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Understanding the origins of gut microbial community structure is
critical for the identification and interpretation of potential fitness-
related traits for the host. The presence of community clusters
characterized by differences in the abundance of signature taxa,
referred to as enterotypes, is a debated concept first reported in
humans and later extended to other mammalian hosts. In this
study, we provide a thorough assessment of their existence in wild
house mice using a panel of evaluation criteria. We identify support
for two clusters that are compositionally similar to clusters identi-
fied in humans, chimpanzees, and laboratory mice, characterized by
differences in Bacteroides, Robinsoniella, and unclassified genera
belonging to the family Lachnospiraceae. To further evaluate these
clusters, we (i) monitored community changes associated with mov-
ing mice from the natural to a laboratory environment, (ii) per-
formed functional metagenomic sequencing, and (iii ) subjected
wild-caught samples to stable isotope analysis to reconstruct
dietary patterns. This process reveals differences in the proportions
of genes involved in carbohydrate versus protein metabolism in
the functional metagenome, as well as differences in plant- versus
meat-derived food sources between clusters. In conjunction with
wild-caught mice quickly changing their enterotype classification
upon transfer to a standard laboratory chow diet, these results
provide strong evidence that dietary history contributes to the
presence of enterotype-like clustering in wild mice.

First large-scale sequencing surveys of the human intestinal
microbiome emphasized considerable differences between

individuals (1). Numerous studies expanded upon these initial
observations and identified factors, such as geography, host
genetics, diet, and other environmental factors that contribute
to interindividual variability in humans (2–4) and other animals
(5–7). However, important questions pertaining to the nature
and origins of gut microbial community structure remain to be
answered. In particular, the presence of enterotypes, or distinct
clusters characterized by the abundances of signature bacterial
genera, is a debated concept first reported in humans (3). Wu
et al. (8) soon after provided evidence that the proportion of
protein and animal fat versus carbohydrates in long-term dietary
habits contribute to determining and individual’s enterotype,
whereas the intriguing existence of analogous enterotypes in
chimpanzees suggests that they may reflect more ancient features
of host-microbial physiology and homeostasis in the gut (9). On the
other hand, a meta-analysis of enterotypes across human body sites
found their identification to be sensitive to distance metrics and
clustering methods used, in addition to a majority of gradients,
rather than distinct clusters being present in signature taxa (10).
Most recently, Hildebrand et al. (11) provide a first assessment

of the possibility of enterotypes in the house mouse, a critical
and widely used model of gut microbiome research, whereby
two enterotype-like clusters among the five laboratory strains
studied are identified. Furthermore, differences in low-grade in-

flammation between these two groups suggest possible mechanisms
driving clustering, for example, differences in inflammation-
inducing taxa such as Enterobacteriaceae (12). However, which
aspects of inflammation and differences in taxon abundance
represent cause or consequence of each other remains unclear,
as does the possibility of other contributing factors to community
clustering. In addition, the natural state of bacterial communities
is potentially misrepresented in laboratory settings because of
practices, such as inoculating laboratory mice with limited mix-
tures of bacterial strains (e.g., altered Schaedler flora) and
feeding standard diets.
In this study, we use the criteria outlined by Koren et al. (10)

to first provide an assessment of enterotype-like clustering in
a panel of wild-caught house mice previously included in a bio-
geographic survey of intestinal communities (7), and compare
them to wild-caught mice housed in a laboratory environment.
We find that two clusters similar to those identified in humans,
chimpanzees, and laboratory mice are frequently present in the
wild, but are nearly lost among mice housed in the laboratory
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for 1 y. As a follow-up, we caught additional mice, transferred
them to the laboratory, and regularly monitored the dynamics
of their fecal communities over a period of 12 wk beginning
from the time of sampling. This process documents the rapid
loss of one cluster abundant in the wild under laboratory con-
ditions. Furthermore, deep shotgun metagenomic sequencing
reveals significant differences in functional microbiomic cate-
gories, in particular pertaining to protein versus carbohydrate
metabolism between the two groups. Finally, stable isotope
analysis performed on wild-caught samples reveals significant
differences in long-term diet between the two groups, consistent
with the observations based on functional metagenomic data.

Results
Enterotype-Like Clusters in Wild Mice. To evaluate the presence of
enterotypes in wild mice, we first analyzed the cecal contents of
80 samples collected and dissected on-site at eight geographic
locations in Western Europe [on average 530-km apart, across
Germany and France (7)] following previous studies of enter-
otypes (10, 11). In total, optimal clustering was evaluated for five
β-diversity metrics (i.e., measures of interindividual variability in
community structure), six clustering methods, and three judging
criteria (Methods and Table S1). However, to describe and
compare our results to previous studies of humans (3, 8),
chimpanzees (9), and laboratory mice (11), we focus mainly on
the Bray–Curtis (BC) distance applied to genus-level abundan-
ces, evaluated by the partitioning around means (pam) clustering
method. The BC distance is an abundance-based measure and
thus particularly suited to describe changes in the abundance of
indicator taxa, such as those associated with enterotypes. Fur-
thermore, BC is highly correlated to the Jensen–Shannon (JS)
distance (Mantel test, r = 0.9632, P = 0.001) applied in previous
studies (3), but offers the advantage of being used in similarity
percentage analysis (SIMPER) (13), a well-established method
to identify taxa contributing to similarity within- and dissimilarity
between groups (see below). Using BC and pam, an optimum of
two clusters is revealed using all three judging criteria (Table S1).
These two clusters, which we define as “E1” and “E2,” are
present in all eight geographic regions [80 sites distributed
across eight geographic locations on average 530 km apart (7)]
(Fig. 1A), explain 39.45% of the variation in BC distances (as
determined by the multivariate ANOVA implemented in
analysis of dissimilarity, “adonis”) (Methods), and display a clear
bimodal distribution along the first multidimensional scaling
(MDS) axis (Fig. 1B). The support for these clusters (prediction
strength >0.8) is comparable to that found for fecal samples
included in the Human Microbiome Project (10).
To assess the influence of sequence binning methodology, we

also carried out analyses on operational taxonomic units (OTUs)
at 97% and 95% similarity thresholds, which yields less support
for distinct clusters (Table S2). Interestingly, further examination
indicates that this difference is at least partly a result of differ-
ences in the taxonomic levels at which geography influences
community structure (7). At the 97% similarity threshold, geo-
graphic location has a significant influence on BC distance
(adonis, 9.91% variation explained, P = 0.039), which is also
observed at the 95% threshold (adonis, 10.13% variation
explained, P = 0.041). By comparison, the two optimal clusters
defined based on 97% and 95% OTUs explain only half the
variation in BC distance compared with geography (adonis,
5.34% and 5.48% variation explained, P = 0.001 and P = 0.001,
respectively). In contrast, BC distance based on genus-level
classification is not significantly influenced by geographic loca-
tion (adonis, 10.11% variation explained, P = 0.269), but displays
nearly eightfold more variation explained by optimal clustering
than that applied to OTUs (adonis, 39.45% variation explained,
P = 0.001). Thus, OTU-based community profiling appears to
reveal finer-scale variation in community structure that is shaped

by geography (sampling region), whereas broader-scale patterns
across geographical regions, such as enterotypes, are more prom-
inent at the genus level. Accordingly, our subsequent analyses
are based on the E1 and E2 clusters identified based on genus-
level abundances described above.

Compositional Analysis of Enterotype-Like Clusters. To identify sig-
nature taxa, we first applied the SIMPER method, which iden-
tifies taxa that contribute to differences between groups of
samples (13). This analysis identifies Bacteroides as the largest
contributor (31.68%) to dissimilarity between groups and sim-
ilarity within E1 (77.78%). The second largest contributor
(8.59%) to dissimilarity between groups is Robinsoniella, which
contributes 14.04% to similarity within E2 and is also the most
abundant genus in this group (average 13.6%). In addition, we
identified an unclassified genus belonging to Lachnospiraceae
(unclassified_Lachnospiraceae) that contributes 17.15% of the
similarity within E2, but is second in terms of its abundance in E2
(average 12.45%). Second, we tested for significant differences
in abundance among all taxa displaying ≥1% abundance in the
whole dataset. Ten of these 16 genera displayed significant
differences in abundance (Table 1). Finally, α-diversity analyses

Fig. 1. Principle coordinate analysis of wild captured mice based on BC
dissimilarity. (A) Colors denote each of eight unique sampling locations
across Germany and France that are on average 530 km apart (7) (n = 80).
Dots and diamonds represent the E1 enterotype (Bacteroides-dominant)
and E2 enterotype (Robinsoniella-dominant) classification, respectively.
(B) Kernel density of samples’ distribution along the first axis (MDS1) dis-
play a bimodal pattern, with red and blue dots denoting coordinates of
samples belonging to E1 and E2, respectively.
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reveal significantly lower diversity in E1 by several complemen-
tary measures (Fig. S1).

Wild Mice Moved to a Laboratory Environment. During the course
of fieldwork conducted in 2009 (7), additional mice sampled in
the Massif Central region of France were brought back to the
breeding facility of the Max Planck Institute for Evolutionary
Biology. In total, 10 mice captured from seven different farms
were analyzed after 1 y of laboratory housing. To assess the
possible influence of laboratory housing on the distribution of
enterotype-like clusters among mice, we added these 10 cecal
content samples to the 80 samples dissected on-site and repeated
the evaluation of clustering performed above. This finding
reveals nearly identical results as described above, with support
for two clusters (Table S3). Intriguingly, however, all 10 labo-
ratory-housed samples belong to E2. This finding is in stark
contrast to the mice sampled from the same Massif Central region
but dissected on-site, which display a proportion of 5:3 of E1:E2,
respectively (Table 2), and is highly unlikely to be observed by
chance (Fisher’s exact test, P = 0.001508). However, we lack
knowledge of the status of these 10 mice at the time of capture.
Thus, these results offer only circumstantial evidence that com-
mon environmental conditions experienced in the laboratory
influence enterotype-like clustering.
To directly document whether individuals shift their enter-

otype classification upon moving from the wild to a laboratory
environment, additional sampling of wild mice was performed in
the Cologne/Bonn region of Germany in 2012, which previously
displayed an E1:E2 ratio of 1:4 in 2010 (Table 2) (7). In total, 14
mice were sampled (week 0), of which six died during the process
of transportation and eight were transferred to the laboratory
breeding facility to be monitored at regular intervals (1, 2, 3, 4, 6,
8, 12 wk) by sampling feces (Methods). One mouse was not
sampled at week 3 because of treatment for a skin injury, whereas
another was sampled only until week 4, after which it gave birth
to a litter and was removed from the experiment. Thus, in total,
66 feces samples from eight different time points were analyzed.
To remain consistent with our previous analysis we used the

panel of 80 wild-caught samples as a reference for enterotype
classification together with the 66 additional feces samples
(Table S4). Again, this process yielded support for two clusters,
which explain 32.11% of the variation in BC distance (adonis,
P = 0.001). These effects are nearly threefold greater than the
differences between fecal vs. cecal content sampling (adonis,

11.78% variation in BC distance explained, P = 0.001), which is
unavoidable for the purpose of monitoring changes over time.
Based on BC and pam clustering, eight E1 and six E2 classi-
fications are present among the 14 mice at the initial point of
sampling (Fig. 2). Subsequently, eight mice (three E1 and five
E2) were sampled at regular intervals in the laboratory up to
12 wk postcapture. Among the five individuals initially classified as
E2, all remained E2, with the exception of two individuals that
displayed a short-term (i.e., a single sampling timepoint) transi-
tion to E1. In contrast, all three individuals classified as E1 at the
onset of sampling quickly (i.e., after 1 wk) shifted to E2 and
remained so throughout the remaining sampling period (Fig. 2).
These changes are recapitulated by observing the differences in
abundance of the signature taxa Bacteroides and Robinsoniella,
where a drastic initial drop in abundance is observed for Bac-
teroides among the mice initially classified as E1 (Fig. 3A). Ac-
cordingly, temporary spikes in Bacteroides abundance are also
associated with fluctuations between E1 and E2 in two mice
initially classified as E2 (Fig. 3C).

Functional Metagenomic Analysis of Enterotype-Like Clusters. To
determine what functional genomic changes may be associated
with different enterotype-like clusters, we sequenced the 14 mice
captured in the Cologne/Bonn region as well as the week 1 and
12 time points of the eight mice brought back to the laboratory
using an Illumina Hiseq platform (Methods and Table S5).

Table 1. Average abundances of major genera (overall mean abundance >1%) between E1 and E2 enterotypes

Major genera E1_Bacteroides E2_Robinsoniella
ANOVA P value
(FDR corrected)

Bacteroides 0.6026 0.1013 3.20E-15
unclassified_Lachnospiraceae 0.0297 0.1246 1.40E-07
Robinsoniella 0.0098 0.1356 5.52E-05
Barnesiella 0.0325 0.0944 9.55E-04
Helicobacter 0.0480 0.0364 6.13E-01
Lactobacillus 0.0513 0.0103 1.53E-01
Oscillibacter 0.0139 0.0423 5.52E-05
Coprobacillus 0.0273 0.0145 2.88E-01
unclassified_Ruminococcaceae 0.0157 0.0272 1.28E-02
unclassified_Porphyromonadaceae 0.0122 0.0300 1.39E-02
Parabacteroides 0.0257 0.0095 8.38E-02
unclassified_Rikenellaceae 0.0032 0.0317 9.55E-04
Alistipes 0.0053 0.0281 2.19E-03
Mucispirillum 0.0123 0.0204 2.77E-01
unclassified_Prevotellaceae 0.0082 0.0138 3.61E-01

Bold numbers denotes significant difference revealed by ANOVA [P < 0.05 after Benjamin–Hochberg correction (31)]. FDR, false-
discovery rate.

Table 2. Distribution of enterotypes with respect to sampling
location and time

Location E1_Bacteroides E2_Robinsoniella

AN* 5 3
CB 1 4
DB 7 4
ES 4 10
LO 8 5
MC 5 3
NA 5 5
SL 8 4
MC (after >1 y in laboratory) 0 10
CB (newly captured in 2012) 8 6

*Sampling locations and time are those given in Linnenbrink et al. (7), unless
otherwise noted.
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Sequence data were analyzed using the MG-RAST pipeline (14).
This pipeline provides four levels of functional categories, from
most general to most specific, based on the results of mapping to
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
maps (15). First, we evaluated community-level differences in
functional genomic content after standardizing the abundances
of each category to the total number of proteins predicted for
each metagenomic sample (i.e., in a manner analogous to taxon
abundance relative to the number of 16S rRNA gene sequences
in a sample). Based on the application of adonis to each of the
three applicable β-diversity measures [BC, JS, Jaccard (JA)],
significant differences are apparent for both abundance-based
measures (BC and JS) at all four levels of functional categories,
for which enterotype status explains between 15% and 30% of
the variation. Comparatively less variation was explained (∼10%)

by a presence/absence measure (JA), although significant differ-
ences are present at three category levels (Table 3).
Next, we identified the major functional differences in the

microbiome between the two enterotype classes using the
SIMPER method in a manner analogous to that used to identify
signature genera among 16S rRNA sequence data, but instead
using the standardized functional categories from each level
produced by MG-RAST. At both the first and second highest
levels of functional categories, genes involved in protein me-
tabolism/biosynthesis and carbohydrates are among the largest
contributors to differences between E1 and E2, whereby E1
displays a higher proportion of protein-related genes and E2
a higher proportion of carbohydrate-related genes (Fig. 4 and
Table 4). Furthermore, genes involved in bacterial motility ap-
pear to more frequent in E2 (Table 4). Similar patterns are
observed at the remaining two levels of functional categories,

Fig. 2. Enterotype classification of mice transferred to the laboratory. Timepoints range from time of capture in the Cologne-Bonn (week 0; n = 14) through
a 12-wk period of regular sampling in the laboratory (n = 8). Six mice died during transport to the laboratory and were thus sampled only at week 0. Each oval
denotes one sample and colors correspond to enterotype classification (red for E1 and blue for E2).

Fig. 3. Abundances of signature genera Bacteroides and Robinsoniella. A and B display Bacteroides and Robinsoniella abundance over time among mice
classified as E1 at the time of capture (n = 3; red). C and D display Bacteroides and Robinsoniella abundance over time among mice classified as E2 at the time
of capture (n = 5; blue).
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although the contribution of each function becomes less
prominent (Table S6), likely because of the increase in number
of pathways.

Stable Osotope Analysis of Wild Mice. The results of the functional
metagenomic analysis suggests that differences in diet (e.g., at
the level of carbohydrate vs. protein intake), might contribute to
the occurrence of enterotype-like clusters in wild mice. To test
this hypothesis, we further analyzed stable isotopes (δ15N and
δ13C) in muscle and liver tissues of original wild-caught mouse
samples from Linnenbrink et al. (7), then quantified likely diets
using the Bayesian mixing model FRUITS (16), which incorpo-
rates information from representative potential food sources
(Methods and Table S7). We found that on average, food sources
similar to standard laboratory chow (chow) are a major com-
ponent of the long-term diet (39.95 ± 1.31%) of wild mice, fol-
lowed by grain (36.42 ± 4.06%), meat (16.37 ± 2.67%), and
insects (8.14 ± 2.90%). We also found significant differences in
the major components of plant-derived food sources (chow)
between the two enterotypes (median for E1 38.51% and E2

39.25%, Wilcoxon test P = 0.027), and the opposite pattern for
animal-derived food sources (meat, median for E1 17.02% and
E2 16.80%) although the difference is not significant (Wilcoxon
test P = 0.187) (Fig. 5). No significant differences were found for
grain or insects between enterotypes. Additionally, the applica-
tion of linear models reveals Bacteroides abundance to be posi-
tively correlated with the percentage of meat and negatively
correlated with the percentage of chow in the diet, whereas the
opposite pattern is present for Robinsoniella abundance, although
neither is significant (all P > 0.05). We do, however, observe a sig-
nificant positive correlation between unclassified_Lachnospiraceae
and the percentage of chow (r2 = 0.1089, P = 0.002), as well as
a negative correlation between unclassified_Porphyromonadaceae
and the percentage of meat (r2 = 0.0964, P = 0.005), both con-
sistent with their differences in abundance between enterotypes
(Table 1).

Discussion
Our study provides several points of biological insight into the
origin and functionality of enterotype-like community clusters. In

Table 3. Differences in hierarchical functional categories (KEGG pathway levels) between E1 and E2 enterotypes

KEGG pathway level Dissimilarity Index
Adonis P value between

E1 and E2
Variances explained by

enterotypes

Level 1 Bray–Curtis 0.011 0.13065
Jensen–Shannon 0.003 0.34091
Jaccard NA* NA

Level 2 Bray–Curtis 0.007 0.14713
Jensen–Shannon 0.003 0.34037
Jaccard 0.001 0.1011

Level 3 Bray–Curtis 0.003 0.1488
Jensen–Shannon 0.002 0.32386
Jaccard 0.002 0.10017

Level 4 Bray–Curtis 0.001 0.14434
Jensen–Shannon 0.002 0.2893
Jaccard 0.004 0.08484

*Jaccard index not applicable at this level due to no differences in presence or absence.

Fig. 4. Differences in hierarchical KEGG pathways between enterotypes. (A) Relative abundance of genes involved in level 1 protein metabolism. (B) Relative
abundance of genes involved in level 1 carbohydrates. (C) Relative abundance of genes involved in level 2 protein biosynthesis. (D) Relative abundances of
genes involved in level 2 di-and-oligo saccharides metabolism.
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particular, we describe the state of enterotypes in natural pop-
ulations of house mice, and therefore identify the taxa and
structuring of bacterial communities with which the mouse lin-
eage most likely coevolved. Furthermore, we provide detailed
information on the circumstances in which communities change
their enterotype classification as well as the functional genomic
consequences of such changes. Finally, the results of stable iso-
tope analysis are consistent with underlying functional genomic
changes (i.e., carbohydrate vs. protein metabolism), providing
additional evidence that differences in recent dietary history/
behavior and their metabolic consequences may contribute to
the existence of different enterotype states.
Overall, our study adds to a growing picture of similarity in

signature taxa across host species. Following the nomenclature in
humans (3) and chimps (9), the major contributing genus to E1
in our study, Bacteroides, is also a significant contributor to
“enterotype 1” in humans and chimps, as is Parabacteroides
(Table 1). Similarly, unclassified Lachnospiraceae are signifi-
cantly more abundant in E2 in our study and follow the same
pattern in the human/chimp “enterotype 2.” Finally, the human/
chimp “enterotype 3” is characterized in part by Ruminococcus.
Although we identify no equivalent of a third enterotype in mice,

Robinsoniella, a signature taxon of E2, is a close relative of
Ruminococcus. One exception is that a Prevotella-dominated
enterotype is identified only in humans. In laboratory and wild
mice this may in part be the result of an overall 20- to 40-fold
reduction in Prevotella abundance compared with humans
(Table S8), but remains an interesting unexplained difference
between the composition of human and chimpanzee enter-
otypes, as its overall abundance in chimpanzees is higher than
in humans (9).
The study of Hildebrand et al. (11) identifies somewhat dif-

ferent signature taxa, which can possibly be attributed to in-
vestigating inbred laboratory mice. Nevertheless, laboratory and
wild mice are still more similar to each other in overall compo-
sition than either is to humans (Fig. S2A and Table S8), and we
identify the same number of enterotypes and similarities in the
signature taxa between the two mouse studies. In particular, al-
though a different nomenclature is used, their “ET1” displays
increased Lachnospiraceae as does our E2. Interestingly, how-
ever, the other major contributor to our E2, Robinsoniella,
appears absent in the Hildebrand et al. (11) study. We previously
identified this genus as the most consistent and abundant
member of the Firmicutes in wild mice (7), suggesting an

Table 4. Level 1 and 2 KEGG pathways differing between E1 and E2 enterotypes

Level Pathways
Median in
E1 (%)

Median in
E2 (%)

Contribution to
variance (%)*

Wilcoxon
P value†

Level 1 Protein metabolism 9.11 8.31 10.78 0.1629
Motility and chemotaxis 0.99 1.58 9.22 0.0248
Carbohydrates 14.77 15.35 8.48 0.0356
Phages prophages transposable

elements/plasmids
4.24 3.92 6.78 0.1288

Level 2 Protein biosynthesis 6.53 5.87 4.60 0.1699
Di and oligosaccharides 1.90 2.79 3.64 0.0063
Flagellar motility in Prokaryota 0.81 1.27 3.41 0.0166
Phages prophages 2.56 2.87 2.94 0.3238
Transposable elements 0.96 0.52 2.86 0.0598
RNA processing and modification 5.07 4.71 2.22 0.0858
Fermentation 0.97 1.31 1.93 0.0063
Capsular and extracellular polysacchrides 1.78 2.09 1.86 0.0063
Ton and Tol transport systems 0.68 0.33 1.74 0.0166
Central carbohydrate metabolism 3.62 3.28 1.74 0.0063
Plant/prokaryote 6.37 6.27 1.73 0.1509
Monosaccharides 2.28 2.27 1.46 0.4470

*The contribution of each pathway to the total variance is calculated via SIMPER.
†Significant differences [P < 0.05 after Benjamin–Hochberg correction (31)] are shown in bold.

Fig. 5. Abundance of major dietary components reconstructed for the two enterotypes. (A) Relative abundances of “chow” and (B) “meat” in the diet (see
Methods for details on food standards).
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important biological role that may be either absent or replaced
by functional equivalents in the communities of laboratory
mice. In addition, we identify one enterotype with reduced α-di-
versity, E1, for which a similar phenomenon is present in the
enterotype “ET2” from Hildebrand et al. (11). A possible reason
for this correspondence may be the increase in Bacteroides and
Bacteroidaceae in the current study (E1) and Hildebrand et al. (11)
(ET2), respectively, at the expense of other community members.
Indeed, when the overall similarity in genus-level composition
is compared taking enterotype status into consideration, the
enterotype classes display more similarity with each other than
either does to the other enterotype class within its respective
laboratory- or wild mouse hosts (Fig. S2B).
Soon after the first report of enterotypes in humans (3), Wu

et al. (8) reported that long-term diets were strongly associated
with enterotype status, where individuals with more animal fat
and protein intake were more likely to present the Bacteroides-
dominated enterotype compared with those with more carbo-
hydrate intake being associated with a Prevotella-dominated
enterotype. The most compelling evidence for dietary influences
on enterotypes given by our study is that the Bacteroides-domi-
nated enterotype in wild mice, E1, quickly shifts to the alter-
native state of E2 after being transferred to the laboratory.
Presumably, the standard chow fed to the mice in our breeding
facility is in contrast to the greater variety of food sources
available in the wild, which includes animal material, such as
insects, worms, and so forth. Thus, a laboratory chow-restricted
diet would be expected to deliver a more consistent source
of plant-derived nutrients. Indeed, when comparing the major
functional genomic categories that differentiate mouse enter-
otypes by shotgun metagenomic sequencing, the Robinsoniella-
dominated E2 displays a significantly greater proportion of
categories attributed to carbohydrate metabolism. Finally, by
reconstructing dietary patterns via stable isotope analysis of liver
and muscle tissue together with surrogates of food sources sim-
ilar to the range available in the wild, we revealed a pattern of
diet composition that is consistent with a more chow-like food
intake in E2. The fact that the wild mice included in our study
change their enterotype status within 1 wk after being transferred
to the laboratory is in contrast to the 10-d dietary intervention
conducted in humans by Wu et al. (8), where no change was
observed. This finding may in part be explained by the higher
metabolic rate of small mammals such as the mouse. Further-
more, although the mice in our study display significant patterns
with respect to differences in carbohydrate intake- and func-
tional metagenomic content between enterotypes, the role of
other dietary components is less clear. Both protein metabolic
function and the proportion of meat-derived intake are elevated
in E1 in a direction consistent with the human Bacteroides-
dominated enterotype (8), although the differences are not sig-
nificant. This result suggests that a wider survey of nutritional
sources and their combination is warranted to explore the cir-
cumstances under which mice transition from E2 to E1.
The clear presence of a single enterotype among the wild mice

transferred to our laboratory facility raises the question as to why
two enterotypes are observed among inbred laboratory mice that
are also fed a standard diet. In their study, Hildebrand et al. (11)
identify “low-grade” inflammation as a possible contributing
factor. Other authors found that laboratory mice may have ab-
normal metabolic functioning because of their diet or environ-
ment (17), as well as decreased immune functioning compared
with their wild counterparts (18), which may play a role in the
observations made by Hildebrand et al. (11). An evaluation of
inflammatory status was not performed on the mice in our
study, although our data strongly suggest that inflammation
alone is not responsible for the observed clustering. Further-
more, determining whether elevated inflammation contributes
to, or is rather a consequence of enterotype status, will require

thorough experiments, particularly in wild mice because they
display greater variability in immune function compared with
laboratory mice (18). In addition to low-grade inflammation, an
alternative possibility is that related enterotypes may emerge
over time among the altered species assemblages present in
laboratory mice. Future studies incorporating additional labo-
ratory facilities, time series, and gnotobiotic experiments may
help shed light on these questions.

Conclusions
In summary, we provide evidence for the existence of two func-
tionally different enterotype-like clusters present in wild house
mice. Remarkably, these clusters display several characteristics
in common with those of the distantly related human and
chimpanzee hosts, suggesting the existence of ancient shared
traits among the bacterial communities that assemble within
mammalian hosts. Finally, we provide additional evidence that
dietary habits may be the most important contributing factor
to changes in enterotype status, which warrants more intensive
future research to understand the impact of diet–microbiome
interactions on human health and disease.

Methods
Animal Material and Sampling. The cecal contents of 80 wild-caught mice
described by Linnenbrink et al. (7) and an additional 10 mice transferred
from the Massif Central region of France were separated from cecal tissue
and preserved in 4 mL RNALater according to manufacturer’s instructions
until further processing, as previously described (7). Of the 10 mice from the
Massif Central that were transferred to the breeding facility of the Max
Planck Institute for Evolutionary Biology, six were housed in individual cages
and four were maintained as two breeding pairs to generate offspring to be
included in an outbred colony derived from this region (19). The four mice
involved in breeding were maintained as pairs (i.e., cohoused) for 1 to 2 mo,
but were housed separately for >6 mo before being killed.

To directly monitor changes in bacterial communities associated with trans-
fer to the laboratory, 14 mice were newly sampled in 2012 from the same
Cologne/Bonn region of Germany sampled in 2010 (7). Feces were collected
from all mice within several hours of retrieving the traps. Six mice failed to
survive transportation to the laboratory and were thus only included as
“week 0” samples. The remaining eight surviving mice were brought back to
the laboratory breeding facility and monitored at regular intervals from the
point of capture (1, 2, 3, 4, 6, 8, 12 wk) by sampling feces. One mouse was
not sampled at week 3 because of treatment for a skin injury, and another
was sampled only until week 4, after which it gave birth to a litter and was
removed from the experiment. Thus, in total, 66 feces samples from seven
different time points were analyzed. The transportation, handling, and
maintenance of mice was conducted according to the German animal
welfare law (Tierschutzgesetz) and Federation of European Laboratory
Animal Science Associations guidelines. The approval for mouse husbandry
was obtained from the local veterinary office “Veterinäramt Kreis Plön”
(Permit 1401-144/PLÖ-004697).

DNA Extraction. Bacterial DNA from cecal contents and feces was extracted
using the QIAmp DNA stool mini kit (QIAGEN). Approximately 200 mg of
material was transferred to 2-mL screw-cap tubes containing 50 mg each of
0.1-mm, 0.5-mm, and 1-mm glass beads (BioSpec Products). The tubes/beads
were treated with UV exposure for 2 h before performing the extraction.
After adding 1.4 mL ASL lysis buffer, bead beating was performed using
the Precellys (Peqlab) for 3 × 15 s at 4,723 × g. Samples were then heated
to 95 °C for 10 min, after which the manufacturer’s protocol was followed.

Bacterial 16S rRNA Gene Sequencing and Processing. The 27F-338R primer
pair spanning the hypervariable regions V1 and V2 was used for PCR and
barcoded pyrosequencing on the 454 GS-FLX platform with Titanium sequenc-
ing chemistry, as previously described (2). Sequences were filtered using
MOTHUR v1.22.2 (20) with the inclusion criteria of mean quality score >20
and length ≥250 bp. Sequences were assigned to samples by exact matches
of 10-bp barcodes. For each sample, random subsets of 1,000 sequences
were extracted to normalize coverage and taxonomical classification
was performed using RDP Classifier (21). USEARCH/UCHIME v5.2.32 (22, 23)
was used to identify chimeric sequences and perform sequencing clustering
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into operational taxonomic units using default parameters (OTU-based
analyses are presented in Table S2).

Bacterial Community Analysis. Bacterial community analyses including
β-diversity metrics (BC, JA) and analysis of dissimilarity (adonis, which per-
forms a multidimensional ANOVA on distance matrices and was applied to
β-diversity metrics) were carried out using the VEGAN R package (24). The
JS distance was calculated using the “flexmix” R package (25). Weighted and
unweighted UniFrac distance matrices as well as phylogenetic diversity (PD)
(26) were calculated from a maximum-likelihood tree constructed by Fast-
Tree (27) as implemented in MOTHUR. α-Diversity indices (Chao1 richness,
Shannon) were calculated using the “VEGAN” R package (24), based on
a normalized (subsampled) dataset (1,000 reads per sample).

To evaluate the presence of enterotype-like clustering, we used the
original criteria of Arumugam et al. (3), which uses the Calinski–Harabasz
index as an indicator for best clustering, in addition to the silhouette score
and prediction strength suggested by Hildebrand et al. (11) and Koren et al.
(10), respectively. The following clustering algorithms implemented in R
packages were used: pam (R package “cluster”), kmeans (R package “flex-
clust”), and hierarchical clustering using “single,” “complete,” “average,”
and “ward” linkage (R function “hclust”). To identify taxa contributing to
groups based on BC distance, we applied the SIMPER method (13), which
identifies taxa contributing to similarity within- and dissimilarity between
groups and ranks their contribution.

Shotgun Metagenomic Sequencing and Analysis. Bacterial DNA from fecal
samples was subject to full metagenomic sequencing on the Illumina HiSEq.
2000 platformwith paired-end 100-bp reads. Each samplewas sequenced on
a one-quarter lane, resulting in an average 8.54E9 bp of sequence
per sample. After stringent quality filtering using the Fastq Tool Kit (each
sequence required to have >99% of its nucleotides with a quality score ≥ 30),
sequences were assembled using Meta-Velvet (28) under default parameters,
resulting in an average of 1.36E8 bp of assembled reads per sample and then
submitted to MG-RAST (http://metagenomics.anl.gov) (14) for further analysis.

Assembly before submission to was necessary because of the Fastq data
exceeding the limits of MG-RAST. The automated pipeline provided by
MG-RAST was used to obtain taxonomic classification and functional
annotation of genes predicted by FragGeneScan using the BLAT program
referencing the M5NR database. For each sample, taxonomical and functional
information was extracted and subjected to the same statistical analyses ap-
plied to 16S rRNA gene data using the VEGAN package in R (29).

Stable Isotope Analysis and Diet Reconstruction. Approximately 200 mg each
of liver and muscle tissue were recovered from enthanol-preserved carcasses
subjected to extraction with a methanol/dichloromethanemixture to remove
lipids (30) and dried at 70 °C for 48 h. The stable isotopes and concentrations
of nitrogen and carbon were analyzed simultaneously with a THERMO/
Finnigan MAT V isotope ratio mass spectrometer and THERMO Flash EA
1112 elemental analyzer at Braford University, United Kingdom. The ratios
of stable isotopes are given using the conventional δ notion (δ15N and δ13C),
with respect to atmospheric nitrogen and Vienna PeeDee Belemnite
standards. Additionally we included four main foods groups that represent
the range of possible dietary sources of wild mice. These groups included
wheat grains from a rat food mixture and standard mouse laboratory chow
(chow) as plant-derived food sources, as well as dried meal worms (insect)
and meat-based dog food (meat). To reconstruct the most probable diet
structure with respect to the relative proportion of each food standard lis-
ted above, we combined the isotope signatures from both muscle and liver
and obtained dietary estimates using the Bayesian mixing model FRUITS (16)
(http://sourceforge.net/projects/fruits).
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