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Abstract
Binary black holes are the most promising candidate sources for the first
generation of earth-based interferometric gravitational-wave detectors. We
summarize and discuss the state-of-the-art analytical techniques developed
during the last few years to better describe the late dynamical evolution of
binary black holes of comparable masses.

PACS number: 0460N

1. Introduction

Binary systems made of compact objects (neutron stars or black holes) that spiral in
towards coalescence because of gravitational-radiationdamping are among the most promising
candidate sources for interferometric gravitational-wave (GW) detectors, such as the Laser
Inteferometric Gravitational Wave Observatory (LIGO), VIRGO, GEO and TAMA [1]. The
inspiral waveform will enter the detector frequency band during the last few minutes or seconds
of evolution of the binary, and the GW community plans to track the signal phase and build
up the signal-to-noise ratio by integrating the signal for the time during which it stays in the
detector bandwidth. This is achieved by filtering the detector output with a template which is
an (approximate) theoretical copy of the exact, observed signal.

Einstein theory predicts that the radiative transverse traceless (TT) gravitational field hTT
ij ,

far away from the source, is related to the motion and the structure of the source, at lowest
order in the post-Newtonian (PN) expansion, by the quadrupole formula

hTT
ij (T ,D) = 2G

c4D
P ijkm(N )

d2

dT 2
Qkm

(
T − D

c

)
(1)
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Figure 1. Typical gravitational waveform emitted throughout the inspiral, plunge and ring-down
phases.

where Qij (i, j = 1, 2, 3) is the tracefree quadrupole moment of the source, D is the distance
from the source, N = X/D is the unit vector from the source to the observer, Pijkm(N) is
the TT projection operator onto the plane orthogonal to N , G is the Newton constant and c is
the speed of light. From equation (1) (and its extensions at higher-PN orders) we see that the
more precisely we know the two-body motion, the more accurately the PN template hTT

ij will
describe the gravitational waveform detected.

In figure 1 we show a typical gravitational waveform. The part of the waveform drawn
with a continuous line is emitted during the inspiral phase when the two black holes are largely
separated, e.g., r � 10GM/c2 where we denote the radial separation by r and the total mass of
the binary system by M. During the inspiral, the two black holes follow an adiabatic sequence
of quasi-circular orbits. The equation of motion in the centre-of-mass frame can be written
schematically as

d2x

dt2
= −GMx

r3

[
1 + O(ε) + O(ε2) + O(

ε5/2
)

+ O(ε3) + · · ·] × [1 + O(ν) + O(ν2) + · · ·]
(2)

where x denotes the separation vector between the two bodies and r = |x|. Equation (2) is
characterized by a double expansion: in the PN parameter ε ∼ v2/c2 ∼ GM/(c2r) and in
the parameter ν = m1m2/M

2, where m1 and m2 are the masses of the two black holes. The
parameter ν ranges between 0 (test-mass limit) and 1/4 (equal-mass case).

It is well known that the PN expansion converges badly: as the two bodies draw closer and
enter the nonlinear strong curvature phase, the motion becomes relativistic, e.g., v/c ∼ 0.3, and
it is more and more difficult to extract reliable information from the PN series. Specifically,
when the distance between the inspiralling black holes shrinks to r <∼ 10GM/c2, the PN
expansion can no longer be trusted [2]. The dashed line in figure 1 depicts the (less known)
part of the waveform emitted during the final phase of evolution when nonlinearities and
strong curvature effects become important and nonperturbative analytical and/or numerical
techniques should be used to describe it. This final phase includes the transition from
adiabatic inspiral to plunge, beyond which the two-body motion is driven (almost) only by
the conservative part of the dynamics. For nonspinning binary black holes, the plunge starts
at the innermost stable circular orbit (ISCO) of the binary black holes. Beyond the plunge
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the two black holes merge, forming a Kerr black hole. As the system reaches the stationary
Kerr state, the nonlinear dynamics of the merger resemble, more and more, the oscillations of
the black-hole quasi-normal modes [3] and the gravitational signal will be a superposition of
exponentially damped sinusoids (ring-down waveform). However, if the black holes carry a
big spin, it is likely that the plunge stage will never be reached and the late dynamical phase
will be much more complicated in this case.

It is likely that the first detection of gravitational waves with LIGO/VIRGO...
interferometers will be from binary systems made of black holes of comparable masses,
say, with a total mass M � 10M�–30M�. In fact, if we assume that the binary black holes are
originated by ‘population synthesis’ [4], the estimated detection rate per year is <∼4×10−3−0.6
at 100 Mpc [5], while if globular clusters are considered as ‘machines’ for making binary black
holes [6], the detection rate per year is ∼0.04−0.6 at 100 Mpc [5]. These numbers, especially
the latter, are more optimistic than the estimated detection rate per year for neutron-star
binaries, which is <∼3 × 10−4 −0.3 at 20 Mpc [5] or, for neutron-star/black-hole binaries,
<∼4 × 10−4−0.6 at 43 Mpc [5].

Although the number of cycles in the LIGO/VIRGO... frequency band of gravitational
waves emitted by a comparable-mass black holes is not very high, on the order of 10−200,
these particular sources demand a more careful analysis because the gravitational waves the
detectors will be sensitive to are emitted during the final stages of inspiral where PN expansion
fails. For example, in the nonspinning case, the GW frequency at the ISCO (evaluated using
the Schwarzschild ISCO) is f ISCO

GW � 220 Hz for M = 20M� and f ISCO
GW � 167 Hz for

M = 30M�, well inside the LIGO/VIRGO... band. Moreover, comparable-mass black holes
could carry big spins which could affect the waveforms, so if data analysis will be done with
spinless templates, there is considerable chance to miss the gravitational-wave signal.

In the next section we shall summarize what has been done in the literature to cope with
these problems and which issues remain to be solved.

2. Analytical methods to predict gravitational waveforms

For spinless black-hole binaries, we consider the so-called restricted waveform h(t) =
v2 cos(ϕGW(t)), where ϕGW = 2ϕ with ϕ being the orbital phase and v the invariantly
defined velocity v = (Mϕ̇)1/3 = (πMfGW)1/3. This waveform is obtained disregarding
all the multipolar components appearing in the gravitational waveform except the quadrupolar
one (see equation (1)). To determine in the adiabatic limit the evolution of the GW phase,
ϕGW(t), it is sufficient to use the energy-balance equation

dE
dt

= −F (3)

relating the orbital energy function E (centre-of-mass energy that is conserved in absence of
radiation reaction) to the gravitational-flux (or luminosity) function F , which are known for
quasi-circular orbits as a PN expansion in v. It is easily shown that equation (3) is equivalent
to the following system of differential equations (see, e.g., [22]):

dϕGW

dt
= 2v3

M

dv

dt
= − F(v)

M dE(v)/dv
(4)

whose solution provides the phasing ϕGW(t) during the inspiral.

2.1. ‘Genuine’ post-Newtonian calculations

Let us summarize what we know about the two crucial ingredients E and F entering
equation (4). The equations of motion of two compact bodies at 2.5PN approximation were
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first derived in [7]. The 3PN equations of motion have been obtained by two separate groups:
Damour, Jaranowski and Schäfer [8] used the Arnowitt–Deser–Misner (ADM) canonical
approach, while Blanchet, Faye and de Andrade [10] worked with the PN iteration of the
Einstein equations in harmonic gauge. Recently, Damour et al [9], working in the ADM
formalism and applying dimensional regularization, uniquely determined the so-called static
parameter which entered the 3PN equations of motion [8, 10] and till then was unknown.
Thus, at the present time, the energy function E is known up to 3PN order.

The gravitational flux emitted by compact binaries was first computed at 1PN order in
[11]. Subsequently, it was determined at 2PN order using a formalism based on multipolar
and post-Minkowskian approximations and independently by using a direct integration of the
relaxed Einstein equations [12]. Nonlinear effects of tails at 2.5PN and 3.5PN orders were
computed in [13]. More recently, the gravitational-flux function for quasi-circular orbits has
been derived up to 3.5PN order [14]. However, at 3PN order [14], the gravitational-flux
function depends on an arbitrary parameter, which is not fixed by the regularization scheme
used by the authors.

Although the knowledge of higher-order PN corrections to E and F is a necessary
ingredient to extract the phase of gravitational signals emitted by neutron star or black-
hole/neutron-star binaries, it is not sufficient by itself for computing GWs of comparable-
mass binaries. As underlined above, this is due to the fact that, for these sources, LIGO/

VIRGO... will detect gravitational signals emitted when the motion is relativistic and (genuine)
perturbative PN calculations can no longer be trusted.

2.2. Post-Newtonian resummation methods

Certainly, the best way of extracting the GW signal emitted by comparable-mass binaries
during the last stages of inspiral would be to solve numerically the Einstein equations of a binary
black-hole system. Unfortunately, despite the interesting progress made by the numerical
relativity community during the recent years [15–20], an estimate of the waveform emitted
by a black-hole binary has not yet been provided. Preliminary results for the plunge, merger
and ring-down waveforms were only recently obtained [21] and they use initial conditions at
the ISCO which differ from PN predictions. To overcome this gap and tackle the delicate
issue of the late dynamical evolution, various nonperturbative analytical approaches have
been proposed [22–25] to study the motion of two spinning and nonspinning bodies in general
relativity.

The main features of the various PN resummation methods can be summarized as follows:
(i) they provide an analytical (gauge-invariant) resummation of the orbital energy function
E and gravitational-flux function F , (ii) they can describe the motion (and provide the
gravitational waveform) beyond the adiabatic approximation and (iii) they can, in principle,
be extendible to higher-PN orders. More importantly, they can be used to provide initial
data for black holes just starting the plunge motion which can be used by the numerical
relativity community to evolve the full Einstein equations during the merger phase. However,
the resummation methods are also based on some assumptions that are hard to prove
rigorously—for example in deriving the orbital energy and the gravitational-flux functions in
the comparable-mass case, it is assumed that they are smooth deformations of the analogous
quantities in the test-mass limit. Moreover, in absence of an exact solution or experimental
data, we can test the robustness and reliability of those resummation approaches using only
internal convergence tests.

As underlined at the beginning of section 2, in the absence of spins, the two crucial
ingredients necessary to extract the GW phasing are the orbital energy function E and the
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gravitational-flux functionF . In section 2.2.1, we shall discuss a resummation approach which
provides a better-behaved flux-type function [22], while in section 2.2.2, we shall summarize
another resummation method which provides an improved energy-type function [23, 25]. By
combining these two resummation methods, Buonanno and Damour [24] proposed a way of
describing the black-hole motion beyond the adiabatic limit, including the transition from
inspiral to plunge, whose main features are discussed in section 2.3.

2.2.1. Padé approximants. Starting from the PN expansions of E(v) and F(v) Damour,
Iyer and Sathyaprakash [22] proposed a new class of waveforms based on the systematic
use of Padé resummation, which is a standard mathematical technique used to accelerate the
convergence of poorly converging or even divergent power series. For lack of space we shall
discuss briefly only the Padé approximant to the flux function F .

In the test-mass limit (ν → 0), the flux function has a simple pole at the light ring
(v2 = 1/3). Damour et al [22] argued that the origin of this pole is quite general and that we
should expect a pole singularity also in the equal-mass case. Thus, after factoring out this pole
(defined by what they call the better-behaved energy function e(v), see [22]), they introduced
the better-behaved flux function f (v) ≡ (1 − v/vpole)F(v). Using the 2.5PN expansion of
F(v) and applying the (near diagonal) Padé resummation to f (v), they derived the vn-Padé
approximant to the gravitational-flux function:

Fn
Pade′(v; ν) = 1

1 − v/vn
pole(ν)

f n
Pade′ (v; ν). (5)

To test the reliability of the result, Damour et al showed that in the test-mass limit the (near
diagonal) Padé approximant to F(v; ν = 0), given by equation (5), exhibits a very good
convergence towards the exact result, which is numerically known when ν = 0. (See figure 3
in [22].) Thus, arguing that the equal-mass case can be obtained as a smooth deformation
of the test-mass limit, with deformation parameter ν, they propose Fn

Pade′(v; ν) as the best
estimation of the GW flux for comparable-mass binaries.

2.2.2. Effective-one-body reduction. The resummation technique discussed in this section,
the so-called effective-one-body (EOB) approach [23], was originally inspired by a similar
approach introduced by Brézin, Itzykson and Zinn-Justin [26] to study electromagnetically-
interacting two-bodies. The basic idea, illustrated in figure 2, is to map the real conservative
two-body dynamics up to 2PN order (see below for the extension at 3PN order) onto an
effective one-body problem, where a test particle of mass µ = m1m2/M , with m1, m2 being
the black-hole masses and M = m1 + m2, moves in some effective background metric geff

µν .
This mapping has been worked out within the Hamilton–Jacobi formalism by imposing that,
whereas the action variables of the real and effective description coincide, i.e. Lreal = Leff ,
Ireal = Ieff , where L denotes the total angular momentum and I the radial action variable, the
energy axis is allowed to change, Ereal = f (Eeff) where f is a generic function. By applying
the above rules defining the mapping, it was found that as long as radiation-reaction effects are
not taken into account, the effective metric is just a deformation of the Schwarzschild metric,
with deformation parameter ν = µ/M . The effective metric reads [23]

ds2
eff = −A(R)c2 dt2 +

D(R)

A(R)
dR2 + R2 d#2. (6)

More importantly the reduction to the one-body dynamics provides the improved real
Hamiltonian

Himproved
real = Mc2

√
1 + 2ν

(Hν
eff − µc2

µc2

)
(7)
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Figure 2. How the EOB approach matches the real two-body problem (on the left) and the effective
one-body problem (on the right).

where

Heff(ν, R, PR, Pϕ) = µc2

√
A(R)

(
1 +

A(R)P 2
R

µ2c2D(r)
+

P 2
ϕ

µ2c2R2

)
. (8)

We refer to the real Hamiltonian (7) as the improved real Hamiltonian because, being
a (partial) PN resummation of the original badly-convergent real Hamiltonian Hreal =
HNew + H1PN/c2 + H2PN/c4 · · ·, it should better capture the nonperturbative effects of the
final stage of the black-hole motion. Remarkably, the mapping between the real and the
effective Hamiltonians in equation (7) coincides with the mapping obtained in [26] in the
context of quantum electrodynamics, where these authors mapped the one-body relativistic
Balmer formula onto the two-body energy formula.

The EOB approach was then extended at 3PN order in [25]. The authors found that,
starting from the 3PN level, there are more equations to satisfy than the number of free
parameters appearing in the energy map and in the effective metric. Hence, they suggested the
following two possibilities. At the price of modifying the coefficients of the effective metric at
1PN and 2PN levels, and the energy map (7) as well, it is still possible at 3PN order to (uniquely)
map the real two-body dynamics onto the dynamics of a test mass moving on a geodesic (see
appendix A of [25] for details). However, this solution looks quite complicated and, more
importantly, it does not look very natural to wait until one knows the 3PN Hamiltonian to derive
the matching at 1PN and 2PN levels. The authors then suggested abandoning the hypothesis
(used at 2PN order [23]) that the effective test mass moves along a geodesic and introduced
in the Hamilton–Jacobi equation (arbitrary), higher-derivative terms which provide enough
coefficients to obtain the matching. Because of these terms, the effective 3PN Hamiltonian
is not uniquely fixed by the matching rules defined above; the general expression is given by
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Figure 3. Comparison between the PN-expanded (left) and the EOB (right) binding energies for
equal-mass binary.

equation (3.12) in [25]. It is interesting to note that in the non-geodesic case the relation
between the effective and real Hamiltonians is still given by equation (7).

For a qualitative understanding of the way the EOB can accelerate the PN convergence,
in figure 3 we compare the PN-expanded binding energy (left panel) to the EOB-resummed
binding energy (right panel) versus the radial separation, for circular orbits, in the equal-
mass case, for two choices of the angular momentum L and at different PN orders. (To
obtain the plots, we used the 3PN-expanded and EOB-resummed Hamiltonians given by
equations (3.12) and (4.27) of [25] with ωs = 0 [9] and z1 = 0 = z2. We also used
the (generalized) canonical transformation between the ADM and the ‘effective’ coordinates
given by equations (4.29)–(4.36) of [25].)

Note that the PN-expanded energy oscillates at the various PN orders while the EOB
energy has a monotonic behaviour. The fractional difference between the PN-expanded and
EOB binding energies is, e.g., for L = 3.2µGM , 2.3% (2PN order) and 0.24% (3PN order)
at R = 9GM/c2 and 17.6% (2PN order) and 2.8% (3PN order) at R = 6GM/c2.

An interesting nonperturbative feature of binary black-hole systems is the presence
of the ISCO defined as the solution of the equations ∂H/∂r = 0 = ∂2H/∂r2. In the
test-mass limit (Schwarzschild metric) the ISCO exists and the nonrelativistic energy
associated with it is ESchw

isco = −0.01430Mc2. If we consider the PN-expanded real Hamiltonian
(equation (4.27) of [25]) in the test-mass limit and look for the ISCO, we find that at 1PN
order EPN-exp

isco = −0.00778Mc2, at 2PN order the ISCO does not exist, while at 3PN order
EPN-exp

isco = −0.01129Mc2. On the other hand, because by definition the EOB converges in
the test-mass limit to the Schwarzschild case, it automatically provides the correct ISCO.
Thus, in the same way as the Padé approximants, the EOB resummation method provides, by
construction, the right prediction in the test-mass limit. Although we cannot prove that in the
comparable-mass case the EOB approach is converging to the right limit, we can certainly say
that it shows reasonable stability in the predictions at 1PN, 2PN and 3PN orders.

In figure 4, we summarize the binding energy at the ISCO predicted by various
post-Newtonian [23, 25, 27] and numerical relativity calculations [15–19]. The equal-
mass ISCO binding energies predicted by the EOB approach at various PN orders are:
EEOB

isco = −0.01440Mc2 (1PN order), EEOB
isco = −0.01498Mc2 (2PN order) and EEOB

isco =
−0.01670Mc2 (3PN order). Note that the fractional difference from 1PN to 2PN order is
4% and it increases to 10% from 2PN to 3PN order. Figure 4 shows that, except for the
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Figure 4. Summary of the binding energy at the ISCO predicted by post-Newtonian and numerical
relativity calculations for nonspinning binary black holes of total mass 15M� + 15M�.

very recent result of [19], which is much closer to the PN estimates than the numerical
relativity predictions, the PN and numerical relativity results differ very much. Yet the reason
of these discrepancies has not been understood. A possible explanation could be related
to the conformally flat spatial-metric assumption used in numerical relativity simulations,
which already leads to a theory that differs from Einstein general relativity at 2PN order (see
discussions in [9, 36]).

2.3. Beyond the adiabatic approximation: transition inspiral to plunge

Let us now introduce radiation-reaction effects. As discussed in section 2.2.1, the Padé
approximants [22] give a good estimate of the energy-loss rate F along circular orbits up
to 2.5PN order. In [24], this resummation method was combined with the EOB approach
and the authors deduced a system of ordinary differential equations which describe the late
dynamical evolution of a binary–black-hole system. In spherical coordinates (ϕ,R, Pϕ, PR),
their relevant equations are [24]

dR

dt
= ∂Himpr

real

∂PR

dPR

dt
+

∂Himpr
real

∂R
= 0

(9)
dϕ

dt
= ∂Himpr

real

∂Pϕ

dPϕ

dt
= −FPadé(ϕ̇)

ϕ̇
.

Different from equation (2), the above equations go beyond the adiabatic approximation (at
least for the conservative part of the dynamics) and can be analytically or numerically solved
to study the transition between the adiabatic inspiral and the plunge.

Let us discuss briefly the main features of this transition in the two extreme limits ν 
 1
and ν = 1/4 (see [24] for more details). The case ν 
 1 refers to binary–black-hole systems
in which a very small black hole spirals around a supermassive black hole. They are typical
GW sources for the Laser Interferometer Space Antenna (LISA). In this case, it was found
[23, 28] that the transition from adiabatic inspiral to plunge is sharply localized around the
ISCO. Ori and Thorne [28] pointed out that LISA could possibly observe the transition from
inspiral to plunge with a low signal-to-noise ratio.
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Figure 5. Plunge and ring-down gravitational waveform obtained from the EOB approach [24] for
an equal-mass binary.

For equal-mass binaries (ν = 1/4), the radiation damping effects are important in an
extended region on the order of ((Rc2/GM) ∼ 1 above the naiv̈e (Schwarzschild) ISCO
R = 6GM/c2. The transition from inspiral to plunge is rather blurred and the dephasing
between the full and the adiabatic waveform becomes visible somewhat before the naive
ISCO. The plunge part of the exact waveform looks like a continuation of the inspiral part
because the orbital motion remains quasi-circular throughout the plunge.

Figure 5 shows the plunge, merger and ring-down part of the waveform [24] for an
equal-mass binary. The ring-down waveform contains only the mode that is damped
more slowly, l = 2, m = 2 [3], at frequency ωqnm ∼ 1880 (10M�/MBH) Hz, where
MBH is the mass of the final black hole formed. The dimensionless rotation parameter is
aBH = JBH

/(
GM2

BH

) = 0.795, where we denoted the angular momentum of the final Kerr
black hole by JBH. The energy emitted during the plunge is ∼0.7% of M, with a comparable-
energy loss ∼0.7% of M during the ring-down phase [30]. This gives a total energy released
of ∼1.4% of M, which contrasts with the much larger value, 4−5%, of M recently estimated
in [21].

Recently, Damour, Iyer and Sathyaprakash [29] investigated the consequences of the EOB
waveform for LIGO/VIRGO... data analysis. They showed that the GW radiation coming
from the plunge and merger can significantly enhance the signal-to-noise ratio for binaries
of total mass M >∼ 30M�. They found that the signal-to-noise ratio reaches the maximum
value of ∼8 for M � 80M� at 100 Mpc. Previous estimations using maximally-spinning
binaries found that the merger dominates on inspiral. For example, Flanagan and Hughes
[31] predicted that the energy released during the plunge is ∼10%M while during the ring-
down phase ∼3%M , and the signal-to-noise ratio reaches the maximum value of ∼40 for
M � 200M� at 100 Mpc.

3. Open issues

3.1. Spinning binary black holes

The theoretical prediction of GWs from comparable-mass binaries is not only affected by the
failure of the PN-expansion, but also by spin effects. Various studies [32, 33] estimated that
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Figure 6. Expected Fourier-domain phase φ(f ) of the GW signal versus frequency for various
approaches modelling the two-body dynamics.

if the binary’s holes carry a spin, the evolution in time of the GW phase will be significantly
affected by it—for example, the spin can introduce modulations and irregularities in the
gravitational waveforms. These features can become quite ‘dramatic’ as long as the two spins
are big and not aligned or anti-aligned with the orbital angular momentum.

To give a general idea of the effects we are alluding to and currently investigating [40],
in figure 6 we sketch the Fourier-domain phase φ(f ) of the GW signal versus frequency
for various approaches, including possible modulations due to spin effects. The various
methods give the same prediction for the Fourier-domain phase up to the frequency where
the PN series fails—for example for M = 20M�, fPN-failure ∼ 50 Hz, while for M = 30M�,
fPN-failure ∼ 33 Hz [2], which are well inside the LIGO/VIRGO . . . band.

More recently, Levin [34] claimed that because of spin effects the two-body dynamics
could be affected by chaos, or more generaly the dynamics, and as a consequence the
gravitational waveform, could depend strongly on the initial conditions. However, Schnittman
and Rasio re-analysed this issue in [35]. By calculating the divergence of nearby trajectories
for a broad sample of initial conditions, they concluded than the divergent time is much greater
than the inspiral time. So, even if chaos were present, it should not affect the detection of
inspiral waveforms.

To tackle these delicate issues it would be desirable to extend the resummation methods
discussed above to the case of spinning binaries. In this respect, we note that the Padé
resummation method has been recently extended to the gravitational-flux function including
spin–orbit and spin–spin effects [37]. Moreover, on the line of the EOB appoach, Damour
[36] has recently mapped the conservative dynamics of two spinning black holes into the one
of a test particle moving in an external ν-deformed Kerr metric. It will be very important
to complete Damour’s analysis by including radiation-reaction effects and describe the late
nonadiabatic dynamics of spinning black-hole binaries.

3.2. Possible strategy for not missing the GW signal from comparable-mass binary
black holes

In sections 2.2.1 and 2.2.2 we discussed the best theoretical gravitational waveforms currently
available. These waveforms should certainly be used in detecting and extracting physical
parameters (masses and spins) for GWs emitted by neutron-star binaries and neutron-
star/black-hole binaries. On the other hand, the direct application of these templates to
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detect GWs from comparable-mass black-hole binaries is less straightforward. Indeed, the
approaches analysed in sections 2.2.1 and 2.2.2 are inevitably affected by approximations
and assumptions, introduced to overtake the fact that the two-body problem is known only
up to a certain PN order. It would be important for detection purposes to quantify such
uncertainties and take them into account when building the best theoretical GW templates. If
not, the risk is to miss the GW signal. A possibility [38] is to deform and expand (e.g., by
introducing new parameters) the template family generated by the resummation method with
better PN convergent properties, in such a way that the new (higher-dimensional) template
space could (i) include, or at least be not very far from, all other approaches characterized
by worse PN convergent properties and (ii) describe signals (hopefully the real GW signal!)
whose functional form cannot be described by any of the original template families. To reach
this goal the chirp fast transform technique, recently proposed in [39], deserves attention.
Moreover, for comparable-mass binaries, the inclusion of spin effects and the enlargement of
the template space should hopefully, not make the total number of templates huge because
the number of cycles expected in the LIGO/VIRGO . . . band for nonspinning binaries is
already rather small ∼20−100. (The situation would be different for neutron stars or
neutron-star/black-hole binaries for which, in the non-spinning case, we expect a number
of cycles on the order of ∼104−106.)

The new template space [40] could be used for an on-line search. When an acceptable
signal-to-noise ratio is found, say >∼8, then the output signal could be re-analysed by templates
provided, e.g., by the PN Taylor-expanded Padé approximant and EOB methods, to determine
which approach better describes the real signal and extract the binary’s parameters as the
masses and the spins.
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