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Abstract. Using systematic calculations in spinor language, we obtain simple descriptions of
the second order symmetry operators for the conformal wave equation, the Dirac-Weyl equation
and the Maxwell equation on a curved four dimensional Lorentzian manifold. The conditions
for existence of symmetry operators for the different equations are seen to be related. Computer
algebra tools have been developed and used to systematically reduce the equations to a form
which allows geometrical interpretation.

1. Introduction

The discovery by Carter [I] of a fourth constant of the motion for the geodesic equations in the
Kerr black hole spacetime, allowing the geodesic equations to be integrated, together with the
subsequent discovery by Teukolsky, Chandrasekhar and others of the separability of the spin-s
equations for all half-integer spins up to s = 2 (which corresponds to the case of linearized Einstein
equations) in the Kerr geometry, provides an essential tool for the analysis of fields in the Kerr
geometry. The geometric fact behind the existence of Carter’s constant is, as shown by Walker and
Penrose [2], the existence of a Killing tensor. A Killing tensor is a symmetric tensor Kqp = K(qp),
satisfying the equation V(,Kp.) = 0. This condition implies that the quantity K = Koy ye40
is constant along affinely parametrized geodesics. In particular, viewed as a function on phase
space, K Poisson commutes with the Hamiltonian generating the geodesic flow, H = ¥%4,.

Carter further showed that in a Ricci flat spacetime with a Killing tensor K,p, the
operator X = V,K®V,, which may be viewed as the “quantization” of K, commutes with
the d’Alembertian H = V*V,, which in turn is the “quantization” of H, cf. [3]. In particular,
the operator X is a symmetry operator for the wave equation H¢ = 0, in the sense that it maps
solutions to solutions. The properties of separability, and existence of symmetry operators, for
partial differential equations are closely related [4]. In fact, specializing to the Kerr geometry, the
symmetry operator found by Carter may be viewed as the spin-0 case of the symmetry operators
for the higher spin fields as manifested in the Teukolsky system, see eg. [5] [@].

In this paper we give necessary and sufficient conditions for the existence of second order
symmetry operators, for massless test fields of spin 0, 1/2, 1, on a globally hyperbolic Lorentzian
spacetime of dimension 4. (As explained in Section 2.4] the global hyperbolicity condition can be
relaxed.) In each case, the conditions are the existence of a conformal Killing tensor or Killing
spinor, and certain auxiliary conditions relating the Weyl curvature and the Killing tensor or
spinor. We are particularly interested in symmetry operators for the spin-1 or Maxwell equation.
In this case, we give a single auxiliary condition, which is substantially more transparent than
the collection previously given in [7]. For the massless spin-1/2 or Dirac-Weyl equation, our
result on second order symmetry operators represents a simplification of the conditions given by
McLenaghan, Smith and Walker [8] for the existence of symmetry operators of order two. The
conditions we find for spins 1/2 and 1 are closely related to the condition found recently for the
spin-0 case for the conformal wave equation by Michel, Radoux and Silhan [9], cf. Theorem [3]
below.

A major motivation for the work in this paper is provided by the application by two of the
authors [I0] of the Carter symmetry operator for the wave equation in the Kerr spacetime, to
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prove an integrated energy estimate and boundedness for solutions of the wave equation. The
method used is a generalization of the vector fields method [II] to allow not only Killing vector
symmetries but symmetry operators of higher order. In order to apply such methods to fields
with non-zero spin, such as the Maxwell field, it is desirable to have a clear understanding of the
conditions for the existence of symmetry operators and their structure. This serves as one of the
main motivations for the results presented in this paper, which give simple necessary and sufficient
conditions for the existence of symmetry operators for the Maxwell equations in a 4-dimensional
Lorentzian spacetime.

The energies constructed from higher order symmetry operators correspond to conserved
currents which are not generated by contracting the stress energy tensor with a conformal Killing
vector. Such conserved currents are known to exist eg. for the Maxwell equation, as well as fields
with higher spin on Minkowski space, see [12] and references therein. In a subsequent paper [13]
we shall present a detailed study of conserved currents up to second order for the Maxwell field.

We will assume that all objects are smooth, we work in signature (+,—, —, —), and we use
the 2-spinor formalism, following the conventions and notation of [14, [I5]. For a translation
to the Dirac 4-spinor notation, we refer to [14, Page 221]. Recall that A/24 is the scalar
curvature, ® 45 4-ps the Ricci spinor, and ¥ 4pcp the Weyl spinor. Even though several results
are independent of the existence of a spin structure, we will for simplicity assume that the
spacetime is spin. The 2-spinor formalism allows one to efficiently decompose spinor expressions
into irreducible parts. All irreducible parts of a spinor are totally symmetric spinors formed by
taking traces of the spinor and symmetrizing all free indices. Making use of these facts, any spinor
expression can be decomposed in terms of symmetric spinors and spin metrics. This procedure
is described in detail in Section 3.3 in [I4] and in particular by Proposition 3.3.54.

This decomposition has been implemented in the package SymManipulator [16] by the second
author. SymManipulator is part of the zAct tensor algebra package [17] for Mathematica. The
package SymManipulator includes many canonicalization and simplification steps to make the
resulting expressions compact enough and the calculations rapid enough so that fairly large
problems can be handled. A Mathematica 9 notebook file containing the main calculations for
this paper is available as supplementary data at http://hdl.handle.net/10283/541.

We shall in this paper consider only massless spin-s test fields. For the spin-0 case the field
equation is the conformal wave equation

(V V4 + 4A)6 = 0, (L.1)

for a scalar field ¢, while for non-zero spin the field is a symmetric spinor ¢ 4...r of valence (2s,0)
satisfying the equation
VA4 ¢a.r=0. (1.2)

In this paper we shall restrict our considerations to spins 0,1/2,1. For s > 3/2, equation (L2)
implies algebraic consistency conditions, which strongly restrict the space of solutions in the
presence of non-vanishing Weyl curvature. Note however that there are consistent equations for
fields of higher spin, see [14] §5.8] for discussion.

Recall that a Killing spinor of valence (k,[) is a symmetric spinor LAI...AkAll"'Af,

Vias M Lay.a, 240 =0, (1.3)

A valence (1,1) Killing spinor is simply a conformal Killing vector, while a valence (2,0) Killing
spinor is equivalent to a conformal Killing-Yano 2-form. On the other hand, a Killing spinor of
valence (2,2) is simply a traceless symmetric conformal Killing tensor. It is important to note
that (LI), (I2) and @__3:[) are conformally invariant if ¢ and ¢4...p are given conformal weight
—1, and LA A4 is given conformal weight 0. See [14] sections 5.7 and 6.7] for details.

Recall that a symmetry operator for a system Hy = 0, is a linear partial differential operator
X such that HKe = 0 for all ¢ such that Hy = 0. We say that two operators K; and Ky are
equivalent if K1 — Ko = FH for some differential operator F. We are interested only in non-
trivial symmetry operators, i.e. operators which are not equivalent to the trivial operator 0. For
simplicity, we will only consider equivalence classes of symmetry operators.

To state our main results, we need two auxiliary conditions.
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Definition 1. Let Lap?' B’ be a Killing spinor of valence (2,2).
A0) Lag4'B satisfies auziliary condition [AQ if there is a function Q such that
VaaQ = %WABCDV(MB/‘LCD)A’B’ + %@A’B’C’D’VB(B,LABC,D,)
+ LB 4BV (4 ®poypior + LaPEOVE 4@ poipo)- (1.4)
Al) Lag?'B satisfies auxiliary condition [A1 if there is a vector field Pa? such that
VA Py ) = LPYP W g pop — Lag® P8P 6oy, (1.5)

Remark 2. Under conformal transformations such that LABA/B/, pAA

conformal weight 0, the equations (L4) and (LH) are conformally invariant.

and Q) are given

We start by recalling the result of Michel et al. for the spin-0 conformal wave equation,
which we state here in the case of a Lorentzian spacetime of dimension 4.

Theorem 3 ([9, Theorem 4.8]). Consider the conformal wave equation
(ViV,+4M)op =0 (1.6)

in a 4-dimensional Lorentzian spacetime. There is a non-trivial second order symmetry operator
for [T8) if and only if there is a non-zero Killing spinor of valence (2,2) satisfying condition [AQ
of Definition [1.

Previous work on the conformal wave equation was done by [18], see also Kress [19], see also
[20]. Symmetry operators of general order for the Laplace-Beltrami operator in the conformally
flat case have been analyzed by Eastwood [21].

Next we consider fields with spins 1/2 and 1. The massless spin-1/2 equations are

VAA/d)A =0, (1.7a)
and its complex conjugate form

Vatxa =0, (1.7b)

which we shall refer to as the left and right Dirac-Weyl equations E Analogously with the
terminology used by Kalnins et al. [7] for the spin-1 case, we call a symmetry operator ¢4 — Aa,
which takes a solution of the left equation to a solution of the left equation a symmetry operator
of the first kind, while an operator ¢4 — xa which takes a solution of the left equation to a
solution of the right equation a symmetry operator of the second kind.

If one considers symmetry operators in the Dirac 4-spinor notation, a 4-spinor would
correspond to a pair of 2-spinors (¢4, pa+). Therefore a symmetry operator (¢4, va/) — (Aa, xar)
for a 4-spinor is formed by a combination of symmetry operators of first ¢4 +— A4, and second
¢a +— Xxar kind, together with complex conjugate versions of first ¢4 — xas, and second
par — Aa kind symmetry operators.

Theorem 4. Consider the Dirac- Weyl equations ([LT) in a Lorentzian spacetime of dimension 4.

(i) There is a non-trivial second order symmetry operator of the first kind for the Dirac-Weyl
equation if and only if there is a non-zero Killing spinor of valence (2,2) satisfying auziliary
conditions [A0 and[A1 of definition [

1 The use of the terms left and right is explained by noting that spinors of valence (k,0) represent left-handed
particles, while spinors of valence (0, k) represent right-handed particles, cf. [14] §5.7]. The Dirac equation is the
equation for massive, charged spin-1/2 fields, and couples the left- and right-handed parts of the field, see [14]
§4.4]. We shall not consider the symmetry operators for the Dirac equation here.
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(i) There is a non-trivial second order symmetry operator of the second kind for the Dirac- Weyl
equation if and only if there is a non-zero Killing spinor Lapc? of valence (3,1), such that
the auxiliary condition

0=3Uapcp VAL pu + 20 PPV A Lopra
+ 20U, PEV N Lopryar — 2L9PY V4P Qopyarp

—2L4PAY 5T ®opyarp + SLOPFANY 414V oDy (1.8)

is satisfied.

Remark 5. (i) Under conformal transformations such that LABCA" — LABCA/, the equation
([LA) is conformally invariant.

(ii) We remark that the auwiliary condition[A0, appears both in Theorem[]), and for the conformal
wave equation in Theorem [3.

In previous work, Benn and Kress [22] showed that a first order symmetry operator of the
second kind for the Dirac equation exists exactly when there is a valence (2,0) Killing spinor.
See also Carter and McLenaghan [23], and Durand, Lina, and Vinet [24] for earlier work. The
conditions for the existence of a second order symmetry operator for the Dirac-Weyl equations
in a general spacetime were considered in [§], see also [25]. The conditions derived here represent
a simplification of the conditions found in [8]. Further, we mention that symmetry operators of
general order for the Dirac operator on Minkowski space have been analyzed by Michel [26].

For the spin-1 case, we similarly have the left and right Maxwell equations

VP 4dap =0, (1.92)
Va? xap =0 (1.9b)

The left-handed and right-handed spinors ¢4, xa/p’ represent an anti-self-dual and a self-dual
2-form, respectively. Each equation in (I9)) is thus equivalent to a real Maxwell equation, cf. [14}
§3.4]. Analogously to the spin-1/2 case, we consider second order symmetry operators of the first
and second kind.

Theorem 6. Consider the Mazwell equations (L) in a Lorentzian spacetime of dimension 4.

(i) There is a non-trivial second order symmetry operator of the first kind for the Mazwell
equation if and only if there is a non-zero Killing spinor of valence (2,2) such that the
auziliary condition [A] of definition [ is satisfied.

(i) There is a non-trivial second order symmetry operator of the second kind for the Mazwell
equation if and only if there is a non-zero Killing spinor Lapcp of valence (4,0).

Note that no auxiliary condition is needed in point (i) of Theorem [l The conditions for
the existence of second order symmetry operators for the Maxwell equations have been given in
previous work by Kalnins, McLenaghan and Williams [7], see also [27], following earlier work by
Kalnins, Miller and Williams [5], see also [I9]. In [7], the conditions for a second order symmetry
operator of the second kind were analyzed completely, and agree with the condition given in point
(@) of Theorem Bl However, the conditions for a second order symmetry operator of the first
kind stated there consist of a set of five equations, of a not particularly transparent nature. The
result given here in point [@) of Theorem [@ provides a substantial simplification and clarification
of this previous result.

The necessary and sufficient conditions given in theorems [B] M [ involve the existence of a
Killing spinor and auxiliary conditions. The following result gives examples of Killing spinors for
which the auxiliary conditions [AQ] [AT] and equation (L8] are satisfied.

Proposition 7. Let §AA/ and CAA/ be (not necessarily distinct) conformal Killing vectors and

let kap be a Killing spinor of valence (2,0).

(i) The symmetric spinor §(A(A,§B)B/) is a Killing spinor of wvalence (2,2), which admits
solutions to the auxiliary conditions [Ad and [A1l.
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(ii) The symmetric spinor kapRap s also a Killing spinor of valence (2,2), which admits
solutions to the auziliary conditions [Ad and [A1l.

(iii) The spinor K(Ach)C/ is a Killing spinor of valence (3,1), which satisfies auziliary equation

(iv) The spinor kapkcpy s a Killing spinor of valence (4,0).

The point (@) is immediately clear. The other parts will be proven in Section
We now consider the following condition

0: \I/(ABCF(I)D)FA’B" (110)

relating the Ricci curvature ® 4p4/p and the Weyl curvature ¥ apcp. A spacetime where (LI0)
holds will be said to satisfy the aligned matter condition. In particular this holds in Vacuum
and in the Kerr-Newman class of spacetimes. Under the aligned matter condition we can show
that the converse of Proposition [7] part (Zd) is true. The following theorem will be proved in
Section

Theorem 8. If the aligned matter condition (LI0) s satisfied, Yapcp # 0 and Lapep is a
valence (4,0) Killing spinor, then there is a valence (2,0) Killing spinor kap such that

Lapcp = KaBkoD)- (1.11)

Remark 9. If Vapcp = 0, the valence (4,0) Killing spinor will still factor but in terms of
valence (1,0) Killing spinors, which then can be combined into valence (2,0) Killing spinors.
However, the two factors might be distinct.

A calculation shows that if ([I0) holds, kap is a valence (2,0) Killing spinor, then
AN = vBA AL g a Killing vector field. Taking this fact into account, we have the following
corollary to the results stated above. It tells that generically one can generate a wide variety of
symmetry operators from just a single valence (2,0) Killing spinor.

Corollary 10. Consider the massless test fields of spins 0, 1/2 and 1 in a Lorentzian spacetime
of dimension 4. Assume that there is Killing spinor kap (not identically zero) of valence (2,0).
Then there are non-trivial second order symmetry operators for the massless spin-s field equations
for spins 0 and 1, as well as a non-trivial second order symmetry operator of the first kind for
the massless spin-1/2 field.

If, in addition, the aligned matter condition ([LIQ) holds, and Ean = VB ykap is not
identically zero, then there is also a non-trivial second order symmetry operators of the second
kind for the massless spin-1/2 field.

We end this introduction by giving a simple form for symmetry operators for the Maxwell
equation, generated from a Killing spinor of valence (2,0).

Theorem 11. Let kap be a Killing spinor of valence (2,0) and let

Oap = —251%n)c. (1.12)

Define the potentials
Asn = Ra P Vpp0aP - é@ABVBB/RA/B/, (1.13a)
Baa = £4%Vea 05 +104PVeoarp©. (1.13b)

Assume that ¢ ap is a solution to the Mazwell equation in a Lorentzian spacetime of dimension 4.
Let Ayar, Baar be given by (LIJ). Then

XaE = Vs Ay, (1.14a)
waArgr = VB(A’B|B\B’) (114b)

are solutions to the left and right Maxwell equations, respectively.
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The proof can be found in sections and The general form of the symmetry operators
for spins 0, 1/2 and 1 is discussed in detail below.

Remark 12. The symmetry operators of the Maxwell equation can in general be written in
potential form. See Theorem[23 and Theorem [27

The method used in this paper can also be used to show that the symmetry operators R-
commute with the Dirac and Maxwell equations. Recall that an operator S is said to R-commute
with a linear PDE L¢ = 0 if there is an operator R such that LS = RL. Even providing a
formula for the relevant R operators would require additional notation, so we have omitted this
result from this paper.

Overview of this paper

In Section@we define the fundamental operators 2, %€, €, 7 obtained by projecting the covariant
derivative of a symmetric spinor on its irreducible parts. These operators are analogues of the
Stein-Weiss operators discussed in Riemannian geometry and play a central role in our analysis.
We give the commutation properties of these operators, derive the integrability conditions for
Killing spinors, and end the section by discussing some aspects of the methods used in the
analysis. Section [ gives the analysis of symmetry operators for the conformal wave equation.
The results here are given for completeness, and agree with those in [9] for the case of a Lorentzian
spacetime of dimesion 4. The symmetry operators for the Dirac-Weyl equation are discussed in
Section M and our results for the Maxwell case are given in Section Bl Special conditions under
which the auxiliary conditions can be solved is discussed in Section Bl Finally, Section [7 contains
simplified expressions for the symmetry operators for some of the cases discussed in Section

2. Preliminaries

2.1. Fundamental operators

Let Sk, denote the vector bundle of symmetric spinors with k& unprimed indices and ! primed
indices. We will call these spinors symmetric valence (k,1) spinors. Furthermore, let 8 ; denote
the space of smooth (C°°) sections of Sy ;.

P ! !
Definition 13. For any @Al___AkAl"'Al € 8,1, we define the operators Py : Sk — Sp—1,1-1,
Gl t Skl — Sk1,1-1, (@”;;r,l 28k = Sk—1,041 and Ty Spy — Spq1,141 GS

(Zhip)ay...ap_, 1M =VPP a4, g™, (2.1a)
(G @) Ayt N =V, P 0a, a N, (2.1b)
(G 0) 4, M = VMg, g, (2.1¢)
(Tia®) Ardpys A =V 0, Wiy, a2t (2.1d)

Remark 14. (i) These operators are all conformally covariant, but the conformal weight differs
between the operators. See [15, Section 6.7] for details.

(i) The left Dirac-Weyl and Mazwell equations can be written as (‘Kﬁoqﬁ)A/ =0 and (‘ggﬂoqﬁ)AA/ =
0 respectively. Similarly the right equations can be written in terms of the € operator.

The operator &, only makes sense when k£ > 1 and [ > 1. Likewise 4}, is defined only if
[ > 1 and ‘Kg , only if & > 1. To make a clean presentation, we will use formulae where invalid
operators apf)ear for some choices of k£ and I. However, the operators will always be multiplied
with a factor that vanishes for these invalid choices of k and [. From the definition it is clear that
the complex conjugates of (Zk,1¢), (€r19), (‘Kg,lcp) and (,19) are (21k%), (‘@Tkgﬁ), (¢1.xp) and
(T1.kp) respectively, with the appropriate indices.

The main motivation for the introduction of these operators is the irreducible decomposition
of the covariant derivative of a symmetric spinor field.
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’ ’ . . o

Lemma 15. For any @Al___AkAl"'Al € 8,1, we have the irreducible decomposition
Al Al Al AlLLAL

VA 0ay A, 720 = (Tl @) Ay Agyy

l

—Al (A A5 A]
— l+_1€ 1( 2((6761150)141»»»141644 3 141)

k + Al A
— AL (A2 (G 1) Ay Ay )

+ (k+1]§l(z+1)GAl(AZEAl(AZ(@k,lSD)AB...AHI)AS“'AHI). (2.2)

Proof. Tt follows from in [I4, Proposition 3.3.54] that the irreducible decomposition must have
this form. The coefficients are then found by contracting indices and partially expanding the
symmetries. O

With this notation, the Bianchi system takes the form

(Z22@)aar = = 3(J,00) anr, (2.3a)
(€1 oW)ancar = (€22®)ancar. (2.3b)

In the rest of the paper we will use these equations every time the left hand sides appear in the
calculations.

With the definitions above, a Killing spinor of valence (k,l) is an element Ly4..p
ker 7 1, a conformal Killing vector is a Killing spinor of valence (1, 1), and a trace-less conformal
Killing tensor is a Killing spinor of valence (2,2). We further introduce the following operators,
acting on a valence (2, 2) Killing spinor.

Definition 16. For Lz’ B € ker T2, define

’ ’

(OS9L) 4™ = 20 apep(Ga2L)POPY + LECAE (600) apop:
+ 30 5o (G ,L) AP CP + LaPE (6 ,0) Y o, (2.4a)

(OégL)ABA/B/ = LOPAB'Y s pop — Lag P 0P oo (2.4b)

The operators Og?% and Oglg are the right hand sides of (I4)) and (LA) in conditions [AQ and
[ATlrespectively. They will play an important role in the conditions for the existence of symmetry
operators.

Given a conformal Killing vector £44°) we follow [28, Equations (2) and (15)], see also [12],
and define a conformally weighted Lie derivative acting on a symmetric valance (2s,0) spinor
field as follows

Definition 17. For fAA, € ker 71,1, and wa,...A,. € 8250, we define

BB’ 1—s

Lepar. as. =P8 Vppoa, a,, + SPB(Ay.. A2 Vanp PP + 157204, 4,V o (25)

This operator turns out to be important when we describe first order symmetry operators.
See Section [C4] for further discussion.

2.2. Commutator relations

Let ¢a,...4, Al AL ¢ 8k, and define the standard commutators
DAB EV(A‘A/‘VB)A/ and DA’B/ EVA(A/VAB/). (26)

Acting on spinors, these commutators can always be written in terms of curvature spinors as
described in [T4] Section 4.9].
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Lemma 18. The operators 9, €, €1 and .7 satisfies the following commutator relations

AA
(Dhet1,1-161,10) A, .4, 112

= k_il((gk—l,l—l-@k,l(P)Al...AkAl"-Al,Q — DB/C’SDAl...AkAl"'AL’zB ¢ k>0,1>2, (2.7a)

i AlLLA]
(@kfl,l+1(€k,l¢)z41»»»z4k72 e

= H_Ll(ng—l,l—l‘@kJW)Al---Ak72A,IMAE - DBC¢A1---A1€72BCA/1.”A£’ k> 27l >0, (27b)

AlLLA]
(Crt 1,141 Th 1) Ay Ay,

= H%(%Hl,lfl(gk 19) Ao A = Oy 43P A Ay M, B >0,12>0,  (2.7¢)

((gljﬂ,lﬂf%,l@)Al...A Av Aty
= B (T G ) ay o, MM - O A g A tid) k20,020, (27d)

Al Al
(Drot1.141 T010) Ay A, 10

= —(mr + H%)(‘fkfl,m‘fg,lsa) M (ll+2) (Th-11-1Dii @) Ay...n, 1N
- ﬁ_?DB(AlSDAQ...Ak)BAlmAl ldeB (AltpAl 2"'AZ)BI, k>1,1>0, (2.7e)
AlLA

(Dit1,141 T,19) A ... A,
rLLAL k(k+2
= — (g1 + B G Geap) M G (Ti10m1 Do) 4y
AeA)p, k20,021, (2.76)

ALLLA]

k_OB AlLLA] k+2 B’ (A
- k+1D (A1 PAy. A)B VT — k+1|:] LA, AL

(%k—l,l-i-l(gg’lﬁp)fh...AkAllmA;
= (Gl1,1-1G019) 4, . AkAl”'A“r(%H—%)(«% 111Dk 1P) Ay ... Ay

R I N e (2.78)

ALLLAL
— O, %0a,. a08 Al g OB g,

Proof. We first observe that (Z.7al) and (2.7D)) are related by complex conjugation. Likewise (2.7d)
and (27d) as well as (2.7€) and (2.70) are also related by complex conjugation. Furthermore, (2:7g)
is given by the difference between (Z7d) and 71). It is therefore enough to prove [Z7a), Zd)
and (Z7d). We consider each in turn.

e We first prove [2.7a). We partially expand the symmetry, identify the commutator in one
term, and commute derivatives in the other.

AL LA
(Dret1,1-1Ck 1) A,y A, 112
BB’ c’ AlLLAS
=V7P Vi, pa,. a.p) Vg
!’ !’

B(B' c’ AlLLAS k B(B' c’ Al.A
V ( VB )(PA LAx 1 zsz,C,_i_k_Hv ( V(Al )(IDAQ...Ak)B 1 liZB’C’

LA [ B'C’ AlLLAL
vt pior + 2R (U7 T way BT g

k+1
— B'C’
= k+1|:, PAL. A

C'\BB’ AlLLA]
+ k+1v(A1 v (IDAQAk)B B l72B,C’
ALLA],B'C

kiﬂ(%k—1,z—19k,l<P)A1...AkAl”'A“Z —Uprerpa,..a,
e To prove ([27d), we first partially expand the symmetrization over the unprimed indices in

the irreducible decomposition (22 and symmetrizing over the primed indices. This gives

/ ’ / ’
AZ"'AH»Z kAZ"'AH»Z

Va, M0, a5 A2 = (Fh10)a, an — e (G 10) a,

]I:+1€A1(A2 ((gg,l(ID)AB»”Ak)BA2“.Al+2- (2.8)
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Using the definitions of .7 and %, commuting derivatives and using (Z.8)), we have

AlLLA (Af y|BlA, Al AYL)

(%71,l+1‘5;il¢)A1...Ak b2 = Via, 20 A,y... AL)B

= O,y A AD By A A AL

=OWidzg, , AsAD 4 B (Thea) a,. a4 g Aiee)
*%HG(AAB\VB(A;(Cg}ll@)Az...Ak)A +Aur2)

= D(A A Az AY) + (%}2‘_’_1 1+1 c%c,lgo)Al...AkAl.nA

2PA; . Ay
+m(%71,l+1‘51371¢)A1...AkA ALz, (2.9)

Isolating the €'T.7-term gives [2.7d).
e Finally to prove (2.7€), we assume k > 1 and observe
(Dhs1401 T @) Ay a1
= - VBB’V(B(B 80,41 Ay A

B Al LA Al LA
= — 5Vl Vs F g, A — VP BV, P sDAQ...Ak)Bl )

k+1
- m(‘@’“ﬂ l+1<%€ lw)Al»»»AkAlmAl - (k+1)2'(Cgkfl,lJrl(@ﬂk,lSﬁ)Al...AkAlmAl
- k«chVB 'V(a (B SDA2,,,A,€)BA1"'AL), (2.10)

where we in the last step used the irreducible decomposition (2.2)) on the first term. We can
solve for the 2.7 -term from which it follows that

AlLA
(Dit1,141 T19) Ay...a,, L

_ 1 l AlLLA] B B’ AlLLA]
= — (GG ) A AN = VPV A, P ou, anp™ M

_ 1 1 Al A B’ AL AL
= — 737 (Ch—1,141%) 1) Ay .4, Z—H—lv BV P oay anpt N

- HlV B'V(A 4 1pa,. .Ak)BAZ“'Al)B

_ ALLA B'wB LA
= *k__,,_l((@ﬂkfl,lJrlcgk’l(P)Al...Ak v — oV, PV oy s

- H%DB(AﬁQAQ...Ak)BA,lmA; - H%V(A ArylB ‘|B’\50A2...Ak)BA,2”'A£)B/
_ lJlr1D (A190A2...Ak)BA/1mA2 o lJlrlDB (AlgDA AL A’...A;)

= —(mg+ H_%)(Cgkfl,url(gg,l%ﬁ) A A (lfSZ(yk L1 D1 9) Ay .oay A
- éifDB(Al‘PAQ.,.Ak)BA,lmA; zJIr1DB( Loa, a2 A (2.11)

O

Remark 19. The operators 2, €, €1 and T together with the irreducible decomposition (22
and the relations in LemmalI8 have all been implemented in the SymManipulator package version

0.9.0 [16)].

2.8. Integrability conditions for Killing spinors

Here we demonstrate a procedure for obtaining an integrability condition for a Killing spinor of
arbitrary valence. Let nAl___Ak_Al"'Al € ker 9%,;. By applying the & operator [ + 1 times to the
Killing spinor equation, and repeatedly commute derivatives with (2.7d) we get

0= (Chri+1,1Ck41.2 " Crr2,1Chr1,041 ThdK) Ay... Ayprio

I+1
l

T+l
1

RS
= curvature terms. (2.12)

——(Cry1411Ch11,2* Chr 20Tkt 1,1-1Ck,1K) A, ... Ay, T+ CUrvature terms

——(Crri41,0 Th1,0Ck41-1,1 -+ Chg1,1—1Ch, 1K) Ay... Ay 140 + CUTVALUTE terms
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Here, the curvature terms have [ —m derivatives of x and m derivatives of the curvature spinors,
where 0 < m <. The main idea behind this is the observation that the commutator (Z7d) acting
on a spinor field without primed indices only gives curvature terms. In the same way we can use

@1d) to get

_ (ot T T T
0= (((oﬂl,k—i-l-i-lch,k-i-l e 'Cgk,l+2((9ﬂk+1,l+1 ylc,l’i)A;mA;M+2

k+1
= curvature terms. (2.13)

2.4. Splitting equations into independent parts

In our derivation of necessary conditions for the existence of symmetry operators, it is crucial
that, at each fixed point in spacetime, we can freely choose the values of the Dirac-Weyl and
the Maxwell field and of the symmetric components of any given order of their derivatives. The
remaining components of the derivatives to a given order, which involve at least one pair of
antisymmetrized indices, can be solved for using the field equations or curvature conditions. See
sections 1] and [5.1] for detailed expressions. In the literature, the condition that the symmetric
components can be freely and independently specified but that no other parts can be is referred
to as the exactness of the set of fields [14, Section 5.10]. The symmetric components of the
derivatives are exactly those that can be expressed in terms of the operator .7. One can show
that, in a globally hyperbolic spacetime, the Dirac-Weyl and Maxwell fields each form exact sets.
However, it is not necessary for the spacetime to be globally hyperbolic for this condition to
hold. If the spacetime is such that the fields fail to form an exact set, then our methods still
give sufficient conditions for the existence of symmetry operators, but they may no longer be
necessary.

The freedom to choose the symmetric components is used in this paper to show that equations
of the type LABA (1 0p) apar + MA¢a = 0 with (%] y¢)ar = 0 forces LA = 0 and M4 = 0
because (1,0¢)apa and ¢4 can be freely and independently specified at a single point. Similar
arguments involving derivatives of up to third order are also used.

In several places we will have equations of the form

0 = SABC 4 (A 00) an™ T, (2.14)

where Ty and (7,0¢)apa’ are free and independent. In particular all linear combinations of the

form (ﬂmqﬁ)ABA/TC will then span the space of spinors Wapc? = W(AB)CA/. As the equation
[2I4) is linear we therefore get

’

0= S4BC , Wapc?, (2.15)

for all W4 BCA, =W B)CA,. We can then make an irreducible decomposition

’

Wapc? = W(ABC)A/ - %W(AD|D|A/€B)07 (2.16)
which gives
0=(-155%a — %SCBCAf)WBAAA/ — Sapoa WABOA", (2.17)

As Wapc? is free, its irreducible components W(ABC)A, and W4 P p4" are free and independent.
We can therefore conclude that

OZSBCCA/ +SCBCA/, (2.18&)
0 = S(ABC)A/' (218b)

Observe that we only get the symmetric part in the last equation due to the symmetry of
W(ABC)A/-
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Instead of introducing a new spinor Wy sc? we will in the rest of the paper work directly
with the irreducible decomposition of (71 0¢)ap? Tc and get

0= (—184%ca — 18 4ca)T5(F1,00) P4 — Sapca T (T 00) PO . (2.19)

The formal computations will be the same, and by the argument above, the symmetrized
coefficients for the irreducible parts Tp(Z:,06)4P4" and T (7 0¢)P4" will individually have
to vanish.

3. The conformal wave equation

For completeness we give here a detailed description of the symmetry operators for the conformal
wave equation.

Theorem 20 ([9]). The equation
(O+4A)9p =0, (3.1)

has a symmetry operator ¢ — x , with order less or equal to two, if and only if there are spinors
L.g?F = L(AB)(A B ), Paar and Q such that

(Zo2L)apc™ B¢ =0, (3.2a)
(Z11P)ap™" =0, (3.2b)
(Z00Q)4" = 3(0530) 47" (3.20)
The symmetry operator then takes the form
x= =LY B apand+ Qo+ A P11 P) + (P11 %0 L) + P (To00) an
+ %(-@2,2L>AA/(%,0¢)AA/ + LABABY (G T 0d) aparp: (3.3)

The existence of Q satisfying ([B.2d) is exactly the auxiliary condition[AQl The proof can also
be carried out using the same technique as in the rest of the paper.

4. The Dirac-Weyl equation

The following theorems imply Theorem [l

Theorem 21. There exists a symmetry operator of the first kind for the Dirac-Weyl equation
b4 — xa, with order less or equal to two, if and only if there are spinor fields Lag* P =

L(AB)(A/B/), Paya and Q such that

(Z2L)apc P =0, (4.1a)
(1P ap™? = — LONL) 4™, (4.1b)
(Z0.0Q) 4™ = 3(05)L) 4™ (4.1c)

The symmetry operator then takes the form

Xa= — SLPN Spcamda+ Qoa+ 38°(611P) an + 367 (611%5L) an + 364(211P)
+ 20A(Z11DooL) + PPA( T 09) apar + 3(Zo2L)PA (T 00) apar
+ 2(6a2L) ancar(F1,00)PCY + LECAB (P T od) apcars:. (4.2)

Remark 22. (i) Observe that (LID) is the auziliary condition[Ad for existence of a symmetry
operator of the first kind for Mazwell equation, and (EId) is the aumiliary condition [AQ for
existence of a symmetry operator for the conformal wave equation.
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(i) With Lapa g = 0 the first order operator takes the form

xa=Lpoa+Qpa. (4.3)

Theorem 23. There exists a symmetry operator of the second kind for the Dirac- Weyl equation
b4 — war, with order less or equal to two, if and only if there are spinor fields Lapc® =

L(ABC)A/ and Pap = Pap) such that

(Z1L)apcp™ P =0, (4.4a)

(Z,0P)apc™ =0, (4.4b)
0= — 2V apcp(Z5:L)°" + %L(ACDA,(%QQ(I))B)CDA’

— 30, “PE(G51L) pyopr — 2LCDFA/(<%,O‘I])ABCDFA’- (4.4¢)

The operator takes the form

war = — LLpopp®°P 4B ¢F + 24P ((@ﬂ;op)BA/ +165(€) 0 Z3.1L) par + PP (T 00) Boar

+ %(@3,111)30(91,0(?)30,4/ + %(%gylL)BCA’B’(%,Oqﬁ)BCB/ + LBCDB/(«%J T,00)BCDA B! -
(4.5)

Remark 24. The scheme for deriving integrability conditions in Section[2.3 can be used to show

that

’

0= —2Lapc” (¢22®)prmar + 3L(ABLA/(%,0‘I’)CDFH)LA/ + 59 apc™ (€51 L) prmyL
+ 23U apcp(Z3aL)Fmy, (4.6)

follows from ([@4a). Despite the superficial similarity of this equation to the condition [{4d), we
conjecture that [{4d) does not follow from (@4al).

4.1. Reduction of derivatives of the field

In our notation, the Dirac-Weyl equation V4 44 = 0, takes the form (‘@”ﬂo(b) A4 = 0. We see

that the only remaining irreducible part of V AN g is (F1.00)a 5. By commuting derivatives

we see that all higher order derivatives of ¢4 can be reduced to totally symmetrized derivatives

and lower order terms consisting of curvature times lower order symmetrized derivatives.
Together with the Dirac-Weyl equation, the commutators (2.7d), (Z7d), .7d) give

(P21 T100)a = — 6A¢a, (4.7a)
(621 A 00)apc = — VYapcpd®, (4.7b)
(CgQT,l%,OQb)AA/B/ = —Papapd”. (4.7¢)

The higher order derivatives can be computed by using the commutators 2Z7d), 2.7d), @.Zd)
together with the equations above and the Bianchi system to get

(@3,2«%,1«71,0@,43’4/ = %(bc(%,g@)ABcA/ + %‘I)(ACA/B/(%,W)B)CB/ -2 (A(%,OA)B)A/

—120(F108) 4™ + 2V apon(Ti00) P4, (4.8a)

(65.2T51 T 08)ancon™ = @ap™ P (F0d)cn)s + 3V asc” (Fi08)pyr
B 1_1(>¢(A(%72(I))BCD)A/ —3 "(Z10®) apcpr®, (4.8b)

(%;,2«72,1«71,0@,43’4/3/0/ = §¢C(A(A/B/(«%,o¢)3)cc/) _ %Qﬁ(A((gQTQ(I))B)A/B’C/
~ 309(%2®)apc™ P — W (T 00) a5 (4.8¢)

Using irreducible decompositions and the equations above, one can in a systematic way
reduce any third order derivative of ¢4 in terms of ¢4, (Z1,00)an?, (%2171 00)apc* B and
(Fs.2T51 T1,00) apcp™ PO
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4.2. First kind of symmetry operator for the Dirac- Weyl equation

Proof of Theorem[Z1l. The general second order differential operator, mapping a Dirac-Weyl field
@4 to 81 is equivalent to ¢4 — x4, where

xa = NaBop + MABCA/(«%,0¢)BCAf + LABCDA/B/(«72,1%,0¢)BCDA'B', (4.9)

and

Lapep™® = Lapen) P, Mapc™ = Mapey™ . (4.10)
Here, we have used the reduction of the derivatives to the 7 operator as discussed in Section [£.1]
The symmetries (£I0) comes from the symmetries of (%Qd))ABA and (a1 Lﬁﬁo(b)ABcA B Tobe
able to make a systematic treatment of the dependence of different components of the coefficients,
we will use the irreducible decompositions

A'B’ A'B’ A'B
Lapep = 4LQABCD + %QLQ(BC €D)A; (4.11a)
A’ A2 A’
Mapc” = %ABC + g{wl(B €ECYA» (4.11b)
1
Nap = Nap — 3 Neas. (4.11c)
where
A'B' _ 7C _ _A'B A _ 2rB A _ nA
L ap = L" aBc , Ma™ =M” 4", N =N"4,
2,2 1,1 0,0
A'B _ A'B' A A o
4L2ABCD = Lsep)” 7, %ABC = Mapey” %AB = Np)-

We use the convention that a spinor with underscripts le is a totally symmetric valence (k,!)

)

spinor. Using these spinors, we can rewrite ([{L3) as

XA = — %(%@1 - %AB¢B - %{\/{BA/(«%,O@ABA' - %ABCA/(«%,O@BCA/
- %QLQBCA/B/(%J%,OQMABCA’B’ = Lapcpap(F21 T,00)BEPAE, (4.12)

The condition for the operator ¢4 — x4 to be a symmetry operator is
(% ox)ar = 0. (4.13)

The definition of the €' operator, the Leibniz rule for the covariant derivative, and the irreducible
decomposition ([Z2) allows us to write this equation in terms of the fundamental operators
acting on the coefficients and the field. Furthermore, using the results from the previous
subsection, we see that this equation can be reduced to a linear combination of the spinors
(F3.2T01T1.00) ancp™ B'C, (Za1 T o00)anc™ P, (F06)ap® and ¢a. For a general Dirac-
Weyl field and an arbitrary point on the manifold, there are no relations between these spinors.
Hence, they are independent, and therefore their coefficients have to vanish individually. After
the reduction of the derivatives of the field to the .7 operator, we can therefore study the different
order derivatives in (£I3]) separately. We begin with the highest order, and work our way down
to order zero.

4.2.1. Third order part The third order derivative term of [@I3) is

0= — 4LQABCDB A F2To1 Ti o) ABCDABIC - (4.14)
We will now use the argument from Section [Z4] to derive equations for the coefficients in a
systematic way. To get rid of the free index in equation ({I4) we multiply with an arbitrary
spinor field T4 to get

0= — LAPOPECTY( T, 0501 T o) ancDA B O (4.15)
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From the argument in Section 2.4] and the observation that TA/(%Q T 1T 0P)aBcDA B 18
irreducible we conclude that

4LQABCDAIB, =0. (4.16)

4.2.2. Second order part The second order derivative terms of ([@I3)) can now be reduced to
0= — MABCH(«%,L%,O@ABCA/B/ + %(%2,2 L )ABCB/(«%J T1,00)ABCA B
H o L) apcaso(Foa A 0oy Y . (4.17)

Here we again multiply with an arbitrary spinor field T4, but here (Z51.7 0¢) BB C'TA" s
not irreducible. Therefore, we decompose it into irreducible parts and get
0= 3TW\( 1 T ,00)ABCIB'C) (7, 2 )ABCA’B’C’
(%((g L)ABCB’ %ABCB )TA (%,1%,0(?),430,4'3'- (418)

The argument in Section [Z4] tells that the coefficients of the different irreducible parts have to
vanish individually which gives

(%,22L2MBCA/B,C/ =0, (4.19a)
%ABCA, = (%, 2 )ABC A (4.19b)

4.2.3. First order part The first order derivative terms of (I3 are
0= — NAB(«%,O@ABA/ + %(%1,1%)’43(%,0@,43,4' - %(@3,1%)’43(%,0(?),43,4'
§2L2ACB/C/@BCB'C'(%,O@ABA' - 6A£2ABA’B’(<%,O¢)ABB/
+ 52%,4 5 dponc(Top) PP + %#ACA/C,(I)BCB/C/(%,Od))ABB,
+ %%QCDA’B"I’ABCD(%,Oqj)ABB, + %QLQABC/D/@A/B/C/D/(«71,0¢)ABB,
- (%;,1%),43,4'3'(91,0@’433/ + %(%,1%),43,4'3'(%,0(15)’433/- (4.20)

Here we again multiply with an arbitrary spinor field T4 and decompose (%,o(b)ABB/TA/ into
irreducible parts. Due to the argument in Section [Z4] the coefficients of the different irreducible

parts have to vanish individually which gives

0= — NAB + 3(4, 1M)AB — 2(Z3.1%, 2 )AB -3 L (A MBS oap, (4.21a)
0= —6ALap"" +3 LOPY P Wapep + § Las” DA g - 3¢ Ga L)as™”
+ 321712(AC(A/|C/|(I)B)CB/)C’ + %(‘%,1{\41)14314/3/- (421b)

Using the commutators (Z.7a) and ([2.71) together with (@I9al), this reduces to

%AB = %((gl,lM)AB - %(%1,1@2722112),43, (4.228,)
(91,1{\41),43’4/3/ = §2L2"D“‘ "B apep + %QLQABC/D/‘I’A/B/C’D’ + («71,1@2,22112),43’4/3/-
(4.22b)

Isolating the .7 terms in (£220) leads us to make the ansatz

MY = =3Py 4 (Zop L) a™, (4.23)
1,1 2,2
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where P44 is undetermined. With this ansatz, the first order equations reduce to

A'B' _ 17 CDA'B 1 c'D' §A'B
(Z1,1P)aB =31k Wapcep — g Lag™ 7 ¥ T o

= i(OéT%QLQ)ABA'B', (4.24a)
%AB = - %((51,1P)AB + %(%1,1@2,221;2),43. (4.24b)

4.2.4. Zeroth order part Using the equations above, the zeroth order derivative terms of (£13)
are

0= ¢A(_2AMAA’ + %MBB/(I)ABA’B’ + i‘I’ABCD(%mQLQ)BCDAf - %QLQBCAfB, (62,2P) aBcB
_ (%5,02]\6)1414, — %QLQABB C (%21‘,2(1))314/3/0/ — %2142,4314/3,(%70A)BB + %(%,O%)AA’

+ %QL;BCB/C/ (Z2,2®)aBCcaBIC). (4.25)

Here, there is no reason to multiply with an arbitrary T4" and do an irreducible decomposition
of TAlngA because TA,QSA is already irreducible. Still the argument in Section 2.4 gives that the
coefficient of ¢# will have to vanish. With the substitutions (£.24D) and (ZZ3), the vanishing of
this coefficient is equivalent to

(%,og\g)AA/ = —6AP4Y + 20,454 5 PP — éWABCD(%272£)BCDA’

+ %2L2BCA,B/(%2,2@)ABCB/ + %2L2ABB,C,((€2T72(I))BA,B/C/ — (chT,OCgl,lP)AA,
+ %(%;,0%171@2,22[12)1414’ + 4A(_@2,22LQ)AA, _ %‘I)ABA,B'(@2,22L2)BB/

+ ?QLQABA/B’(%,OA)BB/ - 2%303/0/(«72,2‘1’),430’4/3'0- (4.26)

)

To simplify the €142 term, we first commute the innermost operators with ([2.7a). Then the
outermost operators are commuted with (2.7h). After that, we are left with the operator %7€,
which can be turned into 2.7 2 by using ([2.71) and (@I9a). Finally, the 2.7 2 operator can be
turned into €T¢'2 and .7 29, again by using ([2.70), but this time on the outermost operators.
In detail

((5;,0%1,192,22%)AA' = — %VBA’DB’C’ZLQABB/C/ + %(%5,0@3,1%2722%)1414’
= 3530(%,22%),430,4' - %VBA’DB’C’{JQABB/C/ + 3(-@2,2%311%2,22%)1414’
— 3DBC((€2,22%)ABCA’ - %VBA/DB/C/{JQABBIC/
- GVBC,D(A’B,Q%\AB|C’)B’ - 3VCB,D(AB2%C)BA’B’
+ 4(@2,2%,1-@2,22%)AA'
= QDAB(@2,22{12)BAI + 60045/ (@2,22{/2),43/ + 3530(%2,22{/2)A30Af

3 BB'C’ BC’ B’
—3Veapco La —6V7T U™ Ljasjon s

- 3VCB,D(ABQLQC)BA/B/ - 4((@,0(5111‘@2’22%)’4’4/ 3 To0 D1z [ an
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Isolating the €74 2 terms, expanding the commutators and using (ZI9a)) yield

(%5,0%1,1@2,221/2),414/ — 8(I)BC B’ (%2 2 )ABCB’ + 2 \I/ABCD((KQ 9 2)BCDA/

LBC B’ ((52 Q(I))ABCB/ + 2 \IIA,B, ,D,(%522 2)AB/C/D/
8c1> e (ch )BA'B'C' - 2L pre (%3 2®)parsrcr
- 12A(922L)AA/ + = @ABA/B,(QML)BB’ _ 64 LABA/B/(% OA)BB'

+ gQIéBCB C/(%,Qq))ABCA/B/C/ + g(«%,091,1@2,22{12)AA/- (4.27)

Using this in (£.28]), and using (2.7e) combined with ([A24al) gives

!’ !’ !’ !’
(«%,Oé\g)AA = — %‘I)BCA B (%, 2 )ABCB’ + 5V apon(6a, 2] 2)BCDA

1 1 BCA'B' B'C'D'
- EQLQ (2, 2@)ABCB/ + 294 ‘B (65522 Q)A
8 & BB'C' (ot Al 1 BB'C’ (oot Al
— 154 (%2722%)B B'C’ — EQLQA (%2,2 )B” BrCY

16 A’ BB’ 16 A’ BB’
— 2®aB” B (%22 L) + 1—52L2AB B (J0,0M)

LA LECEC (g 0) o e — (Too T P)a” + %(%,091,1@2,22132),4,4

557
(4.28)
To simplify the remaining terms, we define
T= Q%ABA’B’@ABA/B/- (4.29)
Using (@194l the gradient of T reduces to
(%,0Y)aa = — %Z%ABA’B/(%,OA)BB/ + %‘bBC (%2 2 )ABCB’
+ %ZLQBCAfB/ (62,2P) apcn + 2‘19ABB o (%T 2 )BA’B’C’
+3 LA (W) pape +§2anan (222 L)
+ LECBCF2®) apcapicr. (4.30)

2,2
This can be used to eliminate most of the terms in ([@28]). Together with the definition of the
operator Og?%, we find that (£28) reduces to

(Fo0lN) 4" = OB L)a" = 4T D)a = 3 (Fo021P)a™ + 1 (Fo0 P11 P22 L) 4"

)

(4.31)
It is now clear that the ansatz
N= =237 - HPP) + :(711 %22 L), (4.32)
with @ undetermined gives
(Z0.0Q)a™ = — H(05) L)a™" (4.33)

2,2

We can now conclude that the only restrictive equations are (£.19al), (£24a) and (@33). The
other equations give expressions for the remaining coefficients in terms of L A gA'B , Paar, and

’ ’
Q. For convenience we make the replacement L op?' %" — fgLABA B O
2,2
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4.8. Second kind of symmetry operator for the Dirac- Weyl equation
Proof of Theorem[Z3. The general second order differential operator, mapping a Dirac-Weyl field

@4 to 8,1 is equivalent to ¢4 — was, where
war = NP 4o + MAfBCB/(%,ofb)BCBf + LAfBCDB/C/(%,191,0@301)3'0', (4.34)
where
Laapepc = Laapeyscys Marapp = Ma/(aB)B- (4.35)

Here, we have used the reduction of the derivatives to the .7 operator as discussed above. The
symmetries ([£38) comes from the symmetries of (%,Oqﬁ)ABA and (%,1%,0(;5),43@’4 B" As we
did above, we will decompose the coefficients into irreducible parts to more clearly see which

parts are independent. The irreducible decompositions of A A BCBlC, and M4 A BB/ are

A B'C’ A'B'C' | 2 B' _CA’
L* ABc = L apc + gLABC( e (4.36)
3,3 3,1
A’ B’ A'B’ 1 _A'B’
M AB = éWAB — 5%,436 , (437)
where
A _ 1B A _ g A
3LlABc = L" aBc” B’ %AB =M*" spar,
A'B'C' _ 7 (A B'C’ A'B' _ ap(A" B
Lapc™ P = LW 45", Map™? =MW 457,

With these irreducible decompositions, we get
war=NP 05— %%BC(%,O(MBCA’ — %BCA'B'(%,OWBCB - %SLlBCDB (Z21T1,00)BCDA B!

- ?’L3BCDA’B’C’(%,1%,0¢)BCDB/C/- (4.38)

)

The condition for the operator ¢4 — was to be a symmetry operator is
(Cgo’lw)A =0. (439)

Using the results from Section[d.Il we see that this equation can be reduced to a linear combination
of the spinors ¢4, (71,00)ap?’, (Z217100)apc™ P and (F5 27517 00) apep® P'C". As above,
we can treat these as independent, and therefore their coefficients have to vanish individually.
After the reduction of the derivatives of the field to the 7 operator, we can therefore study the
different order derivatives in ([@39]) separately. We begin with the highest order, and work our
way down to order zero.

4.8.1. Third order part The third order part of (€39) is

0= — BLSBCDA/B/C/(%,2%71%70¢)ABCDA’B’C" (4.40)

Using the argument from Section P-4 we see that this implies

3L3ABCA/B/C/ = 0. (4.41)

4.8.2. Second order part The second order part of (£39) now takes the form

0= — %BCA P Ja1 T 00) aBcars + %(cg;lgj)BCA BTy P od) aBcars

+ 3(Fa L)ascpas (o1 T1,00) PP (4.42)
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Here we multiply with an arbitrary spinor field 74 and decompose (7 1 9170¢)BCDC/D/TA into
irreducible parts. Due to the argument in Section [Z4] the coefficients of the different irreducible
parts have to vanish individually which gives

(% ) anco™ =0, (1.430)
%ABA/B/ = %(‘5;131/1),43’4/3/. (4.43b)

4.8.8. First order part The first order part of ([@39) can now be reduced to
0= — NPT 00) apar + %(%J,O%PA/(%,O@ABA/ —~ §<@2,Q%>BW(%,O¢)A3A
+ %3%BCDB’@CDA’B/(%,Oqs)ABA/ - %?fchFA"PBCDF(%,OQb)ABA/
- GAPﬁABCA/(c%,Od))BCA/ + %?ﬁBCDB/(I)ADA/B,(%,OQS)BCA/
+ ggﬁACDB/(PBDA’B/(«%,O(b)BCA, + ggﬁBDFA/WACDF(e%,O(b)BCA,
+ %BﬁADFA"pBCDF(%,O(b)BCA/ - (%2,2%),43014'(«71,0@3014/

+ %(%,O%)ABCA’(%,O@BCA/- (4.44)

Here we again multiply with an arbitrary spinor field 7% and decompose (%10¢)BCC/TA into
irreducible parts. Due to the argument in Section [2.4] the coefficients of the different irreducible

parts have to vanish individually which gives

0=~ Na¥ = § LY Uupop + 5(6M)a” — §(Z2200) 4" (4.45)
0= — GAP’LlABCA - (%,2%),430'4 + 23L1(BC|DB’\@A)DA B4 23LI(ADFA Ypoypr
+ %(%,0%)ABCA,- (4.46)

By (£43h), the commutator ([Z7d) and ([#43al) these reduce to

Nt = = 3 L apem @M 1+ 3@ M)at = (6] a1 L)a™, (447a)
(«%,o%)ABcA/ = (%,093,13?1),430’4/- (4.47b)
If we make the ansatz
%AB = —2Psp+ (93,13{1)AB, (4.48)
these equations reduce to
Na¥' = - é%lABCB’q)BCA,B/ — (G P)a* + %((5;70@3,1351),4”7 (4.49a)
(F0P)apc™ =0. (4.49D)

4.8.4. Zeroth order part The zeroth order part of (£39) can now be reduced to
0= — 2A%AB¢B + %%CD\I/ABCDﬂﬁB — ¢P(€11N)ap — 2—10311130[)’4/¢B(‘5272<I>)ACD,41

!’ !’
+ %?’LlBCDA Da(622P)pepar — 1—523L1ACDA P (€22®)popar

- %@BCA,B/WB ((5;71??1)140,4/3' —204(211N) - %?)LIABCA’QsB(%,OA)CA/

+ %3L1CDFA/¢B(%,0\I’)ABCDFA/- (4.50)
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Here we again multiply with an arbitrary spinor field 74 and decompose ¢ZT4 into irreducible
parts. Due to the argument in Section [Z4] the coefficients of the different irreducible parts have
to vanish individually which gives

0= — %BLlABCA/ (¢2,2®)aBcar + %¢ABA,B/(<5§713%)ABA/B/ —5(211N), (4.51a)
0= — QA%AB + %%CD‘I’ABCD —(¢1,1N)aB — 1—753Ll(ACDA/ (62,2®) Byc DAl

L ((5;,1?51)3)0;&/3/ - %3%ABCA’(%,OA)CA + %#CDFA (Z4,0%)aBcDFA-

(4.51D)
The equation ([#49al) together with the commutator [2.7h) gives (@51al). If we substitute (£49al)
in (L51D), we get a term with the third order operator ¢%4%. To handle this we use the same
technique as in Section L2l We first commute the innermost operators with (2.70). Then the
outermost operators are commuted with (Z7al). After that, we are left with the operator €€,

which can be turned into 2.7 2 by using ([2.7€) and (@I9a). Finally, the 2.7 Z operator can be
turned into ¥¢12 and .7 29, again by using ([Z7d), but this time on the outermost operators.

(651,165;0@3,131?1)143 = 2((51,1@2,2(5;713%),43 + QV(AA/DCD?{JlB)CDA’
=304/ p (%§,1£1)ABA/B/ + 3(-@3,1%2,2%311?51)AB + QV(AA/DCD?{JlB)CDA’
=304/ p/ (‘5;,131?1),43’4/3 + QVCB’DA’BIB%/lABCAI - GVDA/D(ACS%BD)CA'
+ 3(@3,1%,0@3,13{?1),43 + QV(AA/DCDgﬁB)CDA/
=304 p (ng,lgf}l)ABA/B/ + QVCB/DA/B/?ﬁABCA/ - GVDA/D(ACB%BD)CA/
— 411 P31 L) an — 6004 (P51 L) pye + 2V a0 Lipyepar
Isolating the €€t 2 terms and expanding the commutators and using [#43a)) yield
(651,1(5;0@3,131?1)AB = — \I]BCDF(%SJB%JACDF - ‘I’ACDF(%,13%)BCDF
- 3—?317/1301)’4/ (62,2P) acpar — 3—?3{1,401)’4/ (¢22P)BeDAr
- %‘I)BCA/B/ (%;,1#),40,4'3' - %‘bACA/B/ (%;,1?51)30,4'3'
—12M(Zs1 L) a + 5V anon(Zs1 L) — 12 Lanca (Fo,0A)
+2 Bgff’”’(%,o\lf)wcmy. (4.52)
The equation ([£Z9al) together with the equation above, the commutator ([Z.7¢) and (£490) gives
(¢1.1N)ap = 4APap — WU apcp PP — 21\(-@3,1351),43 + 2—70\IIABCD(-@3,13{41)CD
- %—g?f/l(ACDA/ (¢22®)ycpar — %Q(ACA/B/(%;l?{,l)B)CA,B,
=30 (G Lponr — § L anca(Fo0M) Y
+4 ?gch“’ (Z1,0%) aBCDF A (4.53)
Due to this, the equation (L5ID) reduces to the auxiliary condition
0= %‘IIABCD(-%JBI?I)CD - §3§1(ACDA' (62,2®)BycDAr

+ %‘I’(ACDF(%JBLl)B)CDF + %BQCDFA,(ELO\P)ABCDFA/- (4.54)
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We can conclude that the only restrictive equations are ([E43al), (£.490) and (E54). The other
equations express the remaining coefficients in terms of 3L1 aBca and Pap. For convenience we

make the replacement BLlABcA, — *%LABCA/. g

5. The Maxwell equation

Theorem 25. There exists a symmetry operator of the first kind ¢ ap — xaB, with order less or
equal to two, if and only if there are spinor fields Lap™® B = Lap) A'BY)  Paa and Q such that

(Zo2L)apc™ P =0, (5.1a)
(ZiaP)ap™® = = 2(08530) ap™", (5.1b)
(Z0,0Q)Bar =0. (5.1c)
The symmetry operator then takes the form
XaB = Qdap + (€114)aB, (5.2)
where
Apn = — PP ydap + %¢BC(<52,2L)ABCA' — 36aB(Z22L)P 4 — LBCA’B/(%,O¢)ABCB’- (5.3)
We also note that
((51T,1A)A’B’ = 0. (5.4)

Remark 26. (i) Observe that one can add a gradient of a scalar to the potential A without
changing the symmetry operator. Hence, adding V aa(AB€ppc) to Aaar with an arbitrary
field Aap is possible.

(i) With Lapa p =0, the first order operator takes the form

Xap = Lpoap + Qbas. (5.5)

Theorem 27. There exists second order a symmetry operator of the second kind ¢ap — wa'p’,
with order less or equal to two, if and only if there is a spinor field Lapcp = Liapcpy such that

’

(Z1o0L)apcor™ =0. (5.6)

The symmetry operator then takes the form

wap = (61 B)as, (5.7)
where
Baa = %qﬁBC(%iOL)ABCAf + Lapcep(Ja00)BCP 4. (5.8)
We also note that
(61,1B)ap =0. (5.9)

Remark 28. (i) Observe that also here we can add a gradient of a scalar to the potential Baar
without changing the symmetry operator. Hence, adding ¥V aa(AP€¢pc) to Baar with an
arbitrary field Aap is possible.

(i) Due to the equations (&4) and [@9), we can use Aaar + Baa as a potential for both xap
and warpr.
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5.1. Reduction of derivatives of the field

In our notation, the Maxwell equation V4 4 ¢4 = 0, takes the form (ng,ogﬁ),q/ = 0. From this

we see that the only irreducible part of V44 ¢pc is (%10(;5),430’4/. By commuting derivatives
we see that all higher order derivatives of ¢ 4p can be reduced to totally symmetrized derivatives

and lower order terms consisting of curvature times lower order symmetrized derivatives.
Together with the Maxwell equation, the commutators ([2.7€), 2.7d), 2.7d) gives

(Z31P2,00) a8 = — 8Adan +2Wapcpd®?, (5.10a)
(C5.1T2,00) aBoD =29 (apc’ ¢pyF, (5.10b)
(€31 Po00) anarn =224 | 4p10m)c (5.10c)

The higher order derivatives can be computed using the commutators [Z.7€), [27d), @.7d)
together with the equations above and the Bianchi system to get
(Da2T31%2,00) aBca = 3247 140" (00)Boypn + ¥ as"F (P00)cyprar
— LBoap(TooN)oya + 2o (622®)peypar

+ 20PF(T1,0V) apcorar — 15M(J200) aBcar, (5.11a)
(€12T31 T200) acors = ®apip™ (Fa0d)oprya +4¥ apc™ (Z2.00)prms
— 1 (622®)cpryp — da” (T10¥)BeDR)HB (5.11b)

(613551 %5,00) anc™ 'Y = §0P 4 NP (F5,08) 5oy p”) — 3¢(an(€,0)0) P
= 30uP(P2®) gyt BC — VAT b (T o) anc? . (5.11¢)

These can in a systematic way be used to reduce any derivative up to third order of ¢ 45 in terms
of pap, (Z00)asc? , (F1T200)apcp™ P and (T42T31.%,00) acpr™ PO

5.2. First kind of symmetry operator for the Mazwell equation

Proof of Theorem[23. The general second order differential operator, mapping a Maxwell field
@B to 82 is equivalent to pap — xaB, Where

xaB = Napcpo©P + MABCDFA/(%,W)CDFA/ + Lagcprua (J31 %,Od’)CDFHA/B/, (5.12)

and

LABCDFHA/B/ (CDFH)(A’B’), MABCDFA/ - M (CDF)A/, NABCD _ N(AB)(CD)_

= Las) (AB)

Here, we have used the reduction of the derivatives to the .7 operator as discussed in Section .11
The symmetries comes from the symmetries of (%70(;5),43(;‘4/ and (9371%70@,43(;13‘4/3/. To be
able to make a systematic treatment of the dependence of different components of the coefficients,
we will use the irreducible decompositions

Ly pCPFHA'B _ 6LQABCDFHA’B’ _ %E(A(C4L2DFH)B)A’B’ _ %e(C(AeB)DQLQFH)A’B,7 (5.13a)
MypCPFA %ABCDFA _ ge(A(C%DF)B)A _ %G(C(AeB)D{WlF)A ’ (5.13b)

c c c c
Nap® = Nap? = e " NP p) = 5N e e p). (5.13¢)

where the different irreducible parts are

A'B" _ 7CD A'B’ A’ _ asBC A’ — nJAB
L aB =L""aBcp” 7, Ma® =M7" apc”™, N = N“" 4B,
2,2 1,1 0,0
AB _ 7 F A'B' A _ D A _ c
Lascp =L Bepyr” 7, %ABC =M Boyp” %AB = Nua o,

3%

L A'B' — 1, A'B' - ap A= M, AN =N
LABCDFH = L(ABCDFH) v Yjascpr = Mapepr)T s N ABCD = N(ABOD)-
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Now, we want the operator to be a symmetry operator, which means that

(€5 0x)aar = 0. (5.14)

Using the results from the previous subsection, we see that this equation can be reduced to a linear
combination of the spinors (%.4%1,3%20)" 2’ apcor, (F,3%.20) Y acp, (Fo20)" ABc
and ¢ap. For a general Maxwell field and an arbitrary point on the manifold, there are no
relations between these spinors. Hence, they are independent, and therefore their coefficients
have to vanish individually. After the reduction of the derivatives of the Maxwell field to the .7
operator, we can therefore study the different order derivatives of ¢4p in (5.14) separately.

5.2.1. Third order part The third order derivative terms of (5.I4) are
0= %4%BCDFB/C/(%72%71%70¢)ABCDFA/B c

+ GLQABCDFHB’C’(%,2%,1%,0¢)BCDFHA’B/C/- (5.15)

P

We can multiply this with an arbitrary vector field 744" and split (T12F1 %70¢)ABCDFA/B/C/THA/
into irreducible parts. Then we get

AlA’ BCDFH B'C’
0:6L2ABCDFHB/C’T( AN Ty T31 Ta00) ) s

)

+ %4%BCDFB’C’TAA’ (Fa.2T31 Ta ) A BCPFABC, (5.16)

The argument in Section 24 gives that the symmetrized coefficients of the irreducible parts
T(A‘A |(%12%11¢%10¢))B0DFH)A/B c a,nd TAA/(%12%11%10¢)ABCDFA B'c must Vanish. Thls
means that (&.15) is equivalent to the system

GLQABCDFHB’C/ =0, (5.17a)
Lpcorpcr = 0. (5.17b)
The only remaining irreducible component of LABCDFHA/B/ is 2LQABA,B/.

)

5.2.2. Second order part If we use everything above we find that the second order part of (5.14])
reduces to

’ ’
0= %%BCDB (73,1%2,00)aBcDA B — %(%,%LJBCDB (73,1 T2,00) aBCDA B

+ %(%,QQLQ)BCDA/B/C,(%,1%,0@5),430173/0/ + :Z)WlABCDFB’(%,1%,0¢)BCDFA'B/- (5.18)

Again contracting with an arbitrary vector 744" and splitting (J5 1.2,00)*BCPA B TFC into

irreducible parts we find

0= %ABCDFB’T(A‘All(%,1%,0¢)BCDF)A’B/
- %TA(A/(%,1%,o(b)A'BCD‘B/C/)(%,22%)BCDA'B'C'
+ TAA'(%%BCDB/ - %(652,22%)BCDB/)(93,1 T ) APCDAB (5.19)

Again using the argument in Section [Z4] we find

(%,QQLQ)BCDAIBICI =0, (5.20a)
Mapcprp =0, (5.20b)
Mpepp = 3(622L)BcpB- (5.20c)

3,1 2,2
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5.2.8. First order part Now, after contracting the first order part of (5.14) with an arbitrary
tensor T4 A7, splitting (%ﬁqﬁ) apca’Tpp into irreducible parts, and using the argument in
Section 24 we find that the first order part of (5.I4)) is equivalent to the system

Npo=3(€1aM)s e~ 5(Z31%22 ], )b c——L( DEC o, (5.21a)

N[

NJABCD = +(C51% 2 )ABCD +3 L( (I)CD)B’CH (5.21b)
(%,1{\41)36“4,3 = 12A2LQBCA B _ %2L2DFA B9pepr — gQLQBcC/D/‘IfA/B,CID/
+ (%;1%722%)30”3’ - 62L2D(BC’<A’<1>C)DB’>C/, (5.21c¢)

(F31%2,2 )ABCD AB = 32L2(ABC/(A/(I)CD)B/)C’ + 32L2(AFA/B/‘I’BCD)F- (5.21d)

The commutators ([2.7a), (2.71) and ([Z.7d) applied to 2L2 A B yield

(-@3 1(62 2 )AB = §((€171‘@2»22L2)AB _ 22L2(ACA,B/(I)B)CA,B/, (522a)
(%3:[1%2,2 )ABA B' = _12AL 4™ P + LOPAB' W pep +2L 45 P04
’ 2,2 2,2 2.2 95
—5(Zs3%, 2 ) AB 62L20(AC/(A/‘I’B)CB/)CI

+ 3 (A, 1@22L) AB (5.22b)
(73,162, )ABCD B = 3(4 3.5, 2 )ABCD A'B 32L2(ABCI(A/@CD)B,)C’

+32L2(AFA "Upepyr- (5.22¢)

It is now clear that (5.2Id) is a consequence of (5.22d) and (5.20a). The commutators (5.22al)
and (5.22D)) together with (5.20al) can be used to reduce (5.21al) and (5.2Id) to

%VOBC = %(%1,1{\41)30 - %(%1,192,221/2)30 — %QLQ( bp'C /(I)C)DB’C’ (5.23a)
(«71,1{\41)3014'3 = — %Q%DFA'B"I’BCDF + %Q%BCC/D/@A'B'C'D + %(«71,1@2,22112)30,4'3'-
(5.23b)

Now, in view of the form of (5.23H) we make the ansatz
MAA’ =2Paa + %(-@2,22%)AA’, (5.24)
where P44/ is a new spinor field. With this choice (5.23al) and (5.23D]) reduce to
NBC = (611P)pc + 35(€11%22 L)Bc -3 L (B PEC oy ppicr, (5.25a)
(S1aP)pcars = — EQ%D aB¥pepr + gQLchC TBapcp. (5.25b)

In conclusion, the third, second and first order parts of (B.I4]) vanishes if and only if (BI7), (520,
(E21D), (B24), (B25a) and (B.25H) are satisfied.

5.2.4. Zeroth order part After making irreducible decompositions of the derivatives, using
(5:20a) and contracting the remaining part of (5.14) with an arbitrary tensor 744", splitting
Taa dcp into irreducible parts, and using the argument in Section 4] we find that the order
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zero part of (B.I4]) is equivalent to the system

0=4APpa — %‘I)BCA’B’PCB/ + %‘I)CDA'B/ (%2,221/2)3(,@3' - %WBCDF(%ZQQLQ)CDFA’
ng%CD B (€229)pepp + 2057 (%T )CA’B/C/ 452132 OB G) , @) carprer
+ g(cgg,O%JP)BA/ + %(65;,0651,1@2,221?2)3,4/ + gA(@2,2£2)BA/ - 77¢BCA’B/(92,22%)CB,
+ % LBCA’B’(%,OA)CB/ - %(%,ON)BA’ - %LCDB/C/(%,TI))BCDA’B’C’; (5.26a)
0= PP AVUapcp + 2M(%s, 2 )ABCA’ (%4 0%3 162, 2 )ABCA’ + = \I/ABCD(92 2 L)
722%(,4 || ((52,2@)30)133/ + %2%(,43 ((gg,z‘p)C)A/B/c' - % L (aBa (%,OA)C)B/
+ 1_02%(ADB/CI(%,Qq))BC)DA’B’C’ — ®apia? Poyp — 2040 4P (6, 2 )BC)DB’
+ 1,50 (‘55,22%)0),4/13'0 — 30 apia” (P, 2 L Joysr — 045" (%, 2 ) C)DF A’

+ %JJQDFAfB/(%,o\I/)ABCDFB' - %(«%,O%I,IP)ABCA’ - g(%,o(gl,l@Q,QQ%)ABCA’- (5.26Db)

Applying the commutators repeatedly we have in general that
(€]0%s1%22 L) anc™
=204 B/(% 2 )ABC — 2 Du2T516, 2 )ABC — 0P (%, 2 )BC)DA

(«72 073, 1%2 2 )ABCA,

/

Al ’

=204 /(6 2 )ABC B — 2(D4,263,35, 2 )ABC - (%22 )BC)DA

B'C

- vP D(ABQLQC)DA p — VP D(A|D|2LQBC) ‘g — ZV(AA/D QLQBC)B/C/
+ %(%,0651,1-@2,22%),430‘4,
= — 10A(622 L 2 )ABCA/ - 2‘I’,LUBCJ:)(@2,22L2)D 2(D42633%, 2 )ABCA,
+ % L (AB (%,OA)C)B/ + % L (ADA/B/(%,Q‘I))BC)DB/ + gQLQ(ABB ¢ (%5,2@)0)’4 BC

32L2( bB C/(%Q@)BC)DA/B/C/ LDy bar B/(%z )BC)DB/

- Eq)(ABB/C/ (%QTQ L )C)A/B’C’ + ?q)(AB (‘@212 L )C)B’

’

o, DBC'(%Q )BC)D B,C,—\I/ (%22 )C)DFA

Al

- 21’12DFA B/(«%,O‘I’)ABCDFB/ + g(«%,o(g1,1@2,221:2),430 . (5.27)
With this and (5.20al), the equation (5.26D) reduces to
0=PP 1 Wapcp + 14_5\IIABCD(92,22{42)DA/ + %2{42(,4[)\14’\B,(%QQ(I))BC)DB’
+ %#(ABB,C, (%T,Q‘I))C)A'B'Cf — ®apia® Poys — 20452 (€, 2 )C)DFA’
+ %#DFA’B/(%,O\I/)ABCDFB’ — 3(Z,0¢11P) aBcar. (5.28)

Using the commutator

(0611 P)apcar = 2PP 4V apcp + 2(622 T 1 P) apcar — 2®(AB|A/|B/PC)B’- (5.29)
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this becomes
0= — (¢22711P)apca + £V ascp(Pae L)DA/ + % L (AD\Af\B,(%,z‘I’)BC)DBf
+£ L( 57 (4] 2 @)y — 2V A"t (6, 2 ) c)pra’ + £ LDF B T4.09) apoprp:-
(5.30)

However, after substituting (5.25D)) in this equation, decomposing the derivatives into irreducible
parts and using (5.20al), this equation actually becomes trivial.

Doing the same calculations as for the Dirac-Weyl case we see that ([@27]) also holds for the
Maxwell case. Directly from the commutators we find

(€30€11P)anr = — 6APax + 28 aparp PPP — (D22 711 P)an + 3(To0211P)anr. (5.31)
With this, ({.27) and (520a) we can reduce (5.26a) to

0= —20°P, B (G L 2 )BCDB’ — 2 Upcpr(6ap LQ)CDF r+ 152L20D B (€229)pepp

+ \I/A’B’C’D’ (%21-22 2)BB c’ D’ 2 (I) CB C’((g"' )CA’B’C’ _ 2 L CcB'C’ (%T )CA’B’C’
- %5¢BCA’B’(@2,22%)CB/ - %(92,2«71,1P)BA' + EQLQBCA'B'(%,OA) B %(%,og\g)BA'

- éQLfDB ¢ (Z2®)pepapc + 5( 0P 1 P)par + %(%,091,192,22132)3,4/- (5.32)

Using (5.25D) and the irreducible decompositions, we find
(-@2,2%,1P)BA’ = - %WBCDF(%2,22L2)CDFA’ + %Q%CDA/B/(%QQ@)BCDB/

%\i/ /B/C/D/((g21'22 2)BB’C,”D/ . §2L2BCB’C’ (%21',2(?)6,14/3/0/. (533)

To simplify the remaining terms, we use the same trick as for the Dirac-Weyl case. The definition

(#23) and the equation (L30) can be used together with (533)), to reduce the equation (E.261)
to

0= — (%, ON)BA’ — +(J0,00)Bar + 3(Z00211P)par + %(%,091,192,22%)3,4'- (5.34)
We therefore make the ansatz
g}g =3Q - 2T+ 3211 P) + 2(D11%o2 L) (5.35)
Now, ([&.34) becomes
0=(%,Q)aa. (5.36)

5.2.5. Potential representation From all this we can conclude that the only equations that
restrict the geometry are (5.20a) and (5.25h). Now, the operator takes the form

XAB = %g}(quﬁAB + %ABCDQﬁCD - %(AC(bB)C - %(%2,221?2) M To00) 5 B)CDA'
+ %MCAf(«%,o@ABCA/ + %QLQCDA/B/(%J T2.00) ABCDA B! - (5.37)

where (])Vo’ %AB, ZN)ABCD, {\41,414/ are given by (£.35)), (5.25a)), (5.2T0) and (G24) respectively.
We can in fact Simplifyﬁthis expression by defining the following spinor
Apn = Pparoa® + 5¢BC(‘52 2 )ABCA’ %¢AB(@2,22L2)BA/ + %QLQBCA/B’(%,W)ABCB,-
(5.38)
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Substituting this onto the following, and comparing with (537, we find

(¢11A)aB = — Qdap + xaB — %5¢(AC((€1,1-@2,22L2)B)0 + %0¢(AC(-@3,1%2,22L2)B)C

1 CA'B'§, D 1 1 CDA'B’
- 1—02132(,4 D" AB9BYD — 1—02132 D ajcaB1PB)D

= —Q¢aB + XaB, (5.39)

where the last equality follows from a commutator relation. In fact the coefficients in A 44/ were
initially left free, and then chosen so all first and second order derivatives of ¢4 g where eliminated

in (539).
We also get

12 AB cp AB | 1,AB
(%1T71A)A/B/:?A2L2ABA/B’¢ *%QLQ aBVapepd™” + z¢ (%;71652,22]42)ABA/B’

AB C’ C AB
—%2L2 ' ®a” ByerdBe — ¢ (A1 P)aBars

4
- %(«72,22112),430,4'3'0'(e%,oﬂﬁ)ABCC - %¢AB(«71,192,22L2)ABWB'

=0. (5.40)
where we in the last step used (5.25h), a commutator and (5.20a))

To get the highest order coefficient equal to 1 in A4 4/ and in x 45, we define a new symmetric
spinor, which is just a rescaling of 2L2ABA/B,

Lapap = %21/2ABA’B’- (5.41)

Now, the only equations we have left are

(Z22L)apc¥ P =0, (5.42a)
(711 P)ap™? = = 2(0530) an™", (5.42b)
(Z0,0Q)Bar =0, (5.42¢)

Aan = Pparda® + 265 (6o2L) apcar + 264°%(Z22L)par
— LB 4P (P00) aBCB- (5.42d)
([l

5.8. Second kind of symmetry operator for the Mazwell equation

For the symmetry operators of the second kind, one can follow the same procedure as above.
However, this case was completely handled in [7]. In that paper it was shown that a symmetry
operator of the second kind always has the form ¢4 — wa/p/,

warp = %QbCD(ngJ(gioL)CDA’B/ - %(%T,OL)CDF(W(%,O¢)|0DF\BI)

+ LOPPI( T\ T 0d)eprma s, (5.43)
where Lagcp = Lapcp) satisfies
(Z1.0L) apcpr™ = 0. (5.44)

Hence, the treatment in [7] is satisfactory. However, it is interesting to see if the operator can be
written in terms of a potential. Let

Baa =3 BC(‘@IOL)ABCA/ + Lapen(Fo,09) PP ar. (5.45)
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Then, from the definition of €, the irreducible decompositions and (5.44) we get

(61 B)arp = 2027 (€], 6] L) apars — 2(€] 1) P (4 (Fo.08) a8 57)
+ LABCP (1 To o) aBCDA B
=wa’p’. (5.46)

The coefficients in (5.45) where initially left free, and then chosen to get (5.46]).
We also get
(¢1,1B)ap = 6ALapcpo? — %LABFH\IICDFH¢CD + %¢CD(<53,1<510L)ABCD
+ %éf)(Ac(-%,l%IoL)B)c — 3L APV orn — LLAPTV cpr T dyu
- («%,OL)ABCDFA’(%,O¢)CDFA/
= — 1092 (D51Tu0L) ancp — 20 LAYV oy pry — 20A L Vo prn
~(Za0L) apcpra(F5,06) 7T

=0. (5.47)

Here, we have used (5.44]) together with the irreducible decomposition of Lag"# Ve pry and the
relations

(‘@371%AI,OL)AB = - 2L(ACDF\IIB)CDF7 (5.48a)
(%3,1%17011),43013 = —10ALagcp — 2(Z51Z00L) apcp + 5Las" " Yepyrm, (5.48b)
L™ Voyppn = 0. (5.48¢)

The last equation follows from the integrability condition (cf. Section [23])
Liapc™*VUprmy = — (651 %0L) apcpru = 0, (5.49)

as explained in [7].

6. Factorizations

In this section we will consider special cases for which the auxiliary conditions will always have
a solution. We will now prove Proposition [7 considering each case in turn.

6.1. The case when Lapa g factors in terms of conformal Killing vectors

Proof of Proposition[7] part (i). If {44 and {44/ are conformal Killing vectors, i.e.
(7118 a5 =0, (7110 %" =0, (6.1)
then we have a solution
Lecap'P = C(A(A/gB)B/) (6.2)
to the equation
(Z5,28¢c) apc™ 'Y = 0. (6.3)
Let
Qec = A Canr + 30apam (MY EPP + L6 10 (€116) an
+ 36 (G026 1O anr + 3 (G026 1) an + 1O (€] 1 aw
— 35(2110)(21.16), (6.4a)
Becaa = 28 4(611Q0) aB + 2P a(6116) a — ifAB/((@ﬂ;fJC)A/B/ — 1P (Cglhé)A'B/- (6.4b)
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Applying the .7 operator to the equation (6.4al), decomposing the derivatives into irreducible
parts and using (G.1)) gives a long expression with the operators 2, ¢, €1, €¢1, €1¢, 79, 7€,
TE, 9€€T, €€6€ and €1€€T operating on €44 and ¢44’. Using the commutators &7al),
@19, @Zd), @7Td) and @10 on the outermost operators and using (G.1]), the list of operators
appearing can be reduced to the set 2, €, €1, 2.7€", € 7€' and €€€T. Then using the
relations (2.7d) and (2.7€) on the innermost operators the list of operators appearing is reduced
to €, €T, €7 P, where the latter can be eliminated with (27d) on the outer operators. After
making an irreducible decomposition of {AA/CBB, and identifying the symmetric part though
[62), one is left with

(Zo.09¢e)a™ = Lec PO (6308) apenr + 20 apenPY (6110)P + 20 apep(PY (61,,6)CP
+ ££<ABB/C/ (%572@)3‘4/3/0/ + i‘I’A/B/C/DrgAB/ (%ﬂlg)C/D/
+ 204 o AP ()P (6.5)

Applying the 7 operator to the equation (6.4b]), decomposing the derivatives into irreducible
parts and using (G.1) gives a expression with the operators €61, €1¢, 7%, T%1 operating

on &4 and (A4, Using the commutators (Z7d), Zd) and (2.7g) and using (G.1), the

entire expression can be reduced to only contain curvature terms. After making an irreducible
decomposition of €44 (BB and identifying the symmetric part though (G.2)), one is left with

(Z11Pec)an™ 7 = L PP Wapop — Lecan” T opy. (6.6)
Substituting ([6.2)) into the definition of Oé?%, allows us to see that (G.5) and (6.6) reduces to

(F0,0Q¢c)a™ = (09} Lec)a™, (6.72)
(Z11%Bec)as™ P = (0538ec)as™ P (6.7b)

The actual form of (6.4al) and (6.4D) was obtained by making sufficiently general symmetric
second order bi-linear ansédtze. The coefficients where then chosen to eliminate as many extra

terms as possible in (67al) and (G.7h). O

6.2. The case when Lapar g factors in terms of Killing spinors

Another way of constructing conformal Killing tensors is to make a product of valence (2,0) and
valence (0,2) Killing spinors. It turns out that also this case admits solutions to the auxiliary
conditions.

In principle we could construct Lapa'p: from two different Killing spinors, but if the
dimension of the space of Killing spinors is greater than one, the spacetime has to be locally
isometric to Minkowski space. In these spacetimes the picture is much simpler and has been
studied before. The auxiliary conditions will be trivial in these cases. We will therefore only
consider one Killing spinor.

Proof of Proposition [7 part (i). Let kap be a Killing spinor, i.e. a solution to

(Z2,0k)apcar = 0. (6.8)
We have a solution
Loap?P = kaprt', (6.9)
to the equation
(%,QSN)ABCA/B/C/ = 0. (6.10)

Now, let
Q. = 20 apa prPRYE + kAP (611%0 2F) aB + 2 (G0,2R) (%JOH)AA/
o T (AR A PR (6.11a)

Praa = skap(Go2R)Par — $Rarp (€] r)a” . (6.11b)
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Applying the 7 operator to the equation (G.ITal), decomposing the derivatives into
irreducible parts and using (6.8) gives a long expression with the operators ¢, €1, 2¢, 2%,
¢€t, €16, 7€, TE€T, €616, €1€€, T€€ and TE€1€" operating on kap and F 4 pr. Using

the commutators (Z7a), .7h), @7d), @1d), @Td) and 1M on the outermost operators and
using (6.8), the list of operators appearing can be reduced to the set ¢, 1, €.7%, ¢t.7¢",

DTE and 2.7€1. Then using the relations (Z.7a)), (2.7D), (27d) and (2.7d) on the innermost

operators the expression will only contain the operators €, €1.

’

= KBCRA/B/ (%Q,Q(b)ABCB/ — %(I)BCA/B/KBC(%O,QR)AB/ + %‘I]ABCDKCD(%O,QR)BA/
+ %‘I)BCA,B’KAC(%O,QR)BB/ - %(I)ACA,B/KBC(%OQR)BB/
+ kaBREC (‘5;12@3'4,3/0/ + %\IIAIB/C’D’RC,D,(%QT,OK)ABI
- %‘I’ABB'C'RB/C/ (%QT,OH)BA/ + %Q’ABB'C'RA/C/((@T,O“)BB/

— %@ABA,C/RB/C,(%JOI{)BB,. (612)

(%0,024) 4™

Applying the 7 operator to the equation (6I1D), decomposing the derivatives into
irreducible parts and using (6.8) gives an expression with the operators €€, €1¢, 7% and

T €T operating on kap and K4/ ps. Using the commutators (2.7d), 2.7d), [7d) and @2.7H) and
using (6.8), the expression reduces to

!’ !’ !’ !’ — !’ ! ! !
(Z118e) a8 = Uapcpr®PrRAYP — 0B Cipikapr© P (6.13)

Substituting (@9 into the definition of Og?%, and making an irreducible decomposition of
kap(%o2k)c? and I%A/B/(%QT,OI{)AC/, allows us to see that ([GI2) and (EI3) reduces to

(Zo.096) 4" = (0538,) 47, (6.14a)
(Z11B)as™ P = (0538.)an™'"" (6.14D)
O

6.3. Example of a conformal Killing tensor that does not factor

The following shows that the condition [AQlis non-trivial. We also see that [AT] does not imply
Unfortunately, we have not found any example of a valence (1,1) Killing spinor which does not

satisfy [ATl
Consider the following Stéckel metric (see [9] and [29] for more general examples.)

Gab = dt* — d2* — (x + y)(dz* + dy?) (6.15)
with the tetrad

(@), i(9,)°
\/§(x+y)1/2 \/§(x+y)1/2'

Expressed in the corresponding dyad (04, t4), the curvature takes the form

"= 00+ L5070t = 500" — L5007, m® =

1
Vagep = — 12AO(AOBL0LD), DPapap = 12A0(ALB)6(A/ZB/)a A= m (6.16)
We can see that the spinor
Lap™? = %(z + y)(5A,63,LALB =+ OAOBZA/ZB,) —(z— y)O(ALB)a(A/ZB,) (6.17)

is a trace-free conformal Killing tensor. We trivially have solutions to the auxiliary condition [AT]
because

(ODL) ap™ B = LOPAE G 4 popy — LapC P WA 0y = 0. (6.18)
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If there is a solution to (4] we will automatically have (%1,105?%L)AB = 0 because 61,17, = 0.

However, with the current L4 5B we get

2i0(ALB)
G100 ) 4p = Z2AB) 6.19
( 1,1V22 )AB (x+y)5 ( )

This is non vanishing, which means that the auxiliary condition does not admit a solution.
This example shows that the conditions [AQl and [AT] are not equivalent. From the previous two
sections, we can also conclude that this L 4 BA/B/ can not be written as a linear combination of
conformal Killing tensors of the form C(A(AlfB)B/) or kapka'p'. For the more general metric in
[29] we can in fact also construct a valence (2,2) Killing spinor which trivially satisfies condition
[ATl but which in general will not satisfy condition It is interesting to note that in general
this metric does not admit Killing vectors, but we can still construct symmetry operators for the
Maxwell equation.

6.4. Auziliary condition for a symmetry operator of the second kind for the Dirac- Weyl equation

Proof of Proposition[7 part (ii). Let kap be a Killing spinor, and 44" 4 conformal Killing
vector, i.e.
(F2,0k) aBcar =0, (Z1.16) a5 =0. (6.20)
then we have a solution
Loeanc? = K(AB&C)A/ (6.21)
to the equation
(Z3,180¢) acp™ P = 0. (6.22)

The auxiliary equation (L8) now takes the form

0=32Uapprr?(6118)c" + \PABCD§CA,((€2T70“)DA/ — 3V 4pcpkP (21 1€)
— 30 4P kg 0(€1,18) pF — 20 AP  Kiop)(€1,16) ByF + SK(ACEPA (62,28) Byopar

T %“CD&AA/ (¢2,2@)Byopar — 2"€DF£CAI(<%,O\I/)ABCDFA’- (6.23)

Using the technique from Section we get that the integrability conditions for (6.20) are

0=Ypc kp)r, (6.24a)
0=12Yapcn(2118) + 2% apc” (€118 p)F — %f(AA/ (¢2,2®)pepyar + (T 00) apcprar.
(6.24D)

Applying the operator €' on the condition (6.24a]) gives
0= — %\I/ABCD(%QT,OK)DA’ — Xk (62,2®)poypar + 1677 (Ta0V) aBoDra- (6.25)

Using (6.241) to elliminate ¥ spcp(21.1€) and ([6.25) to elliminate xP¥( 74 0¥)apcprar, and
doing an irreducible decomposition of ¥ 4p5¢c rkpt we see that [©23) reduces to

0= —2(%116) PV apc"kp)r, (6.26)

which is trivially satisfied due to (6.24al). O
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6.5. Factorization of valence (4,0) Killing spinors with aligned matter
Proof of Theorem[8 Assume that the matter field and the curvature are aligned, that is
0=Uupc" ®pypars- (6.27)

Furthermore, assume that ¥ 4pcp does not vanish, and assume that there is a solution L apcp
to

(Z10L)aBcpEA = 0. (6.28)
The integrability condition (549]) for this equation together with the non-vanishing of the Weyl
spinor, gives that Lagcp and ¥ 4pcp are proportional (c.f. [7]). This means that

0=Liapc" ®pyrap, (6.29a)
0= —Liapcn(Zo0N) rya + Liapc™ (622®@)prymar + %(I)(AB\A’\B/ (ngloL)CDF)B/; (6.29b)

where the second equation is obtained by taking a derivative of the first, decomposing the
derivatives into irreducible parts, using the Killing spinor equation, and symmetrizing over all
unprimed indices.

Split Lapcp into principal spinors Lagcp = a(aBycdp). Now, the Killing spinor equation
[628)), and the alignment equation (G29a]) gives

0= aAaBaCaDaF(%ﬁL)ABCDFA/ = aAﬁAaBWBaC(ScaDaFVFA/aD, (6.30a)

0= aAaBaCaDL(ABCF@D)FA/B/ = %ozAﬂAaB'yBozC(;caDaF@DFA/B/. (6.30b)

We will first assume that o is not a repeated principal spinor of Lipcp. This means that
a?BaaPypaCsc # 0 and hence aaPV 4 4ap = 0, that is ay is a shear-free geodesic null
congruence. We also get a”af ®ppap = 0. Contracting (6.29H) with ataPaaPal” we get

1_A B C D F _H 1 B A B C _D_F
0= za”Baa”ypa~dca o’ a (652,2‘I)>DFHA'+3@ABA' a’a”aa” o (%ijL)CDFB/

= iozAﬂAozB’yBacécaDaFozH(‘5212<I))DFHA/. (6.31)
Hence, aAaBaC(%Q,gtb)ABCAr = 0. But the Bianchi equations give
aAaBaCVDD,\PABCD = ozAaBozC(%”ng(I))ABCA/ =0. (6.32)

It follows from the generalized Goldberg-Sachs theorem that o is a repeated principal spinor of
U 4pcp, see for instance [I5, Proposition 7.3.35]. But Lapcp and ¥ 4pcp are proportional, so
is a repeated principal spinor of L4pcp after all. Without loss of generality, we can assume that
v = a4, a relabelling and rescaling of 44, ¥4 and §4 can achieve this. Repeating the argument
with 4, we find that also % is a repeated principal spinor of Lagcp. If B4a4 = 0, we can repeat
the argument again with 64 and see that all principal spinors are repeated, i.e. Petrov type N.
Otherwise, we have Petrov type D. In conclusion, we have after rescaling Lapcp = aaaBcBp)-
NOW, let RAB = OZ(AﬂB).
First assume that a4 # 0. Contracting (628) with a?afa®aPpF, ataPapPsr,

aAaBBCBDBF, aAﬁBﬁcﬁDﬁF we find

0=a”a"a(Fok)aBcar, 0=a’a®BY(F0k)aBcar,

0 =a”BPB(P0k) aca, 0= B*B"BY(F0k) aBC A"

Hence, (%,OK)ABCA’ =0.
If o84 = 0, we can find a dyad (0?,:4) so that a® = o04. Then we have Lapcp =

v2040p0cop and kap = vosop. Contracting B28) with 020P0oC P Fv=1, 04088 P Fy~T

OALBLCLDLFU_l, 1ABCP L Fy=1 we find

0= 00" 0% (oK) Ao, 0= 00" (oK) o,
0= 0" P18 ( T 0k) aoar, 0 =P (T 0k) aBcar-
Hence, (%,OK)ABCA’ =0.
We can therefore conclude that if the curvature satisfies (627), ¥ 4pcp does not vanish, and

we have a valence (4, 0) Killing spinor Lapcp, then we have a valence (2,0) Killing spinor k4p
such that Lagcp = K(ABKCD)- [l



Second order symmetry operators 32
7. The symmetry operators with factorized Killing spinor

7.1. Symmetry operators for the conformal wave equation

Let us now consider special cases of symmetry operators for the conformal wave equation. If we
choose

Lapap = Lecapap, Paar =0, Q = 2Q¢. (7.1)
Then the operator takes the form
X =3LcLed + 5Lelco. (7.2)

One can also add an arbitrary first order symmetry operator to this.
We can also choose

Lapap = Lsapap, Paar =0, Q=329,. (7.3)

Substituting these expressions into (B3] gives a symmetry operator, but we have not found any
simpler form than the one given by ([B.3)).

Remark 29. Apart from factorizations, one can in special cases get symmetry operators from
Killing tensors. If Kag® B is a Killing tensor, then we have

(ZoL)apcapc =0, (ZopLl)an = —2(F08)aar, KABAB = [ABAB | 1gABeA'B

where LagA' B = K(AB)(A,B/) and S = K42 44", The commutator @20 gives (61,1%2.2L)ap =
0. If we also assume vacuum, then the equation [E2T) gives

(Z0.0211Z22L) anr = — 2V apcp(GaoL)PP 40 — 20 4ipicipy (%QTQL)AB/C/D/' (7.4)
Hence, we can choose
Q= —:(21.12:2L), (7.5)
to satisfy condition[Ad, and get the well known symmetry operator
X= - %(%,OS)AA/(«%,0¢)AA' + LABA/B/(%J«%,O@ABA'B' =Vaa (KABA/B/VBB@% (7.6)

which is valid for vacuum spacetimes.

7.2. Symmetry operator of the first kind for the Dirac-Weyl equation

Let us now consider special cases of symmetry operators of the first kind for the Dirac-Weyl
equation. We can choose

Lapap = L¢caBarp, pAY = %‘3354“‘“", Q= %cha (7.7)
to get a symmetry operator for the Dirac-Weyl equation. The operator then becomes
xa = 3Lelcda+ 5LcLeda. (7.8)

We can add any conformal Killing vector to PA4Y and any constant to ). Note that if we add
the conformal Killing vector %(«EBB Vpp (A4 — (BB VR A4 to PAY | the operator gets the
factored form

xa=Lelcoa. (7.9)
We can also choose
Lapap = L£saBaB, pAY = _ %‘BKAA,, Q= %DK. (7.10)

Substituting these expressions into (2] gives a symmetry operator, but we have not found any
simpler form than the one given by (£2).



Second order symmetry operators 33

7.8. Symmetry operator of the first kind for the Mazwell equation

Let us now consider the symmetry operators of the first kind for the Maxwell equation. Let
Lapap = Le¢caBarpr, pAA — _ %‘)354’4’4 , Q=0, (7.11)

to get a symmetry operator. With this choice the symmetry operator and the potential reduce
to

XAB = %ﬁcﬁgfbAB + %ﬁgﬁcfﬁAB, (7.12a)
Apar = — 3P uledap — 168 4 Ledap. (7.12b)

A general first order operator can be added to this. If we add an the same commutator as above
with an appropriate coefficient to PAA/, we get the same kind of factorization of the operator as
above.

We can also get a solution by setting

Lapap = LxaBap, pAA = %‘33»;’4’4/, Q =0, (7.13)

With this choice the symmetry operator and the potential reduce to

xap = (¢1,14) B, (7.14a)
Aan = — 20up(Go2R) P ar + Fap (€5,0)a” (7.14b)
Oap = —26%p)c- (7.14c)

This proves the first part of Theorem [I11

7.4. Symmetry operator of the second kind for the Dirac- Weyl equation

Let
Lapc™ = Leeanc™, (7.15a)
Pip = — %ﬁgﬁAB + 3kap(21,18)
= LkaB(2116) — 38 (€1,18) Byo + 2™ (€4 ok) pyar. (7.15b)

Using the equations ([6.20), the commutators [27d), .70), 7d), 27d) and the irreducible

decompositions of ¥ apcrkp? and Papapéc? we get

(F0P)apcar = — %K(AB(%J7O%1,1£)C)A’ — 1kaP(Z206118) Boypar + 36a(To0P118) ) ar
+ %§(A|A/|(%1,1%;05)BC) + %f(AB/(c%,l(gioﬂ)BC)A’B/

=P 4V apc" kpyr
=0, (7.16)

where we in the last step used the integrability condition (6.241). Observe that Papg is given by
a conformally weighted Lie derivative, but now with a different weight. The operator f)g has a
conformal weight adapted to the weight of the conformally invariant operator ¢’f. The operator
T is also conformally invariant, but with a different weight. This explains the extra term in Psp.

The symmetry operator of the second kind for the Dirac-Weyl equation now takes the form

war = K7 T 0Led)Boar — 3Ledn(E o) % ar. (7.17)

Hence, we can conclude that if L 4pc - factors, then one can choose a corresponding Pap so that
the operator factors as a first order symmetry operator of the first kind followed by a first order
symmetry operator of the second kind.
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7.5. Symmetry operator of the second kind for the Mazwell equation

If welet Lapep = K(ABKCD) with

(Z2,0K)aBcar =0, (7.18)
Then the operator if the second kind now takes the form
warp = (€1 1B)ap, (7.19a)
Baar = kap(€340)5 ar + 1045(6) o) P/, (7.19b)
Oa5 = — 264 dp)c- (7.19¢)

This proves the second part of Theorem [T11
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