 expected	 as	 a	 higher	 morphological	
variability	(such	as	across	subjects	or	hemispheres)	will	cause	distance	between	cluster	
centers	to	be	greater	and	at	the	same	time	affect	the	maximum	similarity	that	the	tracts	
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of	 matching	 cluster	 can	 have	 (which	 is	 what	 we	 have	 called	 matching	 quality).	 It	 is	
interesting	to	notice	though,	that	a	lower	matching	quality	does	not	necessarily	translate	
into	a	lower	tree	similarity	index,	as	can	be	observed	in	Figure	4.6,	where	inter‐subject	
comparisons	 (blue	 triangles)	 have	 lower	 quality	 matching	 as	 inter‐hemispheric	
comparisons	(red	squares)	while	staying	in	the	same	index	value	range.	

	
However,	when	we	focus	on	the	values	for	specific	inter‐subject	comparisons	(Figure	

4.8,	corresponding	to	the	blue	triangles	and	purple	crosses	 in	the	previous	charts),	we	
see	 that	 relative	 relationship	 between	 different	 pairs	 of	 datasets	 are	 not	 kept	 across	
different	levels	of	SNR.	This	means	that	although	promising,	the	comparison	method	is	
in	its	current	state	not	stable	enough	to	interpret	differences	of	absolute	tree	similarity	
values	across	subject	pairs.	

	

	
		
Figure	4.8:	 Detail	of	tree	similarity	values	between	different	subject	pairs	for	high	and	low	SNR	levels.			
	
Restrictive	 tree	 comparison	 (as	 presented	 in	 section	 3.7.6)	 was	 also	 computed	

between	the	same	datasets,	and	results	are	shown	in	Figure	4.9.	Comparisons	with	high	
values	of	overall	matching	quality	 remain	unchanged,	across	hemisphere	 comparisons	
are	 slightly	 reduced,	 while	 across	 subject	 comparisons	 remain	 in	 the	 same	 range	 for	
high	SNR	but	decrease	significantly	when	 low	SNR	datasets	are	used.	This	means	 that	
this	method	is	more	susceptible	to	noise,	although	only	in	cases	where	matching	quality	
is	reduced.	
If	we	have	a	 look	at	 the	percentage	of	used	pairs	(Figure	4.10),	 it	 increases	 linearly	

with	 the	matching	 quality.	 But	 as	 the	 effective	 granularity	 decreases	 rapidly	with	 the	
amount	 of	 pairs	 used,	 the	 effective	 granularity	 of	 across	 subject	 comparisons	 is	
extremely	 low.	 It	 appears	 then,	 that	 with	 the	 current	matching	 quality	 obtained,	 this	
restrictive	method	is	unfortunately	not	applicable.		



4.	A	study	on	multi‐granularity	dMRI‐based	whole‐brain	characterization	 73	
	

	

	
	
Figure	4.9:	 Tree	tCPCC	similarity	values	plotted	against	matching	quality	 for	matching‐quality‐restricted	

tree	comparisons.		
	

	
	
Figure	4.10:	 Percentage	 of	 used	 pairs	 and	 effective	 granularity	 of	 the	 comparisons	 performed	 with	 the	

restrictive	method,	plotted	against	the	matching	quality.	
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4.5 Exploring	the	hierarchy:		single	subject	partitioning	
	
As	we	have	shown,	 the	hierarchical	 tree	comprises	a	 fairly	 complete	account	of	 the	

similarity	 structure	 of	 the	 cortex’s	 connectivity	 as	 measured	 by	 dMRI,	 even	 after	
simplification.	 It	 constitutes	 a	 compressed	 representation	 of	 a	 very	 large	 number	 of	
possible	parcellations	at	all	possible	levels	of	granularity.	Each	parcellation	is	equivalent	
to	some	complete	cut	of	the	tree	that	severs	all	connections	between	the	top	node	and	
any	 leaf.	 Therefore,	 as	 demonstrated	 above,	 the	 tree	 is	 suitable	 for	 assessing	 the	
structural	map	of	the	cortical	sheet	as	a	whole.	However,	in	order	to	fully	appreciate	the	
function‐anatomical	 organization	 of	 the	 cortex,	we	 also	 need	 to	map	 this	 information	
back	onto	the	cortical	surface.	Because	the	tree	is	a	multidimensional	structure,	it	cannot	
be	 projected	 directly	 onto	 this	 2‐dimensional	 space.	 As	 an	 alternative,	 a	 set	 of	
representative	 parcellations	 may	 be	 found	 that	 best	 approximates	 the	 information	
encoded	in	the	tree.	
Using	 the	 simplest	 partition	 selection	method,	 the	 horizontal	 cut,	 we	were	 able	 to	

obtain	 nested	 parcellations	 at	 different	 granularity	 levels	 by	 selecting	 a	 particular	
number	of	clusters	for	each	level.	This	is	exemplified	in	Figure	4.11	where	we	show	the	
left	hemisphere	of	subject	A	cut	at	4	different	granularity	levels,	exploring	a	wide	range	
of	hierarchical	boundaries.		
	

	

	

Figure	4.11:	 Parcellation	 extracted	 from	 the	 hierarchical	 tree	 of	 left	 hemisphere	 of	 subject	 A	 using	 the	
horizontal	 cut	 algorithm.	 The	 numbers	 indicate	 the	 predefined	 number	 of	 clusters.	 The	 red	
horizontal	 lines	 in	 the	 trees	 denote	 the	 cutting	 level.	 The	 spread‐separation	method	 yields	
almost	identical	results.	See	text	for	further	explanation.	
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At	 very	 low	 granularity	 (15	 clusters)	 the	 parcellation	 seemed	 to	 reflect	 the	 rough	
course	 of	major	 fiber	 bundles	 (e.g.,	 red	 for	 the	 fronto‐occipital	 fascicle,	 green	 for	 the	
arcuate	 fascicle,	purple	 for	 the	cingulum	bundle,	and	cyan	 for	 the	cortico‐spinal	 tract).	
Increasing	the	granularity	to	50	clusters	caused	further	subdivisions,	most	especially	in	
the	dorsolateral	and	dorsomedial	 frontal	and	parietal	 cortices,	 and	also	 in	 the	 inferior	
frontal	cortex	and	around	the	auditory	cortex,	reaching	area	sizes	similar	to	Brodmann	
areas.	Meanwhile,	 the	cortex	near	 the	 fronto‐occipital	 fascicle,	 the	superior	part	of	 the	
arcuate	 fascicle,	and	 the	cingulum	bundle	remained	 largely	undivided.	To	obtain	more	
fine‐grained	subdivisions	in	these	regions,	the	threshold	of	the	clustering	criterion	had	
to	 be	 lowered	 further,	 allowing	 for	 100	 clusters.	 Further	 increase	 of	 granularity	
continued	changing	details,	for	example	by	further	subdividing	the	inferior	frontal	gyrus.	
Ultimately,	 the	 spread‐separation	method	 yielded	 highly	 similar	 results.	 Hence,	 for	

any	 pre‐selected	 number	 of	 clusters,	 the	 horizontal	 cut	 seems	 to	 be	 a	 good	
approximation	to	spread‐separation	partitioning.	
	
In	Figure	4.12,	we	 focused	on	the	subdivision	of	 the	 left	 inferior	 frontal	gyrus	(IFG)	

using	the	SS	method.	At	relatively	low	granularity	(50	clusters),	only	some	of	the	major	
boundaries	between	the	opercular	and	triangular	parts	(subject	A,	B)	and	between	the	
triangular	 and	 orbital	 parts	 of	 the	 IFG	 were	 revealed.	 At	 higher	 granularity,	 more	
subdivisions	appeared,	including	those	that	are	not	covered	by	the	classical	tripartition	
(into	opercular,	triangular,	and	orbital	parts).	For	the	repetitive	acquisitions	in	the	same	
subject	(D1	and	D2),	the	subdivision	was	highly	reproducible.		
	
	

	
	

Figure	4.12:		 Subdivision	 of	 the	 inferior	 frontal	 gyrus	 at	 two	 different	 levels	 of	 granularity,	 for	 the	 left	
hemispheres	of	subjects	A,	B,	and	C	(left),	as	well	as	the	two	acquisitions	of	subject	D	(right).	See	
text	for	further	explanation.	
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It	appears	that,	if	cutting	the	tree	was	done	according	to	the	internal	coherence	of	the	
clusters	 (i.e.,	 the	value	on	 the	vertical	axis	 in	 the	 tree)	or	 the	maximum	ratio	between	
spread	and	separation	(SS	index),	uninteresting	“background”	connectivity	by	large	fiber	
tracts	 caused,	 at	 any	 given	 level	 of	 granularity,	 some	 regions	 of	 the	 brain	 to	 remain	
largely	undivided,	while	others	were	split	 into	small	sub‐areas.	This	supported	the	use	
of	the	minimized	cluster	size	difference	method	(see	Methods	section),	which	gives	more	
weight	 to	 area	 size	 and	 strives	 to	 obtain	 a	more	 homogeneous	 parcellation.	 In	 Figure	
4.13,	 the	 result	 was	 depicted	 for	 the	 same	 subject	 featured	 in	 Figure	 4.11.	 When	
comparing	 the	 results	 of	 the	 two	 partitioning	 methods,	 some	 clear	 differences	 are	
apparent.	 At	 low	 granularity	 (15	 clusters),	 the	 large	 temporal‐occipital‐frontal	 cluster	
(in	 red,	 see	 Figure	 4.11)	 broke	 up	 into	 smaller	 areas,	 especially	 on	 the	 medial	 brain	
surface,	while	in	frontal	and	prefrontal	cortex	fewer	clusters	were	formed.	This	trend	is	
also	evident	at	higher	granularities.	For	example,	at	250	clusters	the	occipital	lobe	was	
more	subdivided	and	the	 frontal	one	was	 less	subdivided	 than	with	 the	horizontal	cut	
method.	
	
	

	
	
Figure	4.13:	 Equal	size	partitioning	for	the	same	subject	as	depicted	in	Figure	4.11.	

	
Thus	 far,	 we	 have	 explored	 the	 partitioning	 methods	 that	 required	 the	 input	 of	 a	

global	granularity	 level	(here	expressed	as	number	of	clusters,	but	 it	could	also	be	the	
average	 size	 of	 the	 clusters,	 or	 similar).	 However,	 the	 question	 remains:	 Which	
granularity	levels	might	be	the	most	representative	ones	for	the	tree?	In	order	to	reduce	
this	 arbitrariness,	 one	 can	 use	 the	SS	 index	 (see	Methods	 section)	 to	 select	 partitions.	
Using	the	SS	partitioning	(or	the	horizontal	cut	method,	as	it	is	a	good	approximation	to	
SS	 for	a	given	granularity),	a	series	of	parcellations	can	be	obtained	with	maximum	SS	
indices	for	each	granularity	level.	In	Figure	4.14	the	SS	indices	were	plotted	as	function	
of	granularitiy	for	all	data	sets.		
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Figure	4.14:	 SS	indices	obtained	by	the	hierarchy	search	method,	plotted	against	number	of	clusters.	The	red	

circle	denotes	the	maximum	of	the	curve.	
	
It	can	be	seen	that	for	small	numbers	of	clusters	the	index	rises	steeply,	meaning	that	

in	this	range	further	subdivision	usually	leads	to	much	better	parcellations.	In	many	data	
sets,	this	is	followed	by	a	shoulder	(at	about	50–200	clusters),	where	further	subdivision	
does	 not	 greatly	 improve,	 or	 even	 slightly	 reduces,	 the	 quality	 of	 the	 parcellation	 (as	
measured	by	the	SS	index).	Next,	there	follows	a	moderate	increase,	where	subdivisions	
tend	to	(slightly	to	moderately)	improve	the	SS	index,	until	a	maximum	value	is	reached	
at	 about	 200–600	 clusters.	 From	 there,	 the	 curve	 steadily	 decreases,	 meaning	 that	
further	subdivisions	always	lead	to	worse	partitions.	Consequently,	the	relevant	range	of	
partitions	 seems	 to	 start	 at	 the	edge	of	 the	 first	 shoulder	 (where	mergings	of	 clusters	
cause	a	rapid	decrease	and	subdivisions	of	clusters	cause	no	or	only	a	small	increase	of	
the	SS	index)	and	end	at	the	maximum	(where	both	mergings	and	subdivisions	cause	a	
moderate	decrease	of	the	SS	index).	Ultimately,	the	interesting	range	of	partitions	based	
on	the	diffusion	data	seems	to	be	roughly	20–600	clusters.	
	
Figure	4.15	shows	the	maximum	SS	index	partitions	for	all	subjects	and	hemispheres.	

These	partitions	have	the	maximum	distinctness	for	the	respective	data	sets,	that	is,	the	
best	ratio	between	 intra‐cluster	 inhomogeneity	and	between‐cluster	separation.	 In	 the	
event,	these	parcellations	feature	small	parcels	with	an	extension	roughly	comparable	to	
the	width	of	a	major	gyrus.	It	is	evident	that,	at	this	level	of	granularity,	the	partitions	of	
the	 two	 data	 sets	 from	 subject	 D	 are	 quite	 similar,	 while	 the	 partitions	 belonging	 to	
different	hemispheres	and/or	subjects	appear	very	different.	
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Figure	4.15:	 Partitions	 with	 maximum	 spread‐separation	 index	 for	 all	 subjects’	 left	 (a)	 and	 right	 (b)	

hemispheres.	The	top	subpanels	show	the	whole	brain	parcellation,	the	bottom	subpanels	zoom	
into	the	superior	temporal	gyrus	area		and	the	precentral	gyrus.	
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A	different	way	to	extract	relevant	 information	from	the	tree	can	be	to	detect	those	

boundaries	 that	 are	 stable	 across	 a	 wider	 range	 of	 granularities	 than	 the	 rest,	 as	
proposed	in	section	3.8.2.6.	Some	preliminary	results	using	absolute	branch	lengths	as	
threshold	values	are	shown	in	Figure	4.16.	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	
10%	branch	length	 Pial	surface	 Inflated	surface	

	
Figure	4.16:	 Stable	boundaries	at	different	granularity	range	widths	for	the	left	hemisphere	of	subject	A.	For	

branch	lengths	equal	or	greater	than	15%	of	the	tree	height	(top)	and	10%	(bottom).	

	
We	can	see	that	the	boundaries	between	regions	corresponding	to	main	connections	

through	the	 longitudinal,	arcuate	and	temporal	bundles	are	 the	 first	 to	be	detected,	as	
well	 as	 regions	 in	 the	 superior	 frontal	 cortex.	The	 information	 in	 this	maps	 should	be	
interpreted	differently	as	in	our	previous	parcellations:	regions	across	boundaries	have	
significantly	 different	 connectivity	 patterns	 (relative	 to	 the	 value	 of	 the	 threshold	
parameter	selected),	but	it	does	not	give	any	information	on	wether	the	region	within	a	
boundary	 has	 a	 cohesive	 pattern	 or	 wether	 that	 pattern	 does	 change	 but	 with	 less	
distinctiveness.	 Changing	 the	 threshold	 value	 to	 less	 restrictive	 levels	 shows	 the	
additional	boundaries		that	now	meet	the	criteria.	
However,	 this	 principle	 requires	 more	 study,	 and	 the	 algorithm,	 results	 and	

visualization	method	presented	here	are	only	preliminary.	



80	 4.A	study	on	multi‐granularity	dMRI‐based	whole‐brain	characterization	
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5. APPROACHES	AND	CHALLENGES	IN	
VALIDATION	OF	TRACTOGRAPHY‐BASED	
CLUSTERING	

 
 

5.1 Overview	
	
For	 a	 clustering	 method	 to	 be	 truly	 useful	 and	 reliable,	 verification	 tests	 and	

validation	of	its	results	must	be	carried	out.	In	the	case	of	in‐vivo	brain	clustering	based	
on	 tractography	 though,	 this	 is	 a	 very	 challenging	 task,	 mainly	 due	 to	 the	 lack	 of	 a	
ground	 truth	 to	 compare	 the	 results	 to,	 and	 partly	 due	 to	 the	 difficulty	 to	 verify	 and	
validate	 tractography	 itself.	 In	 this	 chapter,	 we	will	 firstly	 discuss	 the	 challenges	 and	
possibilities	 for	 verification	 and	 validation	 of	 tractography	 and	 clustering	 based	 on	
tractography	 (see	 Johansen‐Berg	 and	 Behrens	 [2009]	 and	 Knösche	 and	 Tittgemeyer	
[2011]	 for	 a	 more	 detailed	 discussion	 on	 tractography	 and	 tractography	 based	
clustering	validity,	respectively,	from	where	part	of	the	information	here	presented	was	
extracted),	and	secondly	present	a	pair	of	circumstantial	verification	and	validation	tests	
performed	in	order	to	give	a	higher	degree	of	confidence	to	our	method.	
	

5.2 The	 challenge	 of	 verification	 and	 validation	 in	 brain	
dMRI	based	methods	
	

5.2.1 Introduction	
	
Verification	 aims	 to	 confirm	 that	 the	 designed	 algorithm	 is	 really	 working	 as	 it	 is	

expected	and	supposed	to.	It	is	an	internal	process	and	it	is	more	commonly	carried	out	
by	studying	the	results	of	the	algorithm	over	synthetic	data	were	the	correct	outcome	is	
known	by	design.	On	the	other	hand,	validation	aims	to	prove	that	the	results	obtain	by	
the	 algorithm	 on	 its	 real	 intended	 target	 datasets	 is	 correct,	 and	 for	 this	 purpose	 a	
comparison	with	a	ground	truth	or	gold	standard	is	commonly	used.	
In	 the	 context	 of	 tractography	 based	 parcellation	 this	 can	 be	 done	 at	 two	 levels:	

assessing	how	 faithfully	 the	 tractography	 algorithm	 (and	 its	 underlying	model	 fitting)	
uncovers	 the	 structural	 connections	 in	 the	 brain;	 and	 assessing	 how	 faithfully	 the	
clustering	 algorithm	 represent	 the	 natural	 divisions	 and	 connectivity‐pattern	
differences	in	the	cortex.	Both	of	them	mainly	suffer	from	a	lack	of	ground	truth.	
	
5.2.2 Verification	and	validation	in	tractography	
	
Tractography	methods	embed	many	assumptions	that	can	potentially	 lead	to	errors	

and	diminish	the	fidelity	of	the	resulting	brain	pathway	representations.	It	 is	therefore	
important	to	ensure	their	validation	in	order	to	safely	interpret	the	obtained	results	and	
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be	aware	of	their	limitations.	The	main	factors	influencing	tractography	results	are	the	
fiber‐orientation	inference	step	(relevant	neuronal	structures	are	much	smaller	than	the	
available	resolution	of	dMRI,	usually	in	the	millimeter	range,	where	thousands	of	axons	
traverse	the	volume	of	a	voxel),	data	acquisition	parameters	(voxel	resolution,	angular	
resolution,	 SNR,	 number	 of	 diffusion	weighting,	 etc.)	 and	 the	 choice	 of	 the	 particular	
tractography	 algorithm	 and	 its	 parameters	 (local	 model,	 deterministic,	 probabilistic,	
maximum	 angle	 of	 turns	 allowed,	 stopping	 criteria,	 etc.).	 Without	 understanding	 the	
sources	 of	 error	 and	 their	 influence	 in	 the	 obtained	 tracts,	 tractography	 could	 fail	 to	
characterize	physical	brain	connections	and	even	yield	misleading	results.	
	
As	mentioned	before,	verification	can	be	carried	out	by	testing	different	tractography	

methods	 on	 synthetic	 datasets.	 These	 might	 be	 artificially	 constructed	 structures	
simulating	 the	 diffusivity	 properties	 of	 neural	 tissue,	 called	 physical	 phantoms,	 or	
artificially	generated	datasets,	called	software	phantoms.	Testing	with	these	phantoms	
can	help	find	out	how	a	given	algorithm	performs	in	certain	conditions.	
Physical	phantoms	are	a	straightforward	verification	method	where	 tractography	 is	

over	 data	 obtained	 from	 these	 artificially	 constructed	 structures,	 providing	 a	 well‐
defined	ground	 truth	against	which	 to	compare	 the	output	of	 the	algorithms	 (Li	et	al.,	
2012).	Such	phantoms	have	been	constructed	from	synthetic	fibers	such	as	rayon,	cotton	
(Scifo	 et	 al.,	 2004),	 polyester	 (Watanabe	 et	 al.,	 2006),	 ultra‐molecular	 weight	
polyethylene	 (Fieremans	 et	 al.,	 2005),	 and	 hemodialysis	 fibers	 (Perrin	 et	 al.,	 2005a).	
However,	 the	 unavoidable	 differences	 in	 microstructure	 and	 diffusivity	 properties	 of	
synthetic	fibers	and	neural	tissue,	limits	the	degree	of	verification	that	they	can	offer.	
Software	phantoms	have	 the	advantage	of	high	 flexibility,	 changing	relatively	easily	

the	 conditions	where	 the	 tractography	algorithm	 is	 tested,	 compared	 to	 their	physical	
counterparts.	 As	 examples,	 Lazar	 and	 Alexander	 (2003)	 generated	 sets	 of	 artificial	
datasets	with	 different	 curvatures	 to	 compare	 deterministic	 approaches	 and	 Lori	 and	
colleagues	(2002)	studied	the	effects	of	noise	and	encoding	strategies	using	Monte	Carlo	
methods.	An	important	limitation	apparent	from	the	literature	however,	is	that	simpler	
phantoms	favor	simpler	tracking	algorithms,	and	that	it	is	usually	possible	to	generate	a	
phantom	biased	towards	a	given	algorithm	by	using	the	same	fundamental	assumptions	
in	its	construction	as	were	made	in	the	tracking	approach.	Therefore	in	these	phantoms	
there	is	a	trade‐off	between	the	flexibility	to	alter	the	conditions	tested	and	the	degree	of	
ground	truth	provided.	
Both	software	and	physical	phantoms	are	useful	 to	determine	 if	given	 tractography	

implementations	work	as	expected	under	different	predefined	circumstances.	However	
they	are	both	ultimately	gross	approximations	of	the	real	in‐vivo	scenario	they	simulate	
and	not	neurobiologically	 realistic,	not	able	 to	 fully	 characterize	 the	 full	 complexity	of	
the	microanatomical	neural	structure	that	affects	the	dMRI	signal	and	the	tractography.		
	
“The	search	for	a	gold	standard	for	tractography	can	be	thought	of	as	a	search	for	an	

ideal	model	 that	possesses	 true	axonal	 characteristics,	 combined	with	an	 ideal	model	of	
signal	generation	from	a	population	of	such	fibers”	 (Johansen‐Berg	 and	Behrens,	 2009).	
As	of	yet	no	such	software	or	physical	phantom	has	been	created.	
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In	order	to	perform	validation	of	a	method,	it	needs	to	be	tested	on	real	target	data.	

The	best	way	to	approximate	a	“ground	truth”	in	this	case	is	using	data	from	histological	
tracers	 (see	 section	1.4.3).	 These	 allow	 to	map	 connections	 through	 the	 injection	 of	 a	
visible	tracer	substance	that	then	travels	through	the	neuronal	axons.	These	techniques	
are	very	invasive,	so	the	closest	data	available	to	in‐vivo	human	brain	are	post‐mortem	
tracing	of	human	brain	or	in‐vivo	tracing	of	macaque	brain	(through	databases	that	are	
characterized	by	their	own	biases	and	limitations,	see	Bakker	et	al.,	[2012]	for	a	detailed	
discussion).	Having	a	 “ground	 truth”	approximation,	different	 tractography	algorithms	
can	 be	 used	 to	 assess	 the	 best	 performing	 one	 (Iturria‐Medina	 et	 al.,	 2011;	 Li	 et	 al.,	
2012).	The	main	obvious	limitation	of	these	methods	is	the	inter‐species	differences	in	
the	case	of	the	macaque,	and	the	limited	availability	and	variation	of	properties	of	post‐
mortem	 tissue.	 In	 addition,	 these	 techniques	 can	 be	 used	 only	 in	 a	 reduced	 area	 or	 a	
limited	number	of	times	per	individual/sample,	so	for	the	case	of	mapping	whole	brain	
connectivity,	data	from	many	individuals	or	samples	must	be	compiled,	not	being	able	to	
obtain	a	full	tracing	connectome	for	an	individual	brain.	
A	 last	 alternative	 is	 to	 have	 "empirical	 indexes"	 for	 assessing	 the	 quality	 of	 certain	

algorithms	(Bastiani	et	al.,	2012).	However	this	approach	requires	demarcation	of	areas	
so	the	case	of	a	full	brain	connectome	becomes	rather	unfeasible.		
	
We	have	presented	above	the	main	options	for	verifying	and	validating	tractography	

algorithms,	 along	 with	 their	 limitations,	 as	 it	 is	 highly	 relevant	 to	 understand	
verification	 and	 validation	 of	 clustering	 based	 on	 this	 data	 (which,	 along	 with	 its	
challenges	 in	 a	 whole	 brain	 approach,	 which	 will	 be	 covered	 next).	 However,	 in	 our	
study	 we	 have	 strived	 to	 design	 our	 algorithm	 as	 independent	 of	 the	 underlying	
tractography	 as	possible,	 as	 long	 as	 the	 end	 result	 can	be	presented	 in	 the	 same	data	
structure	(ultimately	the	similarity	between	connectivity	fingerprints).	The	verification	
and	 validation	 of	 tractography	 itself	 is	 out	 of	 the	 scope	 of	 this	 thesis,	 as	we	 focus	 on	
providing	 a	 proof	 of	 principle	 for	 a	 whole‐brain	 high‐resolution	 multi‐granularity	
connectivity	 characterization	 and	 clustering	 framework.	 Therefore,	 a	 tractography	
method	with	good	published	results	(Anwander	et	al.,	2007),	proved	in	agreement	with	
prior	 knowledge	 and	 other	 methodologies	 (Ruschel	 et	 al.,	 2013),	 and	 with	 very	 fast	
computation	time,	important	for	our	high	resolution	whole‐brain	approach,	was	chosen	
(see	discussion	chapter	6	for	further	justification	of	this	choice).	
	
5.2.3 Verification	and	validation	in	tractography‐based	clustering	
	
In	this	thesis,	a	framework	for	characterizing	and	clustering	the	whole	human	brain	

cortex	 based	 on	 tractography	 information	 was	 developed.	 In	 order	 to	 rule	 out	
methodological	 errors	 in	 the	 algorithms,	 and	 to	 ensure	 that	 the	 results	 our	 method	
yields	are	neurobiologically	relevant,	verification	and	validation	must	also	be	performed.	
Following	 a	 similar	 logic	 as	 for	 tractography	 in	 the	previous	 section,	we	will	 consider	
and	discuss	possible	options	to	achieve	this	goal.	
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Also	 in	 this	 case,	 an	 initial	 choice	 for	 verification	 would	 be	 the	 use	 of	 physical	
phantoms.	 But	 in	 order	 to	 be	 useful	 for	 clustering	 based	 on	 tractography,	 such	 a	
phantom	would	need	to	have	to	have	the	same	qualities	as	for	tractography	validation,	
plus	a	much	higher	degree	of	fiber	complexity.	It	would	not	be	sufficient	to	simulate	the	
diffusivity	properties	of	 fiber	bundles,	but	 their	 layout	and	distributions	must	provide	
scenarios	 relevant	 and	 challenging	 enough	 for	 testing	 the	 outcome	 of	 clustering	
algorithms.	This	 is,	 if	not	 entirely	unfeasible,	 extremely	 challenging.	No	 such	phantom	
has	been	created	up	to	date	to	the	authors’	knowledge.	
A	 more	 approachable	 alternative	 is	 the	 use	 of	 software	 generated	 data,	 in	 this	

instance	 synthetic	 tractography	 datasets,	 and	 run	 clustering	 simulations	 on	 them.	
However,	as	with	physical	phantoms,	in	order	to	provide	truly	informative	verification,	
these	datasets	must	simulate	real	data	to	a	sufficient	degree	(although	 in	this	case	not	
anymore	the	diffusivity	but	directly	fiber	tracts	shape	and	trajectories)	and	at	the	same	
time	 their	 layout	 and	 distribution	must	 be	 clearly	 defined	 so	 that	 it	 can	 be	 assessed	
whether	the	clustering	algorithm	classified	them	appropriately	or	not.	For	our	algorithm	
this	would	preferably	also	include	presence	of	clear	hierarchical	relations.	
Such	a	 test	dataset	would	 indeed	be	a	great	 tool	 for	 the	verification	of	not	only	our	

method,	but	also	most	other	tractography	clustering	methods	in	the	literature.	However,	
such	a	synthetic	dataset	is	not	available	to	the	author’s	knowledge,	and	generating	one	
of	 enough	 quality	 would	 be,	 while	 feasible,	 quite	 a	 laborious	 task	 (a	 dataset	 too	
simplistic	 would	 not	 be	 able	 to	 shed	 any	 clear	 verification	 conclusions),	 requiring	 a	
considerable	amount	of	 invested	 time	 (maybe	an	 investment	worth	of	 a	project	on	 its	
own).	
Given	the	scope	of	work	aimed	to	be	included	in	this	thesis,	building	a	framework	of	

algorithms	 and	 concepts	 wide	 enough	 to	 test	 the	 potential	 benefits	 of	 whole	 brain	
hierarchical	 parcellation	 (from	 choice	 of	 agglomerative	 method	 to	 partition	 selection	
and	tree	comparison)	and	with	the	objective	to	serve	as	a	proof	of	principle,	a	faster	and	
simpler	 option	 for	 basic	 verification	 was	 favored.	 A	 synthetic	 dataset	 of	 randomized	
values	was	 generated	 in	 order	 to	 test	 the	 performance	 of	 the	 algorithm	 against	 a	 set	
containing	no	relevant	information,	setting	a	baseline	for	quality	control,	with	favorable	
results	 (see	 section	 4.3).	We	 consider	 that	 this	 provides	 a	 certain	 level	 of	 confidence	
enough	for	a	proof	of	principle,	but	do	however	acknowledge	that	it	does	not	replace	an	
exhaustive	verification,	which	should	be	covered	by	future	work.	
	
Contemplating	validation	clustering	based	on	tractography	the	question	arises:	What	

is	 the	 “ground	 truth”?	 How	many	 areas/clusters	 should	 constitute	 the	 human	 brain?	
Where	do	their	boundaries	lie?	We	simply	do	not	know,	especially	when	it	comes	to	the	
whole	 brain.	 Focusing	 in	 smaller	 regions,	 such	 as	 boundaries	 between	 SMA/preSMA	
might	seem	more	manageable	but	yet	again	which	can	be	considered	the	"true	borders"	
of	these	areas?	Some	validation	can	be	obtained	by	comparing	clustering	results	in	brain	
areas	where	white	matter	anatomy	is	well	understood	and	connectivity	differences	are	
clear,	but	the	number	of	such	areas	is	limited	(see	Figure	4.12	in	section	4.5	for	focus	of	
our	clustering	results	in	the	IFG).	Macroscopic	landmarks	may	also	be	used,	but	they	are	
linked	to	cortical	areas	to	a	questionable	degree	(there	is	for	instance	no	firm	protocol	to	
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distinguish	 the	 prefrontal	 Brodmann	 area	 9/46v	 from	 area	 8B	 through	 macroscopic	
landmarks	with	certainty,	although	it	 is	easier	in	areas	like	the	primary	and	secondary	
visual	areas	(V1/V2).	
A	 valid	 solution	would	 be	 the	 use	 of	 post‐mortem	dMRI	 tractography	 and	 invasive	

tracing	 on	 the	 same	 sample	 of	 post‐mortem	 brain	 (which	 would	 also	 eliminate	 the	
confound	of	inter‐subject	variability).	However,	this	would	only	be	feasible	in	a	limited	
area	 of	 the	 cortex	 and	 not	 for	 in	 a	whole‐brain	 approach,	 though	 it	 still	would	 be	 an	
interesting	 validation	 scenario.	 Regrettably,	 such	 resources	were	 not	 available	 to	 our	
group	during	the	realization	of	this	thesis.	
	
Another	 interesting	 option	 is	 the	 use	 of	 circumstantial	 validation/verification	 by	

comparing	 the	 results	 obtained	 for	 a	 certain	 dataset	 with	 those	 obtained	 from	 other	
complementary	modalities,	or	from	a	different	algorithm	of	the	same	modality	that	has	
given	good	results.	While	 this	may	not	constitute	a	 “true”	validation	as	results	are	not	
being	compared	with	a	ground	truth,	and	in	case	of	different	modalities	results	may	not	
be	necessarily	overlapping,	a	good	agreement	between	different	approaches	provides	a	
level	of	confidence	that	the	clustering	is	yielding	reasonable	results.	With	this	objective,	
two	comparisons	within	and	across	modalities	were	carried	out,	laid	out	in	the	following	
section.	
	
	

5.3 Circumstantial	validation	of	our	clustering	algorithm	
	
Given	 the	 challenges	 exposed	 in	 the	 previous	 section,	 we	 opted	 to	 bring	 a	 certain	

degree	 of	 verification	 to	 our	method	 by	 comparing	 it	 to	 some	 other	widely	 used	 and	
tested	 method	 of	 clustering	 based	 on	 tractography.	 While	 there	 is	 a	 lack	 of	 an	
established	 method	 for	 whole	 brain	 dMRI	 based	 parcellation	 (which	 motivated	 this	
thesis),	 other	 methods	 are	 available	 that,	 while	 not	 well	 suited	 for	 whole	 brain	
tractography,	have	given	good	results	for	smaller	regions	(see	section	2.4.2	and	6.2).	
We	chose	to	replicate	the	results	of	Ruschel	and	colleagues	(2013)	who	carried	out		k‐

means	 clustering	 based	 on	 probabilistic	 tractography	 of	 the	 inferior	 parietal	 cortex	
convexity	 (IPCC)	 of	 20	 healthy	 participants	 (10	 females).	 In	 their	 study	 they	 found	 3	
clusters	 to	 be	 the	 number	 that	 best	 stabilized	 results	 across	 subjects	 and	 were	 in	
agreement	 with	 previous	 dMRI‐based	 findings	 (Rushworth	 et	 al.,	 2006;	 Mars	 et	 al.,	
2011)	and	macaque	data	(Gregoriou	et	al.,	2006;	Rozzi	et	al.,	2006,	2008).	Their	results	
for	the	4	subjects	featured	in	their	published	figure	are	shown	in	Figure	5.1.	
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Figure	5.1:		 Parcellations	 of	 the	 left	 and	 right	 IPCC	 of	 4	 representative	 participants	 into	 anterior	 (red),	

middle	(yellow)	and	posterior	(green)	IPCC,	superimposed	on	a	freesurfer	reconstruction	of	the	
pial	surface;	cs,	central	sulcus;	lf,	lateral	fissure.	(reprint	from	(Ruschel	et	al.,	2013)).	

	
	
Using	 the	 tractography	 data	 from	 their	 study,	 we	 built	 hierarchical	 trees	 with	 our	

centroid‐neighborhood	method	 for	 the	 same	 IPCC	areas,	 and	partitioned	 the	 tree	 in	3	
clusters	 and	 a	 higher	 5‐cluster	 granularity	 for	 each	 individual	 using	 the	 SS	 method.	
Results	are	shown	in	Figure	5.2.	
It	 can	 be	 observed	 that	 for	 more	 than	 half	 of	 the	 datasets	 presented	 the	 clusters	

obtained	 are	 virtually	 identical	 to	 those	 suggested	 by	 Ruschel	 and	 colleagues	 in	 their	
work	 (left	 hemisphere	 of	 subject	 1,	 right	 hemispheres	 of	 subjects	 2	 and	 3,	 and	 both	
hemispheres	of	subject	4).	The	other	three	cases,	while	having	small	differences	in	the	
boundary	 between	 the	middle	 and	 posterior	 clusters	 at	 the	 3	 clusters	 partition,	 yield	
completely	overlapping	boundaries	when	granularity	is	increased	to	5	clusters.	
	
This	 shows	 a	 remarkable	 level	 of	 agreement	 between	 the	 solutions	 from	 both	

algorithms,	 and	 hints	 further	 at	 the	 idea	 already	 put	 forward	 that	 in	 our	 hierarchical	
parcellation,	 the	 boundaries	 might	 be	 of	 singular	 relevance	 themselves	 rather	 than	
partitions	at	specific	granularities.	It	also	comes	to	show	how	hierarchical	clustering	is	
an	 extension	 of	 the	 narrower	 concept	 of	 partitional	 clustering	 such	 as	 k‐means	
(complementing,	 rather	 than	 invalidating,	 the	 results	 obtained	 with	 the	 latter),	
containing	 within	 the	 tree	 much	 more	 additional	 information	 about	 finer	 granularity	
boundaries.	Comparative	results	for	all	the	subjects	used	in	the	study	and	presented	in	
(Ruschel,	2013),	showing	the	same	trend,	are	included	in	the	Appendix.		
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Subject	3

Subject	4
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Figure	5.2:		 Centroid	hierarchical	trees	and	SS	partitioning	at	3	clusters	(left)	and	5	clusters	(right)	of	the	

same	 subjects	 on	 Figure	 5.1,	 computed	 on	 tractography	 data	 from	 Ruschel	 and	 colleagues	
(2003).	

	
Other	possible	suggestion	would	be	 to	have	 the	probabilistic	maps	of	areas	derived	

from	histology	as	a	ground	 truth,	but	problems	exist	 there	as	well:	These	maps	might	
have	 "residual	 variability"	 due	 to	 non‐optimal	 cutting	 of	 the	 cortex	 for	 subsequent	
histology	(all	brains	are	cut	coronally	–	this	is	not	optimal	for	detecting	borders	between	
all	cortical	areas);	Connectional	subdivisions	might	exist	within	an	area	that	appears	as	
unitary	and	defined	on	cytoarchitectonic	 features	 (i.e.	dorsal	premotor	area	F2	can	be	
divided	to	sectors	F2d	and	F2vr	based	on	pronounced	connection	differences;	Luppino	
et	 al.,	 2005),	 thus,	 cortical	 areas	 previously	 identified	 as	 homogenous	 might	 harbor	
further	 connectional	 subdivisions.	 Moreover,	 available	 probabilistic	 maps	 are	 mainly	
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derived	from	Nissl	stained	sections.	It	can	be	the	case	that	Nissl	stained	sections	are	not	
optimal	 to	unveil	borders	between	areas	whereas	 immunohistochemistry	 like	 staining	
for	somatostatin	might	give	rise	to	a	different	picture	(Geyer	et	al.,	2000b).	
	
Notwithstanding,	we	compared	the	output	of	our	algorithm	to	 the	cytoarchitectonic	

parcellation	 available	 from	 Jülich	 Research	 Center	 (Forschungszentrum	 Jülich:	
https://www.jubrain.fz-juelich.de/apps/cytoviewer/cytoviewer-main.php).	
The	similarity	to	our	parcellation	is	exemplified	in	Figure	5.3.	In	order	to	carry	out	the	

comparison,	the	partitioning	through	the	SS	method	at	100	clusters	from	subject	A	was	
taken.	 Clusters	 corresponding	 to	 the	 Jülich	 parcellation	were	manually	 color‐matched,	
and	in	the	cases	of	the	precentral	gyrus	and	postcentral	gyrus,	 its	constituting	clusters	
merged,	as	in	our	partitioning	these	gyri	were	further	subdivided.	Areas	not	covered	by	
the	Jülich	map	were	greyed	out.	
	

	
	

Figure	5.3:		 Cytoarchitectonic	parcellation	provided	by	Jülich	Research	Center	(right),	compared	to	the	
corresponding	subtree	of	the	left	hemisphere	of	Subject	A	at	a	global	horizontal	partition	for	
100	clusters	(left;	two	clusters,	one	in	the	IFG,	and	other	in	the	parietal	cortex	over	the	STG,	
have	been	further	subdivided	once	to	better	show	the	corresponding	matching).	

	
	
We	believe	that	both	these	comparison	studies	which	show	a	high	level	of	agreement,	

do	by	no	means	replace	a	full	and	exhaustive	verification	and	validation.	However,	they	
bring	a	degree	of	confidence	in	the	method	proposed	to	show	its	value	and	potential	for	
whole	 brain	 connectivity	 characterization.	 Other	 potential	 sources	 for	 circumstantial	
validation	are	discussed	in	section	6.8	at	the	end	of	the	Discussion	chapter.	
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6. DISCUSSION	
	
6.1 Tractography‐based	parcellation	
	
As	 argued	 before,	 connectivity	 is	 among	 the	 most	 relevant	 structural	 cues	 for	 the	

characterization	 of	 the	 function‐anatomical	 identity	 of	 cortical	 tissue.	 Being	 the	 only	
method	 that	 can	 be	 applied	 to	 healthy	 human	 subjects,	 diffusion	 tractography	 is	 the	
method	of	choice	for	the	reconstruction	of	these	connectivity	patterns	(Anwander	et	al.,	
2007;	Johansen‐Berg	et	al.,	2004).	For	a	thorough	discussion	of	this	 issue,	see	Knösche	
and	Tittgemeyer	(2011).		
	
The	 tractography	 based	 parcellation	 requires	 a	 robust	 tractography	 method.	 The	

local	tensor	model	based	on	High	Angular	Resolution	Diffusion	Images	(HARDI)	allows	a	
reproducible	 computation	of	 the	 connectivity	profile.	The	method	 is	 sensitive	 to	 small	
changes	in	connectivity	between	two	voxels	and	is	robust	to	noise	which	could	affect	the	
local	 model.	 Other	 tractography	 methods	 like	 the	 Probabilistic	 Index	 of	 Connectivity	
(PICo)	based	on	the	Persistent	Angular	Structure	(PAS)	(Parker	and	Alexander,	2005)	or	
probabilistic	 tractography	 based	 on	 spherical	 deconvolution	 (Descoteaux	 et	 al,	 2009)	
had	 shown	 to	 better	 resolve	 crossing	 fiber	 structures.	 The	more	 complex	 local	model	
might	have	been	less	robust	to	remaining	noise	in	the	diffusion	data,	which	might	have	
affected	the	local	estimation	of	the	fiber	orientations	(Yo	et	al,	2009).	While	comparing	a	
tensor	based	tractography	with	fiber	tracking	using	spherical	deconvolution	Kristo	and	
colleagues	(2013)	showed	a	higher	reproducibility	for	the	tensor	based	tractography.	In	
this	 initial	 study	 we	 choose	 to	 use	 the	 more	 robust	 local	 model.	 The	 fact	 that	
probabilistic	tractography	is	employed	ensures	that,	to	a	certain	degree,	fiber	crossings	
and	branching	are	 taken	 into	account.	The	parcellation	method	we	proposed	could	be	
applied	on	any	other	tractography	method.	The	comparison	of	the	result	using	different	
local	 models	 and	 tractography	 algorithms	 will	 be	 subject	 of	 future	 investigations.	 In	
addition,	 all	 tractography	 algorithms	 including	 the	 one	 used	 here	 have	 a	 number	 of	
adjustable	 parameters,	 which	 potentially	 can	 affect	 the	 tractography	 result	 and	 the	
parcellation.	For	example,	here	we	had	to	make	choices	on	the	number	of	streamlines,	
the	 scaling	 and	 the	 thresholding	 of	 the	 tractograms	 and	 the	 sharpening	 of	 the	 local	
diffusion	 profile	 (Anwander	 et	 al.,	 2007).	While	 a	 systematic	 parameter	 study	 on	 this	
and	other	 tractography	algorithms	would	 certainly	be	very	useful,	 the	previous	use	of	
our	approach	 in	a	number	of	parcellation	studies	yielding	neuroanatomically	plausible	
results	 provides	 some	 confidence	 (e.g.,	 Anwander	 et	 al.,	 2007;	 Ruschel	 et	 al.	 2013;	
Schubotz	et	al.,	2010;	Gorbach	et	al.	2011,	2012).		
In	 most	 implementations	 of	 tractography	 based	 parcellation	 the	 target	 space	

comprises	 the	 entire	 rest	of	 the	brain,	 including	white	matter	 (Anwander	et	 al.,	 2007;	
Johansen‐Berg	 et	 al.,	 2004;	 Mars	 et	 al.,	 2011;	 Schubotz	 et	 al.,	 2010;	 Tomassini	 et	 al.,	
2007).	 A	 possible	 alternative	 is	 to	 restrict	 the	 target	 space	 to	 grey	 matter	 (or,	 for	
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technical	reasons,	the	white	matter	voxels	just	adjacent	to	grey	matter)	(e.g.,	Bach	et	al.,	
2011).	 It	 is,	 however,	 not	 clear	 whether	 this	 really	 improves	 the	 situation.	 Most	
tractography	methods	are	iterative	algorithms	that,	especially	over	long	distances,	tend	
to	accumulate	errors	and	hence	are	subject	to	substantial	blurring	(Jones,	2010).	So,	it	is	
likely	 that	differences	between	tracts,	which	are	still	quite	evident	 in	 the	 intermediate	
white	matter,	become	smoothed	out	at	 the	distant	 cortical	 targets.	On	 the	other	hand,	
using	the	entire	brain	as	target	space	might	also	introduce	biases	of	its	own,	as	the	tracts	
starting	from	two	spatially	distinct	cortical	elements	are	different	by	definition	in	their	
initial	sections,	even	if	they	finally	reach	the	same	targets.	This	is	especially	true,	if	the	
tracts	start	in	different	gyri.	How	much	this	effect	influences	the	result	depends	on	the	
overall	 extent	 of	 the	 tractogram,	 that	 is,	 the	 relative	 weight	 of	 short	 and	 long	 range	
connections.	So,	the	fact	that	parcellations	often	seem	to	reflect,	to	some	degree,	sulcal	
patterns	(see	Figures	37	to	41),	might	have	a	methodological	background.	On	the	other	
hand,	 it	 is	well	 known	 that	 in	many	 cases	macroanatomical	 landmarks,	 such	 as	 sulcal	
lines,	are	indeed	likely	to	play	a	role	as	function‐anatomical	boundaries	(Hasnain	et	al.,	
2001;	 Tahmasebi	 et	 al.,	 2012).	 To	 what	 extent	 correlation	 between	 gyrification	 and	
tractography	based	parcellation	is	a	product	of	methodological	peculiarities	or	reflects	
neuroanatomical	reality	remains	to	be	investigated.	
	

6.2 Advantages	and	limitations	of	hierarchical	clustering	
	

In	 this	work,	we	 propose	 a	 hierarchical	 clustering	method	 for	 the	 analysis	 of	 high‐
resolution,	 whole‐brain	 anatomical	 connectivity	 data	 that	 provides	 an	 optimal	 data	
compression	 with	 minimal	 information	 loss.	 The	 method	 uses	 differences	 in	
connectivity	patterns	 for	drawing	a	 function‐anatomical	map	of	 the	cortex	without	 the	
need	to	choose	a	particular	granularity	level.		This	way,	almost	all	of	the	information	on	
the	 connectivity	 pattern	 similarities	 is	 retained	 and	 all	 possible	 parcellations	 of	 the	
cortical	 sheet	 are	not	only	 stored,	but	 also	 related	 to	 each	other	 in	 a	meaningful	way.	
While	this	concept	is	not	entirely	new	(Blumensath	et	al.,	2013;	Guevara	et	al.,	2011),	it	
is	 the	 first	 time	 that	 is	applied	 to	whole‐brain	diffusion	based	anatomical	 connectivity	
data.	 Compared	 to	 classical	 single‐partition	 connectivity‐based	 brain	 parcellation	
methods	 (for	 a	 review,	 see,	 Knösche	 and	 Tittgemeyer,	 2011),	 it	 offers	 a	 number	 of	
advantages.	
First,	 it	 is	 important	 to	 compare	 function‐anatomical	 maps	 between	 subjects	 or	

between	 different	 datasets	 of	 the	 same	 subject	 (e.g.,	 at	 different	 ages).	 With	 single‐
partition	 parcellation,	 one	 has	 to	 choose	 a	 particular	 level	 of	 granularity	 in	 order	 to	
obtain	 a	 parcellation.	 This	 level	 of	 granularity	 can	 be	 expressed,	 for	 example,	 by	 the	
number	 of	 desired	 clusters,	 by	 the	 differences	 between	 or	 the	 homogeneity	 within	
clusters,	or	by	the	sizes	of	the	clusters.	All	these	criteria	can	require	different	values	in	
different	datasets	for	defining	the	same	function‐anatomical	subdivision.	It	is	therefore	
difficult	 to	 obtain	 comparable	 parcellations.	Moreover,	 there	might	 be	more	 than	 one	
level	of	granularity	relevant	for	the	comparison.	Using	the	whole	information	encoded	in	
hierarchical	 trees,	 connectivity	 similarity	 (and	 therefore	 function‐anatomical	
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organization	of	the	cortex)	can	be	compared	efficiently	without	any	explicit	choices	on	
granularities.		Such	comparisons	can	be	potentially	used	to	show	changes	or	differences	
in	 the	 function‐anatomical	 organization	 of	 the	 brain	 in	 a	 great	 number	 of	 settings,	
including	disease,	development,	aging	and	cognitive	abilities.	The	particular	advantage	is	
that	 one	 can	 start	 at	 a	 general	 comparison	 (i.e.,	 comparing	 the	 entire	 trees)	 without	
making	 any	 choices	 or	 assumptions,	 and	 then	 gradual	 zoom	 into	 certain	 parts	 of	 the	
trees	(i.e.,	comparing	subtrees)	and/or	particular	levels	of	detail	(i.e.,	pruning	the	lower	
level	nodes).	
Second,	 if	 larger	 parts	 of	 the	 cortex	 or	 the	 entire	 brain	 are	 to	 be	 parcellated,	 the	

definition	of	a	granularity	level,	as	required	by	non‐hierarchical	methods,	becomes	quite	
arbitrary.	Even	if	comparison	is	not	the	goal,	it	is	not	easy	to	say,	how	many	clusters	are	
to	be	expected	or	how	big	 they	are.	Also,	 the	magnitude	of	difference	between	parcels	
depends	on	 the	brain	 region.	 For	 example,	 regions	near	 large	 fiber	 tracts,	 such	 as	 the	
arcuate	fascicle,	tend	to	exhibit	higher	similarity	in	terms	of	their	connectivity	pattern,	
requiring	 lower	 thresholds	 for	 parcellation.	 Hierarchical	 parcellation	 circumvents	 the	
granularity	choice.	The	obtained	trees	can	be	explored	interactively	in	order	to	discover	
the	function‐anatomical	organization	in	different	brain	regions.	Of	course,	it	remains	an	
important	issue	to	extract	actual	partitions	of	the	cortex	from	the	tree	(see	below).	
Third,	 the	 hierarchical	 trees	 encode	 the	 interrelation	 between	 different	 levels	 of	

description	of	the	function‐anatomical	cortex	organization,	from	relatively	local	to	very	
global.	In	fact,	using	very	high	resolution	MRI	data	one	could	even	imagine	bridging	the	
gap	 between	microscopic	 and	macroscopic	 levels	 (see	 Heidemann	 et	 al.,	 2012,	 for	 an	
intermediate	step	into	that	direction).	This	is	of	particular	importance,	if	the	parcellation	
is	used	as	a	basis	 for	building	a	 connectome.	 If	 the	 connectome	 is	 truly,	 as	defined	by	
Sporns	 (2011b),	 “a	comprehensive	structural	description	of	the	network	of	elements	and	
connections	forming	the	human	brain”,	it	essentially	has	to	span	multiple	levels	of	detail.	
Using	the	parcels	of	a	hierarchical	parcellation	as	the	elements	of	the	connectome	could	
lead	to	a	hierarchical	connectome	that	not	only	describes	the	brain	network	at	different	
levels	of	detail,	but	also	encodes	the	relations	between	these	levels.	Note,	however,	that	
the	construction	of	a	true	connectome	relies	on	adequacy	of	the	employed	connectivity	
measures	in	terms	of	the	true	function‐anatomical	structure	of	the	brain.	Certainly,	non‐
invasive	measures	based	on	MRI,	valuable	as	they	may	be,	bear	significant	limitations	in	
that	respect.	The	parcellation	resulting	from	hierarchical	clustering	could	also	be	used	as	
initial	 regions	 for	 global	 tractography	methods	 like	 the	 recently	 proposed	 plausibility	
tracking	method	(Schreiber	et	al.,	2014).	
	
Nevertheless,	 hierarchical	 clustering	 also	 suffers	 from	 some	 principled	 limitations.	

Given	 its	 iterative	 agglomerative	 nature,	 established	 mergers	 cannot	 be	 undone.	 The	
procedure	 therefore	 has	 some	 sensitivity	 to	 local	 effects	 and	 errors	 may	 propagate,	
missing	on	the	global	optimum,	when	considering	specific	partitions.	For	these	reasons,	
in	 scenarios	 dealing	 with	 small	 datasets	 or	 when	 only	 a	 single	 optimal	 partition	 is	
desired,	optimization	based	methods	such	as	k‐means	or	model‐based	methods	might	be	
more	 adequate.	 However,	 for	 large	 datasets	 and	 a	 large	 number	 of	 expected	 clusters,	
these	 other	 methods	 may	 lead	 to	 exploding	 complexity	 and	 computation	 power	
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requirements	in	order	to	achieve	acceptable	reliability	(by	design	in	the	case	of	model‐
based	 methods,	 in	 order	 to	 maintain	 stability	 against	 local	 effects	 due	 to	 initial	
conditions	 in	the	case	of	k‐means:	Kuncheva	and	Vetrov,	2006;	Pham	et	al.,	2005).	For	
these	reasons,	we	strongly	believe	that	in	our	scenario	of	whole	brain	parcellation,	the	
advantages	 that	 hierarchical	 clustering	 offers	 (namely:	 multiple‐nested‐granularity,	
possibility	 for	 whole‐structure	 comparison,	 and	 scalability	 with	 dataset	 size)	 greatly	
compensate	for	its	limitations.		

	

6.3 Meta‐leaf	matching	
	

For	the	comparison	of	any	cortical	map	between	datasets,	hierarchical	parcellations	
being	no	exception,	 it	 is	necessary	 to	establish	a	 correspondence	between	 the	cortical	
elements.	In	other	words,	we	need	to	decide	for	each	element	(e.g.,	voxel)	in	one	dataset,	
what	is	the	function‐anatomically	equivalent	element	in	the	other	dataset.	This	is	not	a	
big	 issue	when	comparing	repeated	measurements	of	 the	same	subject,	but	due	to	the	
natural	anatomical	variability	 (Thompson	et	 al.,	1996)	 it	poses	quite	a	 challenge	 if	we	
want	to	compare	across	subjects	or	hemispheres.		Attempts	to	obtain	such	a	mapping	on	
the	basis	of	structural	MRI	have	resulted	in	numerous	linear	and	non‐linear	registration	
algorithms		(e.g.,	matching	of	freesurfer	surfaces	nodes;	Roca	et	al.,	2010),	but	the	results	
are	not	always	 satisfactory,	 in	particular	 if	 the	 surfaces	differ	 in	 terms	of	number	and	
orientation	of	gyri	and	sulci	(Ono	et	al.,	1990).	Here,	this	problem	concerns	the	meta‐leaf	
identification	 between	 trees,	 which	 was	 achieved	 by	 maximizing	 mean‐tractogram	
similarities	using	a	greedy	algorithm.	This	approach	relies	on	 the	assumption	 that	 the	
connectivity	pattern	is	a	good	reflection	of	the	function‐anatomical	identity	of	a	cortical	
element	‐	the	same	assumption	that	underlies	the	entire	connectivity‐based	parcellation	
idea.	For	a	more	detailed	discussion	of	the	justification	of	this	assumption,	see	Knösche	
and	 Tittgemeyer	 (2011).	 Our	 analysis	 showed	 that	 the	 meta‐leaf	 similarity	 method	
yields	 meaningful	 comparisons	 between	 trees.	 However,	 at	 this	 stage,	 inter‐subject	
matching	 is	 not	 always	 stable	 enough	 to	 quantitatively	 interpret	 small	 variations	 in	
them.	 The	 leaf	 matching	 is	 certainly	 one	 of	 the	 current	 challenges	 of	 the	 method.	 It	
remains	 to	 be	 investigated	 whether	 other	 matching	 strategies,	 like	 the	 “Hungarian”	
method	(Kuhn,	1955),	yield	an	improvement.	In	general,	however,	it	is	not	likely	that	by	
improved	 mathematical	 algorithms	 alone	 this	 issue	 is	 going	 to	 be	 resolved	 in	 a	
satisfactory	way.	 Instead,	 the	very	notion	of	 function‐anatomical	 equivalence	needs	 to	
be	refined.	A	comprehensive	and	reproducible	definition	of	the	equivalence	of	elements	
in	 two	 brains	 would	 provide	 solid	 ground	 from	 which	 to	 gauge	 any	 difference	 in	
structural	 properties	 or	 functional	 organization.	 Such	 a	 mapping	 would	 have	 to	 be	
unique,	that	is,	each	element	in	one	brain	must	be	assigned	to	exactly	one	element	in	the	
other	brain,	and	vice	versa.	Furthermore,	as	the	leaf	matching	criterion	has	of	course	a	
profound	 influence	 of	 the	 resulting	 tree	 comparison	 results,	 it	 has	 to	 be	 biologically	
meaningful.	In	other	words,	only	if	we	have	good	reason	to	compare	an	element	in	one	
brain	 to	 just	 a	 particular	 element	 in	 the	 other	 brain	 (and	 not	 to	 any	 other),	 it	makes	
sense	 to	 interpret	 their	 differences	 in,	 for	 example,	 connectivity	 or	 cytoarchitecture.	
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Similar	connectivity	to	the	rest	of	the	brain	is	certainly	a	good	starting	point	for	such	an	
equivalence	 criterion,	 but	 it	 is	 surely	 not	 the	 ultimate	 solution.	 An	 interesting	 option	
might	be	guiding	mesh	matching	with	connectivity	properties,	as	proposed	(using	much	
smaller	pattern	vectors)	by	Cathier	and	Mangin	(2006)	or	Petrovic	and	Zollei	(2011).	

	

6.4 Tree	comparison	
	

The	 hierarchical	 tree	 allows	 for	 comparison	 of	 the	 whole	 connectivity	 similarity	
structure	across	measurements,	and	not	just	particular	partitions,	which	is	not	possible	
with	the	other	methods.	Note	that	the	tree	does	actually	contain	all	possible	partitions	
together	with	their	mutual	relationships.	
This	 comparison	 measure	 gives	 us	 the	 degree	 by	 which	 the	 structure	 of	 the	

connectivity	 similarity	 organization	 varies	 across	 different	 measurements.	 More	
specifically,	 the	 tCPCC	 measure	 focuses	 on	 the	 actual	 degree	 of	 similarity	 between	
connectivity	patterns,	while	wTriples	measures	topological	similarity	(for	example	if	the	
region	most	similar	to	a	given	selected	area	is	the	same	in	both	measurements).	
Unfortunately,	 compared	 to	 repeated	 measurements,	 the	 quality	 of	 meta‐leaf	

matching	across	subjects	or	hemispheres	inevitably	decreases	(see	above),	and	so	does	
the	reliability	of	the	comparison.	There	might	be	two	possible	solutions	to	this	problem:	
either	improving	the	quality	of	the	matching	by	using	more	sophisticated	methods,	like	
combining	 surface	 topology	 information	 with	 connectivity	 pattern	 information	
(although	 this	 is	 unlikely	 to	 boost	 the	 quality	 to	 the	 same	 level	 as	 repeated	
measurements),	or	accepting	that,	due	to	the	inter‐subject	variability,	a	perfect	matching	
at	high	granularities	is	not	possible,	and	trying	to	establish	suitable	levels	at	which	the	
matching	 may	 be	 done	 with	 sufficient	 quality	 (one	 would	 have	 to	 be	 aware	 that	 the	
matching	results	obtained	are	only	valid	at	those	granularities).	

	

6.5 Extraction	of	partitions	
	

Although	 a	 hierarchical	 tree	 in	 its	 entirety	 comprises	 the	 joint	 information	 of	 all	
possible	 partitions	 and	 their	 mutual	 relations,	 concrete	 anatomical	 interpretation	
requires	the	generation	of	actual	partitions.	As	a	compromise	between	single	partitions	
and	 the	 entire	 tree,	 we	 characterized	 the	 hierarchical	 structure	 of	 the	 trees	 through	
series	 of	 partitions	 at	 different	 levels	 of	 granularity.	 Several	 partition	 schemes	 were	
implemented.	 Horizontal	 partitioning	 was	 shown	 to	 be	 a	 good	 approximation	 of	 the	
more	 sophisticated	 spread	 separation	 (SS)	 partitioning	 for	 a	 given	 granularity	 level.	
These	partitions	are	very	stable	against	noise	and	the	boundaries	have	a	high	degree	of	
reproducibility	across	subjects.	In	order	to	palliate	the	tendency	of	regions	of	the	cortex	
that	 share	 large	 common	 tracts	 to	 remain	 in	 a	 single	 cluster	 across	 a	 higher	 range	 of	
granularities,	 a	 minimum	 size‐difference	 clustering	 was	 implemented.	 This	 method	
effectively	extracts	more	homogeneous	parcellations.		
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Calculating	the	SS	index	for	every	granularity	level,	we	showed	that	for	each	data	set	
there	 is	 an	 entire	 range	 of	 similarly	 good	 partitions	 (approx.	 between	 50	 and	 200	
clusters).	 This	 fact	 raises	 general	 concerns	 about	 the	 search	 for	 a	 single	 optimal	
partition	 or	 even	 a	 series	 of	 a	 few	 partitions.	 Although	 one	 is	 able	 to	 single	 out	 one	
partition	 with	 the	 highest	 information	 content	 (in	 some	 sense)	 of	 all	 partitions,	 this	
information	might	still	be	completely	insufficient	to	describe	the	entire	structure.	Hence,	
one	has	to	try	to	find	ways	to	(approximately)	represent	entire	classes	of	parcellations	
in	 an	 effective	 manner.	 As	 each	 bifurcation	 in	 the	 tree	 represents	 the	 separation	
between	two	clusters	(i.e.,	a	boundary),	such	a	technique	could	aim	at	finding	the	most	
relevant	or	persistent	boundaries	rather	than	entire	parcellations.	An	idea	would	be	to	
look	 at	 the	 branch	 lengths	 of	 the	 nodes	 involved.	 The	 longer	 the	 branch	 (in	 absolute	
value	or	in	relation	to	the	node	height),	the	more	stable	that	region	is	in	comparison	to	
its	neighboring	ones.	This	way,	 important	boundaries	would	be	mapped	on	the	cortex,	
rather	than	entire	parcellations.	However,	this	principle	needs	further	investigation.		
	
The	 extracted	 partitions	 could	 be	 used	 to	 do	 a	 connectome‐based	 analysis	 of	

connectivity	 (Hagmann	 et	 al.,	 2008)	 or	 as	 a	 priori	 partition	 for	 white	 matter	 fiber	
analysis	 (Wassermann	 et	 al.,	 2010).	 Within	 each	 method,	 partitions	 are	 always	 fully	
nested.	This	eases	the	interpretation	of	the	boundary	changes	from	one	granularity	level	
to	 the	next.	On	the	other	hand,	 in	an	agglomerative	method	 the	 information	about	 the	
fuzzyness	 of	 the	 changes	 in	 connectivity	 similarity	 is	 not	 as	well	 captured	 as	 in	 other	
approaches	(Cerliani	et	al.,	2012;	Gorbach	et	al.,	2011),	although	it	might	be	extracted	to	
a	limited	degree	from	the	tree	topology.	

	

6.6 Relationship	to	other	multi‐granularity	methods	
	

As	 explained	 above,	 multi‐granularity	 methods	 like	 the	 one	 proposed	 here	 offer	
several	general	advantages	over	single‐partition	methods:	they	yield	a	more	exhaustive	
representation	of	 the	real	connectivity	similarity	structure;	 they	are	preferable	 for	 the	
analysis	of	 larger	regions	(up	to	entire	hemispheres	or	brains),	due	 to	 the	expectation	
that	 different	 boundaries	 may	 be	 relevant	 at	 different	 levels	 of	 granularity;	 they	
facilitate	 comparisons	 between	 data	 sets;	 and	 they	 allow	 for	 adaptive	 parcellation	
depending	on	the	features	that	we	would	like	to	emphasize.	
	
Other	researchers	have	approached	multi‐granularity	in	different	ways.	For	example,	

Kahnt	 and	 colleagues	 (2012)	 generated	 a	 series	 of	 k‐means	 based	 parcellations	 from	
resting‐state	fMRI	data	of	the	orbito‐frontal	cortex	using	different	numbers	of	expected	
clusters.	The	 fundamental	difference	between	 their	approach	and	 the	one	proposed	 in	
the	current	work	 lies	 in	 the	 fact	 that	 the	hierarchical	 tree	 imposes	a	constraint	on	 the	
relationship	between	the	different	parcellations,	in	that	finer	parcellations	are	nested	in	
the	coarser	ones.	Hence,	in	our	method	any	finer	subdivision	complements,	rather	than	
competes	with,	the	previous	parcellation.	Moreover,	the	embedding	of	the	parcellations	
into	 a	 tree	 structure	 yields	 immediate	 clues	 about	 the	 distinctness	 and	 stability	 of	
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certain	 boundaries,	 as	 well	 as	 to	 the	 topological	 relationship	 between	 different	
parcellations.	An	effort	to	bring	multiple	k‐means	parcellations	at	different	granularities	
into	a	hierarchy	has	been	presented	for	fMRI	co‐activation	data	by	Clos	and	colleagues	
(2013),	where	hierarchically	inconsistent	voxels	from	the	clusters	obtained	are	removed	
resulting	in	nested	partitions.	
The	 work	 of	 Gorbach	 and	 colleagues	 (2011)	 takes	 a	 different	 approach	 to	 multi‐

granularity	by	obtaining	a	“space”	of	optimal	parcellations	from	dMRI	data	through	an	
information	bottleneck	method,	minimizing	the	tradeoff	between	data	compression	and	
information	 preservation.	 For	 each	 desired	 granularity,	 the	 number	 of	 clusters	 is	
determined	by	a	Lagrange	multiplier	parameter	and	an	upper	boundary	for	the	number	
of	 clusters.	 In	 their	 approach,	 while	 boundaries	 are	 not	 necessarily	 nested	 across	
granularities,	 they	 seem	 more	 stable.	 The	 method	 may	 have	 an	 advantage	 over	
agglomerative	methods	at	granularity	levels	where	changes	are	gradual	and	boundaries	
fuzzy.	 It	offers	a	solution	between	nested	partitions	and	single	partitioning	at	multiple	
levels.	 However,	 computational	 costs	 also	 escalate	 for	 growing	 datasets	 and	
granularities.	
	
In	 comparison,	 our	 approach	 tries	 to	 characterize	 the	whole	 connectivity	 similarity	

information	 in	a	 compact	 tree,	which	 is	 then	easy	 to	process.	As	demonstrated	by	 the	
high	 CPCC	 values,	 most	 information	 of	 the	 connectivity	 similarity	 matrix	 (N2	 floating	
points,	with	N	being	the	number	of	tractogram	seed	voxels)	is	successfully	encoded	with	
only	a	fraction	of	the	size	(2N	floating	points	plus	2N	integers,	easily	stored	as	an	ASCII	
text	file).	Furthermore,	the	number	of	tractogram	similarities	that	must	be	computed	in	
order	to	obtain	the	tree	is	3	orders	of	magnitude	lower	than	that	needed	to	compute	the	
matrix.	This	is	an	important	advantage,	given	that	tractogram	similarity	computation	is	a	
costly	operation,	if,	like	in	our	case,	all	the	white	matter	is	used	as	target	space	and	high	
resolution	(1	mm)	is	used	(amounting	to	more	than	15⋅105	floating	point	operations).	
However,	 the	 use	 of	 multi‐granularity	 methods	 does	 not	 yet	 solve	 the	 problem	 of	

selecting	 relevant	 partitions.	 Cluster	 number	 selection	 remains	 an	 open	 problem	 in	
connectivity‐based	clustering	literature.	Various	solutions	have	been	proposed	to	solve	
it,	 such	 as	 visual	 inspection	 of	 reordered	 connectivity	 matrices	 (Johansen‐Berg	 et	 al.,	
2004),	 consistency	 across	 subjects	 (Ruschel	 et	 al.,	 2013),	 correspondence	 with	
cytoarchitectonic	maps	 (Anwander	 et	 al.,	 2007),	 hierarchical	 consistency	 (when	 using	
optimization	 methods	 for	 different	 numbers	 of	 expected	 clusters;	 Clos	 et	 al.,	 2013),	
variation	of	information	(Kahnt	et	al.,	2012;	Clos	et	al.,	2013),	information‐based	model	
selection	(Gorbach	et	al.,	2012),	consistency	across	modalities	(Kelly	et	al.,	2012)	and	the	
tree‐based	 methods	 we	 propose	 here,	 which	 are	 especially	 suitable	 for	 whole	 brain	
parcellation.	The	hierarchical	tree	method	is	actually	open	to	all	these	approaches,	while	
offering	a	much	richer	stock	of	available	partitions,	among	which	to	select.		
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6.7 Fine‐tuning	of	parameters	
	
Our	clustering	 includes	a	number	of	parameters	whose	values	 influence	 the	 results	

obtained	(e.g.,.	neighborhood	used	and	maximum	cluster	size	restriction	while	building	
the	tree;	minimum	tract	dissimilarity	to	be	considered	an	outlier;	coefficients	of	the	tree	
preprocessing	pipeline	etc.).	Due	to	the	small	size	of	the	subject	sample	used	in	the	study,	
this	parameters	were	optimized	for	a	single	subject	(in	terms	of	best	trade‐off	between	
information	 loss	 and	 tree	 complexity	 reduction),	 and	 the	 values	 applied	 for	 all	 other	
subjects	 (controlling	 that	 for	 the	 other	 subjects	 this	 trade‐off	 stayed	within	 the	 same	
range).	 A	 future	 study	 with	 a	 larger	 number	 of	 subjects	 should	 also	 include	 further	
optimization	 of	 these	 parameters	 via	 a	 bigger	 training	 sample.	 However,	 it	 is	 not	
expected	that	results	change	dramatically.		
But	even	before	clustering	is	applied,	many	decisions	are	taken	that	can	greatly	affect	

the	outcome	of	the	parcellation:	the	choice	of	the	connectivity	fingerprints	(in	the	case	of	
anatomical	 connectivity:	 full	 tracts	 through	white	matter	 (this	 thesis;	Anwander	et	 al.,	
2007;	 Johansen‐Berg	 et	 al.,	 2004)	 or	 grey	 matter	 end‐points	 endpoints	 (Bach	 et	 al.,	
2011);	 the	 application	 or	 not	 of	 data	 smoothing,	 the	 choice	 of	 similarity	 measure	
between	fingerprints	(correlation,	mutual	information,	independence	of	components…).	
The	 consequences	 of	 these	 choices	 can	 be	 as	 important	 as	 the	 choice	 of	 clustering	

algorithm	 itself	 and	 its	 parameters	 and	 finding	 an	 optimal	 solution	 is	 not	 a	 simple	
problem.	In	most	studies	these	matters	are	usually	not	investigated	and	the	choices	that	
are	deemed	more	convenient	for	the	specific	objective	at	hand	are	taken.	No	study	up	to	
date	has	systematically	characterized	the	effects	and	meaning	of	all	these	choices	in	the	
final	 parcellations/connectivity	 values.	 There	 is	 an	 urgent	 need	 for	 systematic	
evaluation	studies	that	meticulously	scrutinize	the	influence	all	these	choice	have	onto	
the	results.		

	

6.8 Biological	validity	
	

Here	we	made	a	proposal	how	to	account	for	the	structural	organization	of	the	cortex	
based	on	anatomical	connectivity	measures.	A	key	question	that	remains	is	the	one	for	
the	biological	 relevance	of	 the	obtained	 results.	 First	 of	 all,	 our	method	 is	 primarily	 a	
way	 to	 represent	 given	 information	 in	 a	 convenient	 way.	 Hence	 the	 validity	 and	
relevance	of	the	parcellations	hinges	on	the	appropriateness	of	the	underlying	diffusion	
tractography.		However,	on	top	of	this,	also	the	construction	of	the	tree	and	the	selection	
of	partitions	need	to	be	evaluated.		
As	this	is	a	proof‐of‐principle	study	we	only	offer	some	preliminary	evaluation	of	the	

neurobiological	significance	of	the	results,	for	example	by	comparing	the	inferior	frontal	
gyrus	 parcellation	 with	 cytoarchitectonic	 maps.	 Much	 remains	 to	 be	 done	 in	 future	
studies.	In	particular,	within‐subject	validation	will	be	crucial	as	it	avoids	the	inevitable	
uncertainties	 of	 comparing	 different	 brains.	 For	 example,	 functional	 localizer	 tasks	 in	
fMRI	 experiments	 could	 be	 used	 to	 gauge	 the	 functional	 significance	 of	 parcellations	
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(Schubotz	et	al.,	2010;	Johansen‐Berg	et	al.,	2004).	Alternatively,	resting‐state	functional	
connectivity	 (Kelly	 et	 al.,	 2012)	 and	 meta‐analytic	 co‐activation	 studies	 (Clos	 et	 al.,	
2013)	also	offer	promising	comparison	possibilities.	For	example,	one	might	apply	 the	
same	 method	 to	 structural	 and	 functional	 connectivity	 measurements.	 In‐vivo	
Brodmann	mapping	 (Bazin	 et	 al.,	 2013)	based	on	quantitative	T1	 imaging	might	 offer	
another	 option.	 In	 this	 study	 we	 do	 not,	 and	 cannot,	 aim	 at	 the	 construction	 of	 a	
connectome	 or	 even	 a	 function‐anatomical	 atlas.	 This	will	 indeed	 require	much	more	
work,	in	particular	involving	many	more	subjects	that	in	some	sense	are	representative	
for	a	population.	
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7. SUMMARY	AND	OUTLOOK	
	
It	 is	 commonly	 accepted	 among	 neuroscientists	 that	 the	 cerebral	 cortex	 can	 be	

subdivided	into	areas	according	to	various	structural	criteria,	such	as	cytoarchitecture,	
or	receptorarchitecture	(Amunts	et	al.,	1999;	Brodmann,	1909;	Zilles	et	al.,	1996).	 It	 is	
also	 generally	 agreed	 that	 brain	 structure	 is	 closely	 related	 to	 brain	 function	 and,	
therefore,	 structurally	 defined	 cortical	 areas	 tend	 to	 carry	 functional	 meaning.	
Consequently,	 many	 studies	 have	 aimed	 to	 find	 the	 boundaries	 between	 these	 areas,	
using	a	variety	of	 techniques	based	on	 local	 structural	 tissue	properties.	However,	 the	
brain	 is	 not	 only	 a	 collection	 of	 isolated	 functional	 units;	 the	 different	 parts	
communicate	and	interact	in	a	complex	network	ultimately	resulting	in	higher	cognitive	
capabilities.	 The	 connectivity	 pattern	 of	 a	 specific	 point	 in	 the	 cortex	 is,	 therefore,	 a	
major	 source	 of	 information	 about	 its	 function	 and	 an	 important	 parameter	 for	 the	
description	 and	 distinction	 of	 cortical	 areas	 (Knösche	 and	 Tittgemeyer,	 2011;	
Passingham	 et	 al.,	 2002).	 	 The	 subdivision	 of	 the	 brain	 into	 function‐anatomically	
defined	 areas	 is	 also	 a	 necessary	 step	 for	 the	 connectome,	 characterized	 by	 elements	
(the	regions	being	connected)	and	the	connections	between	them	(Sporns,	2011b).		

	
In	 this	 thesis,	 we	 have	 presented	 a	 framework	 to	 carry	 out	 whole‐brain	

characterization	 and	 parcellation	 based	 on	 anatomical	 connectivity	 information	 from	
high‐resolution	dMRI	images.	A	whole	brain	approach	is	faced	with	particular	challenges	
not	present	in	traditional	brain‐clustering	scenarios.	Namely,	a	high	volume	of	data	and	
an	 unknown	 distribution	 and	 number	 of	 clusters	 (these	 being	 subject	 to	 the	 desired	
granularity).	 In	order	 to	overcome	 these	difficulties,	 a	multi‐granularity	approach	was	
chosen	 by	 using	 agglomerative‐hierarchical	 clustering.	 The	 datapoints	 to	 be	 clustered	
were	the	connectivity	fingerprints	from	single	voxels	in	the	gray	matter	/	white	matter	
cortical	 boundary.	 These	 fingerprints	 were	 computed	 via	 probabilistic	 tractography	
based	on	tensors	with	the	whole	white	matter	as	target	space	(Anwander	et	al.,	2007),	
but	 we	 have	 strived	 to	 build	 our	 framework	 as	 independent	 from	 the	 tractography	
choice	as	possible.	A	normalized	dot	product	between	tractogram	vectors	was	used	as	a	
similarity	measure,	closely	related	to	Pearson’s	correlation.	The	output	of	the	algorithm	
is	a	hierarchical	tree	encoding	not	only	the	pair‐wise	connectivity	similarity	information	
between	datapoints	but	also	and	the	similarity	between	areas	of	different	granularities	
and	their	hierarchical	relationships	with	one	another.	
Several	 traditional	 hierarchical	 methods	 were	 implemented,	 and	 a	 new	 method	

especially	 suited	 to	 our	 problem	 was	 developed	 by	 combining	 the	 centroid	 linkage	
method	 (Jain	 and	 Dubes,	 1988)	 with	 neighborhood	 restriction	 (in	 order	 to	 produce	
contiguous	parcels)	and	with	an	initial	size‐restricted	stage	(in	order	to	obtain	an	early	
set	 of	 homogenous‐sized	 clusters	 to	 use	 as	 tree	 meta‐leaves).	 Cophenetic	 correlation	
coefficient	(CPCC;	Farris,	1969)	was	used	to	test	the	fit	to	the	data	of	the	generated	trees	
using	the	aforementioned	methods	over	real	and	random	datasets.	The	centroid	method	
with	a	26‐voxel	neighborhood	proved	to	be	superior	 in	performance	by	having	a	 fit	 to	
the	 data	 equal	 to	 the	 best	 scoring	 traditional	 method	 but	 requiring	 much	 less	
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computation	 and	 memory	 resources.	 Values	 obtained	 were	 also	 well	 above	 baseline	
levels	 obtained	 from	 the	 random	 datasets.	 This	 algorithm	 was	 adopted	 for	 the	
remainder	of	the	study.	
In	order	to	make	tree	interpretation	and	partition	extraction	easier,	a	tree‐processing	

pipeline	 was	 developed	 and	 implemented	 in	 order	 to	 reduce	 tree	 complexity	 while	
incurring	 in	 minimal	 information	 loss.	 Pre‐processing	 steps	 included	 outlier	 pruning,	
monotonicity	 correction,	 limiting	 maximum	 granularity	 and	 detection	 of	 non‐binary	
structures	 and	 consequent	 tree	 de‐binarization.	 The	 combined	 effect	 of	 these	 steps	
achieved	 a	 complexity	 reduction	 of	more	 than	 90%	with	 a	 loss	 of	 information	 of	 less	
than	 0.5%,	 making	 it	 a	 remarkably	 efficient	 and	 useful	 tool	 for	 improving	 the	
performance	of	partition	finding	and	tree	comparison	algorithms.	
The	information	encoded	in	the	cleaned	trees	was	used	as	a	whole	in	order	to	detect	

structural	differences	between	datasets.	For	this	purpose,	a	leaf	matching	strategy	was	
set	 in	 place	 by	 warping	 the	 mean‐tractograms	 of	 each	 subject’s	 meta‐leaves	 to	 a	
common	 space	 (guided	 by	 a	 prior	 FA	 registration)	 and	 applying	 a	 greedy	 matching	
algorithm	over	 the	pair‐wise	 similarity	matrix	 of	 the	meta‐leaves	 tractograms	 (with	 a	
maximum	 anatomical	 distance	 restriction	 in	 order	 to	 avoid	 poor	 matches	 at	 the	 last	
stages	 of	 the	 greedy	 algorithm).	 This	 way	 each	 meta‐leaf	 from	 the	 first	 subject	 is	
matched	 to	 the	 meta‐leaf	 of	 the	 second	 subject	 with	 most	 similar	 connectivity	
fingerprint.	 Once	 tree	 meta‐leaves	 were	 matched,	 tree	 comparison	 algorithms	 were	
applied	(tCPCC,	based	on	the	correlation	of	the	similarity	matrices	encoded	by	the	trees,	
and	wTriples,	based	on	the	triples	method:	Bansal	et	al.,	2011).		A	baseline	level	for	the	
tree	 comparison	 values	 was	 obtained	 by	 applying	 the	 algorithms	 over	 randomly	
matched	 trees	 (but	 subject	 to	 the	 same	 maximum	 anatomical	 distance	 restrictions).	
Results	on	real	datasets	showed	values	well	above	baseline	 levels	and	good	test‐retest	
reliability.	 tCPCC	 performed	 better	 against	 noise.	 Inter‐subject	 comparison	 however,	
proved	 not	 robust	 enough	 for	 quantitative	 comparisons	 at	 this	 stage,	 maybe	 due	 to	
challenges	 in	 leaf‐matching	 (same‐subject	 comparisons	 features	 much	 better	 leaf‐
matching	quality	compared	to	between‐hemispheres	comparisons,	which	in	turn	match	
better	than	between‐subject	comparisons).	
The	 information	 in	 the	hierarchical	 tree	can	be	mapped	back	 to	cortex	by	means	of	

projecting	full	partitions	(that	is,	cuts	through	the	hierarchical	tree)	onto	the	individual	
cortical	surface.	The	most	widely	used	tree	partition	selection	method	is	the	horizontal	
cut,	which	guarantees,	for	a	given	number	of	clusters,	a	lower	bound	for	the	intra‐cluster	
spread.	 This	 method	 however,	 does	 not	 take	 into	 account	 inter‐cluster	 distance.	 We	
implemented	a	new	partition	method	using	both	 intra‐cluster	spread	and	 inter‐cluster	
separation	(SS).	Results	on	healthy	participants	showed	that	for	a	given	granularity	level	
(defined	by	number	of	clusters),	partitions	obtained	from	the	horizontal	cut	are	a	good	
approximation	to	those	obtained	by	the	SS	method.	Partitions	at	low	granularities	(~15	
clusters	per	hemisphere)	reflect	the	rough	course	of	major	fiber	bundles.	Increasing	the	
granularity	 to	50	clusters	provides	cluster	area	sizes	similar	to	Brodmann	areas.	Finer	
subdivisions	could	be	achieved	 increasing	granularity	 to	100	clusters.	Focusing	on	 the	
IFG	 shows	 partitioning	 consistent	 with	 known	 literature:	 while	 at	 relatively	 low	
granularities	only	some	of	the	major	boundaries	between	the	opercular,	triangular	and	
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orbital	parts	of	the	IFG	were	revealed,	at	higher	granularity,	more	subdivisions	appeared,	
including	 those	 that	 are	 not	 covered	 by	 the	 classical	 tripartition.	 For	 repetitive	
acquisitions	in	the	same	subject,	the	subdivisions	were	highly	reproducible.	The	spread‐
separation	 partitioning	 method	 also	 allows	 to	 evaluate	 the	 quality	 of	 the	 partition	
(defined	 by	 a	 higher	 separation	 to	 spread	 ratio	 index)	 and	 find	 for	 each	 defined	
granularity	 the	one	maximizing	 this	 value.	 Plotting	 this	 index	value	of	 each	optimized	
partition	 against	 its	 number	 of	 clusters	 can	 help	 establish	 a	 range	 of	 higher	 quality	
partitions.	This	range	was	found	to	be	between	20	and	600	clusters	per	hemisphere	on	
our	high	resolution	datasets.	
	
In	order	 to	provide	a	higher	degree	of	confidence	 in	the	methodological	 framework	

developed,	two	small	validation	studies	were	carried	out.	
The	 first	 study	 looked	 to	 reproduce	 the	 results	 of	 Ruschel	 and	 colleagues	 (2013)	

where	 they	 divided	 the	 inferior	 parietal	 cortex	 convexity	 (IPCC)	 of	 20	 healthy	
participants,	 finding	 3	 clusters	 to	 be	 the	 number	 that	 best	 stabilized	 results	 across	
subjects.	Applying	our	methods	on	their	tractography	data	and	using	SS	partitioning	to	
obtain	3	clusters	provided	virtually	identical	partitions	for	more	than	half	the	datasets.	
The	 remaining	 datasets	 showed	 slight	 differences	 in	 one	 of	 the	 boundaries,	 but	
completely	overlapping	boundaries	could	be	obtained	if	granularity	was	increased	to	5	
clusters.	
In	 a	 second	 validation	 test	 the	 partitions	 obtained	 in	 an	 individual	 dataset	 were	

matched	 to	 the	 cytoarchitectonic	 parcellation	 provided	 by	 Jülich	Research	Center.	 The	
boundaries	obtained	by	our	methods	at	mid‐level	granularities	appeared	in	agreement	
with	the	cytoarchitectonic	atlas	results.	
	
This	 study	 aims	 at	 proposing	 a	 novel	 technology	 for	 parcellating	 the	 brain	 and	

offering	initial	proof‐of‐principle	validation.	Obviously,	much	remains	to	be	done.	
There	 are	 a	 number	 of	methodological	 issues	 that	 require	 further	 attention.	 These	

especially	 involve	 the	 partition	 extraction	method	 and	 the	 tree	 comparison	 technique	
(especially	 the	 leaf	matching).	 An	 alternative	way	 to	match	 leaves	 could	 be	 based	 on	
surface	registration	(Moreno‐Dominguez	et	al.,	2014b).	A	mixed	approach	between	both	
also	sounds	a	promising	avenue.	
Also,	in	order	to	produce	partitions	representative	of	a	population,	a	larger	study	with	

a	greater	pool	of	subjects	is	essential.	Such	a	study	should	also	include	a	more	thorough	
verification	and	validation.	Some	ideas	in	that	respect	could	involve	software	phantoms,	
systematic	parameter	optimization,	and	comparison	to	functional	data	parcellations.	
	
Using	 a	 more	 numerous	 and	 representative	 cohort	 of	 brains,	 we	 believe	 that	 this	

technology	can	be	used	to	build	a	hierarchical	function‐anatomical	atlas	or	a	hierarchical	
connectome	 of	 the	 brain.	 A	 whole‐brain	 parcellation	 derived	 from	 anatomical	
connectivity	 would	 serve	 as	 an	 ideal	 starting	 point	 to	 characterize	 structural	 and	
functional	connections	between	anatomically	meaningful	parcels.	Furthermore,	it	would	
be	a	very	interesting	option	to	study	the	connectome	at	different	granularities	with	the	
hierarchical	partitions	provided,	and	produce	a	hierarchical	connectome.	Here,	the	issue	
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of	 neurobiological	 validation	 requires	 substantial	 attention.	 For	 example,	 it	 has	 to	 be	
investigated	to	what	extent	features	that	are	not	easily	captured	by	agglomerative	trees,	
such	 as	 gradation	 or	 non‐nested	 hierarchies,	 are	 present	 in	 the	 brain	 and	 how	 our	
method	reacts	to	them.		
Prospectively,	 the	 proposed	 individual	 parcellation	 can	 also	 be	 used	 as	 a	 priori	

anatomical	knowledge	 in	 the	localization	of	 functional	data	such	as	 fMRI	or	EEG/MEG.	
This	 uses	 the	assumption	 of	 local	 functional	 homogeneity	 of	 cortical	 activations		
within	 the	parcel	 and	 could	 potentially	 increase	 the	 precision	 and	statistical	 power	 of	
the	 localization,	 compared	 to	 the	 currently	 used	approaches	 resulting	 in	 a	 spatially	
smoothed	activation	without	respecting	function‐anatomical	boundaries.	
	
Although	we	have	conceived	and	used	our	methods	for	the	analysis	of	diffusion	based	

anatomical	 connectivity,	 they	 should	 also	 be	 useful	 for	 the	 study	 of	 other	 kinds	 of	
multidimensional	 data,	 like	 resting‐state	 functional	 connectivity.	 Whole	 brain	
parcellation	methods	have	already	been	successfully	used	for	the	study	of	resting‐state	
fMRI	signals	(Blumensath	et	al.,	2013)	and	our	framework	might	also	bring	new	insights	
and	possibilities	to	these	approaches.		
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APPENDIX	
	

A.1 Comparison	to	k‐means	(Ruschel	2013)	
	
Following,	 results	 for	 the	 circumstantial	 validation	 comparison	 between	 the	

parcellation	of	the	IPCC	done	with	k‐means	and	with	our	hierarchical	clustering	and	tree	
partition	 algorithms	 are	 shown	 (see	 chapter	 5	 for	 further	 details	 on	 the	 experiment).	
While	in	the	main	document	only	the	results	of	the	four	subjects	shown	on	the	journal	
article	by	Ruschel	and	colleagues	(2013)	are	presented,	here	the	results	obtained	for	all	
19	subjects	included	in	the	doctoral	dissertation	(Ruschel	2013)	are	compared	(original	
results	 include	 20	 subjects,	 but	 tractography	 data	 for	 one	 of	 them	 could	 not	 be	
recovered	for	replication	with	our	method	and	it	was	left	out	of	the	comparison).	
In	his	work	Ruschel	 found	 that	 three	partitions	gave	 the	most	 stable	 results	 across	

subjects	 when	 using	 k‐means.	 Using	 our	 method	 we	 obtained	 trees	 from	 the	 same	
tractography	data	and	using	the	SS	method	obtained	partitions	at	three	clusters	and	five	
clusters	 solutions	 (however,	 due	 to	 the	 non‐binary	 nature	 of	 our	 processed	 trees,	
sometimes	 these	 specific	 numbers	 could	 not	 be	 selected,	 and	 the	 closest	 higher	
granularity	was	chosen).	
As	with	 the	results	obtained	 for	 the	 four	subjects	considered	 in	chapter	5,	 it	can	be	

observed	that	for	about	half	of	the	datasets	the	clusters	obtained	are	virtually	identical	
to	those	suggested	by	Ruschel	in	his	work	(i.e:	subjects	8	and	10).	Most	of	the	remaining	
cases,	 while	 having	 small	 differences	 in	 the	 boundaries	 between	 the	 middle	 and	
posterior	 clusters	 or	 the	 middle	 and	 anterior	 clusters	 at	 the	 three	 clusters	 partition,	
yield	completely	overlapping	boundaries	when	granularity	 is	 increased	to	 five	clusters	
(i.e:	subjects	1	and	6).	
Only	in	six	cases	out	of	thirty‐eight	there	is	no	agreement	found	between	the	k‐means	

and	hierarchical	solutions	(in	both	hemispheres	of	subjects	16	and	17,	right	hemisphere	
of	 subject	 18	 and	 left	 hemisphere	 of	 subject	 19).	 But	 in	 these	 cases,	 the	 hierarchical	
solutions	seem	more	plausible	than	their	k‐means	counterparts,	which	present	disjoint	
clusters	 that	are	not	continuous	along	 the	cortical	 surface.	This	 is	probably	due	 to	 the	
neighborhood	 constraint	 present	 in	 our	 method,	 which	 produces	 continuous	 parcels	
along	the	surface,	and	seems	to	stabilize	the	solution.	This	is	an	interesting	point	to	be	
considered	for	cortical	parcellations	using	dMRI	data.	
	
	

Ruschel	 M	 (2013).	 Konnektivitätsbasierte	 parzellierung	 des	 humanen	 inferioren	 parietalkortex	 –	
eine	 experimentelle	 DTI‐analyse.	 Doctoral	 dissertation,	 Max	 Planck	 Institute	 for	 Human	
Cognitive	and	Brain	Sciences,	Germany.	

Ruschel	 M,	 Knösche	 TR,	 Friederici	 A,	 Turner	 R,	 Geyer	 S,	 Anwander	 A	 (2013).	 Connectivity	
architecture	and	subdivision	of	the	human	inferior	parietal	cortex	revealed	by	diffusion	MRI.	
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 k‐means	(Ruschel	2013).	3	clusters.	Subjects	1	to	6	
	

 

Subject	1	

Subject	2	

Subject	3	

Subject	4	

Subject	5	

Subject	6	
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 Centroid		hierarchical	clustering.	SS	partitions.	Subjects	1	to	6	
 ~3 clusters ~5 clusters 

  	 	

Sbj.	1	

Sbj.	2	

Sbj.	3	

Sbj.	4	

Sbj.	5	

Sbj.	6	
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 k‐means	(Ruschel	2013).	3	clusters.	Subjects	7	to	13	
	

	

Subject	7	

Subject	8	

Subject	9	

Subject	10	

Subject	11	

Subject	12	

Subject	13	
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 Centroid	hierarchical	clustering.	SS	partitions.	Subjects	7	to	13	

 ~3 clusters ~5 clusters 

			 	

Sbj.	7	

Sbj.	8	

Sbj.	9	

Sbj.	10	

Sbj.	11	

Sbj.	12	

Sbj.	13	
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 k‐means	(Ruschel	2013).	3	clusters.	Subjects	14	to	19	
	

	

Subject	14	

Subject	15	

Subject	16	

Subject	17	

Subject	18	

Subject	19	
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 Centroid	hierarchical	clustering.	SS	partitions.	Subjects	14	to	19	

 ~3 clusters ~5 clusters 

			 	

Sbj.	14	

Sbj.	15	

Sbj.	16	

Sbj.	17	

Sbj.	18	

Sbj.	19	
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A.2 Partitions	for	subjects	A,	B	and	C	using	Horizontal	Cut	
	
 Subject	A:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	A:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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 Subject	B:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	B:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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 Subject	C:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	C:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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A.3 Partitions	for	subjects	A,	B,	C	and	D	using	SS	method	
	
 Subject	A:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	A:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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 Subject	B:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	B:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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 Subject	C:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	C:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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 Subject	D,	measurement	1:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	D,	measurement	1:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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 Subject	D,	measurement	2:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	D,	measurement	2:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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A.4 Partitions	 for	 subjects	A,	B	and	C	using	minimum	 size	
difference	method	

	
 Subject	A:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	A:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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 Subject	B:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	B:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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 Subject	C:	left	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
	
 Subject	C:	right	hemisphere	
	

	 	
	 15	Clusters	 50	Clusters	

	 	
	 100	Clusters	 250	Clusters	
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A.5 “Stable	boundaries”	solutions	for	subjects	A,	B,	C	and	D	
	
 Subject	A:	left	hemisphere	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	

	
	
 Subject	A:	right	hemisphere	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	
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 Subject	B:	left	hemisphere	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	

	
	
 Subject	B:	right	hemisphere	
	

	 	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	
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 Subject	C:	left	hemisphere	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	

	
	
 Subject	C:	right	hemisphere	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	
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 Subject	D,	measurement	1:	left	hemisphere	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	

	
	
 Subject	D,	measurement	1:	right	hemisphere	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	
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 Subject	D,	measurement	2:	left	hemisphere	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	

	
	
 Subject	D,	measurement	2:	right	hemisphere	
	

	 	
15%	branch	length	 Pial	surface.	 Inflated	surface	

	

	 	
10%	branch	length	 Pial	surface.	 Inflated	surface	

	
	




