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Abstract

Using systematic calculations in spinor language, we obtain simple descriptions
of the second order symmetry operators for the conformal wave equation, the
Dirac—Weyl equation and the Maxwell equation on a curved four-dimensional
Lorentzian manifold. The conditions for existence of symmetry operators for
the different equations are seen to be related. Computer algebra tools have been
developed and used to systematically reduce the equations to a form which
allows geometrical interpretation.
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1. Introduction

The discovery by Carter [1] of a fourth constant of the motion for the geodesic equations
in the Kerr black hole spacetime, allowing the geodesic equations to be integrated, together
with the subsequent discovery by Teukolsky, Chandrasekhar and others of the separability of
the spin-s equations for all half-integer spins up to s = 2 (which corresponds to the case of
linearized Einstein equations) in the Kerr geometry, provides an essential tool for the analysis
of fields in the Kerr geometry. The geometric fact behind the existence of Carter’s constant
is, as shown by Walker and Penrose [2], the existence of a Killing tensor. A Killing tensor is
a symmetric tensor K, = K41, satisfying the equation VK, = 0. This condition implies
that the quantity K = K,y is constant along affinely parametrized geodesics. In particular,
viewed as a function on phase space, K Poisson commutes with the Hamiltonian generating
the geodesic flow, H = y“y,.

Carter further showed that in a Ricci flat spacetime with a Killing tensor K, the
operator K = V,K?V,, which may be viewed as the ‘quantization’ of K, commutes with
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the d’ Alembertian H = V“V,, which in turn is the ‘quantization’ of H, cf [3]. In particular,
the operator K is a symmetry operator for the wave equation H¢ = 0, in the sense that it maps
solutions to solutions. The properties of separability, and existence of symmetry operators, for
partial differential equations are closely related [4]. In fact, specializing to the Kerr geometry,
the symmetry operator found by Carter may be viewed as the spin-0 case of the symmetry
operators for the higher spin fields as manifested in the Teukolsky system, see e.g. [5, 6].

In this paper we give necessary and sufficient conditions for the existence of second
order symmetry operators, for massless test fields of spin 0, 1/2, 1, on a globally hyperbolic
Lorentzian spacetime of dimension 4. (As explained in section 2.4, the global hyperbolicity
condition can be relaxed.) In each case, the conditions are the existence of a conformal Killing
tensor or Killing spinor, and certain auxiliary conditions relating the Weyl curvature and the
Killing tensor or spinor. We are particularly interested in symmetry operators for the spin-1
or Maxwell equation. In this case, we give a single auxiliary condition, which is substantially
more transparent than the collection previously given in [7]. For the massless spin-1/2 or Dirac—
Weyl equation, our result on second order symmetry operators represents a simplification of the
conditions given by McLenaghan et al [8] for the existence of symmetry operators of order two.
The conditions we find for spins 1/2 and 1 are closely related to the condition found recently
for the spin-0 case for the conformal wave equation by Michel et al [9], cf theorem 3 below.

A major motivation for the work in this paper is provided by the application by two of the
authors [10] of the Carter symmetry operator for the wave equation in the Kerr spacetime, to
prove an integrated energy estimate and boundedness for solutions of the wave equation. The
method used is a generalization of the vector fields method [11] to allow not only Killing vector
symmetries but symmetry operators of higher order. In order to apply such methods to fields
with non-zero spin, such as the Maxwell field, it is desirable to have a clear understanding of
the conditions for the existence of symmetry operators and their structure. This serves as one
of the main motivations for the results presented in this paper, which give simple necessary
and sufficient conditions for the existence of symmetry operators for the Maxwell equations
in a four-dimensional Lorentzian spacetime.

The energies constructed from higher order symmetry operators correspond to conserved
currents which are not generated by contracting the stress energy tensor with a conformal
Killing vector. Such conserved currents are known to exist e.g. for the Maxwell equation,
as well as fields with higher spin on Minkowski space, see [12] and references therein. In a
subsequent paper [13] we shall present a detailed study of conserved currents up to second
order for the Maxwell field.

We will assume that all objects are smooth, we work in signature (+, —, —, —), and we use
the 2-spinor formalism, following the conventions and notation of [14, 15]. For a translation to
the Dirac 4-spinor we refer to [13, p 221]. Recall that A /24 is the scalar curvature, @454 5 the
Ricci spinor, and Wapcp the Weyl spinor. Even though several results are independent of the
existence of a spin structure, we will for simplicity assume that the spacetime is spin. The 2-
spinor formalism allows one to efficiently decompose spinor expressions into irreducible parts.
All irreducible parts of a spinor are totally symmetric spinors formed by taking traces of the
spinor and symmetrizing all free indices. Making use of these facts, any spinor expression can
be decomposed in terms of symmetric spinors and spin metrics. This procedure is described
in detail in section 3.3 in [14] and in particular by proposition 3.3.54.

This decomposition has been implemented in the package SymManipulator [16]
by the second author. SymManipulator is part of the xAct tensor algebra package
[17] for Mathematica. The package SymManipulator includes many canonicalization and
simplification steps to make the resulting expressions compact enough and the calculations
rapid enough so that fairly large problems can be handled. A mathematica 9 notebook
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file containing the main calculations for this paper is available as supplementary data at
stacks.iop.org/CQG/31/135015/mmedia (see also: http://hdl.handle.net/10283/541).

We shall in this paper consider only massless spin-s test fields. For the spin-0 case the
field equation is the conformal wave equation

VOV, +4A)p =0, (1.1

for a scalar field ¢, while for non-zero spin the field is a symmetric spinor ¢,...r of valence
(2s, 0) satisfying the equation

VA da.r =0. (1.2)

In this paper we shall restrict our considerations to spins 0, 1/2, 1. For s > 3/2, equation (1.2)
implies algebraic consistency conditions, which strongly restrict the space of solutions in the
presence of non-vanishing Weyl curvature. Note however that there are consistent equations
for fields of higher spin, see [14, section 5.8] for discussion.

Recall that a Killing spinor of valence (k, [) is a symmetric spinor Ly,...4, 1",

Voa, YLy a0 = 0. (1.3)

A valence (1, 1) Killing spinor is simply a conformal Killing vector, while a valence (2, 0)
Killing spinor is equivalent to a conformal Killing—Yano 2-form. On the other hand, a Killing
spinor of valence (2,2) is simply a trace-less symmetric conformal Killing tensor. It is
important to note that (1.1), (1.2) and (1.3) are conformally invariant if ¢ and ¢4...r are given
conformal weight —1, and LA 4414/ is given conformal weight 0. See [14, sections 5.7 and
6.7] for details.

Recall that a symmetry operator for a system H¢ = 0, is a linear partial differential
operator I such that H/Cp = 0 for all ¢ such that Hp = 0. We say that two operators K,
and /C, are equivalent if I} — ', = FH for some differential operator F. We are interested
only in non-trivial symmetry operators, i.e. operators which are not equivalent to the trivial
operator 0. For simplicity, we will only consider equivalence classes of symmetry operators.

To state our main results, we need two auxiliary conditions.

Definition 1. Ler Lig"® be a Killing spinor of valence (2, 2).
(AO) Lag*? satisfies auxiliary condition (AO) if there is a function Q such that
Var Q = %\I'IABCDV(B‘B/lLCD) wp + 3Vapon VEE L)
+LPC 4BV 1 Bpoype + LaPPCVE @ @ ipppor. (1.4)
(Al) Lag®? satisfies auxiliary condition (Al) if there is a vector field Px*" such that

Np B DA'B DT AR
Va4 Pp)®) = LPYEWypep — Lig“ P U opy. (1.5

Remark 2. Under conformal transformations such that LABA5' | PA4" and Q are given conformal
weight 0, the equations (1.4) and (1.5) are conformally invariant.

We start by recalling the result of Michel ef al [9] for the spin-0 conformal wave equation,
which we state here in the case of a Lorentzian spacetime of dimension 4.
Theorem 3 ([8, theorem 4.8]). Consider the conformal wave equation
ViV, +4M)¢p =0 (1.6)

in a four-dimensional Lorentzian spacetime. There is a non-trivial second order symmetry
operator for (1.6) if and only if there is a non-zero Killing spinor of valence (2, 2) satisfying
condition (A0) of definition 1.


http://stacks.iop.org/CQG/31/135015/mmedia
http://hdl.handle.net/10283/541

Class. Quantum Grav. 31 (2014) 135015 L Andersson et al

Previous work on the conformal wave equation was done by [18], see also Kress [19],
see also [20]. Symmetry operators of general order for the Laplace—Beltrami operator in the
conformally flat case have been analyzed by Eastwood [21].

Next we consider fields with spins 1/2 and 1. The massless spin-1/2 equations are

VAga =0, (1.7a)
and its complex conjugate form
Vatxa =0, (1.7b)

which we shall refer to as the left and right Dirac—Weyl equations®. Analogously with the
terminology used by Kalnins et al [7] for the spin-1 case, we call a symmetry operator
¢a — s, which takes a solution of the left equation to a solution of the left equation a
symmetry operator of the first kind, while an operator ¢4 + x4 Which takes a solution of the
left equation to a solution of the right equation a symmetry operator of the second kind.

If one considers symmetry operators in the Dirac 4-spinor notation, a 4-spinor would
correspond to a pair of 2-spinors (¢a, ¢a/). Therefore a symmetry operator (¢a, ¢a) —
(A4, xa) for a 4-spinor is formed by a combination of symmetry operators of first ¢4 — Aq,
and second ¢4 — x4 kind, together with complex conjugate versions of first g4 +— x4, and
second @4 — A4 kind symmetry operators.

Theorem 4. Consider the Dirac—Weyl equations (1.1) in a Lorentzian spacetime of
dimension 4.

(i) There is a non-trivial second order symmetry operator of the first kind for the Dirac—Weyl
equation if and only if there is a non-zero Killing spinor of valence (2,2) satisfying
auxiliary conditions (A0) and (Al) of definition 1.

(ii) There is a non-trivial second order symmetry operator of the second kind for the Dirac—
Weyl equation if and only if there is a non-zero Killing spinor Lagc™ of valence (3, 1),
such that the auxiliary condition

c 5., C A c A
0= 2Wucp VLD pu + 2PV Lepryw + 2UaPF V" Leprya
- %LBCDA Vi ®cpap — %LACDA Vs® Seppan + %LCDFA Va1 ¥Yeepr) (1.8)

is satisfied.

Remark 5.

ZABCA’ JABCA

(i) Under conformal transformations such that
conformally invariant.

(i) We remark that the auxiliary condition (A0O), appears both in theorem 4, and for the
conformal wave equation in theorem 3.

, the equation (1.8) is

In previous work, Benn and Kress [22] showed that a first order symmetry operator of
the second kind for the Dirac equation exists exactly when there is a valence (2, 0) Killing
spinor. See also Carter and McLenaghan [23] and Durand et al [24] for earlier work. The
conditions for the existence of a second order symmetry operator for the Dirac—Weyl equations
in a general spacetime were considered in [8], see also [25]. The conditions derived here
represent a simplification of the conditions found in [8]. Further, we mention that symmetry

3 The use of the terms left and right is explained by noting that spinors of valence (k, 0) represent left-handed
particles, while spinors of valence (0, k) represent right-handed particles, cf [14, section 5.7]. The Dirac equation is
the equation for massive, charged spin-1/2 fields, and couples the left- and right-handed parts of the field, see [14,
section 4.4]. We shall not consider the symmetry operators for the Dirac equation here.
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operators of general order for the Dirac operator on Minkowski space have been analyzed by
Michel [26].
For the spin-1 case, we similarly have the left and right Maxwell equations

V2 ydag =0, (1.9a)

Vi xap = 0. (1.9b)

The left-handed and right-handed spinors ¢4p, x4 5 represent an anti-self-dual and a self-
dual 2-form, respectively. Each equation in (1.9) is thus equivalent to a real Maxwell equation,
cf [14, section 3.4]. Analogously to the spin-1/2 case, we consider second order symmetry
operators of the first and second kind.

Theorem 6. Consider the Maxwell equations (1.1) in a Lorentzian spacetime of dimension 4.

(i) There is a non-trivial second order symmetry operator of the first kind for the Maxwell
equation if and only if there is a non-zero Killing spinor of valence (2, 2) such that the
auxiliary condition (A1) of definition 1 is satisfied.

(i) There is a non-trivial second order symmetry operator of the second kind for the Maxwell
equation if and only if there is a non-zero Killing spinor Lapcp of valence (4, 0).

Note that no auxiliary condition is needed in point (ii) of theorem 6. The conditions for
the existence of second order symmetry operators for the Maxwell equations have been given
in previous work by Kalnins et al [7], see also [27], following earlier work by Kalnins et al
[5], see also [19]. In [7], the conditions for a second order symmetry operator of the second
kind were analyzed completely, and agree with the condition given in point (ii) of theorem 6.
However, the conditions for a second order symmetry operator of the first kind stated there
consist of a set of five equations, of a not particularly transparent nature. The result given here
in point (i) of theorem 6 provides a substantial simplification and clarification of this previous
result.

The necessary and sufficient conditions given in theorems 3, 4, 6 involve the existence
of a Killing spinor and auxiliary conditions. The following result gives examples of Killing
spinors for which the auxiliary conditions (A0), (A1) and equation (1.8) are satisfied.

Proposition 7. Let £*" and ¢’ be (not necessarily distinct) conformal Killing vectors and
let kap be a Killing spinor of valence (2, 0).

(i) The symmetric spinor E(A(A/CB)B/) is a Killing spinor of valence (2,2), which admits
solutions to the auxiliary conditions (A0) and (Al).
(ii) The symmetric spinor kapkap is also a Killing spinor of valence (2,2), which admits
solutions to the auxiliary conditions (A0) and (Al).
(iii) The spinor K(Agéc)c is a Killing spinor of valence (3, 1), which satisfies auxiliary equation
(1.8).
(iv) The spinor kpkcp) is a Killing spinor of valence (4, 0).

The point (iv) is immediately clear. The other parts will be proven in section 6.
We now consider the following condition

0 = Ve Ppyrap, (1.10)

relating the Ricci curvature ® 4545 and the Weyl curvature Wypcp. A spacetime where (1.10)
holds will be said to satisfy the aligned matter condition. In particular this holds in vacuum
and in the Kerr—-Newman class of spacetimes. Under the aligned matter condition we can show
that the converse of proposition 7 part (iv) is true. The following theorem will be proved in
section 6.5.
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Theorem 8. If the aligned matter condition (1.10) is satisfied, Wapcp # O and Lapcp is a
valence (4, 0) Killing spinor, then there is a valence (2, 0) Killing spinor kap such that

Lapcp = K@aBkcp)- (1.11)

Remark 9. If W pcp = 0, the valence (4, 0) Killing spinor will still factor but in terms of
valence (1, 0) Killing spinors, which then can be combined into valence (2, 0) Killing spinors.
However, the two factors might be distinct.

A calculation shows that if (1.10) holds, k45 is a valence (2, 0) Killing spinor, then
£ = VB AL is a Killing vector field. Taking this fact into account, we have the following
corollary to the results stated above. It tells that generically one can generate a wide variety of
symmetry operators from just a single valence (2, 0) Killing spinor.

Corollary 10. Consider the massless test fields of spins 0, 1/2 and 1 in a Lorentzian spacetime
of dimension 4. Assume that there is Killing spinor kap (not identically zero) of valence (2, 0).
Then there are non-trivial second order symmetry operators for the massless spin-s field
equations for spins 0 and 1, as well as a non-trivial second order symmetry operator of the
first kind for the massless spin-1/2 field.

If, in addition, the aligned matter condition (1.10) holds, and & sy = VB kap is not
identically zero, then there is also a non-trivial second order symmetry operators of the
second kind for the massless spin-1/2 field.

We end this introduction by giving a simple form for symmetry operators for the Maxwell
equation, generated from a Killing spinor of valence (2, 0).

Theorem 11. Let kap be a Killing spinor of valence (2, 0) and let

Oup = — 2k Ppc. (1.12)
Define the potentials

Aan = iia® Vpp©4° — %®ABVBB/’ZA’B,, (1.13a)

BAA’ = I{ABVCA/®BC + %@ABVCA’KBC- (113b)

Assume that ¢ap is a solution to the Maxwell equation in a Lorentzian spacetime of
dimension 4. Let Aaa, Baar be given by (1.13). Then

xas = V" Aayar, (1.14a)

wap = VEu B (1.14b)
are solutions to the left and right Maxwell equations, respectively.

The proof can be found in sections 7.3 and 7.5. The general form of the symmetry
operators for spins 0, 1/2 and 1 is discussed in detail below.

Remark 12. The symmetry operators of the Maxwell equation can in general be written in
potential form. See theorems 25 and 27.

The method used in this paper can also be used to show that the symmetry operators R-
commute with the Dirac and Maxwell equations. Recall that an operator S is said to R-commute
with a linear PDE L¢ = O if there is an operator R such that LS = RL. Even providing a
formula for the relevant R operators would require additional notation, so we have omitted
this result from this paper.



Class. Quantum Grav. 31 (2014) 135015 L Andersson et al

Overview of this paper

In section 2 we define the fundamental operators 2, ¢, 6", .7 obtained by projecting the
covariant derivative of a symmetric spinor on its irreducible parts. These operators are
analogues of the Stein—Weiss operators discussed in Riemannian geometry and play a central
role in our analysis. We give the commutation properties of these operators, derive the
integrability conditions for Killing spinors, and end the section by discussing some aspects
of the methods used in the analysis. Section 3 gives the analysis of symmetry operators for
the conformal wave equation. The results here are given for completeness, and agree with
those in [9] for the case of a Lorentzian spacetime of dimension 4. The symmetry operators
for the Dirac—Weyl equation are discussed in section 4 and our results for the Maxwell case
are given in section 5. Special conditions under which the auxiliary conditions can be solved
is discussed in section 6. Finally, section 7 contains simplified expressions for the symmetry
operators for some of the cases discussed in section 6.

2. Preliminaries

2.1. Fundamental operators

Let Sk ; denote the vector bundle of symmetric spinors with k& unprimed indices and / primed
indices. We will call these spinors symmetric valence (k, /) spinors. Furthermore, let S
denote the space of smooth (C*°) sections of Sy ;.

Definition 13. For any goAl,“AkA’I"'A5 € Sk, we define the operators Dy : Sii — Sk—1.-1,
Gt Skt = Skr1i-1, 6y Skt = Sk—r41 and Ty 2 St —> Siq1i41 as

(Dr1@)a, . a Mt = VB g o i, (2.1a)
(Gei9)arae 4 = Via, B oaya 41, (2.1b)
(G 0)ara i = VP Ry ), (2.1¢)
(Tii@)ar a4 = Vi, Wra, a4, (2.1d)

Remark 14.

(i) These operators are all conformally covariant, but the conformal weight differs between
the operators. See [15, section 6.7] for details.

(ii) The left Dirac—Weyl and Maxwell equations can be written as (%:O(ﬁ)A/ = 0 and
(‘5; o®)an = 0 respectively. Similarly the right equations can be written in terms of
the € operator.

The operator Z; only makes sense when k > 1 and [ > 1. Likewise %} is defined only
if /] > 1 and ‘5,:1 only if £ > 1. To make a clean presentation, we will use formulas where
invalid operators appear for some choices of k and /. However, the operators will always be
multiplied with a factor that vanishes for these invalid choices of k and /. From the definition
it is clear that the complex conjugates of (Z1¢), (6r.1¢), (%,L(p) and (9 ¢) are (Z,49),
(%Tké), (%1.1¢) and (7] @) respectively, with the appropriate indices.

The main motivation for the introduction of these operators is the irreducible
decomposition of the covariant derivative of a symmetric spinor field.
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Lemma 15. For any goAl,,,AkA’I"'A; € Sk, we have the irreducible decomposition

A (A ALA
—— NN Gp)a,

Al Ay A A A
Va1 a0 = (T ayag, A — —

T (G 1) s a0
kl

+ _—
k+DUI+T1)
Proof. It follows from in [14, proposition 3.3.54] that the irreducible decomposition must

have this form. The coefficients are then found by contracting indices and partially expanding
the symmetries. ]

ZA| (4, ALLA)
€4, € (Di@) g a0 2.2)

With this notation, the Bianchi system takes the form

(222P)an = — 3(D0A)aar (2.3a)

(€] oW asca = (22P)ascw- (2.3b)

In the rest of the paper we will use these equations every time the left-hand sides appear
in the calculations.

With the definitions above, a Killing spinor of valence (k, /) is an element Ly...p S
ker Z;;, a conformal Killing vector is a Killing spinor of valence (1, 1), and a trace-less
conformal Killing tensor is a Killing spinor of valence (2,2). We further introduce the
following operators, acting on a valence (2, 2) Killing spinor.

ALF

Definition 16. For L,z"? € ker 7 ,, define
(OE(BL)AA/ = MWupep (G L) PPN + LEAE (63, @) apcw

H30Y e (6,047 Y + L% (6], 0)5" s (2.4a)
(O39L) 5" = LY Wppep — Lap™” 9P o (2.4b)

The operators (’)gg and (’);lg are the right-hand sides of (1.4) and (1.5) in conditions (AQ)
and (A1) respectively. They will play an important role in the conditions for the existence of
symmetry operators.

Given a conformal Killing vector £44 we follow [28, equations (1.2) and (15)], see also
[12], and define a conformally weighted Lie derivative acting on a symmetric valance (2s, 0)
spinor field as follows.

Definition 17. For €44 € ker .7, 1, and ©a,. Ay, € Sas0, we define
1—=s

4

ﬁsﬁﬂA....Az,v = (‘EBB/ VBB’QDA,...AZx + s‘pB(Az...AzVVA])B"’;:BB/ + DA, ... Ay VCC/&_CC“ (2.5)

This operator turns out to be important when we describe first order symmetry operators.
See section 7.4 for further discussion.
2.2. Commutator relations

Let (pAlmAkA/l'"A; € S, and define the standard commutators

DAB = V(A|Ar|VB)A, and DAfBr = VA(A/VABf). (26)
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Acting on spinors, these commutators can always be written in terms of curvature spinors as
described in [14, section 4.9].

Lemma 18. The operators 9, ¢, € and T satisfies the following commutator relations

(Dhs 10161194, A AAi — k—i-_l(%c V1D 19)A,..A /1---A;72
—Ogopa.a =5 k>0,1>2, (2.7a)

(9k71*1+1<51:tl(p)A1~~~Ak—2A;“-A, - [+ l(%k-r—l,lfl‘@k,lﬁo)m...Aksz/] A
— Opcga.n "4, k=2,120, (2.7b)

4 ‘ l ’ ’

(Cirr1 Tea)aras™ Y = H_l(%+l,l—lcflc,l‘p)A1MAHZAI".AI
- D(AlAz(pAsmAHz)A,lmA;’ k>0,1>0, (2.7¢)

k
(‘Kk117,+1%,1<ﬂ)A,... A = k_(% 11+1<5;<,€0)A, PRaE

—OWg, M4 k20,120, (2.7d)
(D101 Tea1@)a,.a 14 = — (kj— 7 + Hl_ 1) (‘gkq,lﬂcglj,ﬂﬂ)m...AkA/"”A;
i;l_i_lez)Z(gk L1 Dia@)a, a1 = ji—TDB(AIQDAZ...AwBA/‘“‘A;
- HLIDB“’!%, AW k=1,120, (2.7¢)
(Disrin Tea@)ay. a M = — (k—l—% + l—|1— 1) (Cgk+ll 1 G194, A
]Elik i?g (Tir11Dea)a, a0 — M—le 1 P app
EI?DB Won.a Mg, k20121, 2.7f)
(Gio1.1116, 19)A, A (kall, G, 4
+(kj—1 lil)(%lllgklw)Al A
— O, Bpa, aps™ 4 + 08 Wiy, 422 Wp k> 1,12 1. (2.7g)

Proof. We first observe that (2.7a) and (2.7b) are related by complex conjugation. Likewise
(2.7¢) and (2.7d) as well as (2.7¢) and (2.7f) are also related by complex conjugation.
Furthermore, (2.7¢) is given by the difference between (2.7¢) and (2.7f). It is therefore
enough to prove (2.7a), (2.7d) and (2.7¢). We consider each in turn.

o We first prove (2.7a). We partially expand the symmetry, identify the commutator in one
term, and commute derivatives in the other:

ALA
(Dhi1.0-1Cr19)a,..a," 2
BBw C AlLA
=V Vau, " a2 pe

1 1 s

, W kK ppe N
= ir1 Ve 0a, M Mg+ ——VEE VY, Dpa, apnpMi2pe

k+1
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B'C Al.A B BC A A
T Tkt ID PaalT e k+ 16 @7 @ay 408" 2B
k B o
C' BB AlLLAL,
+k T 1 V(A] \Y% PA,.. A)B =2 gy
—k |4 rAL Bt
AlLA A A BC
= k + 1(%16*171*19/{,“0)14].../11( ! -2 — DB,C'(pA]...Ak 1 1-2 .

e To prove (2.7d), we first partially expand the symmetrization over the unprimed indices in
the irreducible decomposition (2.2) and symmetrizing over the primed indices. This gives

Va, “20a,. a5 = (Fi9)a, . ap 2 — k+ 1eAlB(Cg;:lw)Az...AkAz"'AHz
k—1 o
e i AL A
_k + IEAI(AZ (Cgk,I(P)A}..Ak)B 2002, 2.8)

Using the definitions of .7 and %’¥, commuting derivatives and using (2.8), we have

(%_Lchgka(p)AlmAkA;...A;” = Vi, VB L)
= O%WAagy, 224 1 VBN Y, gy g g A)
= D(A/‘A,ZQDAI...AkAé"'A;) + vBA (%,Z(p)AIWAkBA/ZmA;”)
- IH_%G(A, 5 VBN ((ng[‘p)Az...Ak)
= OWhg, M4 + (%LL,H%,W)A,...AkA/'"'A;“

Ay i)

1 ¥ ALA
+H—l(%—1,l+1%,zfﬂ)A,...Ak 12, (2.9)

Isolating the €77 -term gives (2.7d).

e Finally to prove (2.7¢), we assume k > 1 and observe

AA
(Dies1,141 T19) 4,4, "

RN P
1 , Y k , Y
_ VB v, B ALAD vB. v, B ALLAD
_k+ 1 B VB QA . A _k+ 1 B V@A PA.A0B
1 / k A A
— Derrin T A _ Gor 1 G A
an 1( et 1,04+1 Tk 1P A, . Ay (k+1)2( k=1,141C 1 P)A, . Al
k , Y
_mVBB/ Voa, ¥ 0ar. aps™ -, (2.10)

where we in the last step used the irreducible decomposition (2.2) on the first term. We
can solve for the 2.7 -term from which it follows that

AN
(Drs1,141 Ta a0

= - e G G n N = TV, g

= - Fll(%-1,#1‘5,2;90)/1]...AkA/‘"'AZ - H_%VBB’V(AIB/(pAz...Ak)BAllmA;
- H_LIVBB’VMI @ (PAZ...Ak)BA/z'“A;)B/

- kj— 1(%‘ LGP = l_i_%V(A]B/VB‘quDAz...Ak)BA,I“’A}
- H_LIDB(AI(PAz...Ak)B A H_%V(Al 1V\B\lB/I(pAzmAk)BA;...A;)B/
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) ;o ) Y Y
— H—1DB(A1(PA2,,,Ak)BAI"'A’ - l—i-_lmB (A‘§0A1...AkA2"'A’)B’
1 1 C
= - (k—i-_l + l_}__l)(cgk—l,l-ﬁ-lcglzlfp)m...AkAlmA’
14 +2) .
+ m(%71,171@/@1(#%...AkA""A’
1+2 PV B
— —— @y app N — ——OF Wiy g g (2.11)
I+1 I+1 e

Remark 19. The operators 2, ¢, ¢ and .7 together with the irreducible decomposition (2.2)
and the relations in lemma 18 have all been implemented in the SymManipulator package
version 0.9.0 [16].

2.3. Integrability conditions for Killing spinors

Here we demonstrate a procedure for obtaining an integrability condition for a Killing spinor
of arbitrary valence. Let k4, .“AAA’I Al ¢ ker 7 ;. By applying the & operator [ + 1 times to the
Killing spinor equation, and repeatedly commute derivatives with (2.7¢) we get

0= (Crt1+1.1Ck412 "+ Cru20Ck4 1,041 T IK) A, Asisa

I+1
!
= m(ﬁ+z+1,1ﬁ+z,z *+ G20 T 1.1-1C1 1K) A, . A, T CUTVALUTE terms

1

S
= curvature terms. (2.12)

(Crt1+1.1 Ta41,0Ckri—1,1 -+ Cr1,1-11,1K ) A, ... A1y, + CUTVature terms

Here, the curvature terms have / —m derivatives of « and m derivatives of the curvature spinors,
where 0 < m < [. The main idea behind this is the observation that the commutator (2.7¢)
acting on a spinor field without primed indices only gives curvature terms. In the same way
we can use (2.7d) to get

0= (Cg;

il il T
Gt Crsa G i1 Thdka;..a,

k+1+1 k42

k+1
= curvature terms. (2.13)

2.4. Splitting equations into independent parts

In our derivation of necessary conditions for the existence of symmetry operators, it is crucial
that, at each fixed point in spacetime, we can freely choose the values of the Dirac—Weyl and
the Maxwell field and of the symmetric components of any given order of their derivatives.
The remaining components of the derivatives to a given order, which involve at least one
pair of antisymmetrized indices, can be solved for using the field equations or curvature
conditions. See sections 4.1 and 5.1 for detailed expressions. In the literature, the condition
that the symmetric components can be freely and independently specified but that no other
parts can be is referred to as the exactness of the set of fields [14, section 5.10]. The symmetric
components of the derivatives are exactly those that can be expressed in terms of the operator
7 . One can show that, in a globally hyperbolic spacetime, the Dirac-Weyl and Maxwell fields
each form exact sets. However, it is not necessary for the spacetime to be globally hyperbolic
for this condition to hold. If the spacetime is such that the fields fail to form an exact set, then

11
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our methods still give sufficient conditions for the existence of symmetry operators, but they
may no longer be necessary.

The freedom to choose the symmetric components is used in this paper to show that
equations of the type LAPA (7} o) apar + MA ¢4 = 0 with (%ﬂo‘p)A’ = 0 forces LUB4 = 0
and M4 = 0 because (.7] 0¢)apa and ¢4 can be freely and independently specified at a single
point. Similar arguments involving derivatives of up to third order are also used.

In several places we will have equations of the form

0 = S*5C . (Fh.00)as™ Te, (2.14)

where Ty and (7] 0¢)apa’ are free and independent. In particular all linear combinations of the
form (7;.0¢)as” Tc will then span the space of spinors Wypc = Wap) . As the equation
(2.14) is linear we therefore get

0 = S4B, Wapc?', (2.15)
for all Wypc?' = W(AB)CA/. We can then make an irreducible decomposition

Wasc" = Wasey* — %W(ADlDlA/GB)Cv (2.16)
which gives

0= (_%SBCCA’ - %SCBCA’) WEA A — Sapea W ABOA 2.17)

As Wapc? is free, its irreducible components Wiupcyd and WyPp?" are free and independent.
We can therefore conclude that

0 = Spca + S scars (2.18a)

0 = Suscyn- (2.18b)

Observe that we only get the symmetric part in the last equation due to the symmetry of
Wascy . /

Instead of introducing a new spinor Wz we will in the rest of the paper work directly
with the irreducible decomposition of (77 0¢) 5™ Te and get

0= (—384%ca — $8%cn’) Ts(F1.08)**" — Sapca T (F1,00)P". (2.19)

The formal computations will be the same, and by the argument above, the symmetrized
coefficients for the irreducible parts T3 (.7} 0¢ )P4 and T (77 0¢)PO* will individually have
to vanish.

3. The conformal wave equation

For completeness we give here a detailed description of the symmetry operators for the
conformal wave equation.

Theorem 20 ([8]). The equation
(dO+4A)¢p =0, 3.1

has a symmetry operator ¢ — x, with order less or equal to two, if and only if there are
spinors L8 = Lag) A@B) Py oand QO such that

(PaL)asc™C =0, (3.2a)
(Z1.P)as™® =0, (3.2b)

(Fo.00)a" = %(Oé‘EL)AA'. (3.2¢)
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The symmetry operator then takes the form
x = =3P Qupipd + Qb + 10(211P) + £0(211225L) + P (Fo.00)
+2(22 2" (To0®)an + PP (T 1 T o) asarsy - (3.3)

The existence of Q satisfying (3.2¢) is exactly the auxiliary condition (A0Q). The proof can
also be carried out using the same technique as in the rest of the paper.

4. The Dirac—Weyl equation

The following theorems imply theorem 4.

Theorem 21. There exists a symmetry operator of the first kind for the Dirac—Weyl
equation g5 — xa, with order less or equal to two, if and only if there are spinor fields
LABA/B/ = L(AB) (A,B/), Pas and Q such that

(P 2L)apc™?C =0, (4.1a)
(ZaP1us™? = = 3O D)as"” (4.10)
(Zo.00)a™ = FOILL". (4.1¢)
The symmetry operator then takes the form
xa = — SN Opcapda + Oda + 305 (611P)as + 36° (€11 D220 as + 364(21.1P)
+204(211P22L) + PPX (T 09 apa + $( D0 L)P (T o) aswr
15 9
+2(Gr2L)asca (F1.09)* Y + LPYE (o1 T o) ascars- (4.2)

Remark 22.

(i) Observe that (4.1b) is the auxiliary condition (A1) for existence of a symmetry operator
of the first kind for Maxwell equation, and (4.1c) is the auxiliary condition (AO) for
existence of a symmetry operator for the conformal wave equation.

(i) With Lypap = O the first order operator takes the form

xa = Lrga + O¢a. 4.3)

Theorem 23. There exists a symmetry operator of the second kind for the Dirac—Weyl equatlon
¢4 — wa, withorder less or equal to two, if and only if there are spinor fields Lapc” A= = Lgc)
and Pyg = Pp) such that
(F.1L)ascp™® =0, (4.40)
(F5.0P)asc™ =0, (4.4b)
0= — 2Wapcp(Z51L)P + 2L (622®) ycpa

=3V (Gal)pepr — 2L (Ta0 W) ascprn - (4.4¢)

The operator takes the form
oy = — tLpcpp ®PaP ¢ + §¢B(<5£0P)BA/ + i(bB((g;o@S,lL)BA’ + PP (T 09 car
+3(D31 L) (T 0p)sen + 3(E5 \Lpcws (T .09) "
+LPPP (P51 T o) scoan - 4.5)
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Remark 24. The scheme for deriving integrability conditions in section 2.3 can be used to
show that

0= — 2Lusc” (G22®)prmn + 3Lias™ (TaoW)cormin + 5 (€31L)pruL
+2Wusen(Z3.1L) rh). (4.6)

follows from (4.4a). Despite the superficial similarity of this equation to the condition (4.4c),
we conjecture that (4.4¢) does not follow from (4.4a).

4.1. Reduction of derivatives of the field

In our notation, the Dirac—Weyl equation V4 4 ¢, = 0, takes the form (%]T,O(b)A’ = 0. We see
that the only remaining irreducible part of V44 ¢p is (7] .0¢)az" . By commuting derivatives
we see that all higher order derivatives of ¢4 can be reduced to totally symmetrized derivatives
and lower order terms consisting of curvature times lower order symmetrized derivatives.
Together with the Dirac—Weyl equation, the commutators (2.7¢), (2.7¢), (2.7d) give

(Do) T109)a = — 6AQq, 4.7a)
(621 T1.00)apc = — Yapcpd®, (4.7b)
(%;:1%,0¢)AA’B/ = — Dapapd®. 4.7¢)

The higher order derivatives can be computed by using the commutators (2.7¢), (2.7¢),
(2.7d) together with the equations above and the Bianchi system to get

(D32 P51 T 00)as™ = 2065 (G2 apc™ + 201N (T 0d)picr — Lo (TooM)p)
—12A(F1,09)a8™ + 2Wapcp (T109) Y, (4.8a)

(%3,2%,1%,0¢)ABCDA/ = q)(ABA/B/(%,O(p)CD)B’ + %W(ABCF(%,O(p)D)FA/
— L (©229)pep) — 20" (Zh0W)apcor” (4.8b)

(€3,P1 T 0$)as™ P =504 NP (F100)8) ") — 500 (E),@)p)" P
20 (P2 ®)anc™ P — VP (T 0¢)as” (4.8¢)

Using irreducible decompositions and the equations above, one can in a systematic way
reduce any third order derivative of ¢, in terms of ¢, (F1.00)as" (Z2.1.71.00)asc™® and
(P2T51 T10¢)acp™ BC

4.2. First kind of symmetry operator for the Dirac—Weyl equation

Proof of theorem 21. The general second order differential operator, mapping a Dirac—Weyl
field ¢4 to Sy0 is equivalent to ¢4 — x4, where

xa = NaPopp + MuBY (T o) pear + LaPPYE(T51 T o) sepas 4.9
and
Lapep™® = Lascp) WB) Mgt = MA(BC)A,- (4.10)

Here, we have used the reduction of the derivatives to the .7 operator as discussed in section 4.1.
The symmetries (4.10) comes from the symmetries of (7;.0¢)as” and (.17 .00)asc™® .

14
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To be able to make a systematic treatment of the dependence of different components of the
coefficients, we will use the irreducible decompositions

Lagep™® = 4L2ABCDA B+ % ZLZ(BCA Bepyas (4.11a)

Magc® = éW]ABCA, + %M(BA €C)As (4.11b)

Nap = Nap — 3 Neag, 4.11¢)
2,0 0.0

where

AB _ ;C AP A _agB A N nA
2LZAB =L spc” ", {WIA =M" 45 7(%=NAa

/

AB _ A'B A _ A _
4LZABCD = Lupcp)” " » éWlABC = Mpc)” , %AB = Nus).

We use the convention that a spinor with underscripts le is a totally symmetric valence (k, [)

spinor. Using these spinors, we can rewrite (4.9) as

Xa= — %é\(’)@x - %AB(pB - %A{VIIBA,(%,O(ﬁ)ABA’ - %ABCA/(L%.O‘Z")BCA,

- %szﬂcA/B/ (Z21 T .08)apcan — 4142 ascows (a1 T op) PP (4.12)

The condition for the operator ¢4 — x4 to be a symmetry operator is
(€ gx)a = 0. (4.13)

The definition of the € operator, the Leibniz rule for the covariant derivative, and the
irreducible decomposition (2.2) allows us to write this equation in terms of the fundamental
operators acting on the coefficients and the field. Furthermore, using the results from the
previous subsection, we see that this equation can be reduced to a linear combination of
the spinors (759,171 .09)ascp™ B C . (2517 00)anc™® . (T1.0¢)as” and ¢,. For a general
Dirac—Weyl field and an arbitrary point on the manifold, there are no relations between
these spinors. Hence, they are independent, and therefore their coefficients have to vanish
individually. After the reduction of the derivatives of the field to the .7 operator, we can
therefore study the different order derivatives in (4.13) separately. We begin with the highest
order, and work our way down to order zero. O

4.2.1. Third order part. The third order derivative term of (4.13) is
0= — }ZABCDB’C/(%,L%J .09)aBCDABC' - (4.14)

We will now use the argument from section 2.4 to derive equations for the coefficients in a
systematic way. To get rid of the free index in equation (4.14) we multiply with an arbitrary
spinor field 74" to get

0= — LAPECTY (35,511 08)anconnc- (4.15)

From the argument in section 2.4 and the observation that T4 (% 1.%.1.71 0®)ascoasc is
irreducible we conclude that

13°4

Lapcp™® = 0. (4.16)
4.2
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4.2.2. Second order part. The second order derivative terms of (4.13) can now be
reduced to

0= — %ABCB/(%J T1.09)ascan + %(%2,22142)ABCB/(<%,1 1,08 apcas
+3 (%,ZZLZ)ABCA’B’C’ (Fa1 Tr09)BEC. (4.17)

Here we again multiply with an arbitrary spinor field 7%, but here (.%.,.7 0¢)*PFCTA is
not irreducible. Therefore, we decompose it into irreducible parts and get

0= %T(A/ (5,1 T o) HECIEC) (%,22142)ABCA’B’C’
+(3 (€22 2L2)ABCB/ - éWl ABCB/) T (5,1 T 0)ancas - (4.18)

The argument in section 2.4 tells that the coefficients of the different irreducible parts have to
vanish individually which gives

(P2 ZLZ)ABCA/B,C, =0, (4.19a)

éWlABCA/ = (62 ZLZ)ABCA/- (4.19D)

4.2.3. First order part. The first order derivative terms of (4.13) are
0= = N¥(Frop)ann + 3G (A 0d)asy = 5 (L3 M) (Tro$)ann
=3 LA Pacwc (F1.09)a = 6A L gy (F1.09)""
+3 21,42ACB’C/ Ppcac (Fr.0)* P + 3 Z,LZACA’C/ Ppcpc (T10p)*PF
+32 21.42CDA’B/ Wapen(Tr09)* P + 2 2142 48P Uapop (7 ,09)* 5
— (& Mann (F08)" + 5(TiaM)asww (7,000 (4.20)

Here we again multiply with an arbitrary spinor field 74" and decompose (.7} ¢¢)*55 T4 into

irreducible parts. Due to the argument in section 2.4 the coefficients of the different irreducible
parts have to vanish individually which gives

0= — %AE + %(%1,1{\’11),43 - i(93,1(52,22142),43 - %ZLZ(ACA/B/(DB)CA’BH (4.21a)
0= —6ALAs"" +3 L Wypep + 3 Lag"? V" oy — 16 620 L)as™®
27 22 27 : 2
+32l42(AC(A/‘C/ICDB)CB/)C’ + %(%,1{‘/11)/43}‘/3,- (4.21b)

Using the commutators (2.7a) and (2.7 f) together with (4.19a), this reduces to
%AB = %(551,1{”1)/43— %(551,192,22142%3, (4.22a)

(G = = F L Wapep + § Las™" VP op + (F11 222 L)as"" . (4.22D)

Isolating the .7 terms in (4.22b) leads us to make the ansatz
MY = = SR + (Zaa L)a", (4.23)
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where P4*’ is undetermined. With this ansatz, the first order equations reduce to

A'B _ 17 CDAB 17 CDGAB
(Z11P)ap" " = 12142 Wapcp — ZzLZAB v op

=10 L) s (4.24a)
%AB = — 3(€1.1P)as + %(%1,1.@2,22112%3- (4.24b)

4.2.4. Zeroth order part. Using the equations above, the zeroth order derivative terms of
(4.13) are

0= ¢™ —2AMaw + 2MPF ®upap + YWapcp (G20 L)PPu — S L5 4P (622®) ascw
1.1 311 22 22

—(€ o N)an — L LA (6, ®)pvme — 3 Lapan (Zo0M)™F + 1(FooN)an
020 27 - 27 0.0
+5LPC (%,zcb)ABCAfB/o). (4.25)

Here, there is no reason to multiply with an arbitrary 74" and do an irreducible decomposition
of T*' ¢* because T4 ¢ is already irreducible. Still the argument in section 2.4 gives that the
coefficient of ¢ will have to vanish. With the substitutions (4.24b) and (4.23), the vanishing
of this coefficient is equivalent to

(%,o(% At = — 6APY + 205" p PPP — Mpep (630 zljz)BCDA/
+ %zl"zBCA/B/ (622P)apcy + %Z,LZABB’C/ (%JZQUBA,B@ — (CKZT’O%MP)AA/
+ %((520(51,192,22%2%[“ + 4A(@2,22142)AA/ — 105" (@2,2£2)BB/
+ 2% 2112 A" 5 (T NP — Z{JZBCB,C/(%,ZQ)ABCA,B’C’- (4.26)

To simplify the €74 % term, we first commute the innermost operators with (2.7a). Then
the outermost operators are commuted with (2.7b). After that, we are left with the operator
9% ¢€, which can be turned into 2.7 Z by using (2.7f) and (4.19a). Finally, the 2.7 9
operator can be turned into 76’2 and .7 29, again by using (2.7f), but this time on the
outermost operators. In detail

(%20%1,192,2%2)AA' = - %VBA/DB’C/ZI:ZABB,C/ + %(‘5;’0.@3, 1 652,221,42)%/
= 3Uge (%2,2£Z)ABCA' - %VBA/DB’C’ZIJZABB/C/ + 3(@2,2%3T,1<52,22{42)AA1
= 30pc (622 2142 A% 4 = 3V Opc 2[42 ABEC
- 6VBC,D(A’B/2’LZ\AB\C’)B’ - 3VCB/|:|(ABZ’LZC)BA’B’
+ 4(@2,2%,192,21142)%/
= ZDAB(@2,2£‘2)BA’ + 604 (@2,21142)AB, + 30gc ((52,2ZL2)ABCA'
— 3V Opc llzzABB/C/ — 6V Ou” 2L2 IABIC)B'

— 3VCB,|:|(ABZLZC)BA’B’ - 4(%20%1 1 @2,22112)/% +3(%,0%,1 -92,22142)AA"
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Isolating the €76 2 terms, expanding the commutators and using (4.194) yield
(€, 0611252 2Lz Jan = — 305, F (%, 2L2 Jascs + Wascp (62 2L2 )PPy
-2 2L2 BC B (61, ®) apcn + 2 \verss (%22 %2)AB,C,D/
30,55 %}, 2142 JBABC — 22% PR CAR Py
—12A(Z22 L) + 15 Pamw (Z22 ) )P & 2qLZABAfB/(e%,om’f”’
+§£ZBCB/C/ (Fo2®)ascanc + 2 (Fo0Z1.1 92,22142)AA’- (4.27)

Using this in (4.26), and using (2.7¢) combined with (4.24a) gives
(TooN)a™ = — 5@ N (Gon L)ancw + 55 Wac (€22 L)
_ 11_2 LBCAfB/ (%2_2<D)ABCB’ + %\BA/B/C/D’ (%;2 L )AB/C/D,
2,2 422
— IS_SqDABB/C’ ((5222112)8#3/0 _ %szABB/c/ (ffgqu)BA,B’C’
- }qu)ABA/B’(QZ,Zfzz)BB, + }_gzl’leBA,B'(%,oA)BB/
- églszCBlc/(%a@)ABcA,B'c' - 31 Zo0Z1.1P)a™ + %(%,091,192,22142%/‘/-
(4.28)

To simplify the remaining terms, we define

T= ngBA'B' QABAE (4.29)
Using (4.19a) the gradient of Y reduces to
(oo Nan = — 3 zngBAfB’(%,oA)BBf + 205,45 (6 L)ancw

+3 ngCAfB, (G22P)apcs + 30477C (€5, 2%)3/4/3'0

—i—%zlszBB,C, (%£2®)BA/B/C' + 2 Papap (-@2,22{42)33/

+ 2142 BEEC (P2 ®) apcarc- (4.30)

This can be used to eliminate most of the terms in (4.28). Together with the definition of the
operator (95(2, we find that (4.28) reduces to

(%.O%)AA, = %(OSEZLZ)AA/ — HJo0 DAY = 2 (J021.1P)a" + é(%,o%,l.%,zz%)f’-

(4.31)
It is now clear that the ansatz
N=-20- IY - 3(21.P) + g(%,]%,zz;z), (4.32)
with Q undetermined gives
(Z.004" = — (05 252)/;". (4.33)

We can now conclude that the only restrictive equations are (4.19a), (4.24a) and (4.33).
The other equations give expressions for the remaining coefficients in terms of 2L2 5" E, P,

and Q. For convenience we make the replacement L "% — —2L,54%.
22 :
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4.3. Second kind of symmetry operator for the Dirac—-Weyl equation

Proof of theorem 23. The general second order differential operator, mapping a Dirac—Weyl
field ¢4 to Sp; is equivalent to ¢4 — wa, where

wx = NByopg 4+ My PP (T 00)sew + LaPPEC (P T 0d)seppe,  (4.34)
where
Laapcec = Larapoywcey, Maapy = Ma@ap)p - (4.35)

Here, we have used the reduction of the derivatives to the .7 operator as discussed above. The
symmetries (4.35) comes from the symmetries of (.7} 0¢)az* and (%.1.71.0¢)asc™? . As we
did above, we will decompose the coefficients into irreducible parts to more clearly see which
parts are independent. The irreducible decompositions of LA 45c5¢ and M4 458" are

A BC ABC | 2 B =C)HA'
L* spc =3L3ABC +§3LIABC( e, (4.36)
A B AB 1 —A'B
M AB = MAB — jMABG . (437)
2.2 2,0
where
N B o
Lapc” =L° apc” s Map =M ppa,
3,1 2,0
ABC _ 1A BC AB _ agA B
Lasc =LY 5P, M =M )

With these irreducible decompositions, we get
B 134BC BCB' __ 2 y BCDB'
wx =Ny — 5% (F1.09)ca — %BCA’B/(%,O@ - §3Ll (P.1T1.09)Bcpan

_3L33CDA’B’C’ (o1 T op)BPEC . (4.38)

The condition for the operator ¢4 — w4 to be a symmetry operator is
(o.10)4 = 0. (4.39)

Using the results from section 4.1, we see that this equation can be reduced to a linear
combination of the spinors ¢, (Z1 0$)as” s (75,17 08)asc™® and (752751 T 0$)apcp™ B €.
As above, we can treat these as independent, and therefore their coefficients have to vanish
individually. After the reduction of the derivatives of the field to the 7 operator, we can
therefore study the different order derivatives in (4.39) separately. We begin with the highest
order, and work our way down to order zero. ]

4.3.1. Third order part. The third order part of (4.39) is
0= — S%BCDA,B’C/(%Q T,171.09)ABCDABC - (4.40)

Using the argument from section 2.4, we see that this implies

B%ABCA’B’C/ =0. (4.41)
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4.3.2. Second order part. The second order part of (4.39) now takes the form
0= — MMM (P, Tro@)ascar + 5 (€5, LN (F01 T 0d)ancaw

+3(F 3L1 Vascows (Fo,1 T o) PPAE (4.42)

Here we multiply with an arbitrary spinor field 7% and decompose (.7 1.7} 0¢)?PCP T4 into

irreducible parts. Due to the argument in section 2.4 the coefficients of the different irreducible
parts have to vanish individually which gives

(93,13141 Yascp B =0, (4.43q)
%ABA,B/ = 1%, 3171)ABA/B,- (4.43b)

4.3.3. First order part. The first order part of (4.39) can now be reduced to
0= = N*™(Tio@)anw + 3 (& M)™ (Tio®)anw — 3(Z22M)™ (T 0h)asn

+ %,f"lBCDB’CDCDA’B,(%,O(ﬁ)ABA, — %£CDFA/WBCDF(ﬁ,0¢)ABA’
_6A3I'41ABCA’(%Y0¢)BCA’ + %!leCDB‘DADA/B’(91,0¢>)BCA’

+ %S{‘IACDB"DBDA,B/(K%’Od))BCA/ n %3{]BDFA’\I’ACDF(%,0¢)BCA,

+ ?TSIleDFA' Wacor (T ,0$) " — (‘52,2%)143@,({71’0(}5)3&/

+ %(%,O%)ABCA’(%,O(p)BCA/- (4.44)

Here we again multiply with an arbitrary spinor field 74 and decompose (.7; ¢¢)*C T4 into
irreducible parts. Due to the argument in section 2.4 the coefficients of the different irreducible
parts have to vanish individually which gives

0= —Ny* = 3 LEP Wapep + 3 (€M™ = 3(Zo2M)a", (4.45)
0= —6A 3LIABCA/ — (622M Jasc” + 2L wew @ + 23L1(ADFA/\IJBC)DF

+3(F0M )anc™ . (4.46)
By (4.43b), the commutator (2.7¢) and (4.43a) these reduce to

Nt = - %3L ABCB PFANE 4 %((ngo%)AA, - é(%;,o-@&lgL 1)AA,’ (4.47a)

(%,0% )apc™ = (92,093,13141 )anc™ . (4.47b)

If we make the ansatz

%AB = —2Psp + (-@3,13[41)A87 (4.48)
these equations reduce to

Na¥ = = § Lancy @ — 263 P)a™ + (6 Zsa La™ (4.49a)

(P.0P)apc” = 0. (4.49b)

20



Class. Quantum Grav. 31 (2014) 135015 L Andersson et al

4.3.4. Zeroth order part. The zeroth order part of (4.39) can now be reduced to
0= — 2A%AB¢B + %%CD‘I’ABCD¢B — ¢P(611N)as — %?ﬁBCDA/(bB(%Z,Z(D)ACDA’
+ 61—03133CDA,¢A (62.29)pcpa — %%ACDA}PB (€2.29)cpar
- %cDBC"’%B(%;l%l Jacan — 3a(Z1.1N) — §3LIABCA/¢B(%,0A)C”

+ 5 LM % (T 0W)ascora- (4.50)

Here we again multiply with an arbitrary spinor field 74 and decompose ¢®T* into irreducible
parts. Due to the argument in section 2.4 the coefficients of the different irreducible parts have
to vanish individually which gives

0= — %SFIABCA,(%ZJCD)ABCA’ I éd)ABA/B’((f;’Iﬁ)ABA'B’ — X(91.1N), (4.51a)
0= — ZA%AB + %%CD\IJABCD — (611N )ap — %%Ll(ACDA, (¢22P)p)ycpar
1o (%;,13141)3)04'3’ - §3L1ABCA’ (Fo0 )

+1 3Ll P Z4.0%) aBcDFA- (4.51b)

The equation (4.49a) together with the commutator (2.7b) gives (4.51a). If we substitute
(4.49a) in (4.51b), we get a term with the third order operator €% 2. To handle this we
use the same technique as in section 4.2.4. We first commute the innermost operators with
(2.7b). Then the outermost operators are commuted with (2.7a). After that, we are left with
the operator 2%¢'%¢’¥, which can be turned into 2.7 2 by using (2.7¢) and (4.19a). Finally, the
9T 9 operator can be turned into €6 2 and .7 29, again by using (2.7¢), but this time on
the outermost operators:

(%1,1%;093,13{41%3 = 2(%,1 92,2(5;,]31"] )as + QV(AA’DCDS,LIB)CDA/
= 3Uap (<53T’13l’41)ABA,B/ + 3(93,1%2,2(5;7131’41 )ag + ZV(AA,DCDSEB)CDA’
=30up (%;,1 31’41)ABA/B/ + 2Vepa? leABCA, —6vPO,C 3L1 BD)CA'
+3(%s,1 %,093,1%41)AB + ZV(AA,DCDgﬁB)CDA/
= 30up (%;1 SIjl)ABA,B, +2Vep DA,B'313 ag“ — 6VDA/D(AC3I’41 BD)CA’
- 4(651,165;,093,1311)/43 - 6D(AC(@3,13L’11)B)C + ZV(AA/DCD%/IB)CDA’-
Isolating the €€ 2 terms and expanding the commutators and using (4.43a) yield
(%1,1%”;:0.@3,1%)% = — WP (%3,13,14])ACDF — W, Pr (%3’13,L1 )BCDF
- %3171 5PY (G20 ®)acoa — %SIHACDA, (62.29)pcpar
= 3@, Lacaw = 3047 (65, Lncaw
—12A (93,1£1)AB + %\IJABCD(@“%I)CD - IZS%IABCA/(%,OA)CA’

+2 3Ll PEA( T 0W) ABCDFA - (4.52)
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The equation (4.49a) together with the equation above, the commutator (2.7¢) and (4.49b)
gives

(611N)as = 4APag — WapcpP™P — 2M(Z5 Loas+ = Wapcp (D31 3;1)“)

—%&lzl(ACDA’ (622P)B)cpar — %q)(ACA,B/ (65;,13%)3)@/3'

— W (%3,1311)3)CDF - %!flABCA'(%,oA)CA/

15 L (TaoWancor (4.53)
Due to this, the equation (4.51b) reduces to the auxiliary condition
0= %‘VABCD(-@3,13{41)CD - %31,41 (ACDA/ (622P)ycpar

+3W, P (6 3171)B)CDF + %3171 CPFA (T 0W) aBCDFA - (4.54)

We can conclude that the only restrictive equations are (4.43a), (4.49b) and (4.54). The other
equations express the remaining coefficients in terms of 3L] apca and Pyp. For convenience we

make the replacement L spc? — —%LABCA,-
3.1

5. The Maxwell equation

Theorem 25. There exists a symmetry operator of the first kind ¢ap — xap, With order less
or equal to two, if and only if there are spinor fields Lyg*® = Lp) AB) P,y and Q such that

(P2L)apc™?C =0, (5.1a)

(Z1Pas"? = — %(ng)L)ABA,B/s (5.1b)

(Z0.0Q)a = 0. (5.1¢)

The symmetry operator then takes the form

XaB = Qap + (€1,14) a8, (5.2)
where
Asw = — PPutap + 30°(GrnL)apca — §048(222L)% 4 — L 4P (Fa0$)ascs . (5.3)
We also note that

(€ | Aap =0. (5.4)
Remark 26.

(i) Observe that one can add a gradient of a scalar to the potential As4 without changing
the symmetry operator. Hence, adding Vaa/ (ABCppe) to Apa with an arbitrary field Aap
is possible.

(i) With Lypap = O, the first order operator takes the form

xag = Lrdap + Obap. (5.5)
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Theorem 27. There exists second order a symmetry operator of the second kind pap — wap,
with order less or equal to two, if and only if there is a spinor field Lapcp = Lpcp) such that

(ZaoL)apcpr™ = 0. (5.6)
The symmetry operator then takes the form

wpp = (%EIB)A’B’» (5.7
where

By = %¢BC(<5J:0L)ABCA/ + Lagcp(Z5,08)" P ur. (5.8)
We also note that

(¢1.1B)a = 0. (5.9)
Remark 28.

(i) Observe that also here we can add a gradient of a scalar to the potential B4y without
changing the symmetry operator. Hence, adding V4 (A®¢¢pc) to Bya with an arbitrary
field Ap is possible.

(i) Due to the equations (5.4) and (5.9), we can use Agar + Baas as a potential for both x4z
and wa g

5.1. Reduction of derivatives of the field

In our notation, the Maxwell equation V44 ¢4p = 0, takes the form (‘K;’Oqﬁ) 4 = 0. From this
we see that the only irreducible part of VAA/¢BC is (Z2.00) anc? . By commuting derivatives we
see that all higher order derivatives of ¢45 can be reduced to totally symmetrized derivatives
and lower order terms consisting of curvature times lower order symmetrized derivatives.
Together with the Maxwell equation, the commutators (2.7¢), (2.7¢), (2.7d) gives

(251 F2.00)a8 = — 8Adas + 2Wapcpd”, (5.10a)
(63,1 P5,08)a8cp = 2W e’ dpyr, (5.10b)
(%32%,045)%/1/3' =20 PpC. (5.10¢)

The higher order derivatives can be computed using the commutators (2.7¢), (2.7¢), (2.7d)
together with the equations above and the Bianchi system to get

(Z42F3.1F2.09)aBca = %q)(AD\A’\B/(c%,O‘p)BC)DB/ + 23U (P09 crpEn
—Lous(To0Mow + Hdu” (€22P)scipn
+30"" (T1.0W)ancora — 158 (5,00)ancas (5.11a)

(G42T51Ts.00)acors = Pupp* (F5.00)cpma + 4% usc (F5.00)pryup
=10 (G22P)corp — P (Ta0W)scorynp - (5.11b)

t ABC D B oy 1 ¥ ABC
(%4[293,1%,045)}1% = 20”4 Y (S 00)pe)p”) — §¢(AB(C€2[2<D)C)

=302 (P2®)pe)p™ " — T 5 (P09 anc” (5.11¢)

These can in a systematic way be used to reduce any derivative up to third order of ¢4 in
terms of ¢ag, (F2.00)asc™ s (P51 F2.09)ascp™” and (T42.951P2,09)acor™ P € .
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5.2. First kind of symmetry operator for the Maxwell equation

Proof of theorem 25. The general second order differential operator, mapping a Maxwell field
@ap to Sy 0 is equivalent to ¢pap — xap, Where

xa8 = Napcpd? + Magcpra (5.08) P + Lapcornas (F5.1 J,0¢) PFHAE, (5.12)
and

LABCDFHA’B’ = Lus) (CDFH)(A'B') MABCDFA’ _ M(AB)(CDF)A’ NusCP = Nus) D)

Here, we have used the reduction of the derivatives to the .7 operator as discussed in section
5.1. The symmetries comes from the symmetries of (.75 0¢)apc* and (%,14%,0¢)ABCDA/B/.

To be able to make a systematic treatment of the dependence of different components of the
coefficients, we will use the irreducible decompositions

CDFHA'B CDFHA'B 4 C y DFH) A'B 3 _(C D y FH)A'B

LAB = LAB — §€(A( L )B) — 36( (A€B) L ) s (51361)

6,2 4.2 2,2

CDFA’ CDFA’ 6 CprgDF) A 1_(C Dy sF)A

Mg :éWlAB - gG(A( éVII Iyt — 56( (A€B) {Wl ), (5.13b)
CD CD CarD 1 Cc_D

NAB = NAB — E(A( N )B) - §N€(A( € )B) (5136‘)

4,0 2,0 ~0,0

where the different irreducible parts are
AB _ 71CD  A'B A _ agBC A _ AAB
ZLZAB =L""apcp” ", {MIA =M"apc” ({\{) =N"4s,

13°4 ’ ’

AB _ 5 F A'B A D A _ A C
4[42ABCD =Ly pepyr T, MABC =My oyp” %ABZN(A B)C>

AB _ A'B A _ A _
6LzABCDFH = Lpcore) — » éWlABCDF = Mpcpr)” , i\g ABcD = Nupcp)-

Now, we want the operator to be a symmetry operator, which means that
(65 o x)an =0. (5.14)

Using the results from the previous subsection, we see that this equation can be reduced
to a linear combination of the spinors (7547 3% .26) 2 ascor, (Z1.3%020)* " acos
(To.20)" apc and ¢up. For a general Maxwell field and an arbitrary point on the manifold,
there are no relations between these spinors. Hence, they are independent, and therefore their
coefficients have to vanish individually. After the reduction of the derivatives of the Maxwell
field to the .7 operator, we can therefore study the different order derivatives of ¢ap in (5.14)
separately. O

5.2.1. Third order part. The third order derivative terms of (5.14) are

2 BCDF BC'
0= §4LZBCDFB’C’(<74,2<73,1 DoPa” " a

+ Lascorupc (T22T5.1Fn0$) PP (5.15)
We can multiply this with an arbitrary vector field 744 and split
(T2 Ts.1 T o)A PCPFABC TH , into irreducible parts. Then we get
0= 6LZABCDFHB’C’T(A|A/‘ (Fh2T51 T, 0$)PPID B

+2 4LZBCDFB’C’ Tan (Ta2 T30 T o) BPHAEC (5.16)
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The argument in section 2.4 gives that the symmetrized coefficients of the irreducible
parts TAAN (T 2.%5.1.%5.0¢) PP, BC and Tya (T2 5.1 75,04 ) BPTABC must vanish. This
means that (5.15) is equivalent to the system

GLZABCDFHB’C’ =0, (5.17a)
4L2 scprec = 0. (5.17b)
The only remaining irreducible component of LygCPFHAE jg 2L2 aE.

5.2.2. Second order part. If we use everything above we find that the second order part of
(5.14) reduces to

0= %%BCDB, (%5.1%.00) aBcpas — %(ng,zzlaz)BCDB, (F3.172,00)aBcoas

3 BCD BC BCDF B
+g(e72,22142) A (%,1«%,0¢)ABCDB/C'+§V11ABCDFB'(«73,1«72,0¢) A

(5.18)

Again contracting with an arbitrary vector T4 and splitting (.73 1.%5.0¢)PAF TFC into

irreducible parts we find
0= éWlABCDFB’T(A‘Al(%,l T o) PP B = 3TN (7 L%,off’)AlBCD‘BC)(%,22142)300/4/3'0

+Tha (%%BCDB’ - %(%2,22112)13@3') (%,1%,0¢)ABCDA/B/- (5.19)
Again using the argument in section 2.4 we find

(P2 ZLZ)BCDA/B,C/ =0, (5.20a)

éMlABCDFB’ =0, (5.20b)

éVII sepp = 3(%h0 2L2)BCDB’- (5.20¢)

5.2.3. First order part. Now, after contracting the first order part of (5.14) with an arbitrary
tensor T4 4/, splitting (Z2,0¢)apca Tpp into irreducible parts, and using the argument in section
2.4, we find that the first order part of (5.14) is equivalent to the system

Npc = 5(GraM)sc — 5(P3.1%22 L )sc — 3 L " Peypse (5.21a)
2,0 1.1 22 22
4{\(’) aBcp = (31622 2L2 )aBcp + 13—02L2 8> € Depypers (5.21b)

AB A'B 9 7 DFA'B 67 CDJAB
(ﬁ,l{‘/fl)Bc = IZAZLZBC - 52142 Wpepr — gszBc U op

(@), G2 L) = 6L Do e, (5.21¢)

(%,1652,22142)/43@”3, = 32142(ABC/(A, (DCD)B,)C’ + 32L2(AFA/B’ WecD)F - (5.21d)
The commutators (2.7a), (2.7f) and (2.7¢) applied to 2LZABA’B’ yield

(P31 %2,22142%3 = %((51,1:@2,22[42)/43 - ZZIJQ(ACA’B/ Dpycarms (5.22a)
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(%;1(52.2 L)ag™® = —12AL4p™? + LP"P Wypep + 2 Lag“ P WP 0y
: 22 22 22 22
- %(93,3%,22L2M3AB + 62L26(AC g o

+3(A12L, )as™E, (5.22b)
(«73,1%,22[42 Jasep™® = 3(635 «72,22142 Jascp™” + 32L2(ABC,(A/ ®ep) e
—i—32L2 W Wpepy . (5.22¢)

It is now clear that (5.21d) is a consequence of (5.22¢) and (5.20a). The commutators
(5.22a) and (5.22b) together with (5.20a) can be used to reduce (5.21a) and (5.21c¢) to

%BC = %(%,1%)3 - %((51,1@2,22%)3 - %ZIjZ(BDB/C, Qe (5.23a)
(91,1% )Bcay = — 3 2Lz PF g Wpcor + 3 2L2 5P Wapop + (T D zl’dz)BCA’B’- (5.23b)
Now, in view of the form of (5.23b) we make the ansatz
%AA’ = 2P + %(@2,2£2)M', (5.24)
where P44’ is a new spinor field. With this choice (5.23a) and (5.23b) reduce to
%BC = (¢1.1P)pc + %(%1,1@2,21142)3 - %ZITZ(BDB’C, Dcyppcs (5.25a)
(A1P)scan = — 2 sz PF w Waepr + 3 zl,szCC/D/ Vppop- (5.25b)

In conclusion, the third, second and first order parts of (5.14) vanishes if and only if (5.17),
(5.20), (5.21b), (5.24), (5.25a) and (5.25b) are satisfied.

5.2.4. Zeroth order part.  After making irreducible decompositions of the derivatives, using
(5.20a) and contracting the remaining part of (5.14) with an arbitrary tensor TAY splitting
Txa ¢cp into irreducible parts, and using the argument in section 2.4, we find that the order
zero part of (5.14) is equivalent to the system

0=4APpy — %q)BCA’B’PCB/ + %QCDA/B/ (%Z,Z%Z)BCDB’ - %‘I’BCDF (%2,22%)CDFA/
+2 2L2 PP (€229)pcom + 205FC ((5;2 2%)CA’B/C/
+%ZL23CB,C/ (€5, ®)came + 3(E5  G11P)sy + %(6520(51,192,22%2)%'
+3A (-@2,2£2)BA' — R Opcun (@2,22’LZ)CB/

+3 Lacas (Fo0M) = 3(TooN)m — 5 L (Z2®)pcprper, (5.26a)

0 = PPy Wapcp + 2A (%2,22142)/430\/ + %(%10%,1(52,22142)/43&/ + %‘UABCD(@LZZLZ)DA'
—%ZLZ(ADM/\E (62,29)pc)pp + ;—OZIJZ(ABB’C/ (%T,zq))C)A/B/C’
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B DBC B
_gsz(AB'A" (Zo.0M)eyp + 17_021‘2(A (F2®)seypanc — Pasar” Pop
19 D B 1 BC +
—5Pa (99”2,22142)30)03' + ¢ Pus (‘52,22L2)C)A,B,C/
B 1 DF DF B
_g(D(AB|A’| (92,22142)6‘)3/ — §\IJ(AB (CKZ’ZQLZ)C)DFA/ —+ %ZLZ A (%,OW)ABCDFB’

—31(Z2.0 1P apca — %(«72,0%1,1@2,22142)/43@'- (5.26D)

Applying the commutators repeatedly we have in general that

(%10(53,1652,22142)/13& = %DA B (652,22142)/1303 - %(94,2%, I%Z,ZZLZ)ABCA —0Ou” (%,22142)BC)DA

’

’

+ fx(92,093,1<52,22142)ABC/4
= %DA/B’ (%2,22142)ABCB, —2(Du 2653 %,ZZLZMBCA, — D(AD(%Z,Zsz)BC)DA/
— VP O0us L™ s — VPP O Lacy* 5 — %V(AA/DB,C/ Lpeypc
X 22 %)
+ %(%,0%,192,22142%3&/
= —10A (%2.22[42)ABCA’ - ZWABCD(QZJZLZ)DA,
—2(D42633 %.ZZLZ)ABCA, + %ZLZ(ABA/B,(%,OA)C)B/
+ 2 L WP (€22@)poypp + 2 ZLz(ABB/C (€, )0/ pe
- %ZLZ(ADB/C, (%,ZQ))BC)DA/B’C’ + 13—9<D(ADA,B/ ((gz,zsz)BC)DB/
- ch(ABB/C/ ((5;22{2)0)#3/0 +2 D't (-@2,22{42)03’
+ %CD(ADB/C, («%,22L2)BC)DA/B’C’ — Wg"" ((52,221a2)C)DFA,
- ZLZDFA/B/(%,OW)ABCDFB’ + %(%,0%1,1@2,2 2L2 Yasc” . (5.27)
With this and (5.20a), the equation (5.26b) reduces to
0= PPy Wupcp + %"IJABCD(-@ZZZLZ)DA’ + %ZLZ(AD\AWE (€22P) oy

2 ' ’ 2
+§2L2(ABB (CKQZ‘D)C)A/B'C' = @’ Poyp — 2Was”" (%2,22[42)C)DFA’

+%2{42DFA/B,(<%,()\IJ)ABCDFB’ — (220611 P)asca- (5.28)
Using the commutator
(P.0€11P)ascar = 2PP 4 Wapep + 2(62.0. 70 1P)ascar — 2P s ® Poys (5.29)
this becomes
0= — (€22711P)asca + %WABCD(-@2,2£2)DA/ + %llzz(AD\AqB, (¢229)Bc)pB

+2L ws” € (&, ®)opwpe — WP (G0 L)cyprn + 3 L PF B (Th.0W) aBcDFB -
22 : 2 25
(5.30)

However, after substituting (5.25b) in this equation, decomposing the derivatives into
irreducible parts and using (5.20a), this equation actually becomes trivial.
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Doing the same calculations as for the Dirac—Weyl case we see that (4.27) also holds for
the Maxwell case. Directly from the commutators we find

(63 0 611P)ax = — 6Py + 2@apa PP — (D22 T 1P)an + 3 (Zo0 11 P)an. (531
With this, (4.27) and (5.20a) we can reduce (5.26a) to

2 5CD B 4 cDF 2 ,CD B
0= -39 7n (%2,22142)BCDB’ — 15 Wcor (%2,22112) a+ ﬁsz A" (6229) e
43 t BCD _ 2 g CBC (ot
+ A Ugop (65, L)p — 2057 (), L)cwc
15 2245 15 2245
2, CBC ot 4 B
—5Ls (€5, P)canc — E©BCA’B’(@2,22142)

— 2(D2Ti 1 P)pa + 1 Lpcan (Fo.0M) — H(To0N)pw
: 522 : 0,0

- %2[42@3/6/(«72,2@)300/4'3'0 + 3 (Z.0Z1.1P)sa + %(«%,0@1,192,221:2)19» (5.32)
Using (5.25b) and the irreducible decompositions, we find
(222F11P)sa = — $Vpcpr (%2,22142)CDFA/ + észDA/B, (62.29)pcpp
+5Wanen (6, L)s" Y = 2 Ly (], ®)cunc (5.33)

To simplify the remaining terms, we use the same trick as for the Dirac—Weyl case. The
definition (4.29) and the equation (4.30) can be used together with (5.33), to reduce the
equation (5.26D) to

0= = 3(JooN)m = 5(Zo0 D + 3(To0Z11P)pw + 5 (Fo0 D1 P2 Lpw- - (5.34)

We therefore make the ansatz

N =30-3T+3(21.P)+ (%122 L). (5.35)
Now, (5.34) becomes
0= (J,00)an- (5.36)

5.2.5. Potential representation. From all this we can conclude that the only equations that
restrict the geometry are (5.20a) and (5.25b). Now, the operator takes the form

XAB = %(%%B + %ABCD(bCD - %(Acff’B)C - %(652,22142)(ACDA (Z2,08)B)cDA’

+3Mex (F200)as™ + 3 L (Fa1 Tao®)ascons (5.37)
where é\{), %AB, %ABCD, {\/IlAA/ are given by (5.35), (5.25a), (5.21b) and (5.24) respectively.

We can in fact simplify this expression by defining the following spinor
Aan = Ppap® + 19 (CKZ,ZZLIZ)ABCA’ + %¢AB(-@2,2£2)BA’ + §£2BCA’B’(<%,O¢)ABCB’- (5.38)
Substituting this onto the following, and comparing with (5.37), we find
(61.14)ap = — QPap + XaB — %¢(AC(%1,192,21142)B)C + %‘P(AC(@S,I%ZQZ’LZ)B)C
— %fz(ACA,B/qD\CDA’B’\(bB)D - f_OZ%IZCDA,B/q>(A|CA’B’|¢B)D

= — Qdap + XaB: (5.39)

where the last equality follows from a commutator relation. In fact the coefficients in Ay
were initially left free, and then chosen so all first and second order derivatives of ¢4 where
eliminated in (5.39).
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We also get
- 12 AB cp AB | 1 4AB oot
(Cgﬂ]l‘\)A/B' = ?AZLZABA/B’(b - %2142 apWYapcpd™ + 5¢ (ng,lcgz,zzlzz)ABA/B'
6 7AB Cg C AB
- §2L2 @ Pu pyodse — ¢ (T11P)apan
ABCC' _ 4 L AB
- %(%,22142)14304’3’0(%,0‘1’) -3¢ (91,1-@2,22142)ABA'B/

-0 (5.40)

where we in the last step used (5.25b), a commutator and (5.20a).
To get the highest order coefficient equal to 1 in Ags and in y4p, we define a new
symmetric spinor, which is just a rescaling of 2LZABA’B’

Lagwp = 3 Lasas. (5.41)

Now, the only equations we have left are

(PaL)asc™C =0, (5.42a)
(ZaPa™? = — %(OSQ)L)ABA/B,, (5.42b)
(Z0.0Q)pa = 0, (5.42c)
Aun = Poada® + 105 (G200 apca + 504%(DooL)pa — L5 4P (F.00)ascr - (5.42d)

5.3. Second kind of symmetry operator for the Maxwell equation

For the symmetry operators of the second kind, one can follow the same procedure as above.
However, this case was completely handled in [7]. In that paper it was shown that a symmetry
operator of the second kind always has the form ¢ap — wa'p,

wap = %‘PCD(%L%J:OL)CDA'BI - %(%AIOL)CDF(A’(%,Od’)lCDF\B/)

+LPP (TR 1 T o) cornas (5.43)
where Lapcp = Lapcp) satisfies

(ZaoL)apcor” = 0. (5.44)

Hence, the treatment in [7] is satisfactory. However, it is interesting to see if the operator can
be written in terms of a potential. Let

Ban = 2¢"°(6} L) asca + Lapcp(5.09)*P . (5.45)
Then, from the definition of €7, the irreducible decompositions and (5.44) we get
(%ﬂlB)A’B’ = %¢AB ((5;1%3 oL)asap — %(Cf:, oL € (P 0P) s

+ LA (T3 1\ T 0@ ascons
I (5.46)

The coefficients in (5.45) where initially left free, and then chosen to get (5.46).
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We also get
(61.1B)as = 6ALapcpd™” — 3Las"" Veppnd™ + 2P (%,1%1014%300
+ %(b(AC(@S,I%JOL)B)C - %L(ACDF‘I’B)CDHfﬁFH - %L(ACDF‘I’|CDF|H¢B)H
— (TaoL)ascorn (F,00) P
= — %QSCD(@SJ%,OL)ABC - %¢BCL(ADFH\I’C)DF — %¢ACL(BDFH\I’C)DFH
— (TaoL)ascorn (Z,00) P
=0. (5.47)

Here, we have used (5.44) together with the irreducible decomposition of Lyz™ Wepry and
the relations

(QS,I%JOL)AB = — 2L Wpcpr, (5.48a)
(%3,1%0:, ol)ascp = — 10ALapep — %(95,1%,014)/4361) + SLas" " Wepyrn, (5.48b)
L™ Weyppy = 0. (5.48¢)

The last equation follows from the integrability condition (cf section 2.3)

Losc"VWprmy = — 35,1 T4.0L)apcorn = 0, (5.49)

as explained in [7].

6. Factorizations

In this section we will consider special cases for which the auxiliary conditions will always
have a solution. We will now prove proposition 7, considering each case in turn.

6.1. The case when Lz, ¢ factors in terms of conformal Killing vectors

Proof of proposition 7 part (i). If £44- and {44 are conformal Killing vectors, i.e.

(Z116)a™ =0, (FaOHw"” =0, ©.1)
then we have a solution

Leeas’? =W ep)® (6.2)
to the equation

(PaLe)anc™ B = 0. (6.3)

Let

Qer = A Enw + 2 Dupap " EPE + 16110 (6116 as
H1EM (G026 1 Oan + L0 (G026 1 E)an + 36, OME (@ Eaw
_;_z(glflz)(gl,lg)a (6.4a)

PBecar = 2650 (G110)ap + 50 (6118 )ap — 1645 (6 Oaw — 104" (€] E)ap.  (6.4b)
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Applying the .7 operator to the equation (6.4a), decomposing the derivatives into
irreducible parts and using (6.1) gives a long expression with the operators 2, ¢, ¢, €€,
€€, TD, TEC, TC, DE€CT, €€€" and €T€E€ " operating on £44" and ¢4, Using the
commutators (2.7a), (2.7¢), (2.7d), (2.7¢) and (2.7f) on the outermost operators and using
(6.1), the list of operators appearing can be reduced to the set 2, ¢, ¢, 2.7€7, ¢ T¢€"
and €€ €. Then using the relations (2.7d) and (2.7¢) on the innermost operators the list of
operators appearing is reduced to ¢, ¢, € .7 9, where the latter can be eliminated with (2.7¢)
on the outer operators. After making an irreducible decomposition of £44 ¢ 5% and identifying
the symmetric part though (6.2), one is left with

(Z0.09e )4 = L& PN (G22®) apcw + %WABCDSBA, (€110 + %‘IIABCDCBA’ (€1,16)P
+ L, 455C (%;,2 ) g + %@A/B’C’D";AB/ (%ﬁli )
10 popaa” (6], 67 (6.5)
Applying the .7 operator to the equation (6.4b), decomposing the derivatives into
irreducible parts and using (6.1) gives a expression with the operators €6, €76, 7€,

el operating on SAA/ and {AA’. Using the commutators (2.7¢), (2.7d) and (2.7g) and using
(6.1), the entire expression can be reduced to only contain curvature terms. After making an

irreducible decomposition of £44'¢ 58 and identifying the symmetric part though (6.2), one is
left with
(Ti1Be)as™? = Lec PV Wapep — Lecast P VA E oy (6.6)
Substituting (6.2) into the definition of Og, allows us to see that (6.5) and (6.6) reduces to
(Zo.0Qe0)a”™ = (O L) (6.7a)
(T11Be)as™” = (0 €e) ;7 (6.7b)

The actual form of (6.4a) and (6.4b) was obtained by making sufficiently general
symmetric second order bi-linear ansatze. The coefficients where then chosen to eliminate
as many extra terms as possible in (6.7a) and (6.7b). O

6.2. The case when Lz, 5 factors in terms of Killing spinors

Another way of constructing conformal Killing tensors is to make a product of valence (2, 0)
and valence (0, 2) Killing spinors. It turns out that also this case admits solutions to the
auxiliary conditions.

In principle we could construct Lspsp from two different Killing spinors, but if the
dimension of the space of Killing spinors is greater than one, the spacetime has to be locally
isometric to Minkowski space. In these spacetimes the picture is much simpler and has been
studied before. The auxiliary conditions will be trivial in these cases. We will therefore only
consider one Killing spinor.

Proof of proposition 7 part (ii). Let x4 be a Killing spinor, i.e. a solution to

(Ps,0k) aBcar = 0. (6.8)
We have a solution

Loas’? = wapk? (6.9)
to the equation

(P2L)apc™ P = 0. (6.10)
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Now, let
Qe = 20up0pk P + kP (611%020) a8 + 35 (G020 )™ (63 gk ) an

R T CAR AN SIS (6.11a)
Bear = 5xas(6026) 0 — 3kap (CKZOK)AB,~ (6.11b)

Applying the 7 operator to the equation (6.11a), decomposing the derivatives into
irreducible parts and using (6.8) gives a long expression with the operators ¢, €', 2,
D€, €€, €16, TC, TEC, €66, ¢ €€, TE€EC and TE€TE" operating on kup and
kap . Using the commutators (2.7a), (2.7b), (2.7¢), (2.7d), (2.7¢) and (2.7 ) on the outermost
operators and using (6.8), the list of operators appearing can be reduced to the set ¢, €7,
CTC,C"TEC,2.T€ and 2.7 €. Then using the relations (2.7a), (2.7b), (2.7¢) and (2.7d)
on the innermost operators the expression will only contain the operators ¢, %' :

(Fo.0Qa™ = kP (6229 apcp — 2 Ppc™ B (60.200)4" + Wapcpr P (o 2k0)H
+ 20" pkaC (Gooic )BE — %CDACA/B’KBC (Go.26)""
+ AP (E L) wo + IV popkP (65 kA"
— 2 0ppoi®C (%T,OK Y+ 2D apmciC (€5 )PP

— 2u5" cien (€ )P (6.12)

Applying the 7 operator to the equation (6.11b), decomposing the derivatives into
irreducible parts and using (6.8) gives an expression with the operators €6, €7¢, T€
and 7€t operating on k4p and k4 5. Using the commutators (2.7¢), (2.7d), (2.7¢) and (2.7 f)
and using (6.8), the expression reduces to

(F11B)as™” = Wapcpk P — AP o pieapic?. (6.13)
Substituting (6.9) into the definition of Og)z), and making an irreducible decomposition of

KAB (%,ZE)CB/ and Ky p (%;!OK )ac’» allows us to see that (6.12) and (6.13) reduces to
(Z0.0Q4" = (08),* (6.14a)
(TaPBas™” = (0508:) 5" - (6.14b)
O

6.3. Example of a conformal Killing tensor that does not factor

The following shows that the condition (A0) is non-trivial. We also see that (A1) does not
imply (AO). Unfortunately, we have not found any example of a valence (1, 1) Killing spinor
which does not satisfy (Al).
Consider the following Stackel metric (see [9] and [29] for more general examples)
gap = dr* —dz* — (x +y)(d¥* + dy?) (6.15)
with the tetrad
1(3)“+ 1(3)“ ¢ 1(3)“ 1(3)“
= = 4 ’ n = — - T = zZ)
V2V V22
o @) i(3,)°
V26+ )2 2+ )
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Expressed in the corresponding dyad (o4, t4), the curvature takes the form

1
v = — 12A0uoptctpy, Qapap = 12Aoutpouts)y, A=-——7—. 6.16
ABCD (AOBLCLD) ABA'B (ALBYO(A'LBY) Gty (6.16)
We can see that the spinor
Lyg™® = L+ )" tatp + 0405 %) — (x — y)out o (6.17)

is a trace-free conformal Killing tensor. We trivially have solutions to the auxiliary condition
(A1) because

(OS;L)ABA,B, = 1P Wapcp — LABC,D/‘IJA,B’C’D/ =0. (6.18)

If there is a solution to (1.4) we will automatically have (%1,105?2)14%3 = 0 because
61.1%.0 = 0. However, with the current Lag"® we get

Siopt
0) _ (A*B)
(‘51,1(92,2L)AB = —(x et

This is non-vanishing, which means that the auxiliary condition (AQ) does not admit a solution.
This example shows that the conditions (A0) and (A1) are not equivalent. From the previous
two sections, we can also conclude that this Lyz*® can-not be written as a linear combination
of conformal Killing tensors of the form ¢4 (A/EB)B” or kapkap . For the more general metric
in [29] we can in fact also construct a valence (2, 2) Killing spinor which trivially satisfies
condition (A1), but which in general will not satisfy condition (A0). It is interesting to note
that in general this metric does not admit Killing vectors, but we can still construct symmetry
operators for the Maxwell equation.

(6.19)

6.4. Auxiliary condition for a symmetry operator of the second kind for the Dirac—Weyl!
equation

Proof of proposition 7 part (iii). Let k45 be a Killing spinor, and £44" a conformal Killing
vector, 1.€.

(Pok)apca =0, (T18)as™® =0, (6.20)
then we have a solution

Leeanc” = ko) (6.21)
to the equation

(Z51Lee)ascp”® = 0. (6.22)

The auxiliary equation (1.8) now takes the form
0 = 3Wapprc ™ (6116)c" + Wapcpt™ (C@O;,OK)DA' — 3Wapcpk P (D1,18)

— %‘IJ(ACDFKB)C(%I,I%')DF - %‘I—’(ACDFK\CD\ (61,18)pyr + gK(ACSDA/ (62,2P)B)cpar

+ 2 PEUN (622D 3o — 2P EN (T4 0 W) ascpra- (6.23)
Using the technique from section 2.3 we get that the integrability conditions for (6.20) are
0 = Wiupc" kp)r, (6.24a)

0= %"IJABCD(-@I,IE) + 2Wupc” (6118 Dy — %S(AA, (622P)cpyar + E™ (T4.0W) acprn -
(6.24b)
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Applying the operator 4’ on the condition (6.24a) gives
0= — 2Wupcn (6 ) u — t5xa” (G22@)s0rpw + $6°F (Ta0W)ancorn- (6.25)
Using (6.24b) to eliminate Wapcp(2;1€) and (6.25) to eliminate «PF (74 0W)ascpra, and
doing an irreducible decomposition of W, pcrkp’ we see that (6.23) reduces to
0= — Z(Cgl,lé)CD\I’(ABCFKD)Fa (6.26)
which is trivially satisfied due to (6.24a). O

6.5. Factorization of valence (4, 0) Killing spinors with aligned matter

Proof of theorem 8. Assume that the matter field and the curvature are aligned, that is
F
0= Wupc Ppyrap. (6.27)
Furthermore, assume that Wpcp does not vanish, and assume that there is a solution Lagcp to

(J4,0L) apcpE = 0. (6.28)

The integrability condition (5.49) for this equation together with the non-vanishing of the
Weyl spinor, gives that Lagcp and Wapgep are proportional (cf [7]). This means that

0= Lusc" Ppyrap (6.29a)

0= — Lupcn(Zo.0M)pya + Liasc™ (62.2@) pryuar + %CD(AB\MH (ﬁ;OL)CDF)BU (6.29bh)

where the second equation is obtained by taking a derivative of the first, decomposing the
derivatives into irreducible parts, using the Killing spinor equation, and symmetrizing over all
unprimed indices.

Split Lapcp into principal spinors Lagcp = o4 BpYcdp). Now, the Killing spinor equation
(6.28), and the alignment equation (6.29a) gives
By Col

0=aa o (ThoL)apcora = o BaaPygaScaPa Viyap,  (6.30a)

0= OlA(XBOlCOlDL(ABCFCDD)FA/B/ = %OlA,BA(MB)/B(XC(sCaDOlF(DDFA/B'. (630b)

We will first assume that o is not a repeated principal spinor of Lagcp. This means that
aA,BAaByBaC8C # 0 and hence a’aBVy ap = 0, that is a4 is a shear-free geodesic null

congruence. We also get aPaf ®pryp = 0. Contracting (6.295) with a*afaCalal” we get

0 = jo’ BraPypaCscaPa” 0 (622®) prua + %QABA'B/QA(XBWCWD“F (%AIOL)CDFB’
= 1o’ BaaPypa“scalal o (€22 @) pruar- (6.31)
Hence, a?aBaC (65, ®)apca = 0. But the Bianchi equations give
o aBaC VPP Wypep = ataPaC (62, P) ascar = 0. (6.32)

It follows from the generalized Goldberg—Sachs theorem that o is a repeated principal spinor
of Wupcp, see for instance [15, proposition 7.3.35]. But Lygcp and Wupcp are proportional, so
o is a repeated principal spinor of Lypcp after all. Without loss of generality, we can assume
that y4 = a?, a relabeling and rescaling of 84, y4 and §* can achieve this. Repeating the
argument with 4, we find that also g* is a repeated principal spinor of Lagcp. If fAas = 0,
we can repeat the argument again with 64 and see that all principal spinors are repeated, i.e.
Petrov type N. Otherwise, we have Petrov type D. In conclusion, we have after rescaling
Lapcp = a@aapBcBp). Now, let kap = a(aBa).

34



Class. Quantum Grav. 31 (2014) 135015 L Andersson et al

First assume that o84 # 0. Contracting (6.28) with a?a®aCaPBr, ataPaCpPpr,
(XAOlBﬂC‘BDﬂF, (XA,BBﬂC,BD,BF we find
0 = oo (P o) apcrs 0 = a*a®BC (T 06 ) anca,
0=a"BPB(Fok)anca. 0= B BPB(F.06)ancar-
Hence, (72,0« )apcar = 0.

If B4 = 0, we can find a dyad (0, 14) so that «® = ¢*. Then we have Lypcp =

v2040g0cop and kap = vosop. Contracting (6.28) with o*0PoCPiFv=1, AP i€ P Fu~!,

ABEL T ABCLFLT we find

0 = o P0“ (P06 )apca, 0= P (P0K)ancars
0= "B (Do) aca, 0= "B (Do) ancar.

Hence, (72,0« )apcar = 0.

We can therefore conclude that if the curvature satisfies (6.27), Wapcp does not vanish,
and we have a valence (4, 0) Killing spinor L4pcp, then we have a valence (2, 0) Killing spinor
kap such that Lygcp = KABKCD)- O

7. The symmetry operators with factorized Killing spinor

7.1. Symmetry operators for the conformal wave equation

Let us now consider special cases of symmetry operators for the conformal wave equation. If
we choose

Lapap = Legapan, Pav =0, 0= %Qg;. (7.1)
Then the operator takes the form
X = %ﬁ(ﬁg(b + %ﬁgﬁ;(]ﬁ (7.2)

One can also add an arbitrary first order symmetry operator to this.
We can also choose

Lapay = Leapyn. P =0, Q=32Q,. (7.3)
Substituting these expressions into (3.3) gives a symmetry operator, but we have not found
any simpler form than the one given by (3.3).
Remark 29. Apart from factorizations, one can in special cases get symmetry operators from
Killing tensors. If K4 is a Killing tensor, then we have
(PraL)apcapc =0, (Daal)aw = — 2(FpoS)an, KT = [ABAE 4 1geAbed®

where Ly = Kap @) and § = K4*4*'. The commutator (2.7¢) gives (61,1 %2L)ap = 0.
If we also assume vacuum, then the equation (4.27) gives

(Z.021,1%22L)an = — 2Wapcp(62,L) 5Py — 2Uppopy (Cg;:zL)AB,C’D’- (7.4)
Hence, we can choose

0= —5(21.12:50L). (7.5)
to satisfy condition AO, and get the well known symmetry operator
X = = 5(Z0S) (FooP)an + L (T 1 Too®anw = Van K E Vppg),  (7.6)

which is valid for vacuum spacetimes.
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7.2. Symmetry operator of the first kind for the Dirac—-Weyl equation

Let us now consider special cases of symmetry operators of the first kind for the Dirac—Weyl
equation. We can choose

Laaw = Lecapan. P = — 1P, 0= Q4. (7.7)
to get a symmetry operator for the Dirac—Weyl equation. The operator then becomes
Xa = 3Lelepn+ 3LcLen. (7.8)

We can add any conformal Killing vector to P*" and any constant to Q. Note that if we add
the conformal Killing vector 3 (£55'Vp g4 — ¢85 Vg £4%) to P’ the operator gets the
factored form

X4 = ﬁgﬁgfl’A- (7.9)
We can also choose
Lapap = Liasap = — % Moo= I%QK. (7.10)

Substituting these expressions into (4.2) gives a symmetry operator, but we have not found
any simpler form than the one given by (4.2).

7.3. Symmetry operator of the first kind for the Maxwell equation
Let us now consider the symmetry operators of the first kind for the Maxwell equation. Let
Ligwwy = Lecapan. P = — %‘Bg;fm,, 0=0, (7.11)

to get a symmetry operator. With this choice the symmetry operator and the potential reduce
to

XAB = %/j;/jgfﬁAB + %ﬁgﬁzd)AB’ (7.12a)

Apw = — 38 Lipan — 3684 Lipas. (7.12b)

A general first order operator can be added to this. If we add an the same commutator
as above with an appropriate coefficient to P44, we get the same kind of factorization of the
operator as above.

We can also get a solution by setting

Lapas = Seasns, P = — 3P, 0=0. (7.13)

With this choice the symmetry operator and the potential reduce to

xap = (61,1A)a, (7.144q)
Asn = — 5048(60.26) x + knm (CKZ(,@)AB/, (7.14b)
O = — 2k Py (7.14¢)

This proves the first part of theorem 11.
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7.4. Symmetry operator of the second kind for the Dirac—Weyl! equation

Let
Lanc® = Seensc?. (7.15a)
Pap = — 3 Lekap + 3kan(2118)
= Lean(2118) — LS @18)me + L™ (G goma- (7.15b)

Using the equations (6.20), the commutators (2.7¢), (2.7f), (2.7¢), (2.7d) and the
irreducible decompositions of Wagcrip” and ®apapéc? we get
(Fo.0P)asca = — ¢.48(C, (6118w — 554" (F2.061 18 seyon + §5a8(To.0 2118 oo
+ %§(A|A/\(<51,1C5;,0K)BC) + %g(AB/(%,ﬁg;OK)BC)A'B/

= &4 W kpyr

=0, (7.16)
where we in the last step used the integrability condition (6.24b). Observe that Pyp is give;n
by a conformally weighted Lie derivative, but now with a different weight. The operator L
has a conformal weight adapted to the weight of the conformally invariant operator 4*. The
operator 7 is also conformally invariant, but with a different weight. This explains the extra
term in Pyp.

The symmetry operator of the second kind for the Dirac—Weyl equation now takes the
form

wp = kP (T 0Ls)pen — 2Lepp(C, k)P (7.17)
Hence, we can conclude that if Lspcas factors, then one can choose a corresponding Pyp so

that the operator factors as a first order symmetry operator of the first kind followed by a first
order symmetry operator of the second kind.

7.5. Symmetry operator of the second kind for the Maxwell equation

If we let Lagcp = K(ABKCD) with

(Z2,06)acar = 0, (7.18)
then the operator if the second kind now takes the form

wyp = (CKIIB)A’B’» (7.19a)

Baw = kap(%5 02 x + 10,45(4) )P, (7.19b)

Oup = — 2k dpc- (7.19¢)

This proves the second part of theorem 11.
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