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Abstract
Using a quantum mechanical approach, we show that in a gravitational-wave
interferometer composed of arm cavities and a signal recycling cavity, e.g.,
the LIGO-II configuration, the radiation-pressure force acting on the mirrors
not only disturbs the motion of the free masses randomly due to quantum
fluctuations, but also and more fundamentally, makes them respond to forces
as though they were connected to an (optical) spring with a specific rigidity.
This oscillatory response gives rise to a much richer dynamics than previously
known, which enhances the possibilities for reshaping the LIGO-II’s noise
curves. However, the optical–mechanical system is dynamically unstable and
an appropriate control system must be introduced to quench the instability.

PACS number: 0480N

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A network of broadband ground-based laser interferometers, aimed to detect gravitational
waves (GWs) in the frequency band 10–104 Hz, will begin operations next year. This
network is composed of GEO, the Laser Interferometer Gravitational-wave Observatory
(LIGO), TAMA and VIRGO (whose operation will begin in 2004) [1]. The LIGO Scientific
Collaboration (LSC) [2] is currently planning an upgrade of LIGO starting from 2007. Besides
the improvement of the seismic isolation and suspension systems, and the increase (decrease)
of light power (shot noise) circulating in the arm cavities, the LIGO community has planned
to introduce an extra mirror, called a signal-recycling (SR) mirror [3], at the dark-port output
(see figure 1). The optical system composed of the SR cavity and the arm cavities forms a
composite resonant cavity, whose eigenfrequencies and quality factors can be controlled by
the position and reflectivity of the SR mirror. These eigenfrequencies (resonances) can be
exploited to reshape the noise curves, enabling the interferometer to work either in broadband
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Figure 1. Schematic views of a conventional interferometer (left panel) and of a signal-recycling
interferometer (right panel).

or in narrowband configurations, and improving in this way the observation of specific GW
astrophysical sources [4].

The initial theoretical analyses [3] and experiments [5] of SR interferometers refer to
configurations with low laser power, for which the radiation pressure on the arm-cavity
mirrors is negligible and the quantum-noise spectra are dominated by shot noise. However,
when the laser power is increased, the shot noise decreases while the effect of radiation-
pressure fluctuation increases. LIGO-II has been planned to work at a laser power for which
the two effects are comparable in the observation band 10–200 Hz [2]. Therefore, to correctly
describe the quantum optical noise in LIGO-II, the results so far obtained in the literature
had to be complemented by a thorough investigation of the influence of the radiation-pressure
force on the mirror motion. Using a quantum-mechanical approach [6, 7], we have recently
investigated [8–10] this issue. Henceforth, we shall summarize the main results of our analysis.

2. Radiation-pressure forces in conventional versus signal-recycling interferometers

In gravitational-wave interferometers composed of equal-length arms, the dynamics relevant
to the output signal and the corresponding noise are described only by the antisymmetric mode
of motion, x̂, of the four arm-cavity mirrors and by the dark-port sideband fields, which are
decoupled from the other degrees of freedom [7]. In these devices, laser interferometry is used
to monitor the displacement of the antisymmetric mode of the arm-cavity mirrors induced by
the passage of a gravitational wave with (differential) strain h. The output of the detector can
be constructed from two independent output observables, the two quadratures b̂1 and b̂2 [7, 9]
(see figure 1) of the outgoing electromagnetic field immediately outside the SR mirror, which
can be related to the input (noise) quadratures â1, â2 (see figure 1) and (the signal) h.

Disregarding the motion of the mirrors during the light round-trip time (quasi-static
approximation), the radiation-pressure force acting on each arm-cavity mirror is 2W/c, where
W is the power circulating in each arm cavity, which is proportional to the square of the
amplitude of the electric field propagating towards the mirror and c is the speed of light.
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When the arm-cavity mirrors are held fixed, the radiation-pressure force can be directly
related to the dark-port quadrature fields [7]. In conventional interferometers such as LIGO-I,
TAMA and VIRGO (see left panel in figure 1) the (Fourier) domain of this radiation-pressure
force F̂ 0(	) is determined only by one of the input quadratures, say â1(	) [7]. Since
[â1(	), â

†
1(	

′)] = 0 = [â2(	), â
†
2(	

′)] and [â1(	), â
†
2(	

′)] = 2π i δ(	 − 	′), the response
function of the optical force to perturbations caused by the mirror motion, which is given by
GFF(t, t ′) ∝ [F̂ 0(t), F̂ 0(t

′)], is zero. By contrast, in SR interferometers such as LIGO-II (see
right panel in figure 1), the radiation-pressure force depends on a linear combination, with
complex coefficients, of both the input quadratures â1(	) and â2(	). As a consequence, the
response function GFF(t, t ′) �= 0. More specifically, taking into account the mirror motion,
the full radiation-pressure force in SR interferometers is given by [10]

F̂ (t) = F̂ 0(t) +
i

h̄

∫ t

−∞
dt ′ GFF(t, t ′) x̂(t ′). (1)

The second term in the RHS of the above equation can easily be explained in classical terms
by noting that the optical field fed back by the SR mirror into the arm cavities also contains
the classical GW signal h. Thus, the radiation-pressure force F̂ must depend on the history of
the antisymmetric mode of motion x̂.

3. Dynamics, resonances and instability

In SR interferometers, the (Fourier domain) equation of motion for the antisymmetric mode
of motion is [10]

−µ	2x̂(	) = GW force + F̂ 0(	) + RFF(	) x̂(	) (2)

where RFF(	) is the Fourier transform of the response function GFF and µ = m/4 is the
reduced mass of the antisymmetric mode, m being the arm-cavity mirror mass. Hence, from
equation (2) we infer that the antisymmetric mode of motion is not only buffeted by the
radiation-pressure force F̂ 0, but also is subject to a harmonic restoring force with frequency-
dependent spring constant [10]:

K(	) = −RFF(	) ∝ Io × (SR mirror reflectivity) × (SR detuning) (3)

where Io is the laser light at the beamsplitter, and by SR detuning we mean the phase gained by
the laser carrier frequency in the SR cavity (see [9, 10] for details). This phenomenon, called
ponderomotive rigidity, was originally discovered and analysed in ‘optical-bar’ GW detectors
by Braginsky et al [11].

In the absence of the SR mirror, the optical–mechanical system formed by the optical fields
and the arm-cavity mirrors is characterized by the mechanical (double) resonant frequency
	2

mech = 0, related to the free motion of the antisymmetric mode, and by the optical resonant
frequency Re(	opt) = 0, Im(	opt) = −1/τdecay, where τdecay is the storage time of the arm
cavity. When a highly reflecting SR mirror is added and we consider configurations with low
light power, the optical field (almost) purely oscillates at the eigenfrequencies 	± at which the
total round-trip phase in the entire cavity (arm cavity + SR cavity) is 2πn, with n an integer.

Since the ponderomotive rigidity RFF ∝ Io, as we increase Io the test masses and the
optical field get coupled more and more and we have a mixing of the mechanical and pure
optical resonant frequencies. More specifically, the (coupled) mechanical resonance moves
from zero as ∼I

1/2
o , while the (coupled) optical resonances get shifted away from the values

	± as ∼Io.
We have found [10] that the (coupled) mechanical resonant frequencies have always

a positive imaginary part, corresponding to an instability. This instability has an origin
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similar to the dynamical instability induced in a detuned Fabry–Perot cavity by the radiation-
pressure force acting on the mirrors [11, 12]. To suppress this instability, we proposed a feed-
back control system that does not compromise the GW interferometer sensitivity. However,
although the model we used to describe the servo system [10] may be realistic for an all-optical
control loop, this might not be the case if an electronic servo system is implemented. Thus, a
more thorough formulation should be used to fully describe this latter case [14].

4. Quantum-noise spectral density

In light of the discussion at the end of last section, let us derive the noise spectral density
of a (stabilized) interferometer [10]. To identify the radiation pressure and the shot noise
contributions in the total optical noise, we use the fact that they transform differently under
rescaling of the reduced mass µ. Indeed, it is straightforward to show [9] that in the total
optical noise there exist only two kinds of terms. There are terms that are invariant under
rescaling of µ and terms that are proportional to 1/µ. Quite generally, we can rewrite the
(Fourier domain) output Ô as [8]

Ô(	) = Ẑ(	) + Rxx(	) F̂(	) + Lh(	) (4)

where by output we mean (modulo a normalization factor) one of the two (stabilized)
quadratures b̂1, b̂2 [10] or a combination of them. In equation (4) Rxx = −1/µ	2 is the
susceptibility of the antisymmetric mode of motion of the four arm-cavity mirrors and L is the
arm-cavity length. The observables Ẑ and F̂ do not depend on the mirror masses µ [9], and
we refer to them as the effective shot noise and effective radiation-pressure force, respectively.
The (one-sided) noise spectral density reads [6] as

Sh(	) = 1

L2

{
SẐẐ(	) + 2Rxx(	) Re[SF̂Ẑ(	)] + R2

xx(	) SF̂F̂ (	)
}

(5)

where we defined 2π δ(	 − 	′) SÂB̂(	) = 〈Â(	)B̂†(	′) + B̂†(	′)Â(	)〉. Moreover, the
(one-sided) spectral densities and cross correlations of Ẑ and F̂ satisfy the uncertainty
relation [6]

SẐẐ(	) SF̂F̂(	) − SẐF̂ (	) SF̂Ẑ(	) � h̄2. (6)

It is possible to show [10] that the ponderomotive effect, discussed in section 3, can be directly
related to the presence of dynamical correlations between the shot-noise and radiation-pressure
noise [13, 16].

In conventional interferometers such as LIGO-I, TAMA and VIRGO, the ponderomotive
effect is absent, i.e. RFF = 0. In this case, as long as squeezed-input light is not injected
into the interferometer from the dark-port and/or correlations are not built up statically
during the readout process [7, 15], we have SẐF̂ = 0 = SF̂Ẑ . Thus, in conventional
interferometers equation (6) imposes the following lower bound on the noise spectral density:
Sconv

h (	) � S
SQL
h (	) ≡ 2h̄/µ 	2 L2. The quantity S

SQL
h (	) is generally called the standard

quantum limit (SQL) for the dimensionless GW signal h = �L/L.
In SR interferometers, and ‘optical-bar’ GW detectors as well [11], because of the

ponderomotive effect (RFF �= 0) shot-noise and radiation-pressure noise are automatically
correlated and equation (6) no longer imposes a lower bound on the noise spectral density
equation (5). In particular, we found [9] that there exists an experimentally accessible region
of the parameter space for which the quantum noise curves can beat the SQL by roughly a
factor of two over a bandwidth �f∼f . This fact is illustrated in figure 2, where the square root
of the noise spectral density (hn ≡ √

Sh) is plotted versus frequency, for various choices of the
light power at the beamsplitter, having fixed the SR mirror reflectivity and the SR detuning.
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Figure 2. Plot of the square root of the quantum-noise spectral density hn ≡ √
Sh versus frequency,

for various choices of the light power at the beamsplitter, having fixed the SR mirror reflectivity
and the SR detuning. The SQL line is also shown.

Note the two distinct valleys which go below the SQL line. Their position is determined by
the (coupled) resonant frequencies of the optical–mechanical system discussed in section 3.
As anticipated in the previous section, as we increase Io the (coupled) mechanical resonant
frequency (on the left) moves from zero to the right, while the (coupled) optical resonant
frequency (on the right) does not vary much, being present already as pure optical resonance
in the limit of low light power.

The total noise, which includes seismic, suspension and thermal contributions, can beat
the SQL only if all other noise sources can also be pushed below the SQL. These noises are
not quantum limited in principle but may be technically challenging to reduce [2, 17].

5. Conclusions

Our analyses [8–10] have revealed that in SR interferometers, the dynamics of the whole
optical–mechanical system, composed of the arm-cavity mirrors and the optical field,
resembles that of a free test mass (mirror motion) connected to a massive spring (optical fields).
When the test mass and the spring are not connected (e.g., for very low laser power) they have
their own eigenmodes, namely the uniform translation mode for the free antisymmetric mode,
and the longitudinal-wave mode for the spring (decoupled SR optical resonance). However,
for LIGO-II laser power the test mass is connected to the massive spring and the two free
modes become shifted in frequency, so the entire coupled system can resonate at two pairs
of finite frequencies. Near these resonances the noise curve can beat the free mass SQL, as
shown in figure 2. This phenomenon is not unique to SR interferometers; this is a generic
feature of detuned cavities [12, 13, 16] and was used by Braginsky et al in designing the
‘optical bar’ GW detectors [11].

However, the optical–mechanical system is by itself dynamically unstable, and a much
more careful and precise study of the control system should be carried out, including various
readout schemes [14], before any practical implementation.
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