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Binary Black Hole Coalescence 
Alessandra Buonanno 

Maryland Center for Fundamental Physics, Department of Physics, University of Maryland 
College Park, MD 20742 

Abstract. Recent work at the interface between analytical and numerical relativity is deepening 
our understanding of the two-body dynamics and of the gravitational radiation from binary black-
hole coalescences. In this talk we review the most recent advances, focusing on the transitions from 
inspiral to merger and to ringdown, and on the recoil velocity of the newly bom black hole. 

INTRODUCTION 

A number of recent developments in numerical relativity have allowed for stable evolu
tion of binary black hole coalescence. After the initial breakthroughs [1, 2, 3], several 
numerical-relativity groups have built reliable codes and produced more and more ac
curate simulations, exploring larger regions of the parameter space [4, 5, 6, 7, 9] Along 
these impressive results, the analytical interface of the numerical simulations is also 
deepening our understanding of the two-body dynamics and gravitational radiation. In 
particular, the studying of the transition inspiral to merger to ringdown has revealed 
an intriguing simplicity. This is certainly true for non-spirming comparable-mass bi
naries moving along quasi-circular orbits [10, 11], and for a test-mass plunging in a 
Schwarzschild black hole [12]. By combining the post-Newtonian [13], close-hmit-
approximation [14] and test-mass-limit predictions, [15, 16] this simplicity was antici
pated by the analytical effective-one-body model [17, 18, 19, 20, 21] and the numerical 
Lazarus project [22]. As we shall review, after a long, adiabatic inspiral, the two-body 
crosses a rather blurred last stable circular orbit, travels along a still adiabatic plunge, 
and, finally, as the dominant gravitational-wave frequency rises rapidly, exciting by res
onance the ringdown modes, one-body, a quasi-stationary Kerr black hole, is left behind. 
It turns out that the direct gravitational radiation from the two black holes is strongly fil
tered by the curvature potential once the two black holes are inside it. As a consequence, 
the part of the energy produced in the strong-burst of '-̂  10 — 15M, between the end of 
the inspiral(-plunge) and the begirming of the ringdown, seems to be momentarily stored 
in the resonant cavity of the geometry, inside the curvature potential, and then slowly 
released in ringdown modes [16]. 

Another relevant research topic at the interface between analytical and numerical 
techniques, has been the computation of the recoil velocity (or kick) of merging black 
holes. The kick is due to beamed emission of gravitational-wave radiation [23, 24, 25]. 
The magnitude of the kick is particularly interesting in astrophysics for understanding 
the growth of supermassive black holes, which exist at the center of most galaxies. 
How the recoil distribution depends on the black hole mass ratio and spins affects the 
hierarchical structure formation of the host galaxies [26, 27]. 
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FIGURE 1. In the left panel we plot the dominant frequencies evaluated from the orbit, cOc (short 
dashed red line), and from the wave, mx (the dot-dashed blue line). The thick solid (black) line shows the 
dominant frequency as fit to the ringdown signal. The vertical dotted (blue) line marks the approximate 
time that a common apparent horizon forms. In the right panel we show some features of the merger phase 
for an equal-mass binary as discussed in Ref [10]. (Both figures are adapted from Ref [10].) 

Gravitational radiation from merging black holes 

The network of ground-based laser-interferometer gravitational-wave detectors, such 
as LIGO [28], Virgo [29], GEO [30] and TAMA [31], are currently operating at design 
sensitivity (except for Virgo which is expected to reach design sensitivity by the end 
of the year) and are searching for gravitational waves in the frequency range of 10-10^ 
Hz. Within the next decade those detectors will likely be complemented by the laser-
interferometer space antenna (LISA) [32], a joint venture between NASA and ESA, 
which will search for gravitational waves in the frequency range 3 x 10^^-10^^ Hz. 

The search for gravitational waves from coalescing binary systems and the extraction 
of parameters are based on the matched-filtering technique [33], which requires accu
rate knowledge of the waveform of the incoming signal. The best-developed analytical 
method for describing the two-body dynamics and the gravitational-wave signal dur
ing the long inspiral phase is undoubtedly the post-Newtonian (PN) expansion [13]. For 
compact bodies the latter is essentially an expansion in the characteristic orbital veloc
ity v/c. Predictions for the gravitational-wave phasing are currently available through 
3.5PN order [13] (v^/c^), if the compact objects do not carry spin, and 2.5PN order [13] 
(v^/c^) if they carry spin. Resummation of the post-Newtonian expansion aimed at push
ing analytical calculations until the final stage of evolution, including the transition in-
spiral to merger to ringdown, have been worked out, notably the eflfective-one-body 
approach [21, 17, 18, 19, 35, 36, 37] which maps the two-body problem to the dynamics 
of a test-particle in a suitably defined spacetime. 

After the two black holes merge, the system settles down to a Kerr black hole and 
emits quasi-normal modes (QNMs) [34, 15]. This phase is commonly known as the 
ringdown (RD) phase. Since the QNMs have complex frequencies totally determined by 
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the black-hole's mass and spin, the RD waveform is a superposition of damped sinu-
soidals. Thus, the inspiral and ringdown waveforms can be computed analytically. What 
about the merger? Since the nonlinearities dominate, the merger would be described at 
best and utterly through numerical simulations of Einstein equations. However, before 
the numerical-relativity results became a reality, some analytical approaches were pro
posed. In the test-mass hmit, Refs. [16, 15] realized a long time ago that the basic physi
cal reason underlying the presence of a universal merger signal was that when a test par
ticle falls below 3M (the unstable light storage ring of Schwarzschild), the gravitational-
wave it generates is strongly filtered by the curvature potential barrier centered around 
it. For the equal-mass case, Ref [14] proposed the so-called close-limit approximation, 
which consists in switching from the two-body description to the one-body description 
(perturbed-black-hole) close to the hght-ring location. Based on these observations, the 
EOB resummation scheme [17, 18, 19, 35, 36] provided a first example of full wave
form by (i) resumming the PN Hamiltonian, (ii) modeling the merger as a very short 
(instantaneous) phase and (iii) matching the end of the plunge (around the hght-ring) 
with the RD phase (see Ref [22] where similar ideas were developed also in numerical 
relativity). The matching was initially done using only the least damped QNM whose 
mass and spin were determined by the binary black-hole energy and angular momentum 
at the end of the plunge. Today, with the spectacular results in numerical-relativity, we 
are in the position of assessing the closeness of analytical to numerical waveforms for 
inspiral, merger and ringdown. 

Quite interestingly, numerical simulations are showing that the merger accounts for 
only a brief time {^ 10-15M) compared to the inspiral (arbitrarily long) or ringdown 
phases, as can be seen in Fig. 1. In the left panel we plot the frequency computed in 
Pretorius numerical simulation [10] and evaluated from the orbit, from the wave, and 
from a ringdown fit. The frequencies from the orbit and the wave decouple about 20M 
before the peak in the waveform, indicating that close to the common apparent horizon 
formation the gravitational-wave emission is no-longer driven by the orbital motion 
but by the ringing of spacetime through the production of ringdown modes. The latter 
are excited by the fast rise of the frequency. In the right panel we show the frequency 
evaluated from the wave and the gravitational-wave energy flux (multiplied by 100) for 
an equal-mass binary. We mark with circles several relevant events [10]. Notably, the 
time when the common apparent horizon of the final black hole first appears, when the 
binary separation reaches the light-ring of the final black hole, the peak of the radiation 
flux (which occurs around 3 — 4M before the peak in the amplitude of the waveform), 
when 50% of the energy and angular momentum have been radiated, and the time 
when 99% of the energy has been radiated. Although the merger is quite short, the 
dominant gravitational-wave frequency rises very quickly and spans a significant range 
of frequencies during this phase. With current data, the peak in the waveform seems to 
be a natural point to mark the transition between the merger and ringdown phases. It is 
quite possible that the higher-order ringdown modes/overtones are excited by resonance 
with the dominant gravitational-wave frequency as it rises during the merger 

Figure 2 shows the comparison between the numerical relativity and the EOB model 
in the equal-mass case, as obtained in Ref [II]. Similar results were also obtained 
in the case of mass ratios 4 : 1 , 2 : 1 , 3 : 2 . However, Ref [II] cannot draw definite 
conclusions about the EOB model's inspiral performance because the results depend on 
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FIGURE 2. Comparison between inspiral-merger-ringdown frequency (left panel) and waveform (right 
panel) for a non-spinning equal-mass black-hole binary, as predicted by the EOB model [19, 18, 10, 11] 
and as obtained in the numerical simulation by Goddard/NASA. (Both figures are adapted from Ref [11].) 

the mass ratios, and extremely accurate, long-lasting numerical-relativity simulations 
are not available, yet, for unequal masses. Therefore, we do not exclude other possible 
adjustments in the EOB model to keep track of the phase evolution for an extremely 
large number of gravitational-wave cycles. 

Those comparisons are suggesting that it should be possible to design purely analyt
ical templates with the full numerics used to guide the patching together of the inspiral 
and RD waveforms. This is an important avenue to template construction as eventually 
hundreds of thousands of waveform templates may be needed to extract the signal from 
the noise, an impossible demand for numerical-relativity alone. 

Recoil velocity from merging black holes 

Gravitational waves carry away from the binary both energy and angular-momentum. 
Due to some asymmetry in the binary system [23, 24, 25], such as unequal masses 
and/or spins of different magnitude and orientation, gravitational-waves can carry away 
also a net linear momentum. Because of hnear-momentum conservation, the black 
hole that forms after merger acquires a recoil velocity or kick. The recoil velocity 
has astrophysical importance because it can affect the growth of supermassive black 
holes, through hierarchical mergers [26, 27]. In those scenarios dark-matter halos grow 
through hierarchical mergers. The supermassive black holes at the centers of such haloes 
inevitably merge unless they are kicked out of the gravitational-potential well because 
the recoil velocity gained in a previous merger is larger than the halo's escape velocity. 
Recently, both in the analytical and numerical relativity communities a great deal of 
effort has been directed towards the computation of the recoil velocity of the final black 
hole [38, 39, 40, 41, 42, 51, 52, 43, 6, 53, 7, 8, 44, 46, 45, 9, 50, 48, 49]. 

Until now, numerical simulations have computed recoil velocities for non-spirming 
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unequal-mass black-hole binary systems [52, 43, 6] in the range / w i : / W 2 = l : l , - - , 4 : l 
for spirming, non-precessing binary black holes [8, 7, 45], and also for precessing black 
holes with both equal [46, 44, 9], as well as, unequal masses [44]. Quite interestingly, 
there exist initial spin configurations for which the recoil velocity can be quite large, e.g., 
> 2500 km/sec [44, 46, 7, 9], ejecting the final black hole from virtually any galactic 
potential. These large kicks can be produced in an equal-mass binary, having initial 
spins perpendicular to the orbital angular-momentum, opposite in directions and equal 
in magnitude. However, it is not yet clear whether those truly large recoil velocities are 
astrophysically likely [54, 55, 56, 57]. So far, due to limited computational resources, 
the numerical simulations have explored a rather small portion of the total parameter 
space. An analytical description of the recoil velocity can allow to explore quickly and 
efficiently a large portion of the parameter space, especially in presence of spins. 

Analytical calculations, based on the post-Newtonian expansion or resummation of 
Einsteinfield equations [13,21,17, 19, 18, 36], have also made predictions forthe recoil 
velocity [38, 39, 40, 41, 51]. Since the majority of the linear-momentum flux is emitted 
during the merger and ringdown phases, it is difficult to make definitive predictions 
for the recoil velocity using only analytical methods, unless they are calibrated to the 
numerical relativity results. In fact, as we shall see below, the final recoil velocity is 
determined by the contribution of several modes that add constructively or destructively 
during the transition plunge to merger to ringdown [8, 7, 50, 48, 49]. 

So far, in the non-spirming case, the adiabatic post-Newtonian formula of the linear-
momentum flux computed at 2PN-order [41] has provided results consistent with numer
ical relativity aU along the adiabatic inspiral untfl ^ 50M before the peak of the wave
form. Including for the first time the contribution from the ringdown phase, Ref [51] pre
dicted the final kick for non-spirming black holes employing the EOB model. Ref. [51] 
also pointed out that different post-Newtonian representation of the hnear-momentum 
flux can lead to large uncertainties (by a factor r^ 4) in the prediction of the final recoil. 
By applying perturbative calculations which make use of the so-called close-limit ap
proximation [14], and assuming for simphcity that the final black hole is a Schwarzschild 
black hole, Ref [42] predicted the recofl for unequal-mass black holes moving on cir
cular and eccentric orbits. 

More recently, Ref [53] provided the first estimates of the distribution of recofl ve
locities from spirming black-hole mergers using the EOB model [19, 18, 36] augmented 
with three QNMs [51, 10], and calibrated to the numerical relativity results. As a first-
cut to the problem, Ref [53] estimated the systematic errors on the recofl velocity due to 
this sub-optimal matching by varying the matching point between rmatch/j^ = 2.5-3.5 
(MoVatch = 0.1-0.2). This range of variation corresponds to impose that the energy 
released beyond the matching point differs from sovas fiducial value [53] by '~ 15%. 
Within these confidence limits, Ref [53] found good agreement with previously re
ported results from numerical relativity. Using a Monte Carlo implementation of the 
EOB model [36], Ref [53] was able to sample a large volume of black-hole parame
ter space and investigate the distribution of recofl velocities. For a range of mass ratios 
1 < m^jmi < 10, spin magnitudes of ai,2 = 0.9, and uniform random spin orientations, 
Ref [53] found that a fraction /500 = 0. 12+Q Jjj of binaries have recofl velocities greater 
than 500 km/s and /looo = 0 027+0 Jĵ ^ have kicks greater than 1000 km/s. These veloc-
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FIGURE 3. In the left panel we show the cumulative distribution function for kick velocities v^ck < v 
for equal masses mi = m2 and random spins. The dashed lines represent l - c confidence level using the 
EOB model [36, 51, 10]. In the right panel we show the cumulative probability distribution as a function 
of symmetric mass ratio 7]. The contours of / (v; 7]) represent the probability of having a recoil velocity 
greater than v. The spins have amplitude a^ = a2 = 0.9 and random orientation. (Both figures are adapted 
fromRef [53].) 

ities likely are capable of ejecting the final black hole from its host galaxy. Limiting the 
sample to comparable-mass binaries with /wi//W2^4, the typical kicks are even larger, 
with /soo = 0.36 ± 0.13 and /looo = 0- lO^o 052- ^^ ^^S- 3 we plot the cumulative distri
bution of recoil velocities, as obtained in Ref [53]. 

The results of Ref [53] were obtained assuming an initial random distribution of 
black-hole spins. What are the spin orientations in galactic mergers? In Ref [55] the 
authors showed that when two black-hole accrete at least '-^ 1-10% of their masses dur
ing a gas rich galactic merger, torques from accreting gas will align the spins with the 
orbital angular momentum. However, without much gas the torque is inefficient, and 
the spin orientations can be generic. In fact, the post-Newtonian spin-precession equa
tions [39] do not lead to any ahgnment of the spins with the orbital angular momentum, 
except for rather special cases [58] — for example for a nearly equal-mass binary with 
/wi//W2'-^1.22, when the angle between one black-hole spin, say S i, and the orbital angu
lar momentum is initially less than ^^ 10° or larger than ^^ 170°, and the other spin S2 has 
a random orientation. In this case the spin S2 locks [58] to Si, and as the binary evolves 
toward merger the angle between the two spins tends to zero. Large mass-ratio binaries, 
e.g., mi/nij > 10^, can show a behaviour similar to the nearly equal-mass binary but 
only for cases when the initial angle between Si and the orbital angular momentum is 
pretty close to zero or alternatively close to 180°. 

If large kicks (> 2500 km/sec) are likely, there might be a potential contradiction 
with observations of supermassive black holes residing in the centers of most galaxies 
in the local universe. An interesting explanation of how galaxies may retain their black 
holes, even if recoil velocities may be large, was proposed in Ref [57]. The explanation 
is based on the simple observation that there are two competing effects that determine 
the fraction of galaxies today with a black hole. Large kicks can expel the black hole 
reducing the fraction of galaxies with black holes, but due to mergers the number of 
galaxies inevitably decreases, so the fraction with black holes can easily increase [57]. 
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Taking into account these two competing effects, Ref. [57] estimated that even if we 
assume that the probabihty that a merging black hole is ejected due to gravitational 
recoil is one, the fraction of galaxies today retaining the central black hole is 50%. 
Including other astrophysical effects and making the merger-tree model more reahstic, 
this percentage increases, becoming consistent to results from Ref [54] which employed 
more sophisticated merger evolution codes. 

Using several numerical relativity simulations of unequal masses and non-zero, non-
precessing black hole spins, Ref [50] made used of a multipolar analysis [59, 51] to 
shed hght on how the recoil builds up throughout the inspiral, merger, and ringdown 
phases. Confirming previous results [7, 8] they found that multipole moments up to and 
including ^ = 4 are sufficient to accurately reproduce the final recoil velocity (within 
:i; 2%). They also found that only a few dominant modes contribute significantly to it 
(within :i; 5%). Introducing the linear-momentum flux vector 

¥ = {F,,Fy,F,}, F = ^ . (1) 

and hmiting to spin non-precessing configurations for which the recoil velocity is di
rected in the orbital plane x — >-, the linear-momentum flux is well approximated by the 
following pairs of modes [50] 

F^ + iFy - _28/(3)s21 (3)l22* _ 2V2T0(3)l22 (4)l33* _ 14^6(4)133 (5)j44* 
672n 

= ^21,22 _^ ̂ 22,33 _^ ̂ 33,44^ (-2) 

F, = 0, (3) 

where W"" and (")S^"' are the n"* time derivatives of the radiative multipole mo
ments [59, 50]. More specifically, I^ ,̂ I^ ,̂ T^ and S^\ are the (complex) mass-
quadrupole, mass-octupole, mass-hexadecapole and current-quadrupole radiative 
moments, respectively. They can be expressed in terms of the source moments, i.e, in 
terms of the binary frequency, radial-separation and phase [59, 51, 50]. Furthermore, 
using V = / ¥dt, we can write [50] 

| | v | ^ | ( v . v ) ^ v . F , (4) 

where v • v = 1, and define [50] 

v21'22 = [y.-p^^'^^dt, (5) 

^22,33 ^ /^.p22,33^^^ -̂ĝ  

v33.44 = U.Y^^M^t, (7) 

which add hnearly to give to total recofl velocity: 

|v|=v21.22 + v22.33+v33,44^ (8) 
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FIGURE 4. The recoil velocity vector evolving in the v^-Vy plane (black solid curve), along with the 
flux vectors due to the three mode pairs at each time interval along the velocity trajectory. In the left (right) 
panel we show the data for the unequal-mass (equal-mass) case with spins aligned and anti-aligned with 
the angular momentum and magnitude -^0.2. These two cases are denoted as NE^ l and EQ+_. The time 
/peak is the time at which P)l^^ reaches its maximum. (Both figures are adapted from Ref [50].) 

As explained in Ref. [50], throughout the inspiral phase, the amplitude and rotational 
frequency of the flux vectors in Eq. (2) are monotonically increasing, giving the famfliar 
outward-spirahng trajectory for the velocity vector Then, in the ringdown phase, the 
dominant frequencies are nearly constant while the amplitudes decay exponentially for 
each mode, giving an inward-spiral that decays like a damped harmonic osciUator around 
the final asymptotic recoil velocity. These trajectories in velocity space, together with 
the instantaneous flux vectors from the competing mode-pairs in Eq. (2), can be seen in 
Fig. 4. The relative contributions to the total recoil velocity from the different multipole 
mode-pairs is instead shown in Fig. 5. Reference [50] found that even smaU changes 
in the mass ratios and spins orientations of the black holes can give a rather diverse 
selection of velocity trajectories. In the left (right) panels of Figs. 4, 5 we show the data 
for the unequal-mass (equal-mass) case with spins aligned and anti-aligned with the 
angular momentum and magnitude X\,2 ^ 0-2. These two cases are denoted as NE -̂L 
and EQ+_. Note in Fig. 5 the difference between the NE^-^ run, dominated by the 
/722,33 (y22,33̂  ̂ ^^ (vclocity) and a large anti-kick, and the EQ+_ run, which in contrast 
is dominated by the ^^1,22 (̂ 21,22̂  ̂ ^^ (velocity) [50]. 

The absence of anti-kick in the EQ+_ run is consistent with the slowly rotating 
flux vector that does not spiral back inwards, as in the NE^-^ run, but rather drifts off 
slowly towards infinity during the ringdown, as can be seen from Fig. 4. The difference 
between these two runs can be explained entirely by examining the real part of their 
fundamental QNM frequencies OimQ [50]. The latter determines the rotation rates of the 
flux vectors [50] during the ringdown: EQ+_ is dominated by 0)220 — Ciiw = 0 0 8 / M B H , 

a much slower frequency than 0)330 — O220 = 0.3 1/MBH, which causes the rapid inward-
spiral of the NE^-^ run. 

Using the multipolar analysis, Ref [50] also tried to explain the remarkable difference 
between the amplitudes of planar and non-planar kicks for equal-mass spinning black 
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(3)j22(4)j33t j-j-gjj curve) is the dominant mode for unequal-mass binary systems, while (^Js^Ksjpz* (blue 
curve) dominates for spinning, equal-mass binary systems. Also plotted is the contribution from the 
(4)s32(4)j33t gjj^ terms (blue dashed curve), demonstrating its very small contribution to the total recoil 
velocity. For / > /match = ?peak, we include the quasi-analytical prediction for VRD(?) (black dashed curves), 
based on the fundamental QNM. In the left (right) panel we show the data for the unequal-mass (equal-
mass) case with spins aligned and anti-aligned with the angular momentum and magnitude X\,i "^ 0-2. 
These two cases are denoted as NE^ l and EQ+_. The time /peak is the time at which P)l^^ reaches its 
maximum. (Both figures are adapted from Ref [50].) 

holes, with spins on the orbital plane, opposite to each other and equal in magnitude. 
The planar configuration gives a kick of only ^^ 500 km/sec in the case of maximal 
spin [8, 7, 45, 49], whereas the non-planar configuration of '~ 3000km/sec. The non-
planar configuration exhibits n:-symmetry, i.e., it is invariant under a rotation by an 
angle n about the axis perpendicular to the orbital plane. Thus, hnear momentum can 
be radiated only along the direction perpendicular to the orbital plane. Furthermore, as 
observed in Refs. [48, 50] the kick is produced by the imbalance between the 1 = 2, 
m = 2 and I = 2,m= —2 modes, i.e., is due to the difference in energy radiated toward 
the north and south hemispheres [48]. 
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