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Abstract. Using systematic calculations in spinor language, we obtain simple descriptions of
the second order symmetry operators for the conformal wave equation, the Dirac-Weyl equation
and the Maxwell equation on a curved four dimensional Lorentzian manifold. The conditions
for existence of symmetry operators for the different equations are seen to be related. Computer
algebra tools have been developed and used to systematically reduce the equations to a form
which allows geometrical interpretation.

1. Introduction

The discovery by Carter [1] of a fourth constant of the motion for the geodesic equations in the
Kerr black hole spacetime, allowing the geodesic equations to be integrated, together with the
subsequent discovery by Teukolsky, Chandrasekhar and others of the separability of the spin-s
equations for all half-integer spins up to s = 2 (which corresponds to the case of linearized Einstein
equations) in the Kerr geometry, provides an essential tool for the analysis of fields in the Kerr
geometry. The geometric fact behind the existence of Carter’s constant is, as shown byWalker and
Penrose [2], the existence of a Killing tensor. A Killing tensor is a symmetric tensor Kab = K(ab),

satisfying the equation ∇(aKbc) = 0. This condition implies that the quantity K = Kabγ̇
aγ̇b

is constant along affinely parametrized geodesics. In particular, viewed as a function on phase
space, K Poisson commutes with the Hamiltonian generating the geodesic flow, H = γ̇aγ̇a.

Carter further showed that in a Ricci flat spacetime with a Killing tensor Kab, the
operator K = ∇aK

ab∇b, which may be viewed as the “quantization” of K, commutes with
the d’Alembertian H = ∇a∇a, which in turn is the “quantization” of H , cf. [3]. In particular,
the operator K is a symmetry operator for the wave equation Hφ = 0, in the sense that it maps
solutions to solutions. The properties of separability, and existence of symmetry operators, for
partial differential equations are closely related [4]. In fact, specializing to the Kerr geometry, the
symmetry operator found by Carter may be viewed as the spin-0 case of the symmetry operators
for the higher spin fields as manifested in the Teukolsky system, see eg. [5, 6].

In this paper we give necessary and sufficient conditions for the existence of second order
symmetry operators, for massless test fields of spin 0, 1/2, 1, on a globally hyperbolic Lorentzian
spacetime of dimension 4. (As explained in Section 2.4, the global hyperbolicity condition can be
relaxed.) In each case, the conditions are the existence of a conformal Killing tensor or Killing
spinor, and certain auxiliary conditions relating the Weyl curvature and the Killing tensor or
spinor. We are particularly interested in symmetry operators for the spin-1 or Maxwell equation.
In this case, we give a single auxiliary condition, which is substantially more transparent than
the collection previously given in [7]. For the massless spin-1/2 or Dirac-Weyl equation, our
result on second order symmetry operators represents a simplification of the conditions given by
McLenaghan, Smith and Walker [8] for the existence of symmetry operators of order two. The
conditions we find for spins 1/2 and 1 are closely related to the condition found recently for the
spin-0 case for the conformal wave equation by Michel, Radoux and Šilhan [9], cf. Theorem 3
below.

A major motivation for the work in this paper is provided by the application by two of the
authors [10] of the Carter symmetry operator for the wave equation in the Kerr spacetime, to
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prove an integrated energy estimate and boundedness for solutions of the wave equation. The
method used is a generalization of the vector fields method [11] to allow not only Killing vector
symmetries but symmetry operators of higher order. In order to apply such methods to fields
with non-zero spin, such as the Maxwell field, it is desirable to have a clear understanding of the
conditions for the existence of symmetry operators and their structure. This serves as one of the
main motivations for the results presented in this paper, which give simple necessary and sufficient
conditions for the existence of symmetry operators for the Maxwell equations in a 4-dimensional
Lorentzian spacetime.

The energies constructed from higher order symmetry operators correspond to conserved
currents which are not generated by contracting the stress energy tensor with a conformal Killing
vector. Such conserved currents are known to exist eg. for the Maxwell equation, as well as fields
with higher spin on Minkowski space, see [12] and references therein. In a subsequent paper [13]
we shall present a detailed study of conserved currents up to second order for the Maxwell field.

We will assume that all objects are smooth, we work in signature (+,−,−,−), and we use
the 2-spinor formalism, following the conventions and notation of [14, 15]. For a translation
to the Dirac 4-spinor notation, we refer to [14, Page 221]. Recall that Λ/24 is the scalar
curvature, ΦABA′B′ the Ricci spinor, and ΨABCD the Weyl spinor. Even though several results
are independent of the existence of a spin structure, we will for simplicity assume that the
spacetime is spin. The 2-spinor formalism allows one to efficiently decompose spinor expressions
into irreducible parts. All irreducible parts of a spinor are totally symmetric spinors formed by
taking traces of the spinor and symmetrizing all free indices. Making use of these facts, any spinor
expression can be decomposed in terms of symmetric spinors and spin metrics. This procedure
is described in detail in Section 3.3 in [14] and in particular by Proposition 3.3.54.

This decomposition has been implemented in the package SymManipulator [16] by the second
author. SymManipulator is part of the xAct tensor algebra package [17] for Mathematica. The
package SymManipulator includes many canonicalization and simplification steps to make the
resulting expressions compact enough and the calculations rapid enough so that fairly large
problems can be handled. A Mathematica 9 notebook file containing the main calculations for
this paper is available as supplementary data at http://hdl.handle.net/10283/541.

We shall in this paper consider only massless spin-s test fields. For the spin-0 case the field
equation is the conformal wave equation

(∇a∇a + 4Λ)φ = 0, (1.1)

for a scalar field φ, while for non-zero spin the field is a symmetric spinor φA···F of valence (2s, 0)
satisfying the equation

∇A
A′φA···F = 0. (1.2)

In this paper we shall restrict our considerations to spins 0, 1/2, 1. For s ≥ 3/2, equation (1.2)
implies algebraic consistency conditions, which strongly restrict the space of solutions in the
presence of non-vanishing Weyl curvature. Note however that there are consistent equations for
fields of higher spin, see [14, §5.8] for discussion.

Recall that a Killing spinor of valence (k, l) is a symmetric spinor LA1···Ak

A′

1···A′

l ,

∇(A1

(A′

1LA2···Ak+1)
A′

2···A′

l+1) = 0. (1.3)

A valence (1, 1) Killing spinor is simply a conformal Killing vector, while a valence (2, 0) Killing
spinor is equivalent to a conformal Killing-Yano 2-form. On the other hand, a Killing spinor of
valence (2, 2) is simply a traceless symmetric conformal Killing tensor. It is important to note
that (1.1), (1.2) and (1.3) are conformally invariant if φ and φA···F are given conformal weight
−1, and LA1···AkA

′

1···A′

l is given conformal weight 0. See [14, sections 5.7 and 6.7] for details.
Recall that a symmetry operator for a system Hϕ = 0, is a linear partial differential operator

K such that HKϕ = 0 for all ϕ such that Hϕ = 0. We say that two operators K1 and K2 are
equivalent if K1 − K2 = FH for some differential operator F. We are interested only in non-
trivial symmetry operators, i.e. operators which are not equivalent to the trivial operator 0. For
simplicity, we will only consider equivalence classes of symmetry operators.

To state our main results, we need two auxiliary conditions.

http://hdl.handle.net/10283/541
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Definition 1. Let LAB
A′B′

be a Killing spinor of valence (2, 2).

A0) LAB
A′B′

satisfies auxiliary condition A0 if there is a function Q such that

∇AA′Q = 1
3ΨABCD∇(B|B′|LCD)

A′B′ + 1
3 Ψ̄A′B′C′D′∇B(B′

LAB
C′D′)

+ LBC
A′

B′∇(A
C′

ΦBC)B′C′ + LA
BB′C′∇C

(A′Φ|BC|B′C′). (1.4)

A1) LAB
A′B′

satisfies auxiliary condition A1 if there is a vector field PA
A′

such that

∇(A
(A′

PB)
B′) = LCDA′B′

ΨABCD − LAB
C′D′

Ψ̄A′B′

C′D′ . (1.5)

Remark 2. Under conformal transformations such that LABA′B′

, PAA′

and Q are given
conformal weight 0, the equations (1.4) and (1.5) are conformally invariant.

We start by recalling the result of Michel et al. for the spin-0 conformal wave equation,
which we state here in the case of a Lorentzian spacetime of dimension 4.

Theorem 3 ([9, Theorem 4.8]). Consider the conformal wave equation

(∇a∇a + 4Λ)φ = 0 (1.6)

in a 4-dimensional Lorentzian spacetime. There is a non-trivial second order symmetry operator
for (1.6) if and only if there is a non-zero Killing spinor of valence (2, 2) satisfying condition A0
of Definition 1.

Previous work on the conformal wave equation was done by [18], see also Kress [19], see also
[20]. Symmetry operators of general order for the Laplace-Beltrami operator in the conformally
flat case have been analyzed by Eastwood [21].

Next we consider fields with spins 1/2 and 1. The massless spin-1/2 equations are

∇A
A′φA = 0, (1.7a)

and its complex conjugate form

∇A
A′

χA′ = 0, (1.7b)

which we shall refer to as the left and right Dirac-Weyl equations ‡. Analogously with the
terminology used by Kalnins et al. [7] for the spin-1 case, we call a symmetry operator φA 7→ λA,
which takes a solution of the left equation to a solution of the left equation a symmetry operator
of the first kind, while an operator φA 7→ χA′ which takes a solution of the left equation to a
solution of the right equation a symmetry operator of the second kind.

If one considers symmetry operators in the Dirac 4-spinor notation, a 4-spinor would
correspond to a pair of 2-spinors (φA, ϕA′). Therefore a symmetry operator (φA, ϕA′) 7→ (λA, χA′)
for a 4-spinor is formed by a combination of symmetry operators of first φA 7→ λA, and second
φA 7→ χA′ kind, together with complex conjugate versions of first ϕA′ 7→ χA′ , and second
ϕA′ 7→ λA kind symmetry operators.

Theorem 4. Consider the Dirac-Weyl equations (1.7) in a Lorentzian spacetime of dimension 4.

(i) There is a non-trivial second order symmetry operator of the first kind for the Dirac-Weyl
equation if and only if there is a non-zero Killing spinor of valence (2, 2) satisfying auxiliary
conditions A0 and A1 of definition 1.

‡ The use of the terms left and right is explained by noting that spinors of valence (k, 0) represent left-handed
particles, while spinors of valence (0, k) represent right-handed particles, cf. [14, §5.7]. The Dirac equation is the
equation for massive, charged spin-1/2 fields, and couples the left- and right-handed parts of the field, see [14,
§4.4]. We shall not consider the symmetry operators for the Dirac equation here.
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(ii) There is a non-trivial second order symmetry operator of the second kind for the Dirac-Weyl
equation if and only if there is a non-zero Killing spinor LABC

A′

of valence (3, 1), such that
the auxiliary condition

0 = 3
4ΨABCD∇FA′

LCD
FA′ + 5

6ΨB
CDF∇(A

A′

LCDF )A′

+ 5
6ΨA

CDF∇(B
A′

LCDF )A′ − 3
5LB

CDA′

∇(A
B′

ΦCD)A′B′

− 3
5LA

CDA′∇(B
B′

ΦCD)A′B′ + 4
3L

CDFA′∇(A|A′|ΨBCDF ). (1.8)

is satisfied.

Remark 5. (i) Under conformal transformations such that L̂ABCA′

= LABCA′

, the equation
(1.8) is conformally invariant.

(ii) We remark that the auxiliary condition A0, appears both in Theorem 4, and for the conformal
wave equation in Theorem 3.

In previous work, Benn and Kress [22] showed that a first order symmetry operator of the
second kind for the Dirac equation exists exactly when there is a valence (2, 0) Killing spinor.
See also Carter and McLenaghan [23], and Durand, Lina, and Vinet [24] for earlier work. The
conditions for the existence of a second order symmetry operator for the Dirac-Weyl equations
in a general spacetime were considered in [8], see also [25]. The conditions derived here represent
a simplification of the conditions found in [8]. Further, we mention that symmetry operators of
general order for the Dirac operator on Minkowski space have been analyzed by Michel [26].

For the spin-1 case, we similarly have the left and right Maxwell equations

∇B
A′φAB = 0, (1.9a)

∇A
B′

χA′B′ = 0 (1.9b)

The left-handed and right-handed spinors φAB , χA′B′ represent an anti-self-dual and a self-dual
2-form, respectively. Each equation in (1.9) is thus equivalent to a real Maxwell equation, cf. [14,
§3.4]. Analogously to the spin-1/2 case, we consider second order symmetry operators of the first
and second kind.

Theorem 6. Consider the Maxwell equations (1.9) in a Lorentzian spacetime of dimension 4.

(i) There is a non-trivial second order symmetry operator of the first kind for the Maxwell
equation if and only if there is a non-zero Killing spinor of valence (2, 2) such that the
auxiliary condition A1 of definition 1 is satisfied.

(ii) There is a non-trivial second order symmetry operator of the second kind for the Maxwell
equation if and only if there is a non-zero Killing spinor LABCD of valence (4, 0).

Note that no auxiliary condition is needed in point (ii) of Theorem 6. The conditions for
the existence of second order symmetry operators for the Maxwell equations have been given in
previous work by Kalnins, McLenaghan and Williams [7], see also [27], following earlier work by
Kalnins, Miller and Williams [5], see also [19]. In [7], the conditions for a second order symmetry
operator of the second kind were analyzed completely, and agree with the condition given in point
(ii) of Theorem 6. However, the conditions for a second order symmetry operator of the first
kind stated there consist of a set of five equations, of a not particularly transparent nature. The
result given here in point (i) of Theorem 6 provides a substantial simplification and clarification
of this previous result.

The necessary and sufficient conditions given in theorems 3, 4, 6 involve the existence of a
Killing spinor and auxiliary conditions. The following result gives examples of Killing spinors for
which the auxiliary conditions A0, A1 and equation (1.8) are satisfied.

Proposition 7. Let ξAA′

and ζAA′

be (not necessarily distinct) conformal Killing vectors and
let κAB be a Killing spinor of valence (2, 0).

(i) The symmetric spinor ξ(A
(A′

ζB)
B′) is a Killing spinor of valence (2, 2), which admits

solutions to the auxiliary conditions A0 and A1.
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(ii) The symmetric spinor κABκ̄A′B′ is also a Killing spinor of valence (2, 2), which admits
solutions to the auxiliary conditions A0 and A1.

(iii) The spinor κ(ABξC)
C′

is a Killing spinor of valence (3, 1), which satisfies auxiliary equation
(1.8).

(iv) The spinor κ(ABκCD) is a Killing spinor of valence (4, 0).

The point (iv) is immediately clear. The other parts will be proven in Section 6.
We now consider the following condition

0 = Ψ(ABC
FΦD)FA′B′ . (1.10)

relating the Ricci curvature ΦABA′B′ and the Weyl curvature ΨABCD. A spacetime where (1.10)
holds will be said to satisfy the aligned matter condition. In particular this holds in Vacuum
and in the Kerr-Newman class of spacetimes. Under the aligned matter condition we can show
that the converse of Proposition 7 part (iv) is true. The following theorem will be proved in
Section 6.5.

Theorem 8. If the aligned matter condition (1.10) is satisfied, ΨABCD 6= 0 and LABCD is a
valence (4, 0) Killing spinor, then there is a valence (2, 0) Killing spinor κAB such that

LABCD = κ(ABκCD). (1.11)

Remark 9. If ΨABCD = 0, the valence (4, 0) Killing spinor will still factor but in terms of
valence (1, 0) Killing spinors, which then can be combined into valence (2, 0) Killing spinors.
However, the two factors might be distinct.

A calculation shows that if (1.10) holds, κAB is a valence (2, 0) Killing spinor, then
ξAA′

= ∇BA′

κA
B is a Killing vector field. Taking this fact into account, we have the following

corollary to the results stated above. It tells that generically one can generate a wide variety of
symmetry operators from just a single valence (2, 0) Killing spinor.

Corollary 10. Consider the massless test fields of spins 0, 1/2 and 1 in a Lorentzian spacetime
of dimension 4. Assume that there is Killing spinor κAB (not identically zero) of valence (2, 0).
Then there are non-trivial second order symmetry operators for the massless spin-s field equations
for spins 0 and 1, as well as a non-trivial second order symmetry operator of the first kind for
the massless spin-1/2 field.

If, in addition, the aligned matter condition (1.10) holds, and ξAA′ = ∇B
A′κAB is not

identically zero, then there is also a non-trivial second order symmetry operators of the second
kind for the massless spin-1/2 field.

We end this introduction by giving a simple form for symmetry operators for the Maxwell
equation, generated from a Killing spinor of valence (2, 0).

Theorem 11. Let κAB be a Killing spinor of valence (2, 0) and let

ΘAB ≡ − 2κ(A
CφB)C . (1.12)

Define the potentials

AAA′ = κ̄A′

B′

∇BB′ΘA
B − 1

3ΘA
B∇BB′ κ̄A′

B′

, (1.13a)

BAA′ = κA
B∇CA′ΘB

C + 1
3ΘA

B∇CA′κB
C . (1.13b)

Assume that φAB is a solution to the Maxwell equation in a Lorentzian spacetime of dimension 4.
Let AAA′ , BAA′ be given by (1.13). Then

χAB = ∇(B
A′

AA)A′ , (1.14a)

ωA′B′ = ∇B
(A′B|B|B′) (1.14b)

are solutions to the left and right Maxwell equations, respectively.
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The proof can be found in sections 7.3 and 7.5. The general form of the symmetry operators
for spins 0, 1/2 and 1 is discussed in detail below.

Remark 12. The symmetry operators of the Maxwell equation can in general be written in
potential form. See Theorem 25 and Theorem 27.

The method used in this paper can also be used to show that the symmetry operators R-
commute with the Dirac and Maxwell equations. Recall that an operator S is said to R-commute
with a linear PDE Lφ = 0 if there is an operator R such that LS = RL. Even providing a
formula for the relevant R operators would require additional notation, so we have omitted this
result from this paper.

Overview of this paper

In Section 2 we define the fundamental operators D ,C ,C †,T obtained by projecting the covariant
derivative of a symmetric spinor on its irreducible parts. These operators are analogues of the
Stein-Weiss operators discussed in Riemannian geometry and play a central role in our analysis.
We give the commutation properties of these operators, derive the integrability conditions for
Killing spinors, and end the section by discussing some aspects of the methods used in the
analysis. Section 3 gives the analysis of symmetry operators for the conformal wave equation.
The results here are given for completeness, and agree with those in [9] for the case of a Lorentzian
spacetime of dimesion 4. The symmetry operators for the Dirac-Weyl equation are discussed in
Section 4 and our results for the Maxwell case are given in Section 5. Special conditions under
which the auxiliary conditions can be solved is discussed in Section 6. Finally, Section 7 contains
simplified expressions for the symmetry operators for some of the cases discussed in Section 6.

2. Preliminaries

2.1. Fundamental operators

Let Sk,l denote the vector bundle of symmetric spinors with k unprimed indices and l primed
indices. We will call these spinors symmetric valence (k, l) spinors. Furthermore, let Sk,l denote
the space of smooth (C∞) sections of Sk,l.

Definition 13. For any ϕA1...Ak

A′

1...A
′

l ∈ Sk,l, we define the operators Dk,l : Sk,l → Sk−1,l−1,

Ck,l : Sk,l → Sk+1,l−1, C
†
k,l : Sk,l → Sk−1,l+1 and Tk,l : Sk,l → Sk+1,l+1 as

(Dk,lϕ)A1...Ak−1

A′

1...A
′

l−1 ≡ ∇BB′

ϕA1...Ak−1B
A′

1...A
′

l−1
B′ , (2.1a)

(Ck,lϕ)A1...Ak+1

A′

1...A
′

l−1 ≡ ∇(A1

B′

ϕA2...Ak+1)
A′

1...A
′

l−1B′ , (2.1b)

(C †
k,lϕ)A1...Ak−1

A′

1...A
′

l+1 ≡ ∇B(A′

1ϕA1...Ak−1B
A′

2...A
′

l+1), (2.1c)

(Tk,lϕ)A1...Ak+1

A′

1...A
′

l+1 ≡ ∇(A1

(A′

1ϕA2...Ak+1)
A′

2...A
′

l+1). (2.1d)

Remark 14. (i) These operators are all conformally covariant, but the conformal weight differs
between the operators. See [15, Section 6.7] for details.

(ii) The left Dirac-Weyl and Maxwell equations can be written as (C †
1,0φ)A′ = 0 and (C †

2,0φ)AA′ =
0 respectively. Similarly the right equations can be written in terms of the C operator.

The operator Dk,l only makes sense when k ≥ 1 and l ≥ 1. Likewise Ck,l is defined only if

l ≥ 1 and C
†
k,l only if k ≥ 1. To make a clean presentation, we will use formulae where invalid

operators appear for some choices of k and l. However, the operators will always be multiplied
with a factor that vanishes for these invalid choices of k and l. From the definition it is clear that
the complex conjugates of (Dk,lϕ), (Ck,lϕ), (C

†
k,lϕ) and (Tk,lϕ) are (Dl,kϕ̄), (C

†
l,kϕ̄), (Cl,kϕ̄) and

(Tl,kϕ̄) respectively, with the appropriate indices.
The main motivation for the introduction of these operators is the irreducible decomposition

of the covariant derivative of a symmetric spinor field.
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Lemma 15. For any ϕA1...Ak

A′

1...A
′

l ∈ Sk,l, we have the irreducible decomposition

∇A1

A′

1ϕA2...Ak+1

A′

2...A
′

l+1 = (Tk,lϕ)A1...Ak+1

A′

1...A
′

l+1

− l
l+1 ǭ

A′

1(A
′

2(Ck,lϕ)A1...Ak+1

A′

3...A
′

l+1)

− k
k+1ǫA1(A2

(C †
k,lϕ)A3...Ak+1)

A′

1...A
′

l+1

+ kl
(k+1)(l+1) ǫA1(A2

ǭA
′

1(A
′

2(Dk,lϕ)A3...Ak+1)
A′

3...A
′

l+1). (2.2)

Proof. It follows from in [14, Proposition 3.3.54] that the irreducible decomposition must have
this form. The coefficients are then found by contracting indices and partially expanding the
symmetries.

With this notation, the Bianchi system takes the form

(D2,2Φ)AA′ = − 3(T0,0Λ)AA′ , (2.3a)

(C †
4,0Ψ)ABCA′ = (C2,2Φ)ABCA′ . (2.3b)

In the rest of the paper we will use these equations every time the left hand sides appear in the
calculations.

With the definitions above, a Killing spinor of valence (k, l) is an element LA···FA′...F ′ ∈
kerTk,l, a conformal Killing vector is a Killing spinor of valence (1, 1), and a trace-less conformal
Killing tensor is a Killing spinor of valence (2, 2). We further introduce the following operators,
acting on a valence (2, 2) Killing spinor.

Definition 16. For LAB
A′B′ ∈ kerT2,2, define

(O
(0)
2,2L)A

A′ ≡ 1
3ΨABCD(C2,2L)

BCDA′

+ LBCA′B′

(C2,2Φ)ABCB′

+ 1
3 Ψ̄

A′

B′C′D′(C †
2,2L)A

B′C′D′

+ LA
BB′C′

(C †
2,2Φ)B

A′

B′C′ . (2.4a)

(O
(1)
2,2L)AB

A′B′ ≡ LCDA′B′

ΨABCD − LAB
C′D′

Ψ̄A′B′

C′D′ (2.4b)

The operators O
(0)
2,2 and O

(1)
2,2 are the right hand sides of (1.4) and (1.5) in conditions A0 and

A1 respectively. They will play an important role in the conditions for the existence of symmetry
operators.

Given a conformal Killing vector ξAA′

, we follow [28, Equations (2) and (15)], see also [12],
and define a conformally weighted Lie derivative acting on a symmetric valance (2s, 0) spinor
field as follows

Definition 17. For ξAA′ ∈ kerT1,1, and ϕA1...A2s
∈ S2s,0, we define

L̂ξϕA1...A2s
≡ ξBB′

∇BB′ϕA1...A2s
+ sϕB(A2...A2s

∇A1)B′ξBB′

+ 1−s
4 ϕA1...A2s

∇CC′

ξCC′ . (2.5)

This operator turns out to be important when we describe first order symmetry operators.
See Section 7.4 for further discussion.

2.2. Commutator relations

Let ϕA1...Ak

A′

1...A
′

l ∈ Sk,l and define the standard commutators

�AB ≡ ∇(A|A′|∇B)
A′

and �A′B′ ≡ ∇A(A′∇A
B′). (2.6)

Acting on spinors, these commutators can always be written in terms of curvature spinors as
described in [14, Section 4.9].
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Lemma 18. The operators D , C , C † and T satisfies the following commutator relations

(Dk+1,l−1Ck,lϕ)A1...Ak

A′

1...A
′

l−2

= k
k+1 (Ck−1,l−1Dk,lϕ)A1...Ak

A′

1...A
′

l−2 −�B′C′ϕA1...Ak

A′

1...A
′

l−2B
′C′

, k ≥ 0, l ≥ 2, (2.7a)

(Dk−1,l+1C
†
k,lϕ)A1...Ak−2

A′

1...A
′

l

= l
l+1 (C

†
k−1,l−1Dk,lϕ)A1...Ak−2

A′

1...A
′

l −�BCϕA1...Ak−2

BCA′

1...A
′

l , k ≥ 2, l ≥ 0, (2.7b)

(Ck+1,l+1Tk,lϕ)A1...Ak+2

A′

1...A
′

l

= l
l+1 (Tk+1,l−1Ck,lϕ)A1...Ak+2

A′

1...A
′

l −�(A1A2
ϕA3...Ak+2)

A′

1...A
′

l , k ≥ 0, l ≥ 0, (2.7c)

(C †
k+1,l+1Tk,lϕ)A1...Ak

A′

1...A
′

l+2

= k
k+1 (Tk−1,l+1C

†
k,lϕ)A1...Ak

A′

1...A
′

l+2 −�
(A′

1A
′

2ϕA1...Ak

A′

3...A
′

l+2), k ≥ 0, l ≥ 0, (2.7d)

(Dk+1,l+1Tk,lϕ)A1...Ak

A′

1...A
′

l

= − ( 1
k+1 + 1

l+1 )(Ck−1,l+1C
†
k,lϕ)A1...Ak

A′

1...A
′

l + l(l+2)
(l+1)2 (Tk−1,l−1Dk,lϕ)A1...Ak

A′

1...A
′

l

− l+2
l+1�

B
(A1

ϕA2...Ak)B
A′

1...A
′

l − l
l+1�

B′(A′

1ϕA1...Ak

A′

2...A
′

l
)
B′ , k ≥ 1, l ≥ 0, (2.7e)

(Dk+1,l+1Tk,lϕ)A1...Ak

A′

1...A
′

l

= − ( 1
k+1 + 1

l+1 )(C
†
k+1,l−1Ck,lϕ)A1...Ak

A′

1...A
′

l + k(k+2)
(k+1)2 (Tk−1,l−1Dk,lϕ)A1...Ak

A′

1...A
′

l

− k
k+1�

B
(A1

ϕA2...Ak)B
A′

1...A
′

l − k+2
k+1�

B′(A′

1ϕA1...Ak

A′

2...A
′

l
)
B′ , k ≥ 0, l ≥ 1, (2.7f)

(Ck−1,l+1C
†
k,lϕ)A1...Ak

A′

1...A
′

l

= (C †
k+1,l−1Ck,lϕ)A1...Ak

A′

1...A
′

l + ( 1
k+1 − 1

l+1 )(Tk−1,l−1Dk,lϕ)A1...Ak

A′

1...A
′

l

−�(A1

BϕA2...Ak)B
A′

1...A
′

l +�
B′(A′

1ϕA1...Ak

A′

2...A
′

l
)
B′ , k ≥ 1, l ≥ 1. (2.7g)

Proof. We first observe that (2.7a) and (2.7b) are related by complex conjugation. Likewise (2.7c)
and (2.7d) as well as (2.7e) and (2.7f) are also related by complex conjugation. Furthermore, (2.7g)
is given by the difference between (2.7e) and (2.7f). It is therefore enough to prove (2.7a), (2.7d)
and (2.7e). We consider each in turn.

• We first prove (2.7a). We partially expand the symmetry, identify the commutator in one
term, and commute derivatives in the other.

(Dk+1,l−1Ck,lϕ)A1...Ak

A′

1...A
′

l−2

= ∇BB′

∇(A1

C′

ϕA2...AkB)
A′

1...A
′

l−2
B′C′

= 1
k+1∇

B(B′∇B
C′)ϕA1...Ak

A′

1...A
′

l−2
B′C′ + k

k+1∇
B(B′∇(A1

C′)ϕA2...Ak)B
A′

1...A
′

l−2
B′C′

= − 1
k+1�

B′C′

ϕA1...Ak

A′

1...A
′

l−2B′C′ + k
k+1 ǫ

B
(A1

�
B′C′

ϕA2...Ak)B
A′

1...A
′

l−2B′C′

+ k
k+1∇(A1

C′∇BB′

ϕA2...Ak)B
A′

1...A
′

l−2B′C′

= k
k+1 (Ck−1,l−1Dk,lϕ)A1...Ak

A′

1...A
′

l−2 −�B′C′ϕA1...Ak

A′

1...A
′

l−2B
′C′

.

• To prove (2.7d), we first partially expand the symmetrization over the unprimed indices in
the irreducible decomposition (2.2) and symmetrizing over the primed indices. This gives

∇A1

(A′

2ϕA2...AkB
A′

3...A
′

l+2) = (Tk,lϕ)A1...AkB
A′

2...A
′

l+2 − 1
k+1 ǫA1B(C

†
k,lϕ)A2...Ak

A′

2...A
′

l+2

− k−1
k+1 ǫA1(A2

(C †
k,lϕ)A3...Ak)B

A′

2...A
′

l+2 . (2.8)
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Using the definitions of T and C †, commuting derivatives and using (2.8), we have

(Tk−1,l+1C
†
k,lϕ)A1...Ak

A′

1...A
′

l+2 = ∇(A1

(A′

1∇|B|A′

2ϕA2...Ak)B
A′

3...A
′

l+2)

= �
(A′

1A
′

2ϕA1...Ak

A′

3...A
′

l
) +∇B(A′

1∇(A1

A′

2ϕA2...Ak)B
A′

3...A
′

l+2)

= �
(A′

1A
′

2ϕA1...Ak

A′

3...A
′

l
) +∇B(A′

1(Tk,lϕ)A1...AkB
A′

2...A
′

l+2)

− 1
k+1 ǫ(A1|B|∇B(A′

1(C †
k,lϕ)A2...Ak)

A′

2...A
′

l+2)

= �
(A′

1A
′

2ϕA1...Ak

A′

3...A
′

l
) + (C †

k+1,l+1Tk,lϕ)A1...Ak

A′

1...A
′

l+2

+ 1
k+1 (Tk−1,l+1C

†
k,lϕ)A1...Ak

A′

1...A
′

l+2 . (2.9)

Isolating the C †T -term gives (2.7d).

• Finally to prove (2.7e), we assume k ≥ 1 and observe

(Dk+1,l+1Tk,lϕ)A1...Ak

A′

1...A
′

l

= −∇B
B′∇(B

(B′

ϕA1...Ak)
A′

1...A
′

l
)

= − 1
k+1∇

B
B′∇B

(B′

ϕA1...Ak

A′

1...A
′

l
) − k

k+1∇
B
B′∇(A1

(B′

ϕA2...Ak)B
A′

1...A
′

l
)

= 1
k+1 (Dk+1,l+1Tk,lϕ)A1...Ak

A′

1...A
′

l − k
(k+1)2 (Ck−1,l+1C

†
k,lϕ)A1...Ak

A′

1...A
′

l

− k
k+1∇

B
B′∇(A1

(B′

ϕA2...Ak)B
A′

1...A
′

l
), (2.10)

where we in the last step used the irreducible decomposition (2.2) on the first term. We can
solve for the DT -term from which it follows that

(Dk+1,l+1Tk,lϕ)A1...Ak

A′

1...A
′

l

= − 1
k+1 (Ck−1,l+1C

†
k,lϕ)A1...Ak

A′

1...A
′

l −∇B
B′∇(A1

(B′

ϕA2...Ak)B
A′

1...A
′

l
)

= − 1
k+1 (Ck−1,l+1C

†
k,lϕ)A1...Ak

A′

1...A
′

l − 1
l+1∇

B
B′∇(A1

B′

ϕA2...Ak)B
A′

1...A
′

l

− l
l+1∇

B
B′∇(A1

(A′

1ϕA2...Ak)B
A′

2...A
′

l
)B′

= − 1
k+1 (Ck−1,l+1C

†
k,lϕ)A1...Ak

A′

1...A
′

l − 1
l+1∇(A1

B′∇B
|B′|ϕA2...Ak)B

A′

1...A
′

l

− 2
l+1�

B
(A1

ϕA2...Ak)B
A′

1...A
′

l − l
l+1∇(A1

(A′

1∇|B|
|B′|ϕA2...Ak)B

A′

2...A
′

l
)B′

− l
l+1�

B
(A1

ϕA2...Ak)B
A′

1...A
′

l − l
l+1�

B′(A′

1ϕA1...Ak

A′

2...A
′

l
)
B′

= − ( 1
k+1 + 1

l+1 )(Ck−1,l+1C
†
k,lϕ)A1...Ak

A′

1...A
′

l + l(l+2)
(l+1)2 (Tk−1,l−1Dk,lϕ)A1...Ak

A′

1...A
′

l

− l+2
l+1�

B
(A1

ϕA2...Ak)B
A′

1...A
′

l − l
l+1�

B′(A′

1ϕA1...Ak

A′

2...A
′

l
)
B′ . (2.11)

Remark 19. The operators D , C , C † and T together with the irreducible decomposition (2.2)
and the relations in Lemma 18 have all been implemented in the SymManipulator package version
0.9.0 [16].

2.3. Integrability conditions for Killing spinors

Here we demonstrate a procedure for obtaining an integrability condition for a Killing spinor of
arbitrary valence. Let κA1...Ak

A′

1...A
′

l ∈ kerTk,l. By applying the C operator l + 1 times to the
Killing spinor equation, and repeatedly commute derivatives with (2.7c) we get

0 = (Ck+l+1,1Ck+l,2 · · ·Ck+2,lCk+1,l+1︸ ︷︷ ︸
l+1

Tk,lκ)A1...Ak+l+2

=
l

l + 1
(Ck+l+1,1Ck+l,2 · · ·Ck+2,lTk+1,l−1Ck,lκ)A1...Ak+l+2

+ curvature terms

=
1

l + 1
(Ck+l+1,1Tk+l,0Ck+l−1,1 · · ·Ck+1,l−1Ck,lκ)A1...Ak+l+2

+ curvature terms

= curvature terms. (2.12)
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Here, the curvature terms have l−m derivatives of κ and m derivatives of the curvature spinors,
where 0 ≤ m ≤ l. The main idea behind this is the observation that the commutator (2.7c) acting
on a spinor field without primed indices only gives curvature terms. In the same way we can use
(2.7d) to get

0 = (C †
1,k+l+1C

†
2,k+l · · ·C

†
k,l+2C

†
k+1,l+1︸ ︷︷ ︸

k+1

Tk,lκ)A′

1
...A′

k+l+2

= curvature terms. (2.13)

2.4. Splitting equations into independent parts

In our derivation of necessary conditions for the existence of symmetry operators, it is crucial
that, at each fixed point in spacetime, we can freely choose the values of the Dirac-Weyl and
the Maxwell field and of the symmetric components of any given order of their derivatives. The
remaining components of the derivatives to a given order, which involve at least one pair of
antisymmetrized indices, can be solved for using the field equations or curvature conditions. See
sections 4.1 and 5.1 for detailed expressions. In the literature, the condition that the symmetric
components can be freely and independently specified but that no other parts can be is referred
to as the exactness of the set of fields [14, Section 5.10]. The symmetric components of the
derivatives are exactly those that can be expressed in terms of the operator T . One can show
that, in a globally hyperbolic spacetime, the Dirac-Weyl and Maxwell fields each form exact sets.
However, it is not necessary for the spacetime to be globally hyperbolic for this condition to
hold. If the spacetime is such that the fields fail to form an exact set, then our methods still
give sufficient conditions for the existence of symmetry operators, but they may no longer be
necessary.

The freedom to choose the symmetric components is used in this paper to show that equations
of the type LABA′

(T1,0φ)ABA′ +MAφA = 0 with (C †
1,0φ)A′ = 0 forces L(AB)A′

= 0 and MA = 0
because (T1,0φ)ABA′ and φA can be freely and independently specified at a single point. Similar
arguments involving derivatives of up to third order are also used.

In several places we will have equations of the form

0 = SABC
A′(T1,0φ)AB

A′

TC , (2.14)

where TA and (T1,0φ)ABA′ are free and independent. In particular all linear combinations of the

form (T1,0φ)AB
A′

TC will then span the space of spinors WABC
A′

= W(AB)C
A′

. As the equation
(2.14) is linear we therefore get

0 = SABC
A′WABC

A′

, (2.15)

for all WABC
A′

= W(AB)C
A′

. We can then make an irreducible decomposition

WABC
A′

= W(ABC)
A′

− 2
3W(A

D
|D|

A′

ǫB)C , (2.16)

which gives

0 = (− 1
3SB

C
CA′ − 1

3S
C
BCA′)WBA

A
A′ − SABCA′W (ABC)A′

. (2.17)

As WABC
A′

is free, its irreducible components W(ABC)
A′

and WA
D

D
A′

are free and independent.
We can therefore conclude that

0 = SB
C
CA′ + SC

BCA′ , (2.18a)

0 = S(ABC)A′. (2.18b)

Observe that we only get the symmetric part in the last equation due to the symmetry of
W(ABC)

A′

.
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Instead of introducing a new spinor WABC
A′

we will in the rest of the paper work directly
with the irreducible decomposition of (T1,0φ)AB

A′

TC and get

0 = (− 1
3SA

C
CA′ − 1

3S
C
ACA′)TB(T1,0φ)

ABA′ − SABCA′T (A(T1,0φ)
BC)A′

. (2.19)

The formal computations will be the same, and by the argument above, the symmetrized
coefficients for the irreducible parts TB(T1,0φ)

ABA′

and T (A(T1,0φ)
BC)A′

will individually have
to vanish.

3. The conformal wave equation

For completeness we give here a detailed description of the symmetry operators for the conformal
wave equation.

Theorem 20 ([9]). The equation

(�+ 4Λ)φ = 0, (3.1)

has a symmetry operator φ → χ , with order less or equal to two, if and only if there are spinors
LAB

A′B′

= L(AB)
(A′B′), PAA′ and Q such that

(T2,2L)ABC
A′B′C′

= 0, (3.2a)

(T1,1P )AB
A′B′

= 0, (3.2b)

(T0,0Q)A
A′

= 2
5 (O

(0)
2,2L)A

A′

. (3.2c)

The symmetry operator then takes the form

χ = − 3
5L

ABA′B′

ΦABA′B′φ+Qφ+ 1
4φ(D1,1P ) + 1

15φ(D1,1D2,2L) + PAA′

(T0,0φ)AA′

+ 2
3 (D2,2L)

AA′

(T0,0φ)AA′ + LABA′B′

(T1,1T0,0φ)ABA′B′ . (3.3)

The existence of Q satisfying (3.2c) is exactly the auxiliary condition A0. The proof can also
be carried out using the same technique as in the rest of the paper.

4. The Dirac-Weyl equation

The following theorems imply Theorem 4.

Theorem 21. There exists a symmetry operator of the first kind for the Dirac-Weyl equation
φA → χA, with order less or equal to two, if and only if there are spinor fields LAB

A′B′

=
L(AB)

(A′B′), PAA′ and Q such that

(T2,2L)ABC
A′B′C′

= 0, (4.1a)

(T1,1P )AB
A′B′

= − 1
3 (O

(1)
2,2L)AB

A′B′

, (4.1b)

(T0,0Q)A
A′

= 3
10 (O

(0)
2,2L)A

A′

. (4.1c)

The symmetry operator then takes the form

χA = − 8
15L

BCA′B′

ΦBCA′B′φA +QφA + 1
2φ

B(C1,1P )AB + 2
9φ

B(C1,1D2,2L)AB + 3
8φA(D1,1P )

+ 2
15φA(D1,1D2,2L) + PBA′

(T1,0φ)ABA′ + 8
9 (D2,2L)

BA′

(T1,0φ)ABA′

+ 2
3 (C2,2L)ABCA′(T1,0φ)

BCA′

+ LBCA′B′

(T2,1T1,0φ)ABCA′B′ . (4.2)

Remark 22. (i) Observe that (4.1b) is the auxiliary condition A1 for existence of a symmetry
operator of the first kind for Maxwell equation, and (4.1c) is the auxiliary condition A0 for
existence of a symmetry operator for the conformal wave equation.
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(ii) With LABA′B′ = 0 the first order operator takes the form

χA = L̂PφA +QφA. (4.3)

Theorem 23. There exists a symmetry operator of the second kind for the Dirac-Weyl equation
φA → ωA′ , with order less or equal to two, if and only if there are spinor fields LABC

A′

=
L(ABC)

A′

and PAB = P(AB) such that

(T3,1L)ABCD
A′B′

= 0, (4.4a)

(T2,0P )ABC
A′

= 0, (4.4b)

0 = − 9
8ΨABCD(D3,1L)

CD + 9
5L(A

CDA′

(C2,2Φ)B)CDA′

− 5
2Ψ(A

CDF (C3,1L)B)CDF − 2LCDFA′

(T4,0Ψ)ABCDFA′ . (4.4c)

The operator takes the form

ωA′ = − 1
2LBCDB′ΦCD

A′

B′

φB + 2
3φ

B(C †
2,0P )BA′ + 1

4φ
B(C †

2,0D3,1L)BA′ + PBC(T1,0φ)BCA′

+ 3
4 (D3,1L)

BC(T1,0φ)BCA′ + 3
4 (C

†
3,1L)BCA′B′(T1,0φ)

BCB′

+ LBCDB′

(T2,1T1,0φ)BCDA′B′ .

(4.5)

Remark 24. The scheme for deriving integrability conditions in Section 2.3 can be used to show
that

0 = − 2
5L(ABC

A′

(C2,2Φ)DFH)A′ + 3L(AB
LA′

(T4,0Ψ)CDFH)LA′ + 5Ψ(ABC
L(C3,1L)DFH)L

+ 3
4Ψ(ABCD(D3,1L)FH), (4.6)

follows from (4.4a). Despite the superficial similarity of this equation to the condition (4.4c), we
conjecture that (4.4c) does not follow from (4.4a).

4.1. Reduction of derivatives of the field

In our notation, the Dirac-Weyl equation ∇A
A′φA = 0, takes the form (C †

1,0φ)A′ = 0. We see

that the only remaining irreducible part of ∇A
A′

φB is (T1,0φ)AB
A′

. By commuting derivatives
we see that all higher order derivatives of φA can be reduced to totally symmetrized derivatives
and lower order terms consisting of curvature times lower order symmetrized derivatives.

Together with the Dirac-Weyl equation, the commutators (2.7e), (2.7c), (2.7d) give

(D2,1T1,0φ)A = − 6ΛφA, (4.7a)

(C2,1T1,0φ)ABC = −ΨABCDφ
D, (4.7b)

(C †
2,1T1,0φ)AA′B′ = − ΦABA′B′φB. (4.7c)

The higher order derivatives can be computed by using the commutators (2.7e), (2.7c), (2.7d)
together with the equations above and the Bianchi system to get

(D3,2T2,1T1,0φ)AB
A′

= 5
6φ

C(C2,2Φ)ABC
A′

+ 10
3 Φ(A

CA′B′

(T1,0φ)B)CB′ − 16
3 φ(A(T0,0Λ)B)

A′

− 12Λ(T1,0φ)AB
A′

+ 3
2ΨABCD(T1,0φ)

CDA′

, (4.8a)

(C3,2T2,1T1,0φ)ABCD
A′

= Φ(AB
A′B′

(T1,0φ)CD)B′ + 5
2Ψ(ABC

F (T1,0φ)D)F
A′

− 1
10φ(A(C2,2Φ)BCD)

A′ − 1
2φ

F (T4,0Ψ)ABCDF
A′

, (4.8b)

(C †
3,2T2,1T1,0φ)AB

A′B′C′

= 8
3Φ

C
(A

(A′B′

(T1,0φ)B)C
C′) − 2

9φ(A(C
†
2,2Φ)B)

A′B′C′

− 2
3φ

C(T2,2Φ)ABC
A′B′C′ − Ψ̄A′B′C′

D′(T1,0φ)AB
D′

. (4.8c)

Using irreducible decompositions and the equations above, one can in a systematic way
reduce any third order derivative of φA in terms of φA, (T1,0φ)AB

A′

, (T2,1T1,0φ)ABC
A′B′

and

(T3,2T2,1T1,0φ)ABCD
A′B′C′

.
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4.2. First kind of symmetry operator for the Dirac-Weyl equation

Proof of Theorem 21. The general second order differential operator, mapping a Dirac-Weyl field
φA to S1,0 is equivalent to φA → χA, where

χA = NA
BφB +MA

BCA′

(T1,0φ)BCA′ + LA
BCDA′B′

(T2,1T1,0φ)BCDA′B′ , (4.9)

and

LABCD
A′B′

= LA(BCD)
(A′B′), MABC

A′

= MA(BC)
A′

. (4.10)

Here, we have used the reduction of the derivatives to the T operator as discussed in Section 4.1.
The symmetries (4.10) comes from the symmetries of (T1,0φ)AB

A′

and (T2,1T1,0φ)ABC
A′B′

. To be
able to make a systematic treatment of the dependence of different components of the coefficients,
we will use the irreducible decompositions

LABCD
A′B′

= L
4,2

ABCD
A′B′

+ 3
4 L2,2(BC

A′B′

ǫD)A, (4.11a)

MABC
A′

= M
3,1

ABC
A′

+ 2
3M1,1(B

A′

ǫC)A, (4.11b)

NAB = N
2,0

AB − 1
2N0,0

ǫAB. (4.11c)

where

L
2,2

AB
A′B′ ≡ LC

ABC
A′B′

, M
1,1

A
A′ ≡ MB

AB
A′

, N
0,0

≡ NA
A,

L
4,2

ABCD
A′B′ ≡ L(ABCD)

A′B′

, M
3,1

ABC
A′ ≡ M(ABC)

A′

, N
2,0

AB ≡ N(AB).

We use the convention that a spinor with underscripts T
k,l

is a totally symmetric valence (k, l)

spinor. Using these spinors, we can rewrite (4.9) as

χA = − 1
2N0,0

φA − N
2,0

ABφ
B − 2

3M1,1
BA′

(T1,0φ)ABA′ −M
3,1

ABCA′(T1,0φ)
BCA′

− 3
4 L2,2

BCA′B′

(T2,1T1,0φ)ABCA′B′ − L
4,2

ABCDA′B′(T2,1T1,0φ)
BCDA′B′

. (4.12)

The condition for the operator φA → χA to be a symmetry operator is

(C †
1,0χ)A′ = 0. (4.13)

The definition of the C † operator, the Leibniz rule for the covariant derivative, and the irreducible
decomposition (2.2) allows us to write this equation in terms of the fundamental operators
acting on the coefficients and the field. Furthermore, using the results from the previous
subsection, we see that this equation can be reduced to a linear combination of the spinors
(T3,2T2,1T1,0φ)ABCD

A′B′C′

, (T2,1T1,0φ)ABC
A′B′

, (T1,0φ)AB
A′

and φA. For a general Dirac-
Weyl field and an arbitrary point on the manifold, there are no relations between these spinors.
Hence, they are independent, and therefore their coefficients have to vanish individually. After
the reduction of the derivatives of the field to the T operator, we can therefore study the different
order derivatives in (4.13) separately. We begin with the highest order, and work our way down
to order zero.

4.2.1. Third order part The third order derivative term of (4.13) is

0 = − L
4,2

ABCDB′C′

(T3,2T2,1T1,0φ)ABCDA′B′C′ . (4.14)

We will now use the argument from Section 2.4 to derive equations for the coefficients in a
systematic way. To get rid of the free index in equation (4.14) we multiply with an arbitrary
spinor field TA′

to get

0 = − L
4,2

ABCDB′C′

TA′

(T3,2T2,1T1,0φ)ABCDA′B′C′ . (4.15)
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From the argument in Section 2.4 and the observation that TA′

(T3,2T2,1T1,0φ)ABCDA′B′C′ is
irreducible we conclude that

L
4,2

ABCD
A′B′

= 0. (4.16)

4.2.2. Second order part The second order derivative terms of (4.13) can now be reduced to

0 = −M
3,1

ABCB′

(T2,1T1,0φ)ABCA′B′ + 1
2 (C2,2 L

2,2
)ABCB′

(T2,1T1,0φ)ABCA′B′

+ 3
4 (T2,2 L

2,2
)ABCA′B′C′(T2,1T1,0φ)

ABCB′C′

. (4.17)

Here we again multiply with an arbitrary spinor field TA′

, but here (T2,1T1,0φ)
ABCB′C′

TA′

is
not irreducible. Therefore, we decompose it into irreducible parts and get

0 = 3
4T

(A′

(T2,1T1,0φ)
|ABC|B′C′)(T2,2 L

2,2
)ABCA′B′C′

+
(
1
2 (C2,2 L

2,2
)ABCB′ −M

3,1

ABCB′)
TA′

(T2,1T1,0φ)ABCA′B′ . (4.18)

The argument in Section 2.4 tells that the coefficients of the different irreducible parts have to
vanish individually which gives

(T2,2 L
2,2

)ABC
A′B′C′

= 0, (4.19a)

M
3,1

ABC
A′

= 1
2 (C2,2 L

2,2
)ABC

A′

. (4.19b)

4.2.3. First order part The first order derivative terms of (4.13) are

0 = − N
2,0

AB(T1,0φ)ABA′ + 1
3 (C1,1M

1,1
)AB(T1,0φ)ABA′ − 1

2 (D3,1M
3,1

)AB(T1,0φ)ABA′

− 2
3 L2,2A

CB′C′

ΦBCB′C′(T1,0φ)
AB

A′ − 6ΛL
2,2

ABA′B′(T1,0φ)
ABB′

+ 4
3 L2,2A

C
B′

C′

ΦBCA′C′(T1,0φ)
ABB′

+ 5
3 L2,2A

C
A′

C′

ΦBCB′C′(T1,0φ)
ABB′

+ 3
4 L2,2

CD
A′B′ΨABCD(T1,0φ)

ABB′

+ 3
4 L2,2AB

C′D′

Ψ̄A′B′C′D′(T1,0φ)
ABB′

− (C †
3,1M3,1

)ABA′B′(T1,0φ)
ABB′

+ 2
3 (T1,1M

1,1
)ABA′B′(T1,0φ)

ABB′

. (4.20)

Here we again multiply with an arbitrary spinor field TA′

and decompose (T1,0φ)
ABB′

TA′

into
irreducible parts. Due to the argument in Section 2.4 the coefficients of the different irreducible
parts have to vanish individually which gives

0 = − N
2,0

AB + 1
3 (C1,1M

1,1
)AB − 1

4 (D3,1C2,2 L
2,2

)AB − 1
2 L2,2(A

CA′B′

ΦB)CA′B′ , (4.21a)

0 = − 6ΛL
2,2

AB
A′B′

+ 3
4 L2,2

CDA′B′

ΨABCD + 3
4 L2,2AB

C′D′

Ψ̄A′B′

C′D′ − 1
2 (C

†
3,1C2,2 L

2,2
)AB

A′B′

+ 3L
2,2

(A
C(A′|C′|ΦB)C

B′)
C′ + 2

3 (T1,1M
1,1

)AB
A′B′

. (4.21b)

Using the commutators (2.7a) and (2.7f) together with (4.19a), this reduces to

N
2,0

AB = 1
3 (C1,1M

1,1
)AB − 1

6 (C1,1D2,2 L
2,2

)AB , (4.22a)

(T1,1M
1,1

)AB
A′B′

= − 3
8 L2,2

CDA′B′

ΨABCD + 3
8 L2,2AB

C′D′

Ψ̄A′B′

C′D′ + (T1,1D2,2 L
2,2

)AB
A′B′

.

(4.22b)

Isolating the T terms in (4.22b) leads us to make the ansatz

M
1,1

A
A′

= − 3
2PA

A′

+ (D2,2 L
2,2

)A
A′

, (4.23)
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where PA
A′

is undetermined. With this ansatz, the first order equations reduce to

(T1,1P )AB
A′B′

= 1
4 L2,2

CDA′B′

ΨABCD − 1
4 L2,2AB

C′D′

Ψ̄A′B′

C′D′

= 1
4 (O

(1)
2,2 L2,2

)AB
A′B′

, (4.24a)

N
2,0

AB = − 1
2 (C1,1P )AB + 1

6 (C1,1D2,2 L
2,2

)AB. (4.24b)

4.2.4. Zeroth order part Using the equations above, the zeroth order derivative terms of (4.13)
are

0 = φA(−2ΛM
1,1

AA′ + 2
3M1,1

BB′

ΦABA′B′ + 1
4ΨABCD(C2,2 L

2,2
)BCD

A′ − 5
12 L2,2

BC
A′

B′

(C2,2Φ)ABCB′

− (C †
2,0N

2,0
)AA′ − 1

6 L2,2A
BB′C′

(C †
2,2Φ)BA′B′C′ − 8

3 L2,2ABA′B′(T0,0Λ)
BB′

+ 1
2 (T0,0N

0,0
)AA′

+ 1
2 L2,2

BCB′C′

(T2,2Φ)ABCA′B′C′). (4.25)

Here, there is no reason to multiply with an arbitrary TA′

and do an irreducible decomposition
of TA′

φA because TA′

φA is already irreducible. Still the argument in Section 2.4 gives that the
coefficient of φA will have to vanish. With the substitutions (4.24b) and (4.23), the vanishing of
this coefficient is equivalent to

(T0,0N
0,0

)A
A′

= − 6ΛPA
A′

+ 2ΦAB
A′

B′PBB′

− 1
2ΨABCD(C2,2 L

2,2
)BCDA′

+ 5
6 L2,2

BCA′B′

(C2,2Φ)ABCB′ + 1
3 L2,2A

BB′C′

(C †
2,2Φ)B

A′

B′C′ − (C †
2,0C1,1P )A

A′

+ 1
3 (C

†
2,0C1,1D2,2 L

2,2
)A

A′

+ 4Λ(D2,2 L
2,2

)A
A′

− 4
3ΦAB

A′

B′(D2,2 L
2,2

)BB′

+ 16
3 L

2,2
AB

A′

B′(T0,0Λ)
BB′ − L

2,2

BCB′C′

(T2,2Φ)ABC
A′

B′C′ . (4.26)

To simplify the C †CD term, we first commute the innermost operators with (2.7a). Then the
outermost operators are commuted with (2.7b). After that, we are left with the operator DC †C ,
which can be turned into DT D by using (2.7f) and (4.19a). Finally, the DT D operator can be
turned into C †C D and T DD , again by using (2.7f), but this time on the outermost operators.
In detail

(C †
2,0C1,1D2,2 L

2,2
)AA′ = − 3

2∇BA′�B′C′ L
2,2

A
BB′C′

+ 3
2 (C

†
2,0D3,1C2,2 L

2,2
)AA′

= 3�BC(C2,2 L
2,2

)A
BC

A′ − 3
2∇BA′�B′C′ L

2,2
A
BB′C′

+ 3(D2,2C
†
3,1C2,2 L

2,2
)AA′

= 3�BC(C2,2 L
2,2

)A
BC

A′ − 3
2∇BA′�B′C′ L

2,2
A
BB′C′

− 6∇BC′

�(A′

B′

L
2,2

|AB|C′)B′ − 3∇CB′

�(A
B L
2,2

C)BA′B′

+ 4(D2,2T1,1D2,2 L
2,2

)AA′

= 2�AB(D2,2 L
2,2

)BA′ + 6�A′B′(D2,2 L
2,2

)A
B′

+ 3�BC(C2,2 L
2,2

)A
BC

A′

− 3
2∇BA′�B′C′ L

2,2
A
BB′C′ − 6∇BC′

�(A′

B′

L
2,2

|AB|C′)B′

− 3∇CB′

�(A
B L
2,2

C)BA′B′ − 4(C †
2,0C1,1D2,2 L

2,2
)AA′ + 3(T0,0D1,1D2,2 L

2,2
)AA′ .
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Isolating the C †C D terms, expanding the commutators and using (4.19a) yield

(C †
2,0C1,1D2,2 L

2,2
)AA′ = − 8

5Φ
BC

A′

B′

(C2,2 L
2,2

)ABCB′ + 6
5ΨABCD(C2,2 L

2,2
)BCD

A′

− 2L
2,2

BC
A′

B′

(C2,2Φ)ABCB′ + 6
5 Ψ̄A′B′C′D′(C †

2,2 L2,2
)A

B′C′D′

− 8
5ΦA

BB′C′

(C †
2,2 L2,2

)BA′B′C′ − 2L
2,2

A
BB′C′

(C †
2,2Φ)BA′B′C′

− 12Λ(D2,2 L
2,2

)AA′ + 44
15ΦABA′B′(D2,2 L

2,2
)BB′ − 64

5 L
2,2

ABA′B′(T0,0Λ)
BB′

+ 3
5 L2,2

BCB′C′

(T2,2Φ)ABCA′B′C′ + 3
5 (T0,0D1,1D2,2 L

2,2
)AA′ . (4.27)

Using this in (4.26), and using (2.7e) combined with (4.24a) gives

(T0,0N
0,0

)A
A′

= − 8
15Φ

BCA′B′

(C2,2 L
2,2

)ABCB′ + 3
20ΨABCD(C2,2 L

2,2
)BCDA′

− 1
12 L2,2

BCA′B′

(C2,2Φ)ABCB′ + 3
20 Ψ̄

A′

B′C′D′(C †
2,2 L2,2

)A
B′C′D′

− 8
15ΦA

BB′C′

(C †
2,2 L2,2

)B
A′

B′C′ − 1
12 L2,2A

BB′C′

(C †
2,2Φ)B

A′

B′C′

− 16
45ΦAB

A′

B′(D2,2 L
2,2

)BB′

+ 16
15 L2,2AB

A′

B′(T0,0Λ)
BB′

− 4
5 L2,2

BCB′C′

(T2,2Φ)ABC
A′

B′C′ − 3
4 (T0,0D1,1P )A

A′

+ 1
5 (T0,0D1,1D2,2 L

2,2
)A

A′

.

(4.28)

To simplify the remaining terms, we define

Υ ≡ L
2,2

ABA′B′ΦABA′B′

. (4.29)

Using (4.19a) the gradient of Υ reduces to

(T0,0Υ)AA′ = − 4
3 L2,2A

B
A′

B′

(T0,0Λ)BB′ + 2
3Φ

BC
A′

B′

(C2,2 L
2,2

)ABCB′

+ 2
3 L2,2

BC
A′

B′

(C2,2Φ)ABCB′ + 2
3ΦA

BB′C′

(C †
2,2 L2,2

)BA′B′C′

+ 2
3 L2,2A

BB′C′

(C †
2,2Φ)BA′B′C′ + 4

9ΦABA′B′(D2,2 L
2,2

)BB′

+ L
2,2

BCB′C′

(T2,2Φ)ABCA′B′C′ . (4.30)

This can be used to eliminate most of the terms in (4.28). Together with the definition of the

operator O
(0)
2,2, we find that (4.28) reduces to

(T0,0N
0,0

)A
A′

= 9
20 (O

(0)
2,2 L2,2

)A
A′

− 4
5 (T0,0Υ)A

A′

− 3
4 (T0,0D1,1P )A

A′

+ 1
5 (T0,0D1,1D2,2 L

2,2
)A

A′

.

(4.31)

It is now clear that the ansatz

N
0,0

= − 2Q− 4
5Υ− 3

4 (D1,1P ) + 1
5 (D1,1D2,2 L

2,2
), (4.32)

with Q undetermined gives

(T0,0Q)A
A′

= − 9
40 (O

(0)
2,2 L2,2

)A
A′

. (4.33)

We can now conclude that the only restrictive equations are (4.19a), (4.24a) and (4.33). The
other equations give expressions for the remaining coefficients in terms of L

2,2
AB

A′B′

, PAA′ , and

Q. For convenience we make the replacement L
2,2

AB
A′B′ → − 4

3LAB
A′B′

.
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4.3. Second kind of symmetry operator for the Dirac-Weyl equation

Proof of Theorem 23. The general second order differential operator, mapping a Dirac-Weyl field
φA to S0,1 is equivalent to φA → ωA′ , where

ωA′ = NB
A′φB +MA′

BCB′

(T1,0φ)BCB′ + LA′

BCDB′C′

(T2,1T1,0φ)BCDB′C′ , (4.34)

where

LA′ABCB′C′ = LA′(ABC)(B′C′), MA′ABB′ = MA′(AB)B′ . (4.35)

Here, we have used the reduction of the derivatives to the T operator as discussed above. The
symmetries (4.35) comes from the symmetries of (T1,0φ)AB

A′

and (T2,1T1,0φ)ABC
A′B′

. As we
did above, we will decompose the coefficients into irreducible parts to more clearly see which
parts are independent. The irreducible decompositions of LA′

ABC
B′C′

and MA′

AB
B′

are

LA′

ABC
B′C′

= L
3,3

ABC
A′B′C′

+ 2
3 L3,1ABC

(B′

ǭC
′)A′

, (4.36)

MA′

AB
B′

= M
2,2

AB
A′B′ − 1

2M2,0AB ǭ
A′B′

, (4.37)

where

L
3,1

ABC
A′ ≡ LB′

ABC
A′

B′ , M
2,0

AB ≡ MA′

ABA′ ,

L
3,3

ABC
A′B′C′ ≡ L(A′

ABC
B′C′), M

2,2
AB

A′B′ ≡ M (A′

AB
B′).

With these irreducible decompositions, we get

ωA′ = NB
A′φB − 1

2M2,0
BC(T1,0φ)BCA′ −M

2,2
BCA′B′(T1,0φ)

BCB′ − 2
3 L3,1

BCDB′

(T2,1T1,0φ)BCDA′B′

− L
3,3

BCDA′B′C′(T2,1T1,0φ)
BCDB′C′

. (4.38)

The condition for the operator φA → ωA′ to be a symmetry operator is

(C0,1ω)A = 0. (4.39)

Using the results from Section 4.1, we see that this equation can be reduced to a linear combination
of the spinors φA, (T1,0φ)AB

A′

, (T2,1T1,0φ)ABC
A′B′

and (T3,2T2,1T1,0φ)ABCD
A′B′C′

. As above,
we can treat these as independent, and therefore their coefficients have to vanish individually.
After the reduction of the derivatives of the field to the T operator, we can therefore study the
different order derivatives in (4.39) separately. We begin with the highest order, and work our
way down to order zero.

4.3.1. Third order part The third order part of (4.39) is

0 = − L
3,3

BCDA′B′C′

(T3,2T2,1T1,0φ)ABCDA′B′C′ . (4.40)

Using the argument from Section 2.4, we see that this implies

L
3,3

ABC
A′B′C′

= 0. (4.41)

4.3.2. Second order part The second order part of (4.39) now takes the form

0 = −M
2,2

BCA′B′

(T2,1T1,0φ)ABCA′B′ + 1
2 (C

†
3,1 L3,1

)BCA′B′

(T2,1T1,0φ)ABCA′B′

+ 2
3 (T3,1 L

3,1
)ABCDA′B′(T2,1T1,0φ)

BCDA′B′

. (4.42)
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Here we multiply with an arbitrary spinor field TA and decompose (T2,1T1,0φ)
BCDC′D′

TA into
irreducible parts. Due to the argument in Section 2.4 the coefficients of the different irreducible
parts have to vanish individually which gives

(T3,1 L
3,1

)ABCD
A′B′

= 0, (4.43a)

M
2,2

AB
A′B′

= 1
2 (C

†
3,1 L3,1

)AB
A′B′

. (4.43b)

4.3.3. First order part The first order part of (4.39) can now be reduced to

0 = −NBA′

(T1,0φ)ABA′ + 1
3 (C

†
2,0M2,0

)BA′

(T1,0φ)ABA′ − 2
3 (D2,2M

2,2
)BA′

(T1,0φ)ABA′

+ 1
3 L3,1BCDB′ΦCD

A′

B′

(T1,0φ)A
BA′

− 5
12 L3,1

CDF
A′ΨBCDF (T1,0φ)A

BA′

− 6ΛL
3,1

ABCA′(T1,0φ)
BCA′

+ 1
3 L3,1BCDB′ΦA

D
A′

B′

(T1,0φ)
BCA′

+ 5
3 L3,1ACDB′ΦB

D
A′

B′

(T1,0φ)
BCA′

+ 5
4 L3,1B

DF
A′ΨACDF (T1,0φ)

BCA′

+ 3
4 L3,1A

DF
A′ΨBCDF (T1,0φ)

BCA′ − (C2,2M
2,2

)ABCA′(T1,0φ)
BCA′

+ 1
2 (T2,0M

2,0
)ABCA′(T1,0φ)

BCA′

. (4.44)

Here we again multiply with an arbitrary spinor field TA and decompose (T1,0φ)
BCC′

TA into
irreducible parts. Due to the argument in Section 2.4 the coefficients of the different irreducible
parts have to vanish individually which gives

0 = −NA
A′ − 1

3 L3,1
BCDA′

ΨABCD + 1
3 (C

†
2,0M2,0

)A
A′ − 2

3 (D2,2M
2,2

)A
A′

, (4.45)

0 = − 6ΛL
3,1

ABC
A′

− (C2,2M
2,2

)ABC
A′

+ 2L
3,1

(BC|DB′|ΦA)
DA′B′

+ 2L
3,1

(A
DFA′

ΨBC)DF

+ 1
2 (T2,0M

2,0
)ABC

A′

. (4.46)

By (4.43b), the commutator (2.7e) and (4.43a) these reduce to

NA
A′

= − 1
3 L3,1ABCB′ΦBCA′B′

+ 1
3 (C

†
2,0M

2,0
)A

A′ − 1
6 (C

†
2,0D3,1 L

3,1
)A

A′

, (4.47a)

(T2,0M
2,0

)ABC
A′

= (T2,0D3,1 L
3,1

)ABC
A′

. (4.47b)

If we make the ansatz

M
2,0

AB = − 2PAB + (D3,1 L
3,1

)AB , (4.48)

these equations reduce to

NA
A′

= − 1
3 L3,1ABCB′ΦBCA′B′ − 2

3 (C
†
2,0P )A

A′

+ 1
6 (C

†
2,0D3,1 L

3,1
)A

A′

, (4.49a)

(T2,0P )ABC
A′

= 0. (4.49b)

4.3.4. Zeroth order part The zeroth order part of (4.39) can now be reduced to

0 = − 2ΛM
2,0

ABφ
B + 1

2M2,0
CDΨABCDφ

B − φB(C1,1N)AB − 1
20 L3,1B

CDA′

φB(C2,2Φ)ACDA′

+ 1
60 L3,1

BCDA′

φA(C2,2Φ)BCDA′ − 5
12 L3,1A

CDA′

φB(C2,2Φ)BCDA′

− 1
3ΦB

CA′B′

φB(C †
3,1 L3,1

)ACA′B′ − 1
2φA(D1,1N)− 8

3 L3,1ABCA′φB(T0,0Λ)
CA′

+ 1
3 L3,1

CDFA′

φB(T4,0Ψ)ABCDFA′ . (4.50)
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Here we again multiply with an arbitrary spinor field TA and decompose φBTA into irreducible
parts. Due to the argument in Section 2.4 the coefficients of the different irreducible parts have
to vanish individually which gives

0 = − 1
6 L3,1

ABCA′

(C2,2Φ)ABCA′ + 1
6Φ

ABA′B′

(C †
3,1 L3,1

)ABA′B′ − 1
2 (D1,1N), (4.51a)

0 = − 2ΛM
2,0

AB + 1
2M2,0

CDΨABCD − (C1,1N)AB − 7
15 L3,1(A

CDA′

(C2,2Φ)B)CDA′

− 1
3Φ(A

CA′B′

(C †
3,1 L3,1

)B)CA′B′ − 8
3 L3,1ABCA′(T0,0Λ)

CA′

+ 1
3 L3,1

CDFA′

(T4,0Ψ)ABCDFA′ .

(4.51b)

The equation (4.49a) together with the commutator (2.7b) gives (4.51a). If we substitute (4.49a)
in (4.51b), we get a term with the third order operator CC †D . To handle this we use the same
technique as in Section 4.2.4. We first commute the innermost operators with (2.7b). Then the
outermost operators are commuted with (2.7a). After that, we are left with the operator DCC †,
which can be turned into DT D by using (2.7e) and (4.19a). Finally, the DT D operator can be
turned into C C †D and T DD , again by using (2.7e), but this time on the outermost operators.

(C1,1C
†
2,0D3,1 L

3,1
)AB = 2(C1,1D2,2C

†
3,1 L3,1

)AB + 2∇(A
A′

�
CD L

3,1
B)CDA′

= 3�A′B′(C †
3,1 L3,1

)AB
A′B′

+ 3(D3,1C2,2C
†
3,1 L3,1

)AB + 2∇(A
A′

�
CD L

3,1
B)CDA′

= 3�A′B′(C †
3,1 L3,1

)AB
A′B′

+ 2∇CB′�A′

B′

L
3,1

AB
CA′

− 6∇DA′

�(A
C L
3,1

BD)CA′

+ 3(D3,1T2,0D3,1 L
3,1

)AB + 2∇(A
A′

�
CD L

3,1
B)CDA′

= 3�A′B′(C †
3,1 L3,1

)AB
A′B′

+ 2∇CB′�A′

B′

L
3,1

AB
CA′

− 6∇DA′

�(A
C L
3,1

BD)CA′

− 4(C1,1C
†
2,0D3,1 L

3,1
)AB − 6�(A

C(D3,1 L
3,1

)B)C + 2∇(A
A′

�
CD L

3,1
B)CDA′ .

Isolating the CC †D terms and expanding the commutators and using (4.43a) yield

(C1,1C
†
2,0D3,1 L

3,1
)AB = −ΨB

CDF (C3,1 L
3,1

)ACDF −ΨA
CDF (C3,1 L

3,1
)BCDF

− 42
25 L3,1B

CDA′

(C2,2Φ)ACDA′ − 42
25 L3,1A

CDA′

(C2,2Φ)BCDA′

− 3
2ΦB

CA′B′

(C †
3,1 L

3,1
)ACA′B′ − 3

2ΦA
CA′B′

(C †
3,1 L

3,1
)BCA′B′

− 12Λ(D3,1 L
3,1

)AB + 21
10ΨABCD(D3,1 L

3,1
)CD − 12L

3,1
ABCA′(T0,0Λ)

CA′

+ 2
5 L3,1

CDFA′

(T4,0Ψ)ABCDFA′ . (4.52)

The equation (4.49a) together with the equation above, the commutator (2.7e) and (4.49b) gives

(C1,1N)AB = 4ΛPAB −ΨABCDPCD − 2Λ(D3,1 L
3,1

)AB + 7
20ΨABCD(D3,1 L

3,1
)CD

− 17
75 L3,1(A

CDA′

(C2,2Φ)B)CDA′ − 1
3Φ(A

CA′B′

(C †
3,1 L3,1

)B)CA′B′

− 1
3Ψ(A

CDF (C3,1 L
3,1

)B)CDF − 8
3 L3,1ABCA′(T0,0Λ)

CA′

+ 1
15 L3,1

CDFA′

(T4,0Ψ)ABCDFA′ . (4.53)

Due to this, the equation (4.51b) reduces to the auxiliary condition

0 = 3
4ΨABCD(D3,1 L

3,1
)CD − 6

5 L3,1(A
CDA′

(C2,2Φ)B)CDA′

+ 5
3Ψ(A

CDF (C3,1 L
3,1

)B)CDF + 4
3 L3,1

CDFA′

(T4,0Ψ)ABCDFA′ . (4.54)
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We can conclude that the only restrictive equations are (4.43a), (4.49b) and (4.54). The other
equations express the remaining coefficients in terms of L

3,1
ABCA′ and PAB. For convenience we

make the replacement L
3,1

ABC
A′ → − 3

2LABC
A′

.

5. The Maxwell equation

Theorem 25. There exists a symmetry operator of the first kind φAB → χAB, with order less or
equal to two, if and only if there are spinor fields LAB

A′B′

= L(AB)
(A′B′), PAA′ and Q such that

(T2,2L)ABC
A′B′C′

= 0, (5.1a)

(T1,1P )AB
A′B′

= − 2
3 (O

(1)
2,2L)AB

A′B′

, (5.1b)

(T0,0Q)BA′ = 0. (5.1c)

The symmetry operator then takes the form

χAB = QφAB + (C1,1A)AB , (5.2)

where

AAA′ = − PB
A′φAB + 1

3φ
BC(C2,2L)ABCA′ − 4

9φAB(D2,2L)
B
A′ − LBC

A′

B′

(T2,0φ)ABCB′ . (5.3)

We also note that

(C †
1,1A)A′B′ = 0. (5.4)

Remark 26. (i) Observe that one can add a gradient of a scalar to the potential AAA′ without
changing the symmetry operator. Hence, adding ∇AA′(ΛBCφBC) to AAA′ with an arbitrary
field ΛAB is possible.

(ii) With LABA′B′ = 0, the first order operator takes the form

χAB = L̂PφAB +QφAB. (5.5)

Theorem 27. There exists second order a symmetry operator of the second kind φAB → ωA′B′ ,
with order less or equal to two, if and only if there is a spinor field LABCD = L(ABCD) such that

(T4,0L)ABCDF
A′

= 0. (5.6)

The symmetry operator then takes the form

ωA′B′ = (C †
1,1B)A′B′ , (5.7)

where

BAA′ = 3
5φ

BC(C †
4,0L)ABCA′ + LABCD(T2,0φ)

BCD
A′ . (5.8)

We also note that

(C1,1B)AB = 0. (5.9)

Remark 28. (i) Observe that also here we can add a gradient of a scalar to the potential BAA′

without changing the symmetry operator. Hence, adding ∇AA′(ΛBCφBC) to BAA′ with an
arbitrary field ΛAB is possible.

(ii) Due to the equations (5.4) and (5.9), we can use AAA′ + BAA′ as a potential for both χAB

and ωA′B′ .
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5.1. Reduction of derivatives of the field

In our notation, the Maxwell equation ∇A
A′φAB = 0, takes the form (C †

2,0φ)A′ = 0. From this

we see that the only irreducible part of ∇A
A′

φBC is (T2,0φ)ABC
A′

. By commuting derivatives
we see that all higher order derivatives of φAB can be reduced to totally symmetrized derivatives
and lower order terms consisting of curvature times lower order symmetrized derivatives.

Together with the Maxwell equation, the commutators (2.7e), (2.7c), (2.7d) gives

(D3,1T2,0φ)AB = − 8ΛφAB + 2ΨABCDφ
CD, (5.10a)

(C3,1T2,0φ)ABCD = 2Ψ(ABC
FφD)F , (5.10b)

(C †
3,1T2,0φ)ABA′B′ = 2Φ(A

C
|A′B′|φB)C (5.10c)

The higher order derivatives can be computed using the commutators (2.7e), (2.7c), (2.7d)
together with the equations above and the Bianchi system to get

(D4,2T3,1T2,0φ)ABCA′ = 9
2Φ(A

D
|A′|

B′

(T2,0φ)BC)DB′ + 9
2Ψ(AB

DF (T2,0φ)C)DFA′

− 15
2 φ(AB(T0,0Λ)C)A′ + 21

10φ(A
D(C2,2Φ)BC)DA′

+ 3
2φ

DF (T4,0Ψ)ABCDFA′ − 15Λ(T2,0φ)ABCA′ , (5.11a)

(C4,2T3,1T2,0φ)ABCDFB′ = Φ(AB|B′|
A′

(T2,0φ)CDF )A′ + 4Ψ(ABC
H(T2,0φ)DF )HB′

− 1
5φ(AB(C2,2Φ)CDF )B′ − φ(A

H(T4,0Ψ)BCDF )HB′ , (5.11b)

(C †
4,2T3,1T2,0φ)ABC

A′B′C′

= 9
2Φ

D
(A

(A′B′

(T2,0φ)BC)D
C′) − 1

2φ(AB(C
†
2,2Φ)C)

A′B′C′

− 3
2φ(A

D(T2,2Φ)BC)D
A′B′C′ − Ψ̄A′B′C′

D′(T2,0φ)ABC
D′

. (5.11c)

These can in a systematic way be used to reduce any derivative up to third order of φAB in terms
of φAB, (T2,0φ)ABC

A′

, (T3,1T2,0φ)ABCD
A′B′

and (T4,2T3,1T2,0φ)ABCDF
A′B′C′

.

5.2. First kind of symmetry operator for the Maxwell equation

Proof of Theorem 25. The general second order differential operator, mapping a Maxwell field
φAB to S2,0 is equivalent to φAB → χAB, where

χAB = NABCDφ
CD +MABCDFA′(T2,0φ)

CDFA′

+ LABCDFHA′B′(T3,1T2,0φ)
CDFHA′B′

, (5.12)

and

LAB
CDFHA′B′

= L(AB)
(CDFH)(A′B′), MAB

CDFA′

= M(AB)
(CDF )A′

, NAB
CD = N(AB)

(CD).

Here, we have used the reduction of the derivatives to the T operator as discussed in Section 5.1.
The symmetries comes from the symmetries of (T2,0φ)ABC

A′

and (T3,1T2,0φ)ABCD
A′B′

. To be
able to make a systematic treatment of the dependence of different components of the coefficients,
we will use the irreducible decompositions

LAB
CDFHA′B′

= L
6,2

AB
CDFHA′B′ − 4

3ǫ(A
(C L

4,2

DFH)
B)

A′B′ − 3
5ǫ

(C
(AǫB)

D L
2,2

FH)A′B′

, (5.13a)

MAB
CDFA′

= M
5,1

AB
CDFA′

− 6
5ǫ(A

(CM
3,1

DF )
B)

A′

− 1
2ǫ

(C
(AǫB)

DM
1,1

F )A′

, (5.13b)

NAB
CD = N

4,0
AB

CD − ǫ(A
(CN

2,0

D)
B) − 1

3N0,0
ǫ(A

(CǫD)
B). (5.13c)

where the different irreducible parts are

L
2,2

AB
A′B′ ≡ LCD

ABCD
A′B′

, M
1,1

A
A′ ≡ MBC

ABC
A′

, N
0,0

≡ NAB
AB,

L
4,2

ABCD
A′B′ ≡ L(A

F
BCD)F

A′B′

, M
3,1

ABC
A′ ≡ M(A

D
BC)D

A′

, N
2,0

AB ≡ N(A
C
B)C ,

L
6,2

ABCDFH
A′B′ ≡ L(ABCDFH)

A′B′

, M
5,1

ABCDF
A′ ≡ M(ABCDF )

A′

, N
4,0

ABCD ≡ N(ABCD).
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Now, we want the operator to be a symmetry operator, which means that

(C †
2,0χ)AA′ = 0. (5.14)

Using the results from the previous subsection, we see that this equation can be reduced to a linear
combination of the spinors (T2,4T1,3T0,2φ)

A′B′C′

ABCDF , (T1,3T0,2φ)
A′B′

ABCD, (T0,2φ)
A′

ABC

and φAB . For a general Maxwell field and an arbitrary point on the manifold, there are no
relations between these spinors. Hence, they are independent, and therefore their coefficients
have to vanish individually. After the reduction of the derivatives of the Maxwell field to the T

operator, we can therefore study the different order derivatives of φAB in (5.14) separately.

5.2.1. Third order part The third order derivative terms of (5.14) are

0 = 2
3 L4,2BCDFB′C′(T4,2T3,1T2,0φ)A

BCDF
A′

B′C′

+ L
6,2

ABCDFHB′C′(T4,2T3,1T2,0φ)
BCDFH

A′

B′C′

. (5.15)

We can multiply this with an arbitrary vector field TAA′

and split (T4,2T3,1T2,0φ)
ABCDFA′B′C′

TH
A′

into irreducible parts. Then we get

0 = L
6,2

ABCDFHB′C′T (A|A′|(T4,2T3,1T2,0φ)
BCDFH)

A′

B′C′

+ 2
3 L4,2BCDFB′C′TAA′(T4,2T3,1T2,0φ)

ABCDFA′B′C′

. (5.16)

The argument in Section 2.4 gives that the symmetrized coefficients of the irreducible parts
T (A|A′|(T4,2T3,1T2,0φ)

BCDFH)
A′

B′C′

and TAA′(T4,2T3,1T2,0φ)
ABCDFA′B′C′

must vanish. This
means that (5.15) is equivalent to the system

L
6,2

ABCDFHB′C′ = 0, (5.17a)

L
4,2

BCDFB′C′ = 0. (5.17b)

The only remaining irreducible component of LAB
CDFHA′B′

is L
2,2

AB
A′B′

.

5.2.2. Second order part If we use everything above we find that the second order part of (5.14)
reduces to

0 = 3
5M3,1

BCDB′

(T3,1T2,0φ)ABCDA′B′ − 2
5 (C2,2 L

2,2
)BCDB′

(T3,1T2,0φ)ABCDA′B′

+ 3
5 (T2,2 L

2,2
)BCD

A′

B′C′

(T3,1T2,0φ)ABCDB′C′ +M
5,1

ABCDFB′(T3,1T2,0φ)
BCDF

A′

B′

. (5.18)

Again contracting with an arbitrary vector TAA′

and splitting (T3,1T2,0φ)
ABCDA′B′

TFC′

into
irreducible parts we find

0 = M
5,1

ABCDFB′T (A|A′|(T3,1T2,0φ)
BCDF )

A′

B′

− 3
5T

A(A′

(T3,1T2,0φ)A
|BCD|B′C′)(T2,2 L

2,2
)BCDA′B′C′

+ TAA′(35M3,1BCDB′ − 2
5 (C2,2 L

2,2
)BCDB′)(T3,1T2,0φ)

ABCDA′B′

. (5.19)

Again using the argument in Section 2.4 we find

(T2,2 L
2,2

)BCD
A′B′C′

= 0, (5.20a)

M
5,1

ABCDFB′ = 0, (5.20b)

M
3,1

BCDB′ = 2
3 (C2,2 L

2,2
)BCDB′ . (5.20c)
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5.2.3. First order part Now, after contracting the first order part of (5.14) with an arbitrary
tensor TA

A′ , splitting (T2,0φ)ABCA′TDB′ into irreducible parts, and using the argument in
Section 2.4, we find that the first order part of (5.14) is equivalent to the system

N
2,0

BC = 1
2 (C1,1M

1,1
)BC − 1

2 (D3,1C2,2 L
2,2

)BC − 3
2 L2,2(B

DB′C′

ΦC)DB′C′ , (5.21a)

N
4,0

ABCD = 1
5 (C3,1C2,2 L

2,2
)ABCD + 3

10 L2,2(AB
B′C′

ΦCD)B′C′ , (5.21b)

(T1,1M
1,1

)BC
A′B′

= 12ΛL
2,2

BC
A′B′ − 9

5 L2,2
DFA′B′

ΨBCDF − 6
5 L2,2BC

C′D′

Ψ̄A′B′

C′D′

+ (C †
3,1C2,2 L

2,2
)BC

A′B′ − 6L
2,2

D
(B

C′(A′

ΦC)D
B′)

C′ , (5.21c)

(T3,1C2,2 L
2,2

)ABCD
A′B′

= 3L
2,2

(AB
C′(A′

ΦCD)
B′)

C′ + 3L
2,2

(A
FA′B′

ΨBCD)F . (5.21d)

The commutators (2.7a), (2.7f) and (2.7c) applied to L
2,2

AB
A′B′

yield

(D3,1C2,2 L
2,2

)AB = 2
3 (C1,1D2,2 L

2,2
)AB − 2L

2,2
(A

CA′B′

ΦB)CA′B′ , (5.22a)

(C †
3,1C2,2 L

2,2
)AB

A′B′

= − 12ΛL
2,2

AB
A′B′

+ L
2,2

CDA′B′

ΨABCD + 2L
2,2

AB
C′D′

Ψ̄A′B′

C′D′

− 3
2 (D3,3T2,2 L

2,2
)AB

A′B′

+ 6L
2,2

C
(A

C′(A′

ΦB)C
B′)

C′

+ 4
3 (T1,1D2,2 L

2,2
)AB

A′B′

, (5.22b)

(T3,1C2,2 L
2,2

)ABCD
A′B′

= 3
2 (C3,3T2,2 L

2,2
)ABCD

A′B′

+ 3L
2,2

(AB
C′(A′

ΦCD)
B′)

C′

+ 3L
2,2

(A
FA′B′

ΨBCD)F . (5.22c)

It is now clear that (5.21d) is a consequence of (5.22c) and (5.20a). The commutators (5.22a)
and (5.22b) together with (5.20a) can be used to reduce (5.21a) and (5.21c) to

N
2,0

BC = 1
2 (C1,1M

1,1
)BC − 1

3 (C1,1D2,2 L
2,2

)BC − 1
2 L2,2(B

DB′C′

ΦC)DB′C′ , (5.23a)

(T1,1M
1,1

)BCA′B′ = − 4
5 L2,2

DF
A′B′ΨBCDF + 4

5 L2,2BC
C′D′

Ψ̄A′B′C′D′ + 4
3 (T1,1D2,2 L

2,2
)BCA′B′ .

(5.23b)

Now, in view of the form of (5.23b) we make the ansatz

M
1,1

AA′ = 2PAA′ + 4
3 (D2,2 L

2,2
)AA′ , (5.24)

where PAA′ is a new spinor field. With this choice (5.23a) and (5.23b) reduce to

N
2,0

BC = (C1,1P )BC + 1
3 (C1,1D2,2 L

2,2
)BC − 1

2 L2,2(B
DB′C′

ΦC)DB′C′ , (5.25a)

(T1,1P )BCA′B′ = − 2
5 L2,2

DF
A′B′ΨBCDF + 2

5 L2,2BC
C′D′

Ψ̄A′B′C′D′ . (5.25b)

In conclusion, the third, second and first order parts of (5.14) vanishes if and only if (5.17), (5.20),
(5.21b), (5.24), (5.25a) and (5.25b) are satisfied.

5.2.4. Zeroth order part After making irreducible decompositions of the derivatives, using
(5.20a) and contracting the remaining part of (5.14) with an arbitrary tensor TAA′

, splitting
TAA′φCD into irreducible parts, and using the argument in Section 2.4, we find that the order
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zero part of (5.14) is equivalent to the system

0 = 4ΛPBA′ − 4
3ΦBCA′B′PCB′

+ 2
9Φ

CD
A′

B′

(C2,2 L
2,2

)BCDB′ − 8
15ΨBCDF (C2,2 L

2,2
)CDF

A′

+ 26
45 L2,2

CD
A′

B′

(C2,2Φ)BCDB′ + 2
9ΦB

CB′C′

(C †
2,2 L2,2

)CA′B′C′ + 2
45 L2,2B

CB′C′

(C †
2,2Φ)CA′B′C′

+ 2
3 (C

†
2,0C1,1P )BA′ + 2

9 (C
†
2,0C1,1D2,2 L

2,2
)BA′ + 8

3Λ(D2,2 L
2,2

)BA′ − 20
27ΦBCA′B′(D2,2 L

2,2
)CB′

+ 28
9 L

2,2
BCA′B′(T0,0Λ)

CB′ − 1
3 (T0,0N

0,0
)BA′ − 1

3 L2,2
CDB′C′

(T2,2Φ)BCDA′B′C′ , (5.26a)

0 = PD
A′ΨABCD + 2Λ(C2,2 L

2,2
)ABCA′ + 1

5 (C
†
4,0C3,1C2,2 L

2,2
)ABCA′ + 2

3ΨABCD(D2,2 L
2,2

)DA′

− 37
75 L2,2(A

D
|A′|

B′

(C2,2Φ)BC)DB′ + 7
30 L2,2(AB

B′C′

(C †
2,2Φ)C)A′B′C′ − 5

3 L2,2(AB|A′|
B′

(T0,0Λ)C)B′

+ 7
10 L2,2(A

DB′C′

(T2,2Φ)BC)DA′B′C′ − Φ(AB|A′|
B′

PC)B′ − 19
15Φ(A

D
|A′|

B′

(C2,2 L
2,2

)BC)DB′

+ 1
6Φ(AB

B′C′

(C †
2,2 L2,2

)C)A′B′C′ − 5
9Φ(AB|A′|

B′

(D2,2 L
2,2

)C)B′ − 1
5Ψ(AB

DF (C2,2 L
2,2

)C)DFA′

+ 3
5 L2,2

DF
A′

B′

(T4,0Ψ)ABCDFB′ − 1
2 (T2,0C1,1P )ABCA′ − 1

6 (T2,0C1,1D2,2 L
2,2

)ABCA′ . (5.26b)

Applying the commutators repeatedly we have in general that

(C †
4,0C3,1C2,2 L

2,2
)ABC

A′

= 5
3�

A′

B′(C2,2 L
2,2

)ABC
B′ − 4

3 (D4,2T3,1C2,2 L
2,2

)ABC
A′ −�(A

D(C2,2 L
2,2

)BC)D
A′

+ 5
4 (T2,0D3,1C2,2 L

2,2
)ABC

A′

= 5
3�

A′

B′(C2,2 L
2,2

)ABC
B′ − 2(D4,2C3,3T2,2 L

2,2
)ABC

A′ −�(A
D(C2,2 L

2,2
)BC)D

A′

−∇DB′

�(AB L
2,2

C)D
A′

B′ −∇DB′

�(A|D| L
2,2

BC)
A′

B′ − 5
4∇(A

A′

�
B′C′

L
2,2

BC)B′C′

+ 5
6 (T2,0C1,1D2,2 L

2,2
)ABC

A′

= − 10Λ(C2,2 L
2,2

)ABC
A′

− 2ΨABCD(D2,2 L
2,2

)DA′

− 2(D4,2C3,3T2,2 L
2,2

)ABC
A′

+ 25
3 L

2,2
(AB

A′B′

(T0,0Λ)C)B′ + 49
15 L2,2(A

DA′B′

(C2,2Φ)BC)DB′ + 5
6 L2,2(AB

B′C′

(C †
2,2Φ)C)

A′

B′C′

− 7
2 L2,2(A

DB′C′

(T2,2Φ)BC)D
A′

B′C′ + 19
3 Φ(A

DA′B′

(C2,2 L
2,2

)BC)DB′

− 5
6Φ(AB

B′C′

(C †
2,2 L

2,2
)C)

A′

B′C′ + 25
9 Φ(AB

A′B′

(D2,2 L
2,2

)C)B′

+ 7
2Φ(A

DB′C′

(T2,2 L
2,2

)BC)D
A′

B′C′ −Ψ(AB
DF (C2,2 L

2,2
)C)DF

A′

− L
2,2

DFA′B′

(T4,0Ψ)ABCDFB′ + 5
6 (T2,0C1,1D2,2 L

2,2
)ABC

A′

. (5.27)

With this and (5.20a), the equation (5.26b) reduces to

0 = PD
A′ΨABCD + 4

15ΨABCD(D2,2 L
2,2

)DA′ + 4
25 L2,2(A

D
|A′|

B′

(C2,2Φ)BC)DB′

+ 2
5 L2,2(AB

B′C′

(C †
2,2Φ)C)A′B′C′ − Φ(AB|A′|

B′

PC)B′ − 2
5Ψ(AB

DF (C2,2 L
2,2

)C)DFA′

+ 2
5 L2,2

DF
A′

B′

(T4,0Ψ)ABCDFB′ − 1
2 (T2,0C1,1P )ABCA′ . (5.28)

Using the commutator

(T2,0C1,1P )ABCA′ = 2PD
A′ΨABCD + 2(C2,2T1,1P )ABCA′ − 2Φ(AB|A′|

B′

PC)B′ . (5.29)
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this becomes

0 = − (C2,2T1,1P )ABCA′ + 4
15ΨABCD(D2,2 L

2,2
)DA′ + 4

25 L2,2(A
D

|A′|
B′

(C2,2Φ)BC)DB′

+ 2
5 L2,2(AB

B′C′

(C †
2,2Φ)C)A′B′C′ − 2

5Ψ(AB
DF (C2,2 L

2,2
)C)DFA′ + 2

5 L2,2
DF

A′

B′

(T4,0Ψ)ABCDFB′ .

(5.30)

However, after substituting (5.25b) in this equation, decomposing the derivatives into irreducible
parts and using (5.20a), this equation actually becomes trivial.

Doing the same calculations as for the Dirac-Weyl case we see that (4.27) also holds for the
Maxwell case. Directly from the commutators we find

(C †
2,0C1,1P )AA′ = − 6ΛPAA′ + 2ΦABA′B′PBB′ − (D2,2T1,1P )AA′ + 3

4 (T0,0D1,1P )AA′ . (5.31)

With this, (4.27) and (5.20a) we can reduce (5.26a) to

0 = − 2
15Φ

CD
A′

B′

(C2,2 L
2,2

)BCDB′ − 4
15ΨBCDF (C2,2 L

2,2
)CDF

A′ + 2
15 L2,2

CD
A′

B′

(C2,2Φ)BCDB′

+ 4
15 Ψ̄A′B′C′D′(C †

2,2 L2,2
)B

B′C′D′

− 2
15ΦB

CB′C′

(C †
2,2 L2,2

)CA′B′C′ − 2
5 L2,2B

CB′C′

(C †
2,2Φ)CA′B′C′

− 4
45ΦBCA′B′(D2,2 L

2,2
)CB′ − 2

3 (D2,2T1,1P )BA′ + 4
15 L2,2BCA′B′(T0,0Λ)

CB′ − 1
3 (T0,0N

0,0
)BA′

− 1
5 L2,2

CDB′C′

(T2,2Φ)BCDA′B′C′ + 1
2 (T0,0D1,1P )BA′ + 2

15 (T0,0D1,1D2,2 L
2,2

)BA′ . (5.32)

Using (5.25b) and the irreducible decompositions, we find

(D2,2T1,1P )BA′ = − 2
5ΨBCDF (C2,2 L

2,2
)CDF

A′ + 2
5 L2,2

CD
A′

B′

(C2,2Φ)BCDB′

+ 2
5 Ψ̄A′B′C′D′(C †

2,2 L2,2
)B

B′C′D′ − 2
5 L2,2B

CB′C′

(C †
2,2Φ)CA′B′C′ . (5.33)

To simplify the remaining terms, we use the same trick as for the Dirac-Weyl case. The definition
(4.29) and the equation (4.30) can be used together with (5.33), to reduce the equation (5.26b)
to

0 = − 1
3 (T0,0N

0,0
)BA′ − 1

5 (T0,0Υ)BA′ + 1
2 (T0,0D1,1P )BA′ + 2

15 (T0,0D1,1D2,2 L
2,2

)BA′ . (5.34)

We therefore make the ansatz

N
0,0

= 3Q− 3
5Υ + 3

2 (D1,1P ) + 2
5 (D1,1D2,2 L

2,2
). (5.35)

Now, (5.34) becomes

0 = (T0,0Q)AA′ . (5.36)

5.2.5. Potential representation From all this we can conclude that the only equations that
restrict the geometry are (5.20a) and (5.25b). Now, the operator takes the form

χAB = 1
3N0,0

φAB + N
4,0

ABCDφ
CD − N

2,0
(A

CφB)C − 4
5 (C2,2 L

2,2
)(A

CDA′

(T2,0φ)B)CDA′

+ 1
2M1,1CA′(T2,0φ)AB

CA′

+ 3
5 L2,2

CDA′B′

(T3,1T2,0φ)ABCDA′B′ . (5.37)

where N
0,0

, N
2,0

AB, N
4,0

ABCD, M
1,1

AA′ are given by (5.35), (5.25a), (5.21b) and (5.24) respectively.

We can in fact simplify this expression by defining the following spinor

AAA′ ≡ PBA′φA
B + 1

5φ
BC(C2,2 L

2,2
)ABCA′ + 4

15φA
B(D2,2 L

2,2
)BA′ + 3

5 L2,2BCA′B′(T2,0φ)A
BCB′

.

(5.38)
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Substituting this onto the following, and comparing with (5.37), we find

(C1,1A)AB = −QφAB + χAB − 1
15φ(A

C(C1,1D2,2 L
2,2

)B)C + 1
10φ(A

C(D3,1C2,2 L
2,2

)B)C

− 1
10 L2,2(A

CA′B′

Φ|C
D

A′B′|φB)D − 1
10 L2,2

CDA′B′

Φ(A|CA′B′|φB)D

= −QφAB + χAB, (5.39)

where the last equality follows from a commutator relation. In fact the coefficients in AAA′ were
initially left free, and then chosen so all first and second order derivatives of φAB where eliminated
in (5.39).

We also get

(C †
1,1A)A′B′ = 12

5 ΛL
2,2

ABA′B′φAB − 3
5 L2,2

CD
A′B′ΨABCDφ

AB + 1
5φ

AB(C †
3,1C2,2 L

2,2
)ABA′B′

− 6
5 L2,2

AB
(A′

C′

Φ|A|
C
B′)C′φBC − φAB(T1,1P )ABA′B′

− 3
5 (T2,2 L

2,2
)ABCA′B′C′(T2,0φ)

ABCC′ − 4
15φ

AB(T1,1D2,2 L
2,2

)ABA′B′

= 0. (5.40)

where we in the last step used (5.25b), a commutator and (5.20a)
To get the highest order coefficient equal to 1 in AAA′ and in χAB, we define a new symmetric

spinor, which is just a rescaling of L
2,2

ABA′B′

LABA′B′ ≡ 3
5 L2,2ABA′B′ . (5.41)

Now, the only equations we have left are

(T2,2L)ABC
A′B′C′

= 0, (5.42a)

(T1,1P )AB
A′B′

= − 2
3 (O

(1)
2,2L)AB

A′B′

, (5.42b)

(T0,0Q)BA′ = 0, (5.42c)

AAA′ = PBA′φA
B + 1

3φ
BC(C2,2L)ABCA′ + 4

9φA
B(D2,2L)BA′

− LBC
A′

B′

(T2,0φ)ABCB′ . (5.42d)

5.3. Second kind of symmetry operator for the Maxwell equation

For the symmetry operators of the second kind, one can follow the same procedure as above.
However, this case was completely handled in [7]. In that paper it was shown that a symmetry
operator of the second kind always has the form φAB → ωA′B′ ,

ωA′B′ = 3
5φ

CD(C †
3,1C

†
4,0L)CDA′B′ − 8

5 (C
†
4,0L)

CDF
(A′(T2,0φ)|CDF |B′)

+ LCDFH(T3,1T2,0φ)CDFHA′B′ , (5.43)

where LABCD = L(ABCD) satisfies

(T4,0L)ABCDF
A′

= 0. (5.44)

Hence, the treatment in [7] is satisfactory. However, it is interesting to see if the operator can be
written in terms of a potential. Let

BAA′ ≡ 3
5φ

BC(C †
4,0L)ABCA′ + LABCD(T2,0φ)

BCD
A′ . (5.45)
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Then, from the definition of C †, the irreducible decompositions and (5.44) we get

(C †
1,1B)A′B′ = 3

5φ
AB(C †

3,1C
†
4,0L)ABA′B′ − 8

5 (C
†
4,0L)

ABC
(A′(T2,0φ)|ABC|B′)

+ LABCD(T3,1T2,0φ)ABCDA′B′

= ωA′B′ . (5.46)

The coefficients in (5.45) where initially left free, and then chosen to get (5.46).
We also get

(C1,1B)AB = 6ΛLABCDφ
CD − 3

2LAB
FHΨCDFHφCD + 3

5φ
CD(C3,1C

†
4,0L)ABCD

+ 3
10φ(A

C(D3,1C
†
4,0L)B)C − 3

2L(A
CDFΨB)CD

HφFH − 1
2L(A

CDFΨ|CDF |
HφB)H

− (T4,0L)ABCDFA′(T2,0φ)
CDFA′

= − 1
2φ

CD(D5,1T4,0L)ABCD − 4
5φB

CL(A
DFHΨC)DFH − 4

5φA
CL(B

DFHΨC)DFH

− (T4,0L)ABCDFA′(T2,0φ)
CDFA′

= 0. (5.47)

Here, we have used (5.44) together with the irreducible decomposition of LAB
FHΨCDFH and the

relations

(D3,1C
†
4,0L)AB = − 2L(A

CDFΨB)CDF , (5.48a)

(C3,1C
†
4,0L)ABCD = − 10ΛLABCD − 5

6 (D5,1T4,0L)ABCD + 5L(AB
FHΨCD)FH , (5.48b)

L(B
DFHΨC)DFH = 0. (5.48c)

The last equation follows from the integrability condition (cf. Section 2.3)

L(ABC
LΨDFH)L = − 1

4 (C5,1T4,0L)ABCDFH = 0, (5.49)

as explained in [7].

6. Factorizations

In this section we will consider special cases for which the auxiliary conditions will always have
a solution. We will now prove Proposition 7, considering each case in turn.

6.1. The case when LABA′B′ factors in terms of conformal Killing vectors

Proof of Proposition 7 part (i). If ξAA′ and ζAA′ are conformal Killing vectors, i.e.

(T1,1ξ)AB
A′B′

= 0, (T1,1ζ)AB
A′B′

= 0, (6.1)

then we have a solution

LξζAB
A′B′

≡ ζ(A
(A′

ξB)
B′) (6.2)

to the equation

(T2,2Lξζ)ABC
A′B′C′

= 0. (6.3)

Let

Qξζ ≡ ΛζAA′

ξAA′ + 1
3ΦABA′B′ζAA′

ξBB′

+ 1
8 (C1,1ζ)

AB(C1,1ξ)AB

+ 1
6ξ

AA′

(C0,2C
†
1,1ζ)AA′ + 1

6ζ
AA′

(C0,2C
†
1,1ξ)AA′ + 1

8 (C
†
1,1ζ)

A′B′

(C †
1,1ξ)A′B′

− 1
32 (D1,1ζ)(D1,1ξ), (6.4a)

PξζAA′ ≡ 1
4 ξ

B
A′(C1,1ζ)AB + 1

4ζ
B
A′(C1,1ξ)AB − 1

4ξA
B′

(C †
1,1ζ)A′B′ − 1

4ζA
B′

(C †
1,1ξ)A′B′ . (6.4b)
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Applying the T operator to the equation (6.4a), decomposing the derivatives into irreducible
parts and using (6.1) gives a long expression with the operators D , C , C †, CC †, C †C , T D , T C ,
T C †, DCC †, C CC † and C †CC † operating on ξAA′

and ζAA′

. Using the commutators (2.7a),
(2.7c), (2.7d), (2.7e) and (2.7f) on the outermost operators and using (6.1), the list of operators
appearing can be reduced to the set D , C , C †, DT C †, CT C † and C CC †. Then using the
relations (2.7d) and (2.7e) on the innermost operators the list of operators appearing is reduced
to C , C †, CT D , where the latter can be eliminated with (2.7c) on the outer operators. After
making an irreducible decomposition of ξAA′

ζBB′

and identifying the symmetric part though
(6.2), one is left with

(T0,0Qξζ)A
A′

= Lξζ
BCA′B′

(C2,2Φ)ABCB′ + 1
4ΨABCDξBA′

(C1,1ζ)
CD + 1

4ΨABCDζBA′

(C1,1ξ)
CD

+ LξζA
BB′C′

(C †
2,2Φ)B

A′

B′C′ + 1
4 Ψ̄

A′

B′C′D′ξA
B′

(C †
1,1ζ)

C′D′

+ 1
4 Ψ̄

A′

B′C′D′ζA
B′

(C †
1,1ξ)

C′D′

. (6.5)

Applying the T operator to the equation (6.4b), decomposing the derivatives into irreducible
parts and using (6.1) gives a expression with the operators CC †, C †C , T C , T C † operating
on ξAA′

and ζAA′

. Using the commutators (2.7c), (2.7d) and (2.7g) and using (6.1), the
entire expression can be reduced to only contain curvature terms. After making an irreducible
decomposition of ξAA′

ζBB′

and identifying the symmetric part though (6.2), one is left with

(T1,1Pξζ)AB
A′B′

= Lξζ
CDA′B′

ΨABCD − LξζAB
C′D′

Ψ̄A′B′

C′D′ . (6.6)

Substituting (6.2) into the definition of O
(0)
2,2, allows us to see that (6.5) and (6.6) reduces to

(T0,0Qξζ)A
A′

= (O
(0)
2,2Lξζ)A

A′

, (6.7a)

(T1,1Pξζ)AB
A′B′

= (O
(1)
2,2Lξζ)AB

A′B′

. (6.7b)

The actual form of (6.4a) and (6.4b) was obtained by making sufficiently general symmetric
second order bi-linear ansätze. The coefficients where then chosen to eliminate as many extra
terms as possible in (6.7a) and (6.7b).

6.2. The case when LABA′B′ factors in terms of Killing spinors

Another way of constructing conformal Killing tensors is to make a product of valence (2, 0) and
valence (0, 2) Killing spinors. It turns out that also this case admits solutions to the auxiliary
conditions.

In principle we could construct LABA′B′ from two different Killing spinors, but if the
dimension of the space of Killing spinors is greater than one, the spacetime has to be locally
isometric to Minkowski space. In these spacetimes the picture is much simpler and has been
studied before. The auxiliary conditions will be trivial in these cases. We will therefore only
consider one Killing spinor.

Proof of Proposition 7 part (ii). Let κAB be a Killing spinor, i.e. a solution to

(T2,0κ)ABCA′ = 0. (6.8)

We have a solution

LκAB
A′B′ ≡ κABκ̄

A′B′

, (6.9)

to the equation

(T2,2Lκ)ABC
A′B′C′

= 0. (6.10)

Now, let

Qκ ≡ 2
3ΦABA′B′κABκ̄A′B′

+ 1
9κ

AB(C1,1C0,2κ̄)AB + 4
27 (C0,2κ̄)

AA′

(C †
2,0κ)AA′

+ 1
9 κ̄

A′B′

(C †
1,1C

†
2,0κ)A′B′ , (6.11a)

PκAA′ ≡ 4
3κAB(C0,2κ̄)

B
A′ − 4

3 κ̄A′B′(C †
2,0κ)A

B′

. (6.11b)
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Applying the T operator to the equation (6.11a), decomposing the derivatives into
irreducible parts and using (6.8) gives a long expression with the operators C , C †, DC , DC †,
CC †, C †C , T C , T C †, C C †C †, C †CC , T CC and T C †C † operating on κAB and κ̄A′B′ . Using
the commutators (2.7a), (2.7b), (2.7c), (2.7d), (2.7e) and (2.7f) on the outermost operators and
using (6.8), the list of operators appearing can be reduced to the set C , C †, C T C , C †T C †,
DT C and DT C †. Then using the relations (2.7a), (2.7b), (2.7c) and (2.7d) on the innermost
operators the expression will only contain the operators C , C †.

(T0,0Qκ)A
A′

= κBC κ̄A′B′

(C2,2Φ)ABCB′ − 2
9ΦBC

A′

B′κBC(C0,2κ̄)A
B′

+ 1
3ΨABCDκ

CD(C0,2κ̄)
BA′

+ 2
9ΦBC

A′

B′κA
C(C0,2κ̄)

BB′

− 2
9ΦAC

A′

B′κB
C(C0,2κ̄)

BB′

+ κA
Bκ̄B′C′

(C †
2,2Φ)B

A′

B′C′ + 1
3 Ψ̄

A′

B′C′D′ κ̄C′D′

(C †
2,0κ)A

B′

− 2
9ΦABB′C′ κ̄B′C′

(C †
2,0κ)

BA′

+ 2
9ΦABB′C′ κ̄A′C′

(C †
2,0κ)

BB′

− 2
9ΦAB

A′

C′ κ̄B′

C′

(C †
2,0κ)

BB′

. (6.12)

Applying the T operator to the equation (6.11b), decomposing the derivatives into
irreducible parts and using (6.8) gives an expression with the operators CC †, C †C , T C and
T C † operating on κAB and κ̄A′B′ . Using the commutators (2.7c), (2.7d), (2.7e) and (2.7f) and
using (6.8), the expression reduces to

(T1,1Pκ)AB
A′B′

= ΨABCDκ
CDκ̄A′B′ − Ψ̄A′B′

C′D′κABκ̄
C′D′

. (6.13)

Substituting (6.9) into the definition of O
(0)
2,2, and making an irreducible decomposition of

κAB(C0,2κ̄)C
B′

and κ̄A′B′(C †
2,0κ)AC′ , allows us to see that (6.12) and (6.13) reduces to

(T0,0Qκ)A
A′

= (O
(0)
2,2Lκ)A

A′

, (6.14a)

(T1,1Pκ)AB
A′B′

= (O
(1)
2,2Lκ)AB

A′B′

. (6.14b)

6.3. Example of a conformal Killing tensor that does not factor

The following shows that the condition A0 is non-trivial. We also see that A1 does not imply A0.
Unfortunately, we have not found any example of a valence (1, 1) Killing spinor which does not
satisfy A1.

Consider the following Stäckel metric (see [9] and [29] for more general examples.)

gab = dt2 − dz2 − (x + y)(dx2 + dy2) (6.15)

with the tetrad

la = 1√
2
(∂t)

a + 1√
2
(∂z)

a, na = 1√
2
(∂t)

a − 1√
2
(∂z)

a, ma =
(∂x)

a

√
2(x+ y)1/2

+
i(∂y)

a

√
2(x+ y)1/2

.

Expressed in the corresponding dyad (oA, ιA), the curvature takes the form

ΨABCD = − 12Λo(AoBιC ιD), ΦABA′B′ = 12Λo(AιB)ō(A′ ῑB′), Λ =
1

12(x+ y)3
. (6.16)

We can see that the spinor

LAB
A′B′

= 1
2 (x+ y)(ōA

′

ōB
′

ιAιB + oAoB ῑ
A′

ῑB
′

)− (x− y)o(AιB)ō
(A′

ῑB
′) (6.17)

is a trace-free conformal Killing tensor. We trivially have solutions to the auxiliary condition A1
because

(O
(1)
2,2L)AB

A′B′

= LCDA′B′

ΨABCD − LAB
C′D′

Ψ̄A′B′

C′D′ = 0. (6.18)
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If there is a solution to (1.4) we will automatically have (C1,1O
(0)
2,2L)AB = 0 because C1,1T0,0 = 0.

However, with the current LAB
A′B′

we get

(C1,1O
(0)
2,2L)AB =

5io(AιB)

(x+ y)5
. (6.19)

This is non vanishing, which means that the auxiliary condition A0 does not admit a solution.
This example shows that the conditions A0 and A1 are not equivalent. From the previous two
sections, we can also conclude that this LAB

A′B′

can not be written as a linear combination of
conformal Killing tensors of the form ζ(A

(A′

ξB)
B′) or κABκ̄A′B′ . For the more general metric in

[29] we can in fact also construct a valence (2, 2) Killing spinor which trivially satisfies condition
A1, but which in general will not satisfy condition A0. It is interesting to note that in general
this metric does not admit Killing vectors, but we can still construct symmetry operators for the
Maxwell equation.

6.4. Auxiliary condition for a symmetry operator of the second kind for the Dirac-Weyl equation

Proof of Proposition 7 part (iii). Let κAB be a Killing spinor, and ξAA′

a conformal Killing
vector, i.e.

(T2,0κ)ABCA′ = 0, (T1,1ξ)AB
A′B′

= 0. (6.20)

then we have a solution

LκξABC
A′

≡ κ(ABξC)
A′

(6.21)

to the equation

(T3,1Lκξ)ABCD
A′B′

= 0. (6.22)

The auxiliary equation (1.8) now takes the form

0 = 3
4ΨABDFκ

CD(C1,1ξ)C
F +ΨABCDξ

CA′

(C †
2,0κ)

D
A′ − 3

4ΨABCDκCD(D1,1ξ)

− 5
4Ψ(A

CDFκB)C(C1,1ξ)DF − 5
4Ψ(A

CDFκ|CD|(C1,1ξ)B)F + 6
5κ(A

CξDA′

(C2,2Φ)B)CDA′

+ 3
5κ

CDξ(A
A′

(C2,2Φ)B)CDA′ − 2κDF ξCA′

(T4,0Ψ)ABCDFA′ . (6.23)

Using the technique from Section 2.3 we get that the integrability conditions for (6.20) are

0 = Ψ(ABC
FκD)F , (6.24a)

0 = 1
2ΨABCD(D1,1ξ) + 2Ψ(ABC

F (C1,1ξ)D)F − 4
5ξ(A

A′

(C2,2Φ)BCD)A′ + ξFA′

(T4,0Ψ)ABCDFA′ .
(6.24b)

Applying the operator C † on the condition (6.24a) gives

0 = − 1
2ΨABCD(C

†
2,0κ)

D
A′ − 9

10κ(A
D(C2,2Φ)BC)DA′ + 1

4κ
DF (T4,0Ψ)ABCDFA′ . (6.25)

Using (6.24b) to elliminate ΨABCD(D1,1ξ) and (6.25) to elliminate κDF (T4,0Ψ)ABCDFA′ , and
doing an irreducible decomposition of ΨABCFκD

F we see that (6.23) reduces to

0 = − 2(C1,1ξ)
CDΨ(ABC

FκD)F , (6.26)

which is trivially satisfied due to (6.24a).
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6.5. Factorization of valence (4, 0) Killing spinors with aligned matter

Proof of Theorem 8. Assume that the matter field and the curvature are aligned, that is

0 = Ψ(ABC
FΦD)FA′B′ . (6.27)

Furthermore, assume that ΨABCD does not vanish, and assume that there is a solution LABCD

to
(T4,0L)ABCDEA′ = 0. (6.28)

The integrability condition (5.49) for this equation together with the non-vanishing of the Weyl
spinor, gives that LABCD and ΨABCD are proportional (c.f. [7]). This means that

0 = L(ABC
FΦD)FA′B′ , (6.29a)

0 = − L(ABCD(T0,0Λ)F )A′ + L(ABC
H(C2,2Φ)DF )HA′ + 1

5Φ(AB|A′|
B′

(C †
4,0L)CDF )B′ , (6.29b)

where the second equation is obtained by taking a derivative of the first, decomposing the
derivatives into irreducible parts, using the Killing spinor equation, and symmetrizing over all
unprimed indices.

Split LABCD into principal spinors LABCD = α(AβBγCδD). Now, the Killing spinor equation
(6.28), and the alignment equation (6.29a) gives

0 = αAαBαCαDαF (T4,0L)ABCDFA′ = αAβAα
BγBα

CδCα
DαF∇FA′αD, (6.30a)

0 = αAαBαCαDL(ABC
FΦD)FA′B′ = 1

4α
AβAα

BγBα
CδCα

DαFΦDFA′B′ . (6.30b)

We will first assume that αA is not a repeated principal spinor of LABCD. This means that
αAβAα

BγBα
CδC 6= 0 and hence αAαB∇A′AαB = 0, that is αA is a shear-free geodesic null

congruence. We also get αDαFΦDFA′B′ = 0. Contracting (6.29b) with αAαBαCαDαF we get

0 = 1
4α

AβAα
BγBα

CδCα
DαFαH(C2,2Φ)DFHA′ + 1

5ΦABA′

B′

αAαBαCαDαF (C †
4,0L)CDFB′

= 1
4α

AβAα
BγBα

CδCα
DαFαH(C2,2Φ)DFHA′ . (6.31)

Hence, αAαBαC(C2,2Φ)ABCA′ = 0. But the Bianchi equations give

αAαBαC∇DD′

ΨABCD = αAαBαC(C2,2Φ)ABCA′ = 0. (6.32)

It follows from the generalized Goldberg-Sachs theorem that αA is a repeated principal spinor of
ΨABCD, see for instance [15, Proposition 7.3.35]. But LABCD and ΨABCD are proportional, so αA

is a repeated principal spinor of LABCD after all. Without loss of generality, we can assume that
γA = αA, a relabelling and rescaling of βA, γA and δA can achieve this. Repeating the argument
with βA, we find that also βA is a repeated principal spinor of LABCD. If β

AαA = 0, we can repeat
the argument again with δA and see that all principal spinors are repeated, i.e. Petrov type N.
Otherwise, we have Petrov type D. In conclusion, we have after rescaling LABCD = α(AαBβCβD).
Now, let κAB = α(AβB).

First assume that αAβA 6= 0. Contracting (6.28) with αAαBαCαDβF , αAαBαCβDβF ,
αAαBβCβDβF , αAβBβCβDβF we find

0 = αAαBαC(T2,0κ)ABCA′ , 0 = αAαBβC(T2,0κ)ABCA′ ,

0 = αAβBβC(T2,0κ)ABCA′ , 0 = βAβBβC(T2,0κ)ABCA′ .

Hence, (T2,0κ)ABCA′ = 0.
If αAβA = 0, we can find a dyad (oA, ιA) so that αA = oA. Then we have LABCD =

υ2oAoBoCoD and κAB = υoAoB. Contracting (6.28) with oAoBoCιDιF υ−1, oAoBιCιDιFυ−1,
oAιBιCιDιFυ−1, ιAιBιCιDιFυ−1 we find

0 = oAoBoC(T2,0κ)ABCA′ , 0 = oAoBιC(T2,0κ)ABCA′ ,

0 = oAιBιC(T2,0κ)ABCA′ , 0 = ιAιBιC(T2,0κ)ABCA′ .

Hence, (T2,0κ)ABCA′ = 0.
We can therefore conclude that if the curvature satisfies (6.27), ΨABCD does not vanish, and

we have a valence (4, 0) Killing spinor LABCD, then we have a valence (2, 0) Killing spinor κAB

such that LABCD = κ(ABκCD).
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7. The symmetry operators with factorized Killing spinor

7.1. Symmetry operators for the conformal wave equation

Let us now consider special cases of symmetry operators for the conformal wave equation. If we
choose

LABA′B′ = LξζABA′B′ , PAA′ = 0, Q = 2
5Qξζ . (7.1)

Then the operator takes the form

χ = 1
2 L̂ζL̂ξφ+ 1

2 L̂ξL̂ζφ. (7.2)

One can also add an arbitrary first order symmetry operator to this.
We can also choose

LABA′B′ = LκABA′B′ , PAA′ = 0, Q = 2
5Qκ. (7.3)

Substituting these expressions into (3.3) gives a symmetry operator, but we have not found any
simpler form than the one given by (3.3).

Remark 29. Apart from factorizations, one can in special cases get symmetry operators from
Killing tensors. If KAB

A′B′

is a Killing tensor, then we have

(T2,2L)ABCA′B′C′ = 0, (D2,2L)AA′ = − 3
4 (T0,0S)AA′ , KABA′B′

= LABA′B′

+ 1
4Sǫ

AB ǭA
′B′

where LAB
A′B′

= K(AB)
(A′B′) and S = KA

A
A′

A′

. The commutator (2.7c) gives (C1,1D2,2L)AB =
0. If we also assume vacuum, then the equation (4.27) gives

(T0,0D1,1D2,2L)AA′ = − 2ΨABCD(C2,2L)
BCD

A′ − 2Ψ̄A′B′C′D′(C †
2,2L)A

B′C′D′

. (7.4)

Hence, we can choose

Q = − 1
15 (D1,1D2,2L), (7.5)

to satisfy condition A0, and get the well known symmetry operator

χ = − 1
2 (T0,0S)

AA′

(T0,0φ)AA′ + LABA′B′

(T1,1T0,0φ)ABA′B′ = ∇AA′(KABA′B′∇BB′φ), (7.6)

which is valid for vacuum spacetimes.

7.2. Symmetry operator of the first kind for the Dirac-Weyl equation

Let us now consider special cases of symmetry operators of the first kind for the Dirac-Weyl
equation. We can choose

LABA′B′ = LξζABA′B′ , PAA′

= − 1
3Pξζ

AA′

, Q = 3
10Qξζ , (7.7)

to get a symmetry operator for the Dirac-Weyl equation. The operator then becomes

χA = 1
2 L̂ξL̂ζφA + 1

2 L̂ζL̂ξφA. (7.8)

We can add any conformal Killing vector to PAA′

and any constant to Q. Note that if we add
the conformal Killing vector 1

2 (ξ
BB′∇BB′ζAA′ − ζBB′∇BB′ξAA′

) to PAA′

, the operator gets the
factored form

χA = L̂ξL̂ζφA. (7.9)

We can also choose

LABA′B′ = LκABA′B′ , PAA′

= − 1
3Pκ

AA′

, Q = 3
10Qκ. (7.10)

Substituting these expressions into (4.2) gives a symmetry operator, but we have not found any
simpler form than the one given by (4.2).
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7.3. Symmetry operator of the first kind for the Maxwell equation

Let us now consider the symmetry operators of the first kind for the Maxwell equation. Let

LABA′B′ = LξζABA′B′ , PAA′

= − 2
3Pξζ

AA′

, Q = 0, (7.11)

to get a symmetry operator. With this choice the symmetry operator and the potential reduce
to

χAB = 1
2 L̂ζL̂ξφAB + 1

2 L̂ξL̂ζφAB , (7.12a)

AAA′ = − 1
2ζ

B
A′L̂ξφAB − 1

2ξ
B
A′L̂ζφAB . (7.12b)

A general first order operator can be added to this. If we add an the same commutator as above
with an appropriate coefficient to PAA′

, we get the same kind of factorization of the operator as
above.

We can also get a solution by setting

LABA′B′ = LκABA′B′ , PAA′

= − 2
3Pκ

AA′

, Q = 0, (7.13)

With this choice the symmetry operator and the potential reduce to

χAB = (C1,1A)AB , (7.14a)

AAA′ = − 1
3ΘAB(C0,2κ̄)

B
A′ + κ̄A′B′(C †

2,0Θ)A
B′

, (7.14b)

ΘAB ≡ − 2κ(A
CφB)C . (7.14c)

This proves the first part of Theorem 11.

7.4. Symmetry operator of the second kind for the Dirac-Weyl equation

Let

LABC
A′

= LκξABC
A′

, (7.15a)

PAB = − 1
2 L̂ξκAB + 3

8κAB(D1,1ξ)

= 1
8κAB(D1,1ξ)− 1

2κ(A
C(C1,1ξ)B)C + 1

3ξ(A
A′

(C †
2,0κ)B)A′ . (7.15b)

Using the equations (6.20), the commutators (2.7e), (2.7f), (2.7c), (2.7d) and the irreducible
decompositions of ΨABCFκD

F and ΦABA′B′ξC
B′

we get

(T2,0P )ABCA′ = − 1
6κ(AB(C

†
2,0C1,1ξ)C)A′ − 1

2κ(A
D(T2,0C1,1ξ)BC)DA′ + 1

8κ(AB(T0,0D1,1ξ)C)A′

+ 1
6 ξ(A|A′|(C1,1C

†
2,0κ)BC) +

1
3ξ(A

B′

(T1,1C
†
2,0κ)BC)A′B′

= ξDA′Ψ(ABC
FκD)F

= 0, (7.16)

where we in the last step used the integrability condition (6.24b). Observe that PAB is given by

a conformally weighted Lie derivative, but now with a different weight. The operator L̂ξ has a
conformal weight adapted to the weight of the conformally invariant operator C †. The operator
T is also conformally invariant, but with a different weight. This explains the extra term in PAB.

The symmetry operator of the second kind for the Dirac-Weyl equation now takes the form

ωA′ = κBC(T1,0L̂ξφ)BCA′ − 2
3 L̂ξφB(C

†
2,0κ)

B
A′ . (7.17)

Hence, we can conclude that if LABCA′ factors, then one can choose a corresponding PAB so that
the operator factors as a first order symmetry operator of the first kind followed by a first order
symmetry operator of the second kind.
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7.5. Symmetry operator of the second kind for the Maxwell equation

If we let LABCD = κ(ABκCD) with

(T2,0κ)ABCA′ = 0, (7.18)

Then the operator if the second kind now takes the form

ωA′B′ = (C †
1,1B)A′B′ , (7.19a)

BAA′ = κAB(C
†
2,0Θ)BA′ + 1

3ΘAB(C
†
2,0κ)

B
A′ , (7.19b)

ΘAB ≡ − 2κ(A
CφB)C . (7.19c)

This proves the second part of Theorem 11.

Acknowledgements

The authors would like to thank Steffen Aksteiner and Lionel Mason for helpful discussions. We
are particularly grateful to Lionel Mason for his ideas concerning Theorem 8. Furthermore we
would like to thank Niky Kamran and J. P. Michel for helpful comments. LA thanks Shing-
Tung Yau for generous hospitality and many interesting discussions on symmetry operators and
related matters, during a visit to Harvard University, where some initial work on the topic of this
paper was done. This material is based upon work supported by the National Science Foundation
under Grant No. 0932078 000, while the authors were in residence at the Mathematical Sciences
Research Institute in Berkeley, California, during the semester of 2013.

References

[1] Carter B 1968 Phys. Rev. 174 1559–1571
[2] Walker M and Penrose R 1970 Commun. Math. Phys. 18 265–274
[3] Carter B 1977 Phys. Rev. D 16 3395–3414
[4] Miller Jr W 1977 Symmetry and separation of variables (Addison-Wesley Publishing Co., Reading, Mass.-

London-Amsterdam) ISBN 0-201-13503-5 with a foreword by Richard Askey, Encyclopedia of Mathematics
and its Applications, Vol. 4

[5] Kalnins E G, Miller Jr W and Williams G C 1989 J Math. Phys. 30 2360–2365
[6] Kalnins E G, Miller Jr W and Williams G C 1989 J Math. Phys. 30 2925–2929
[7] Kalnins E G, McLenaghan R G and Williams G C 1992 R. Soc. London Proc. Ser. A 439 103–113
[8] McLenaghan R G, Smith S N and Walker D M 2000 R. Soc. London Proc. Ser. A 456 2629
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