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Colloidal particles play an important role in various areas ofmaterial and pharmaceutical sciences, biotechnology,
and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of poly-
electrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer
capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by
dissolution of these templates. The choice of the template is determined by various physico-chemical conditions:
solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules.
Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate
materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in
comparison to non-particulate templates such as red blood cells. Further steps in this area include development
of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of
particles as drug delivery carriers in comparison to microcapsules templated on them.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The significance of micro- and nano-particles ranges from early
developments in the area of colloidal particles to a broad range of indus-
trial and nanotechnology applications in physical, biological, and medi-
cal sciences. In this overview, we focus on the class of organic and
inorganic particles which are used as templates for the preparation of
polyelectrolyte multilayer capsules. The choice of the template for the
preparation of these capsules is particularly important in different fields
of application, with advantages and disadvantages pertaining to the
template dissolution, the stability of the polymer shell, and tendency
to aggregation. In addition, these particles can serve as drug delivery
carriers themselves.

There are two important classes of templates, possessing either
smooth or porous surface. The surface porosity of templates determines
a number of parameters of polyelectrolyte multilayer capsules, includ-
ing the easiness of preparation, polymer shell thickness, and efficiency
of loading of molecules. For example, smooth particles usually need
the addition of more layers of the polyelectrolytes, and the shell wall
is quite thin, on the order of one to two nanometers. The interior of
such capsules is typically clean and transparent, and after dissolution
of the core particle, such capsules look like empty balloons. On the con-
trary, during the layer-by-layer (LbL) adsorption on porous cores, the
polyelectrolytes penetrate into the matrix, resulting in a substantially
thicker polymer shell. In this case, the capsules look like sponges after
the core dissolution. This differential property is very important for
loading of molecules and for protection of encapsulated materials. For
the capsules templated on porous particles, pores are utilized for load-
ing producing relatively large capacity. Polyelectrolyte capsules based
on smooth particles have a bigger inner volume, can easily encapsulate
substances by heating and thereby shrinking of surface, and release of
cargo from such particles can be more easily manipulated by external
stimuli.

Colloidal particles used directly as carriers represent an important
class of materials and stand on their own in various areas of research.
Table 1
Types and sizes of particles, and chemicals used for their decomposition in the construction of

Type of the particles Size of the particles used as templates for polyelectrol

Smooth particles
Silica 0.5 [2] 1 [2], 1.9 [3], 4.5–5 [4–7]
Melamine–formaldehyde 1 [8], 2 [9,10] 3.2–3.5 [8,11,12], 4.2 [13], 5–5.7 [14–16

Polystyrene 0.64 [8] 4.4–4.6 [5,17,18], 9.6–10.6 [19,20] 20 [20]
CdCO3 cubic shape 2.5, 4–6 [21]
CaCO3 cubic shape 4–5 [22]
Calcium phosphate modified by PAH 158–300 nm [23]
Gold nanoparticles 13.5 nm [24]
Micro gel dex-HEMA 150 [25]
Alginate hydrogel microspheres 4.25 [26]
poly-DL-lactic acid particles (PLA) 4–8 [10]

Halloysite Cylinder 50 nm × 300 nm [27]

Porous particles
Mesoporous silica 0.4 [28], 2–4 [1,29]
Calcium carbonate spherical 4–5 [18,22,30,31], 9 [32], 11.5 [33]
MnCO3 1.9.[9] 2.5–2.8 [9,34], 3.6 [32], 5–5.5 [35,36]
Calcium carbonate elliptic 2–4 [22]

Hybrid templates
Human erythrocytes 5–6 [37–42]5–6 [37–42]
Virus-like particles ~4 [43]
Liposomes 0.1–0.5 [44]
We elaborate here on the applicability and potential role of particles
as templates for the preparation of polyelectrolyte multilayer capsules
on one hand, and as stand-alone carriers on the other hand.

2. Particles and templates

2.1. Synthesis of particles

A number of different particles are used as templates for the prepa-
ration of polyelectrolyte multilayer capsules. Information about parti-
cles most frequently used for the fabrication of polymeric capsules is
summarized in Table 1. Templates can be divided into two major clas-
ses, namely smooth and porous particles. The smooth ones encompass,
for example, melamine–formaldehyde, silica, and polystyrene. Most of
them are commercially available in a large range of sizes: from approx-
imately 100 nm to millimeters. Advantages of these particles include
good stability (zeta-potential of ~35mV) and excellentmonodispersity.
Specific modifications of the surface of these particles with amino-,
carboxy-, mercapto-, maleimido-, hydroxy-, epoxy-, sulfo-, and other
functional groups are available. The tailored properties of particles
allow extending their potential application to medical diagnostics,
pharmaceutical industry, biotechnology, molecular biology, analytics,
etc. For drug delivery purposes, these types of particles are of limited
use due to low loading efficacy on the functionalized surface. The
most advanced approach consists in the loading of the hollowpolymeric
shell which is obtained when the solid core is decomposed, Fig. 1.

Porous particles constitute another type of solid particles. They have
a number of advantages over their smooth counterparts, including facile
synthesis, low cost of processing, and high porositywhich leads to an in-
creased loading capacity. The relatively big variation in size (polydisper-
sity) and strong aggregative behavior are some disadvantages of this
type of templates. Production of porous particles (calcium carbonate)
is relatively easy, including the mixing of two salt solutions either in
the absence or in the presence of special additiveswhich are used to ob-
tain certain surface modifications or a particular morphology.
polymeric capsules.

yte capsules, microns Size range, microns Solvent

2–5 HF, HF/NH4F
] 3.2–5.7 HCl, N,N-dimethylformamide (DMF) or

dimethyl sulfoxide (DMSO).
4–20 THF
2.5–6 HCl, pH = 1
4–5 HCl, EDTA
0.16–0.3 HCl
0.14 Potassium cyanide
150 NaOH solution
4.25
4–8 1:1 mixture of 1-methyl-2-pyrrolindinone

acid and organic solvent (acetone)
0.05 × 0.3

0.4–4 HF, HF/NH4F
4–11.5 EDTA pH 6; acid solution pH b 6
2.8–5.5
2–4 EDTA pH 6; acid solution pH b 6

5–6 140 mM NaCl and 1.2% NaOCl
~4
0.1–0.5



Fig. 1. Transmission electron microcopy (TEM) image of a) catalase-loaded mesoporous silica (MS) spheres coated with (PLL/PGA)3 multilayers, and b) following removal of the MS
template; c) fluorescence images of (PLL/PGA)3 microcapsules loaded with FITC-labeled catalase. The scale bar in the inset corresponds to 800 nm. PLL/PGA layers were assembled
from a 0.05 M MES, pH 5.5 buffer. The MS spheres were dissolved using HF/NH4F at pH= 5. Figure reprinted from [1]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA.
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2.1.1. Calcium phosphate
Calcium phosphate synthesis usually involves mixing of two salt

solutions to initiate crystal growth. Calcium phosphate precipitates
form as a result of colloidal aggregation during mixing of CaCl2 and
Na2HPO4 in a buffer solution (TRIS pH 7.4) [45]. The PAH-modified
nanoparticles of calcium phosphate were prepared at room tem-
perature by rapidly pumping aqueous solutions of calcium lactate,
(NH4)2HPO4, and poly(allylamine hydrochloride)(PAH) in a volume
ratio of 1:1:1 into 4 volume parts of water, forming particles with
diameter of about 158 nm [23]. Another approach for the synthesis
Fig. 2. Bimodal microscopic images of CaCO3 particles: Scanning electron microscope (SEM) im
crystals after recrystallization (c). The 2-photon excited fluorescence images show a single va
residual amount of dye attached to the calcite edges could be observed (d). The insets in (b) a
[50]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA.
of smaller calcium phosphates nanoparticles (20 nm) was proposed
by Y. Cai [46]: A CaCl2 solution was dropwise added to a Na2HPO4

solution containing different concentrations of hexadecyl(cetyl)
trimethyl ammonium bromide (CTAB) in magnetically stirred vessels
at 20 °C.

2.1.2. Calcium carbonate (CaCO3)
Synthesis of calcium carbonate templates is based on crystal growth

of polycrystalline spherical vaterite particles precipitated by mixing of
CaCl2 and Na2CO3 solutions [47]. The nucleation and growth rate of
ages show the 430 nm vaterite containers after their synthesis (a), and the calcite single
terite container loaded with the Rhodamine Rh6G dye (b); after recrystallization, only a
nd (d) show fluorescence intensity profiles along the marked axes. Figure reprinted from

image of Fig.�2
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the vaterite particles is determined by the supersaturation level of the
dissolved amorphous CaCO3 [48]. The final size of the vaterite particles
depends strongly on the concentration of the reagents, the solubility
of the salts, the reaction time, and the rotation speed during mixing. It
was shown that at high salt concentrations (1 M), at stirring rates of
up to 1500 rpm, and reaction time of about 2 min, the size of CaCO3

particle was reduced to 3 μm [49]. Recently, size control of spherical
vaterite particles in the range from 10 down to 0.4 μm (Fig. 2a) has
been achieved in a mixture of water and ethylene glycol (EG) [50].
The presence of EG during synthesis of CaCO3 particles diminishes the
molecular diffusion, reduces the rate and the probability of nucleation,
which leads to stabilization of the particles. Depending on the size of
the particles, the pore size can be varied from 10 nm to 60 nm. Thus,
with pore sizes well above 10 nm, the CaCO3 particles are not nano-
porous, but can be considered mesoporous [51]. In 430 nm vaterite
particles, the average pore size is ~30 nm [52], in 4 μm-particles it is
~35 nm, and 18 μm-particles have a pore size distribution ranging
from 20 to 60 nm [51]. Thus, it appears that upon decreasing the size
of the particles to less than 4 μm, the pore size reaches an average
value of 30–35 nm. Biocompatibility tests for vaterite particles indicated
no cytotoxicity and no influence on viability or metabolic activity [52].

2.1.3. Manganese carbonate (MnCO3)
The procedure for manganese carbonate particles synthesis is simi-

lar to calcium carbonate synthesis described before, using salt solutions
which contain appropriate ions [21] The acidic manganese sulfate solu-
tion is added to NH4HCO3 in a volume ratio of 1:1, the stirred mixture is
then aged at 50 °C for 16 h. The resulting MnCO3 particles have round
shapes, and their diameters range from 1.85 μm to 0.3 mm [9].

2.1.4. Cadmium carbonate (CdCO3)
This type of particles is often prepared according to the method de-

scribedby Janekovic andMatijevic [53]. A 10Murea solution aged for 24
h at 80 °C is quickly added to a preheated 20 mM CdSO4 solution. This
procedure leads to monodisperse cubic CdCO3 crystals with a linear
size of about 2.5 μm. Temperature has been found to be critical for the
shape of the CdCO3 crystals. Thus, in the range of temperatures used
(70–75 °C), large polydisperse spherical CdCO3 particles (4–6 μm) are
formed [21].

2.1.5. Synthesis of dextran-hydroxyethyl methacrylate (dex-HEMA)
microgels

Dex-HEMAwas slowly introducedwith a pipette into a PEG solution
under slow continuous stirring in a glass beaker. Upon formation of a
homogeneous dispersion, 35 ml dimethyl aminoethyl methacrylate
(DMAEMA) was added, and the mixture was slowly stirred for 1 min.
In the next step, radical polymerization was started by addition of N,N,
N′,N′-tetramethylethylenediamine (TEMED) (100 ml; pH neutralized
by 4 M NaCl) and potassium persulfate (KPS). The mixture was stirred
for 15 min, and then allowed to stand for 30 min. The resulting
microgels were centrifuged/washed with 20 ml water (twice) and
stored in 5 ml water at 20 °C [25].

2.1.6. Fabrication of alginate hydrogel microspheres
An emulsification method was used for the preparation of alginate

hydrogel microspheres. Briefly, 50 g of 3 wt.% sodium alginate aqueous
solution was dispersed in 75 g of isooctane containing 1.7 g of the
surfactant SPAN 85 (sorbitan trioleate) using an ultrasonicator at 60%
power for 5 min. A solution containing 0.9 g of TWEEN 85
(polyoxyethylene sorbitan trioleate) in 5 g of isooctane was then
added to the emulsion and ultra-sonicated at the same power for
another 5 min to achieve stable water/oil emulsion droplets. Following
this step, 20 mL of aqueous solution containing 10 wt.% of calcium
chloride was added. The microspheres were then rinsed three times
with deionized water by centrifugation.
2.1.7. Formation of mesoporous silica particles
The reaction mixture for the synthesis of mesoporous silica particles

was prepared directly in an autoclavable polypropylene bottle at
~30 °C. A total of 19.6 g of CTAB followed by 10 g of solid Na2SiO3

were dissolved in 350 ml of distilled water, resulting in a clear solution.
Then, 25 ml of ethyl acetate were quickly added under stirring. After
30 s, the stirring was stopped, and the mixture was allowed to stand
at ambient temperature for 5 h; after this period of aging, the pH
reached a constant value. During the aging process, organic solvents
were allowed to evaporate through leaks in the cap of the bottle. The
resulting solids were recovered by filtration of the warm reaction mix-
ture, extensively washed with distilled water and ethanol, and dried
at ambient temperature. The template was removed by calcination at
600 °C for 20 h in flowing air [54].

2.2. Stability and decomposition of particles

The most important parameter of colloidal systems is the stability of
particles which depends on the degree of ion adsorption, and, therefore,
on the zeta potential. The smooth particles melamine–formaldehyde,
silica, and polystyrene have relative high zeta-potentials (~50 mV),
and, therefore, high stability. The high surface charge prevents these par-
ticles from aggregation; furthermore, their morphology is unchangeable.

In contrast to smooth particles, porous ones, for example CaCO3, are
not stable in aqueous solution or during extended steps of synthesis,
and they transform to the more stable calcite structure [50]. Early stud-
ies have demonstrated the influence of aqueous and PBS buffer on
CaCO3 morphology (Fig. 2c). In order to prevent recrystallization, parti-
cles can be either transferred to pure ethanol or dried at 70 °Cduring 1 h
and then kept as a powder.

In contrast to the stability of the aforementioned particles, the de-
composable ones can be treated to obtain polymeric hollow carriers
by immersion into appropriate solvents. These chemicals are listed in
Table 1. Depending on thematerial of the particles, the dissolution pro-
cess lasts from several minutes to several hours, and this is followed by
thorough washing with water. When using chemicals for dissolution of
particles, caution should be taken into account, since in certain cases
these may include acidic media or might have toxic effects. Specifically,
silica particles usually are decomposed in 0.3 M HF consisting of a mix-
ture of HF and NH4F. N,N- dimethylformamide (DMF)/dimethyl sulfox-
ide (DMSO) and tetrahydrofuran (THF) have been used for melamine-
formaldehyde and polystyrene particles, respectively. Calcium carbon-
ate particles have been found to dissolve by immersing them into acidic
media, such as NaCl/HCl buffer (pH 2.0), as well as by complexation
with the chelating agent EDTA in appropriate solution (0.2 M, pH 7.5)
[31,55].

The gold core was removed and transformed in a gold cyanide
complex according to Eq. (1).

2Auþ 1=2O2 þ H2Oþ 4KCN→2K Au CNð Þ2
� �þ 2KOH ð1Þ

Red blood cells can be removed by exposure to amixture of 140mM
NaCl and 1.2% NaClO.

2.3. Release from particles

The release of biomolecules, such as small drug molecules from
particles [56], is governed by an interplay of drug desorption and carrier
dissolution [57]. This process usually is very slow, especially in the
absence of a payload-specific solvent, but could be increased when the
carrier size is reduced. During the desorption/adsorption process,
molecules get detached and reattached until a dynamic equilibrium is
reached, causing small oscillatory modulations in the release curve
[57–59]. Furthermore, the particles themselves can be degraded or
dissolved by the surrounding medium, causing the payload to diffuse
from the carrier.
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The typical time-dependence of release from porous silica particles
has been discussed earlier. The release is observed to be very fast during
the first few hours (releasing up to 75%), and then the release curve
reaches saturation, with around 10% of encapsulated material remain-
ing bound for longer time. This has been demonstrated for the release
of doxorubicin from silica particles [60]; Brilliant Blue F from porous sil-
ica particles [61]; Orange 2, Rhodamine 6G, and doxorubicin encapsu-
lated in millimeter-sized silicagel particles [62], and for gentamicin
released over a period of 20 days from mesoporous silica [63].

When the particles start to dissolve, the release is enhanced and
reaches 100%when all carriers are dissolved. [64]. This is commonly ob-
served for biodegradable carriers such as the well-known gelatin,
polyalginate capsules. One of the typical examples is poly(D,L-lactic-
co-glycolic) acid PLGA particles: Continuous release of serum albumin
from biodegradable PLGA particles during 60 days has been demon-
strated [65]. Also, a number of particles based on carbonate and gelatin
can dissolve at low pH in the stomach, and cargo is rapidly released.
2.3.1. Release by recrystallization at normal pH
The combination of dissolution and desorption processes is a unique

property of slowly dissolving crystals, or it happens during recrystalliza-
tion of the containers. This effect can be seen on the calcium carbonate
particles in the vaterite phase. The vaterite particles (Fig. 3a) can dis-
solve or can get transferred into a crystal phase (to calcite, Fig. 3b),
where the external layer of vaterite starts to ionize [55]. The simulta-
neous occurrence of the two processes (desorption and dissolution) of-
fers the opportunity to realize the delayed burst release.

In previous work [52], the authors demonstrated the release based on
this process and studied it for encapsulated cargo of different sizes: for
high molecular weight tetramethyl-rhodamine isothiocyanate TRITC-
dextran [52], for the low molecular weight model substance Rhodamine
6G [52,66], and for the drug photosensitizer “Photosens” (a mixture of
sulfonated aluminum phthalocyanines AlPcSn, with n = 2, 3 or 4) [55].
The size of particles can vary between 400 nm and 4 μm. Typically, the re-
crystallization process starts when vaterite particles are immersed in an
aqueous solution: This formation of particles can be explained by the dis-
solution and ionization of the external layer of vaterite [67].

Particles can be loadedwithmolecules of lowmolecular weight (e.g.
Rhodamine Rh6G). The dye is slowly released until equilibrium is
reached. An interesting feature is that after three to four days, the re-
crystallization process accelerates, raising the amount of dye molecules
in the aqueous solution to 40%. The complete recrystallization of all
vaterite spheres takes place within less than one week (Fig. 3c).

Immersion of the vaterite particles in ethanol induces slow release
via adsorption–desorption. The total amount of released dye was
Fig. 3. Particle recrystallization in different media: (a) and (b) represent a scheme of the releas
containers, with SEM images as insets. In (a), the carriers are in a pure vaterite phase loadedwit
residuals attached to the crystal edges; (c) shows dye release curves for the two payloads Rh
immersion in water and in ethanol. Reproduced from [52] with permission from The Royal Soc
reported to be around 22% after one day, and did not increase signifi-
cantly during one week of monitoring. This points to the formation of
the desorption–adsorption equilibrium without crystal phase transi-
tion. Colloidal stability of containers results from their high negative
Z-potential. For particles loadedwith high molecular weight molecules,
no recrystallization was observed regardless of the media used (exper-
iments lasted for oneweek). In this time-frame, only slow release is pos-
sible, while recrystallization is expected to end after one week, possibly
due to strong attachment of TRITC-dextran to the surface of vaterite.
This view is supported by the observed strong negative Z-potential,
which is thought to prevent aggregation; in addition, TRITC-dextran
slows down the rate of carrier dissolution. [68,69]. Thorough under-
standing of thesemechanisms can be used to tune the release dynamics.
2.3.2. Release at low pH
Dissolution of calcium carbonate containers at pH b 5 was used for

creating the matrix of encapsulated drug [70], or for simple release of
the compound [66]. This pH-dependence of the dissolution of particles
avails to adjust conditions for controlled and targeted cellular delivery.
This is due to the fact that the microenvironment in tumors is typically
more acidic than that in normal tissues [71]. Thus, during endocytosis,
the pH level decreases in the endocytotic vesicles to around 5.0, in com-
parison to 7.4 in the cytoplasm. This can trigger the release of loaded or
attachedmolecules because the acidic pH in these vesicles ismaintained
by proton pumps; therefore, pH-dependent release would be ideally
suited for targeting viable cancer cells [72].

This pH-sensitivity could be functionally exploited for delaying drug
release from particles, which is particularly relevant in the bloodstream
(pH= 7.4).More detailed data on release of lowmolecularweightmol-
ecules (“Photosens”) from vaterite microparticles was recently pub-
lished [73]. The time course of release was determined starting from 5
min after immersion and was continued up to almost one week. In dif-
ferent experiments, the pH value of the ambient medium was varied,
while Photosens was confined inside the carrier particles and was re-
leased during the transformation from vaterite to calcite particles, or
amorphous calcium carbonate, except for residual amounts of the
drug which reattached to the external surfaces. An interesting result
here is the overall tendency of particles to dissolve quickly with de-
creasing pH, thus leading to formation of calcite crystals, and/or amor-
phous CaCO3. This points to increasing solubility of calcium carbonate
with decreasing pH, in good agreement with the observed 3.7-fold rel-
ative difference in solubility between vaterite and calcite [74].

The time interval until complete dissolution of the vaterite crystals
decreases significantly upon decrease of pH. As such, the drug release
is governed to a larger extent by the dissolution of the particles. At
e mechanism, and the corresponding 2-photon microscopy fluorescence images from the
h Rh6G; (b) shows the calcite phasewhere the dyewas released to themedium apart from
6G (Rhodamine) and TD4 (TRITC-dextran) measured by spectrofluorometry during the
iety of Chemistry.

image of Fig.�3


258 B.V. Parakhonskiy et al. / Advances in Colloid and Interface Science 207 (2014) 253–264
intermediate acidity in the range of pH 6.5 to 5, the dissolution times are
shorter, and the vaterite particles dissolve completely already after one
day. The shortest timeof the phase transitionwas observed to take place
at quite a low pH range (5 to 4.5), where both sizes of vaterite particles
dissolved within the first five minutes. This led to immediate (burst)
release of cargo from particles.

The above-described processes can be interpreted as follows: Drug
release is first controlled by desorption. Complete release can then
take place during thephase transition. In contrast to drugdelivery appli-
cations performed in anopen environment, a complete dispersion of the
loaded compound can be expected after the dissolution of the vaterite
particles. The differences between the time-dependent release curves
of large and small particles are twofold: a) the time for reaching satura-
tion increases from ~1 to ~4 days, and b) the saturation level is lower
for larger particles because of their potential for an enhanced re-
adsorption due to more efficient re-attachment to newly formed calcite
structures [55,66].

2.4. Microparticles as carriers of enzymes

Primarily, the role of particles has been considered here as templates
for building polyelectrolyte multilayer capsules. However, the particles
on which capsules are templated can also be used as carriers of
enzymes. The polyelectrolyte multilayer shell can be constructed
Fig. 4. Schematic representation of enzyme-catalyzed reaction in porous microparticles. Confo
taken at the indicated time intervals. Figure reprinted from [75]. Copyright Wiley-VCH Verlag
over such particles loaded with enzymes, providing an important
functionality — protection of enzymes, just as in the case of capsules
[75].

Capsules carrying enzymes in their pores have been prepared based
on calcium carbonatematrix. Enzyme for the substrate can be added di-
rectly into a solution, although co-encapsulation of the substrate in lipo-
somes, which are capable of carrying smaller molecules, has been
shown applicable for initiating enzyme-catalyzed reactions. Peroxidase
has been used in the above studies as themodel system,while release of
substrate from liposomes attached to the particles has been performed
by ultrasound (Fig. 4).

Besides calcium carbonate particles serving as a reservoir for bio-
molecules, calcium phosphate cores are promising candidates for intra-
cellular delivery of geneticmaterial [76]. A number of studies have been
devoted to the packaging of DNA, RNA, and oligonucleotides molecules
in calcium phosphate nanoparticles [77]. The advantage of using calci-
um phosphate particles is that the size of these carriers can be adjusted
on the ten-to-hundred nanometer scalewhich is important in cell trans-
fection [78]. Furthermore, these carriers exert a protective role on the
embeddedmaterial against the cellular environment, and allow for spe-
cific targeting functionalization of the calcium phosphate surface [79].
Designing artificial cells, initiating an enzyme-catalyzed reaction with
protection of the enzyme fromdegradation in the surroundingmedium,
or drug delivery are some of the application areas of these approaches.
cal transmission (middle row) and fluorescence microscopy images (bottom row) were
GmbH & Co. KGaA.
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2.5. Biomolecule-based particles

Particles are also ideally suited to the delivery of some of the most
relevant biomolecules. For example, insulin [80] or hemoglobin can be
directly loaded into particles by calcium carbonate [81,82] or manga-
nese carbonate templating [83]. Such particles could also be suitable
for biocompatible polymer coverage using the layer-by-layer (LbL) as-
sembly approach. The advantage ofmicroparticles of high deformability
in combination with high loading capacity of hemoglobin, mimicking
red blood cells [84], is the simplicity of manufacture as well as the fact
that the particles themselves determine size and surface properties of
the protein carriers.

3. Capsules

3.1. From particles to capsules: dissolution of templates

This overview covers the basics of capsule preparation and
the role of particles in the properties inherited by capsules. En-
capsulation efficiencies for capsules which are templated on ei-
ther porous or smooth particles differ strongly. There are three
Fig. 5. Schematic of loading based on smooth and porous particles, using the layer-by-layer (Lb
basic methods of capsule formation (Fig. 5): i) co-precipitation
whereby cargo molecules are loaded on the particles during
their synthesis; ii) adsorption of cargo on pre-synthesized parti-
cles which are then used as template for the assembly of the
polyelectrolyte shell; and iii) the loading of pre-formed hollow
polyelectrolyte capsules.

Encapsulation during synthesis is widely used for molecules of high
molecular weight, such as proteins. This method is based on the addi-
tion of cargo material to the salt solution reaction mixture with subse-
quent incorporation of the target molecules into the particle matrix.
Porous particles like CaCO3 have been widely used for loading of mole-
cules by this technique and exhibited a relatively high efficiency as com-
pared to the adsorption method [85]. However, co-precipitation might
decrease, or increase, the size of particles, change the surface morphol-
ogy and the shape of the particles which could then be significantly dif-
ferent from particles produced in the absence of loaded molecules.
Work of She et al., comparing encapsulation of molecules by both
methods, i.e. co-precipitation and adsorption, demonstrated that load-
ing efficiency of TRITC-BSA was higher in the co-precipitation approach
[58]; we have recently obtained similar results for encapsulation of the
therapeutic enzyme L-asparaginase [85]. The efficiency of adsorption of
L) technique for capsule shell formation, followed by decomposition of the core material.
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molecules on a porous matrix depends on the surface area and the size
of pores: The higher the surface area and the larger the pore size, the
higher the number ofmolecules containedwithin the particles. The sur-
face charge is another parameter which determines the amount of mol-
ecules to be loaded into the particles. Two fluorescent markers were
loaded into the vaterite containers: Rhodamine 6G (480 Da) and
TRITC dextran, whereby the attachment of the dextran group increases
the molecular weight by one order of magnitude to ~4.4 kDa. In this
way, the uptake of payload of different molecular properties could be
quantitated: For the highmolecular weight cargo, the loading efficiency
was 157 ± 24 μg/mg, whereas for the low molecular weight substance
Rhodamine 6G the loading efficiency depended on the number ofwash-
ings. One to four repetitions resulted in efficiencies from 8±2 μg/mg to
(7 ± 2) · 10−2 μg/mg. These efficiencies are of the same order as those
of other substances loaded via adsorption to porous carriers [86–88].
Loading in pre-assembled capsules strongly depends on the type of
cores used for the assembly of capsules. In the case of porous templates,
the first polyelectrolyte layer determines the structure of the polymeric
shell which is usually thick and appears as a polyelectrolyte network
[31]. This polymeric matrix can be used for the loading of molecules
by the adsorption technique, similar to the use of simple porous parti-
cles. In contrast to porous cores, the smooth ones display very different
features because the polymers assembled onto the smooth surface form
a thin polyelectrolyte shell that is only a few nanometers thick. The
loading into polyelectrolyte capsules formed on smooth particles can
be performed by changing physical parameters of environmental condi-
tions. However, encapsulation methods based on variation of pH, ionic
strength, and solvent are not easy to implement, since for all of them a
certain compound (acid/base, salt, organic solvent) has to be added to
the capsule suspension, which can induce deformations through a tran-
sient osmotic shock.

The applicability of the threemethods described in the previous sec-
tion is restricted to certain compounds and/or capsule systems. Further-
more, the distribution of the large (above 4 kDa) entrapped molecules
would be higher in the capsule wall than in their interior [89]. Of high
importance for biomedical applications (e.g. laser-induced release) is
the response to thermal shrinking of microcapsules functionalized
with gold nanoparticles (AuNPs). Heating of (PDADMAC/PSS)n
(where n is the number of layers) microcapsules has been shown to in-
duce the reorganization of loosely arranged polyelectrolyte layers into a
denser structure [90]. Thermally increasing the entropy incites more ef-
ficient, stronger electrostatic interactions between the oppositely
charged layers (enthalpy increase), accompanied by densification of
the polymeric shell and subsequent reduction of its inner volume. The
shrinking behavior can be adjusted by the total number of bilayers,
while its direction is predetermined by an odd (swelling) or even
(shrinking) layer number due to the interplay of hydrophobic and elec-
trostatic forces [91]. While denser microshells tend to be mechanically
more stable, their permeability decreases with increasing bilayer num-
ber [92].

Modifications of the particle surface, or surface functionalization, are
different for smooth and porous particles. The difference between poly-
electrolyte capsules based on porous particles and non-porous ones re-
garding their optical properties was demonstrated in several works
[33,93,94]. Polyelectrolyte capsules modified by gold [33,93] or silver
nanoparticles possessing plasmon resonance effects have been reported
[94], revealing that the amount and distribution of metal nanoparticles
in shells of polyelectrolyte capsules depend on the nature of the tem-
plate. Capsules based on porous particles have better adsorption prop-
erties and exhibit higher surface-enhanced Raman spectroscopy
(SERS) sensor effects [93]. If the number of nanoparticles used for ad-
sorption also was controlled, capsules built on porous particles demon-
strated that nanoparticles form larger elaborate aggregates [50,94,95]
versus smaller aggregates on capsules with smooth surface [5,96],
whichprovide other interesting optical properties, such as control of ab-
sorption in the near-IR range [33,94].
3.2. Release of cargo from capsules

Release of payload molecules frommicrocapsules, which can be ini-
tiated by various stimuli (pH, ionic strength, solvent, and temperature),
substantially depends on the morphology of the core. These stimuli
have been shown to alter the permeability of capsule shells in a control-
lable and reversible way by creating tiny pores in the polymeric struc-
ture and thus facilitating diffusion of molecules. Such methods are
broadly used for small-molecule drug delivery. However, application
of chemical approachesmight be limited in cellular systemswhere dras-
tic changes in the chemical composition of the solution are not a viable
option.

Fig. 6 presents data of a comparative study on release from micro-
capsules templated on either smooth silica particles (Fig. 6a,b), or on
porous calcium carbonate particles (Fig. 6c,d). In the first case
(Fig. 6c), thermally shrunk microcapsules have been used. These cap-
sules can be functionalized with nanoplasmonic gold nanoparticles
which serve as centers of localized temperature rise and permeability
change. A distinctive feature of such capsules is the possibility of com-
plete control over spatial and temporal release profiles. Alternatively,
capsules templated on porous calcium carbonate are often used for re-
lease which is achieved through dissolution of the core material upon
decomposition of the surrounding biodegradable polymers (Fig. 6d).
We note that multifunctionality of release is yet another aspect which
receives increasing attention [97]. In this regard, multi-functionality
and multi-compartmentalization are essential properties [98,99].

4. Complex morphologies of particles and capsules

4.1. Multi-compartment particles and capsules

The multi-compartmentalization, which was mentioned in
Section 2.4 andwhich represents a higher level of complexity, is a prom-
ising way to increase functionality of capsules destined for cargo trans-
port into cells. Both particles and capsules can constitute multi-
compartmentalized carriers,whosemain advantage is simultaneous de-
livery of different molecules, targeting [100,101] using one carrier enti-
ty. The aforementioned encapsulation methods can also be adapted to
the construction of a certain compartment of multi-compartment
capsules: a) assembly from pre-formed different sub-compartments;
b) synthesis of particles onwhich capsules are assembled; c) a combina-
tion of synthesis and assembly from pre-formed sub-compartments
[102]. Of all multi-compartment capsules structures, the concentric
and pericentric ones are most frequently used. Strategies for the con-
struction of concentric capsules were demonstrated by Kreft and col-
leagues [103]. They demonstrated fabrication of the shell-in-shell
capsules with two concentric calcium carbonate shells. These shells
were independently loaded with biomolecules separated by a semiper-
meable polyelectrolyte membrane. Furthermore, this system has been
tested as a reactorwhere the coupling of an enzymatic reaction through
a semipermeable membrane was achieved via encapsulation of a sub-
strate in one ball and an enzyme in the other one. Triggered release of
the inner compartment of two-compartment capsules has been demon-
strated [104]. The inner capsules weremodified bymetal nanoparticles,
and upon near-infrared laser illumination the inner part of such dual-
capsules was released. Three coupled enzymes were encapsulated into
concentric multi-compartment CaCO3 particles via co-precipitation
[105]. These enzymes were incorporated in separated compartments
together with two spacing compartments made of bovine serum albu-
min (BSA). Strong influence of the spacing between compartments on
the reaction kinetics was monitored through confocal laser scanning
microscopy (CLSM). The cascade reaction catalyzed by enzymes intro-
duced in separate polymersomes, without artificial transport mediator
located in themembrane, has been demonstrated by Kuiper et al. [106].

Pericentricmicrocapsules are another example ofmulti-compartment
carriers. This type of complex capsules can be constructed by



Fig. 6. Upper row: Microcapsulesmade of synthetic polymers: a) TEM, empty capsule, b) CSLM image ofmicrocapsules after TRITC-dextran encapsulation. Bottom row: Microcapsuleswith
biodegradable shell thatwere constructed byusing CaCO3 templates: c) AFMof a driedmicrocapsule, d) CSLM image after FITC-dextran encapsulation. Figure reprinted from [7]. Copyright
Wiley-VCH Verlag GmbH & Co. KGaA.
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surrounding a large container with small ones. One approach to manu-
facture pericentric capsules is to use polyelectrolyte-coated particles
modified via electrostatic attraction between small and large counter-
parts [86]. Porous colloids, such as calcium carbonate cores, can also
be applied for assembly of pericentric compartments due, in a large
part, to their large surface-to-volume ratio and plenty of cavities
[74,80]. By using pericentric structures made of calcium carbonate as
inner core, filled with an enzyme surrounded by liposomes containing
a substrate, an enzyme-catalyzed reaction was performed [74]. By
disrupting liposomes via ultrasonication, the course of the reaction in
large particle volumes was observed by CLSM. Detachment of small
containers from the inner particles has been demonstrated to permit
control of the release of small carriers via biodegradation of polyelectro-
lytes upon enzymatic disruption [80]. An overview of various morphol-
ogies of multi-compartment particles and capsules has been recently
presented [107], while different ways of inwards build-up of concentric
polymeric (polyamines and polyacids layers) capsules templated on
agarose or alginate hydrogels in an organic phase [108] have been
shown. Generation of hybrid liposome–polymersome multi-
compartment assemblies [109] has been also demonstrated.

4.2. Anisotropic capsules and anisotropic carriers

Of all parameters pertaining to particles as drug delivery vehicles,
the shape has been shown to be a valuable characteristic which influ-
ences the internalization and further fate of the particles in the cell. Re-
cent findings suggest that the geometry of particles could change their
efficiency of uptake into cells in the phagocytotic process [110]. The car-
rier geometry of polymer particles was found to influence endothelial
targeting in the vasculature, and the rate of endocytosis and lysosomal
transport within endothelial cells [111]. Specifically, non-spherical
(elongated, rod-like) particles revealed higher intracellular transport
as compared to that of spherical carriers [112,113]. Attachment of parti-
cles to specific sites of cells can be tuned not only via surface chemistry
of vehicles, but also by changing the geometry of particles even at the
nanoscale [114–116]. Thus, future trends in particle-directed drug de-
livery are toward novel methods of synthesis and elaboration of aniso-
tropic particles which in specific cases resemble natural vehicles like
bacteria [117]. Not only particles of certain shapes can be used as deliv-
ery system, but also capsules templated on specifically shaped particles
would be beneficial to certain applications [118,119]. The flexibility of
polyelectrolytes molecules allows reproducing a number of capsule
shapes after decomposition of the initial solid cores [119–121].
Shchepelina et al. compared the morphology, mechanical properties,
and permeability of hydrogen-bonded layer-by-layer (LbL) microcap-
sule shells assembled on squared cadmium carbonate particles against
the same shells assembled on spherical silica. [122] The patterned
template-assisted assembly of the cubic micro-particles driven by the
competing capillary, Coulomb, and van der Waals forces was compared
to the traditional spherical colloidal microparticles that had been stud-
ied by Lisunova et al. [123]. A set of shaped (spherical, elliptical, and
squared) CaCO3 particleswas synthesized through changing the stirring
speed, time, pH value, and salt ratio (Fig. 7). The particles were further
used for building polyelectrolyte capsules loaded with labeled dextran
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Fig. 7. Confocal laser scanning fluorescence images of spherical (a), ellipsoid-like (b) and square-like (c) CaCO3 microparticles. The microparticles were embedded with FITC–dextran
molecules by co-precipitation, and were subsequently covered by several oppositely charged polyelectrolyte layers through LbL assembly. The scale bars in all images correspond to
5 μm. Adapted from [22] with permission from The Royal Society of Chemistry.
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molecules which replicate the initial shape of CaCO3 microcores after
decomposition with EDTA [22].

Another promising concept for manufacturing anisotropic carriers
is multi-compartmentalization under conditions where at least two
particles/capsules interact with each other [98,107,124,125]. Such
anisotropic hierarchy of nano- and microparticles/capsules makes it
possible to generate properties of carriers that could not be achieved
using conventional methods. Bio-inspired reactions occurring in the
confined volumeof particles/capsules have been carried out by applying
multi-compartment approaches [107,117,125,126]. Advantages of the
artificial compartmentalization strategy are the separation of large and
small molecules, while at the same time carrying them in one entity
with protection from the outside environment, and conduction of cas-
cade reactions [127]. Furthermore, multi-compartment particles/cap-
sules are predicted to be of potential use in theranostic applications
where one carrier would perform a dual function: diagnostic and ther-
apeutic [128,129]. Direct synthesis of anisotropic particles can be anoth-
er approach to anisotropic carriers [130], while controlled patchiness
[131] provides another advanced functionality. In addition to particles
described above, some exotic templates include also bacteria [132], mi-
crocrystals [133], and worms [134].

5. Summary

In this overview, we highlighted methods of preparation and major
physico-chemical properties of particles used as delivery carriers and
particles serving as templates (cores) on which polyelectrolyte multi-
layer capsules are assembled. With regard to capsules, the choice of
the template material determines, first and foremost, its physico-
chemical and biological properties. Porous particles are presented, as
well as those possessing smooth surface. Non-particle, hybrid compos-
ites (red blood cells, virus-like particles, and liposomes) are also briefly
discussed. It is important to emphasize that properties ofmicrocapsules,
which are built on such templates, substantially depend on the
templates on which the former are assembled, as also overviewed
here. Finally, reference is made to emerging trends in the development
of particles and capsules, the production of multicompartment and
anisotropic particles, and particles of controlled size, porosity, and
monodispersity.
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