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The solution of the drift-kinetic equation for fusion-born alpha particles is derived in the limit
of dominant parallel streaming, and it is related to the usual slowing-down distribution function.
The typical approximations of the fast tail of fusion-born alpha particles are briefly compared and
discussed. In particular, approximating the distribution function of fast-alpha particles with an
“equivalent” Maxwellian is inaccurate to describe absorption of radio-frequency waves in the ion-
cyclotron range of frequencies.
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The knowledge of steady-state distribution function of alpha particles generated by fusion reactions is crucial to
address many of the relevant issues in ITER [1] and in the future fusion reactors. To fully account for energetic
particle drifts in inhomogeneous plasmas, the kinetic equation (KE) must be solved, with computing demanding
and sophisticated numerical schemes. In particular, to address the parasitic absorption by alpha particles in radio-
frequency heating and current drive, Monte-Carlo codes for the KE equation have been used in the past [2, 3].
However, the solution of a simplified KE equation has been used for preliminary assessments in many studies [4–8],
along with what done for neutral beam injection sources [9, 10]. As shown in [3], this is justified as first approximation
by the fact that the large dimensions of ITER (and thus DEMO) mitigates the finite orbit-width effects on the power
absorbed by the fast tail of fusion alpha particles.
Here, moving from the observation that the solution of the drift-kinetic equation for fusion alpha particles can be
written as a perturbation expansion in the ratios between the drift/collision rate and the bounce frequency [11], we
formally solve the equation for the lowest-order term, and point out that it is well approximated by the slowing-down
distribution function [12]. We show that the next term in the perturbation expansion can be neglected for plasma
parameters foreseen in a fusion reactor. Finally, we discuss the accuracy of approximating the distribution function
with an “equivalent” Maxwellian having the same energy content.
Following closely the derivation in [11], we start from the drift-kinetic equation (DKE) for alpha particles

∂fα
∂t

+
(

v‖b̂+ vd

)

· ∇fα = Sα + Lα + Cα(fα) , (1)

where vd is the guiding center drift velocity, v‖ the velocity component parallel to the confining magnetic field B,

and b̂ = B/B. Alpha particles are born isotropically in velocity, and the source Sα is Sα = ṅα δ(v − vbth)/(4πv
2
bth) ,

where vbth is the birth speed (vbth =
√

2Ebth/mα and Ebth is the birth energy, equal to 3.5 MeV for deuterium
and tritium fusion reactions), the rate production is ṅα = nD nT 〈σv〉, with the reactivity 〈σv〉 depending on

the local temperature of the reactants [13]. Lα(v) = −Sα e−(v/vthi)
2

/(π3/2v3thi) , is the alpha-particle loss term

where vthi =
√

2Ti/mα with Ti the temperature of the thermal bath (if the background ion species have different
temperatures, Ti can be chosen either as an averaged over the ion temperatures weighted with the concentrations
or the temperature of the majority ion species). Lα guarantees a steady state with constant particle density [14].
Finally, the collision operator is approximated by assuming that the distribution functions of the background species
are Maxwellians [15], Cα(fα) := Cvα(fα) + Cξα(fα) with
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2) with
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4√
π

∫ x

0

y2 e−y2

dy = − 2√
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ni, qi = Zi e, and mi = Aimp are respectively the density, the charge and the mass of the species i, with e the

elementary charge and mp the proton mass. Erf(x) is the error function and lnΛα/b the Coulomb logarithm [16].
Equation (1) is characterized by three time scales: the fast bounce frequency, νb, the guiding-center drift frequency,

νd, and the slowing-down frequency, dominated by collisions with electrons νs = ν
α/e
s ,
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The birth rate and, thus, the loss rate are of the same order of νs, and we assume that also the time dependence
is of the same order of νs. Since the parallel streaming of fusion-born alpha particles is much faster than the other
processes, a pertinent approximation is: νd/νb ≈ νs/νb := γ ≪ 1 . As a consequence, the solution of (1) is expanded

in powers of γ, fα = f−1+ f0+ f1+ · · · , with v‖ b̂ ·∇f−1 = 0 , which implies the constancy of f−1 along the magnetic
field line. The equation for f−1 is obtained by bounce-averaging the zeroth-order equation,

v‖ b̂ · ∇f0 = Sα + Lα + Cα(f−1)−
∂f−1

∂t
− vd · ∇f−1 , (2)

with the bounce average defined as Ā := T−1
∮

Adϑ/(v‖ b̂ · ∇ϑ) with T :=
∮

dϑ/(v‖ b̂ · ∇ϑ). The integral over

the poloidal angle ϑ spans the whole [0, 2π] interval for passing particles and
∮

dϑ :=
∑

σ‖
σ‖

∫ ϑ2

ϑ1

dϑ for trapped

particles, with θ1 and θ2 the turning points and σ‖ the sign of v‖ on the external midplane point. The bounce average

annihilates v‖b̂ · ∇, and leaves unchanged Sα, Lα, and Cvα because of their independence from ϑ. In addition, it

holds vd · ∇f−1 = 0 . Because of the mirror effect, Cξα is not invariant w.r.t. the bounce average. However, since
upon bounce-averaging (2) no sources of anisotropy in velocity survive, it follows that Cξα(f−1) = 0, and the bounce
averaging of equation (2) simply gives

∂f−1

∂t
= Sα + Lα + Cvα(f−1) , (3)

where we have tacitly assumed axisymmetric plasmas. The next order correction f0 is

f0 = I

[
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Ωα
−

(
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Ωα

)

]

(

−∂f−1

∂ψ

)

, (4)

where Ωi = qiB/mic is the cyclotron angular frequency of species i, I = RBϕ is the covariant toroidal component

of the confining magnetic field, and ψ is the poloidal magnetic flux. For trapped particles, v‖/Ωα = 0, whereas for

passing particles v‖/Ωα ≈ v‖/Ωα and thus f0 ≈ 0. Therefore, f0 is anisotropic in velocity, i.e. depends on ξ. Later,
once we have discussed the solution of (3), we evaluate the contribution of f0 in the case of DEMO-like parameters,
and see that indeed f0 can be neglected w.r.t. f−1.
The steady-state solution of (3) is the result of a balance between collision diffusion and friction on one side, and
sources and sinks on the other. A first integration gives
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ṅα
4π v2

{
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)]}

,
(5)

with H(x) the Heaviside step function. The integration constant is fully determined by the constraint that f−1 → 0
for v → +∞. Upon integrating (5), the solution of the kinetic equation (3) is naturally split in two parts, f−1(v) =
fash(v) + ffast(v) , and precisely in a “bulk”, also dubbed “ash”, fash(v) = (nash a/π

3/2 v3thi) exp(−V 2(v)) (a is such
that the zeroth moment of fash is equal to nash) and in a fast tail, known as “slowing-down” tail [10, 12], since its
shape is mainly determined by the slowing-part of the collision operator,
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ṅα
4π

∫ v

0

e−(V 2(v)−V 2(u))

u2Dα
c vv(u)

[

H(vbth − u)−
(
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(

u
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)

) ]

du ,

(6)

with V 2(v) =
∫ v

0
Fα
c v(x)/D

α
c vv(x) dx . If all the plasma species are at the same temperature, Fc v/Dc vv = 2v/v2thi and

V 2(v) = (v/vthi)
2. The distribution function of ashes, fash, depends on the integration constant nash, which in turn is

determined by alpha-particle transport, involving pumping and recycling. When the fraction of ashes is larger than
approximatively 2%, the ash density nash is proportional to the electron density profile [1]. In the limit of validity
of (1), the distribution function of the fast tail is fully determined by plasma parameters and reactivity.
Since in the intermediate range of velocities, vthi ≪ v ≪ vthe, the collision operator is dominated by the slowing-

down effects of collisions, a good approximation of ffast is obtained by assuming Dα
cvv = 0 in (1), and by observing
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FIG. 1. Slowing-down distribution functions fsd and fc
sd for a plasma of ne = 1014 cm−3, Ti = 20 keV, ≈ 45% of D, ≈ 45% of

T and with 2 % of He4 ashes. For comparison the equivalent fMaxw and curtailed f̃Maxw Maxwellians are shown.
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FIG. 2. Estimator of the relevance of fsd,0 w.r.t. fsd,−1 as function of the radial position. Solid and dashed lines are respectively
for peaked and flat profiles presently foreseen in DEMO. The red-dotted line is the orbit width of trapped particles with their
turning points at about ϑ = π/2 (right axis).

that in that range of velocities Gc(x) can be approximated as 2x/(3
√
π) for electrons and 1/(2x2) for ions. With

these approximations and by omitting the loss term, the usual slowing-down distribution function follows [12]

fsd(v) =
ṅα τs

4π (v3 + v3c )
H(vbth − v) , (7)

with τs = ν−1
s . The critical speed vc = (2Ec/mα)

1/2 is defined as the value of v at which the frictions of alpha

particles against electrons and ions are equal i.e. F
α/e
cv (vc) =

∑

i F
α/i
cv (vc),

Ec = Aα





3
√
π

4

√

mp

me

ions
∑

j

Z2
j

Aj
ηj





2/3

Te , (8)

where ηj = nj/ne is the concentration of the j ion species. For a plasma with 50% of deuterium and 50% of tritium,
Ec ≈ 33Te. Figure (1) compares the solution (6) with the approximation (7): for vthi ≪ v ≪ vthe fsd is hardly
distinguishable from the solution ffast, and this is what one should expect since the approximations done hold in that
range of velocities. As the inset highlights, differences between ffast and fsd are visible only at low velocities, which,
however, are hidden by the ash contribution fashes. In addition, the differences between the moments of ffast and fsd,
such as density and energy, are fully negligible.
Once f−1 is known, the correction f0 can be estimated for the plasma parameters presently foreseen in DEMO [17, 18].
In view of an estimate of the order of magnitude, to evaluate the bounce average in (4) we have used the guiding-center
integrator implemented in TORIC-SSFPQL package [19]. As an estimator of the weight of ffast,0, we have calculated
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FIG. 3. Contour plot: fast-alpha particle concentration ηsd as function of Te and Ti/Te; white line: Tsd as function of Te.

E(ρ) =
∫

|ffast,0|d3v/
∫

ffast,−1d
3v, where the velocity integrals are evaluated at the external midplane point through

which all particles transit. According to (4), E decreases when approaching the centre, since the fraction of trapped
particles go to zero. E reaches few percents at the plasma boundary where the fraction of trapped particles increases,
as shown in figure (2). Thus, ffast,0 is negligible and this is an “empirical” justification of neglecting finite-width orbit
effects on the alpha distribution function in a fusion reactor.

The simple analytical form of (7) allows one to derive an analytical expression of the concentration of α particles
in the slowing-down tail

ηsd =
nsd
ne

=
ṅα τs
3ne

ln

[

1 +

(

Ebth

Ec

)3/2
]

,

and an expression of the temperature of the Maxwellian having the same energy content

Tsd
Ec

=
{

ln
[

1 +
(Ebth

Ec

)3/2]}−1
[

Ebth

Ec
− 2 g

(

√

Ebth

Ec

)

]

,

with

g(x) =
1√
3
atan

2x− 1√
3

+
1

6
ln
x2 − x+ 1

(x+ 1)2
+

√
3π

18
.

If we consider plasmas made only of tritium, deuterium, and fusion alpha particles, and assume that tritium and
deuterium have the same concentration, for the charge neutrality it holds ηD = ηT = 1/2 − ηash − ηsd, and the
equation for ηα becomes

ηsd =
(1

2
− ηash − ηsd

)2 ne τs
3

〈σv〉DT ln

[

1 +

(

Ebth

Ec

)3/2
]

.

This expression simplifies if we neglect the sensitivity of Ec on variations of ηsd, which are small, if ηsd stays less than
few per cents. The dependence of neτs on ne is via the Coulomb logarithm, and for moderate variations of ne we
can neglect the changes of neτs. Therefore, ηsd depends mainly on the temperatures of reactants and of electrons.
Figure (3) shows ηsd as function of Te and Ti/Te for a plasma with 5% of ashes. For different ash concentrations ηash,
it is enough to multiply by (1− ηash)

2/0.452 the values of the figure to have a rough estimate of ηsd.

An approximation of fsd particularly convenient for analytical calculations is the equivalent Maxwellian fMaxw(v) =

ηsdnee
−v2/v2

sd/(π3/2v3sd) with vsd = (2 Tsd/mα)
1/2 , which satisfactorily approximate ffast for energy up to about

Ebth/2, as shown in figure (1). However, to be consistent with ffast, which drops to extremely low values, the

Maxwellian must be curtailed at vbth. To guarantee that the curtailed Maxwellian, f̃Maxw, has the same energy

and particle contents of ffast, ηsd and Tsd have to be re-defined, f̃Maxw = η̃sd ne e
−v2/ṽ2

sd/(π3/2ṽ3sd)H(vbth − v), and



6

0.5 1.0 1.5 2.0
��

1

2

3

4

5

|E

�

/
E
+

|

xN =0, N=1

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

FIG. 4. The ratio P(N)(ffast)(xN )/P(N)(fMaxw)(xN ) with xN = 0 for N = 1 as function of ξ⊥ = k⊥vth/Ωc and |E−/E+|.

ṽsd = (2 T̃sd/mα)
3/2 where η̃sd and T̃sd are solutions of the coupled equations

η̃sd ∆H(

√

Ebth

Tsd
) = ηsd,

η̃sd
T̃sd
Ebth

ΘH(

√

Ebth

Tsd
) =

3

2
ηsd

Tsd
Ebth

,

(9)

with ∆H(x) = Erf(x) − 2x e−x2

/
√
π, and ΘH(x) = 3∆H(x)/2 − 2x3 e−x2

/
√
π. In figure (1) both fMaxw and f̃Maxw

are shown: on average f̃Maxw fits ffast better than fMaxw. For temperatures foreseen in ITER and in a reactor, the
differences between (ηsd, Tsd) and (η̃sd, T̃sd) can play a role, depending on the nature of the problem.
As an example of the limits of fMaxw in approximating ffast, we consider the power per unit volume absorbed from a
wave of parallel wavenumber k‖

P(N)(f)(xN ) = −ω
8

ω2
p

ω2
x0

∫ ∞

0

∣

∣

∣

∣

∣

JN−1(ξ⊥ w)+

E−

E+
JN+1(ξ⊥w)

∣

∣

∣

∣

∣

2

w

(

∂f(u,w)

∂w

)

u=xN

dw

(10)

with ξ⊥ = k⊥vth/Ωc, k⊥ the perpendicular component of the wave vector, ωp the angular plasma frequency, xN =
(ω − NΩc)/k‖vth, ω the wave angular frequency, and u and w are the parallel and perpendicular components of

the particle velocity normalized to the thermal speed. The ratio P(N)(ffast)(xN )/P(N)(fMaxw)(xN ) for x = 0 and
N = 1 is shown in figure (4), where E−/E+ is assumed real, for the sake of simplicity. Since typically ξ⊥ is lower
than 2 and |E−/E+| around 4, the difference between ffast and fMaxw can substantially affect the final results, as for
instance the fraction of power absorbed by alpha particles of radio-frequency waves in the ion cyclotron (IC) range of
frequencies [20]. In this case, the difference is mainly connected to the slopes of ffast and fMaxw.

In conclusion, the solution of the drift-kinetic equation for fusion alpha particles can be written as a perturbation
expansion in the ratios between the drift/collision rate and the bounce frequency [11]. Here, the formal solution of
the equation for the lowest-order term of this expansion has been obtained. For DEMO-like parameters, we show
that the first order correction in the perturbation expansion is insignificant. In the range of velocity between the ion
and electron thermal speeds, the distribution function of fast alphas ffast is well approximated by the “slowing-down”
distribution function, fsd [12]. The expressions of its concentration and energy content are recalled, and they are
typically used to define the equivalent Maxwellian distribution function, fMaxw. However, fMaxw is not everywhere
a good approximation. In particular, the different slopes of fMaxw w.r.t. ffast can have a substantial impact on the
estimate of the absorption of IC waves. Another possible approximation is the curtailed Maxwellian with concentra-
tion η̃sd and temperature T̃sd. The differences between (ηsd, Tsd) and (η̃sd, T̃sd) are relevant for temperatures foreseen
in ITER and in a fusion reactor, at least for the D+T fusion reaction. However, in many models the implementation
of the curtailed Maxwellian can be as cumbersome as implementing the slowing-down distribution function, and the
latter is always preferable.
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