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Abstract

Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in
vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have
shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An
interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous
workplace whenever a subjects’ vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested
whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS). NIRS is a highly mobile
technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals
correlate with vigilance. These signals carry enough information to decode subjects’ reaction times at a single trial level.
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Introduction

The ability of organisms to maintain their focus of attention and

to remain alert to stimuli over prolonged periods of time is termed

‘‘vigilance’’ [1]. For example, during long-lasting activities such as

steering a car for hours the speed and accuracy of responses to

incoming stimuli like traffic signs and other cars vary over time.

Obviously, in real-world scenarios any attention failures can

involve high risks. So it would be useful to have a device that

measures neural correlates of attentional performance in real time

and in the real world. Such a device could warn when vigilance is

low or even induce events that increase attention [2]. It has long

been known that the neural processes underlying attentional

performance can be measured with neuroimaging techniques [3–

5].

Several studies have demonstrated the suitability of EEG and

fMRI for real-world monitoring of mental states and for brain-

computer-interface (BCI) applications [6–16]. EEG has the

potential to measure fast electrical signals from the surface of the

scalp. However, for attention monitoring EEG signals might not

be the first choice. EEG is very sensitive to motion artifacts [17]

and the preparation is tedious, although recent developments

might in future decrease preparation time drastically. Further-

more, an EEG system can always be influenced by other electronic

or magnetic devices, which complicate its usability in technical

environments like (car or airplane) cockpits [but see 18 for an

application during simulated driving]. Finally, EEG-based BCIs

are very useful when high bit-rates are necessary (for example

communication devices). However, for monitoring slow fluctua-

tions of attention and vigilance such high bit-rates might not be

necessary.

A different approach would be to use functional magnetic

resonance imaging (fMRI). Numerous studies have demonstrated

correlates of attention in BOLD signals as measured with fMRI,

ranging from sensory regions to parietal and prefrontal cortex

[3,5]. However, functional magnetic resonance imaging is

stationary and thus lacks the mobility needed for natural

environmental settings.

Here, we assessed the possibility of attention monitoring using

Near-Infrared Spectroscopy (NIRS) as a potentially suitable

technique for measuring brain activity in natural environments.

Similar to fMRI, NIRS measures the blood oxygenation level of

the superficial layers from the surface of the human brain and can

distinguish between concentration changes of oxygenated and

deoxygenated hemoglobin (HbO and HbR). Thereby, it measures

an effect comparable to the blood oxygenation level dependent

(BOLD) effect in fMRI [19,20]. While concentration of HbO is

expected to increase after focal activation of the cortex due to

higher blood flow, HbR is washed out and decreases [21,22]. So

NIRS might potentially be able to register attention-related

BOLD-signals near the surface of the brain, particularly in

parietal and prefrontal cortex. Although NIRS has the substantial

benefits of low-costs, easiness to handle and, especially, its

mobility, it suffers from spatial limitations as compared to fMRI.

While the spatial resolution can be enhanced to a sub-centimeter

space [23–26], the depth in which hemodynamics can be

measured is physically limited to the upper layer of the cortex.

Thereby, fMRI remains the ‘gold standard’ in localizing

hemodynamics.
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NIRS has been successfully used to investigate the neural

signatures of performing vigilance tasks, typically by contrasting a

task with a resting or control condition [27–33]. It has been shown

that typically the involvment of the right hemisphere is stonger

relative to the left hemisphere in vigilance tasks [27,28,31],

however the involvment of both hemispheres also depends on the

vigilance task used [28,31]. Interestingly NIRS has been used in

ecologically valid environments to investigate vigilance [32].

However, the goal in these previous studies was to identify regions

that show differences in brain activity between performing a

vigilance task compared to some kind of baseline condition, for

example an easy control task or rest. Importantly, a region that is

active during the subjects’ involvement in a task that requires

sustained attention, does not necessarily also reflect performance

fluctuations during the execution of the task. It could be possible

that depending on the chosen vigilance task, a brain region shows

an increased response that is related to specific properties of the

task that is not necessarily related to vigilance, for example

difficulty. Therefore, in the present study we are interested in

measuring and relating fluctuations in the NIRS signal to

performance fluctuations during the performance of a task that

requires sustained attention. With this approach we can directly

test, whether activity in a specific brain region reflects a potential

measure for vigilance that is not confounded with differences

between the vigilance and a control task (for example difficulty).

Furthermore, our approach is closer to realistic scenarios in which

it would be necessary to monitor performance fluctuations during

vigilance tasks and not simply detect whether a monitored subject

Figure 1. Experimental paradigm A One of four possible stimuli (see middle) is presented visually for 200 ms. Subjects had to report the
identity of the attended letter using a button-press. After a variable inter-trial-interval the next stimulus was presented. The stimuli were large
(‘‘global’’) letters made up out of smaller letters (‘‘local’’). If the global and local levels spell different letters this creates a conflict and a decrease in
reaction time. (B) Fluctuations in reaction time across the duration of the experiment were used as indicators of changes vigilance (shown here for
one run of one subject).
doi:10.1371/journal.pone.0101729.g001
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is performing a vigilance or some other kind of task. Specifically, in

the present study we want to investigate whether NIRS signals are

systematically modulated by vigilance fluctuations (as measured by

changes in response times of a task) (Analysis I). Furthermore, we

want to use the spatial-temporal pattern of the recorded NIRS-

signal to decode single trial reaction times (Analysis II).

Another neuroimaging technique that could potentially be used

to associate brain signals with performance is Transcranial

Doppler Sonograply (TCD). TCD has already been shown to be

sensitive to critical event detection during a vigilance task [34].

TCD measures global blood flow changes while NIRS is a more

focal measure of cortical hemodynamics.

NIRS is also to some degree feasible for BCI [35–37]. NIRS is

relatively motion artifact insensitive; it is non-invasive, portable

and economic [38]. Although the hemodynamic response

measured with NIRS is a slow response, also the attentional state

fluctuates slowly. Thus, the time resolution of NIRS could be

sufficiently high to acquire neural correlates of vigilance from the

surface of the brain.

Materials and Methods

Subjects
9 healthy subjects (22–25 years old; 4 female) without any

history of neurological or psychiatric disorders participated

voluntarily in our experiment and received financial compensa-

tion. All of the participants had normal or corrected to normal

vision and were right handed as indexed by self-report. One

subject had to be excluded from the analysis because of technical

problems during the measurement. The study was approved by

the Ethics Committee of the Universitätsklinikum Leipzig and all

participants gave their written consent prior to the experiment.

Experiment
The experimental paradigm used to measure changes in

vigilance was chosen to be very similar to one that was presented

in a previous fMRI study on attentional fluctuations [5]. This task

was chosen because in this fMRI experiment slips of attention

could then be compared to changes in the BOLD response [5].

FNIRS measures a similar signal like fMRI, however limited to the

surface of the brain, therefore we expected to find similar

modulations in the fNIRS signal. Subjects executed a global-local

Stroop paradigm. The visual stimuli consisted of multiple small

letters (either S or H) that were arranged so that the shape of either

a large S or a large H was formed (see Figure 1). Half of the trials

were congruent, i.e. the global and local letters were mapped to

the same response, and the other half was incongruent. Before the

start of each block subjects were instructed verbally to attend

either to the local or the global letters. In the first 3 blocks subjects

were instructed to attend to either the global or the local letters.

Half of the subjects were instructed to attend to the global letters in

the first 3 blocks and to the local letters in the subsequent 3 blocks.

The other subjects were instructed to attend to the local letters in

the first 3 blocks and to the global letters in the subsequent 3

blocks. Stimuli had a size of 666108 pixel and were presented for

200 ms on a 150 display with a resolution of 10246768 pixel. After

visual presentation subjects had to indicate the identity of the

attended letter by button press. Inter-trial intervals (ITI) between

visual presentations had a mean duration of 7.9 s (ranging from 7

to 12 s with an exponential decay and resulting in a duration of

474 s for one block). Each subject performed 6 blocks of the

experiment during which 60 trials (30 congruent, 30 incongruent)

were presented. Taken together the duration of the whole

experiment (without short breaks between the blocks) was 47 m

and 24 s. The subject’s single trial performance (i.e. mean

corrected reaction time) was used as an indicator for the current

vigilance state for the further analyses. Please note, that the

experiment was not aimed to investigate conflict processing during

a Stroop task. Importantly, here we used the Stroop paradigm as

an example of a task that requires relatively high levels of attention

to perform it correctly. Therefore, we corrected for the behavioral

effects, i.e. mainly reaction time differences between congruent

and incongruent trials by subtracting the condition specific mean

reaction times.

Furthermore, the Stroop task is a non-typical vigilance task that

is, in the here presented used form, more similar to a psychomotor

Figure 2. Optode positions (16 sources; red and 16 detectors; blue) and 44 measurement channels (green) on the surface of a 3D
brain (left: view on parietal, right: on frontal regions). Based on previous studies [3,5] the optode positions were focused on parietal and
prefrontal cortical regions.
doi:10.1371/journal.pone.0101729.g002
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vigilance task [39]. Typical vigilance tasks involve a relatively rare

event that has to be detected between very frequent events. Both

the frequent and the rare event itself are very easy to detect

[40,41]. However, in a classical vigilance task the subject is asked

to report only occurrences of the rare event. During such typical

vigilance tasks a vigilance decrement is reported [42], i.e.

increased reaction times and increased error rates over time.

The Stroop task used here is useful for the acquisition of relatively

high sampled measure of vigilance (reaction times) during a task

that requires attention. However, because it is very different to

typical vigilance tasks effects such as the vigilance decrement might

not be observable.

NIRS acquisition and preprocessing
During the experiment, blood oxygenation at the surface of the

subjects’ brain was measured with a NIRS system, which consisted

of 16 detectors and 16 emitters (NIRScout 16-16, NIRx

Medizintechnik GmbH, Berlin, Germany) at two wavelengths

(850 and 760 nm). Based on previous findings [5], we chose fiber

optode positions to cover the frontal and parietal areas of the

subject’s head, providing a total of 44 useful channels where source

and detector were at a distance of between 2 and 3 cm from each

other. This arrangement is shown in Figure 2. To guarantee

optimal accuracy in optode localization and convenience for the

subjects, the emitters and detectors were integrated into a

commercially available EEG cap (www.easycap.de) with 128

possible positions. NIRS data were continuously sampled with

6.25 Hz.

For visual inspection and demonstration, we employed the

freeware MATLAB toolbox NFRI (www.jichi.ac.jp/brainlab/

tools.html) by Singh and Dan [43], which takes EEG 10–20

positions, given by the EEG cap used, as references to estimate

brain regions underlying the NIRS channel locations. This toolbox

thereby enables statistical results for each channel to be plotted on

the surface of a schematic brain as used in Figure 2. To evaluate

Table 1. The MATLAB toolbox NFRI [43] was used to estimate the MNI coordinates of the used EEG 10–20 positions.

Channel # MNI coordinate Cortical region

x y z

ch15-16 41 62 9 Superior Frontal Gyrus

ch12-9 230 63 20 Superior Frontal Gyrus

ch12-10 216 64 30 Superior Frontal Gyrus

ch13-10 25 63 35 Medial Frontal Gyrus

ch13-13 10 63 35 Superior Frontal Gyrus

ch14-13 20 64 30 Superior Frontal Gyrus

ch14-16 34 62 20 Superior Frontal Gyrus

ch9-10 215 53 45 Superior Frontal Gyrus

ch10-13 18 52 45 Superior Frontal Gyrus

ch7-3 232 253 71 Superior Parietal Lobule

ch7-4 221 252 75 Superior Parietal Lobule

ch8-6 21 253 75 Postcentral Gyrus

ch8-7 32 254 72 Superior Parietal Lobule

ch4-3 229 265 65 Superior Parietal Lobule

ch4-4 219 266 70 Superior Parietal Lobule

ch5-4 212 265 71 Superior Parietal Lobule

ch5-6 11 265 70 Superior Parietal Lobule

ch6-6 18 266 70 Superior Parietal Lobule

ch6-7 28 267 66 Superior Parietal Lobule

ch4-2 231 273 58 Superior Parietal Lobule

ch4-1 218 277 60 Precuneus

ch5-1 211 277 61 Precuneus

ch5-5 9 276 60 Precuneus

ch6-5 17 277 60 Precuneus

ch6-8 29 274 58 Precuneus

ch1-2 233 285 43 Precuneus

ch1-1 219 288 44 Cuneus

ch2-1 211 285 48 Precuneus

ch2-5 8 285 47 Cuneus

ch3-5 18 288 45 Cuneus

ch3-8 30 285 44 Cuneus

To evaluate the cortical structures underlying the NIRS channels the MNI coordinates were transformed to Talairach space [44,45] and looked up in a brain atlas [46].
doi:10.1371/journal.pone.0101729.t001
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the cortical structures underlying the NIRS channels we trans-

formed the MNI coordinates to Talairach space [44,45] and

looked them up in a brain atlas provided by [46] (see Table 1).

The channels covered brain regions that have been reported to be

associated with lapses of attention [5] such as the middle frontal

gyrus, precuneus, and superior parietal lobe. However, with NIRS

it is only possible to measure BOLD responses on the surface of

these brain regions.

Raw data was filtered at 0.25 Hz using a third order digital

Butterworth low-pass filter. The cutoff frequency was chosen to

attenuate high frequency noise and the cardiovascular signal (i.e.,

breathing and heartbeat). Further analysis with different cutoff

frequencies (Figure 3) revealed that potential noise in the

frequency of breathing (0.2–0.3 Hz) is not affecting the results of

the performed decoding analysis. Attenuation changes of both

measured wavelengths were transformed to concentration changes

of oxy- and deoxygenated hemoglobin (HbO and HbR) using a

modified Beer-Lambert law [47].

Behavioral Data
Mean response times as well as hit rates for congruent and

incongruent trials were calculated. We also calculated hit rates and

response times for the six runs and for the two attention conditions

(attend local or attend global) individually. For all further analysis

only reaction times of correct trials were considered. In order to

remove condition specific reaction time differences, we calculated

the average reaction time for the congruent and for the

incongruent trials for each run of each subject. Then these mean

reaction times for the congruent and incongruent trials were

subtracted from the individual congruent and incongruent trials

respectively. Please note that after this correction it is impossible to

infer from the reaction time alone, whether a trial was congruent

or incongruent. However, more importantly, the corrected

reaction times reflect relative performance fluctuations during

the execution of the task independent of potential congruency

effects.

Analysis I: Finite Impulse Response Analysis
The preprocessed NIRS-data was analyzed using custom

software. In a first analysis we implemented a general linear

model (GLM) that makes no assumptions about the shape of the

hemodynamic response (e.g. the shape of the hemodynamic

response function). Therefore 12 consecutive stick function

regressors were estimated to model the event-related hemody-

namic response (ER-HR). The data were recorded with a

sampling frequency of 6.25 Hz, i. e. much faster than in fMRI

paradigms (typically around 0.5 Hz). Therefore, in contrast to

finite impulse response (FIR) analysis for fMRI data, we modeled

every 6th time point with a stick function instead of impulses for

each time point.

Figure 3. Timelines of the averaged accuracies (averaged Fisher-Z normalized correlation) of the prediction of subjects’ single trial
reaction times. Different low-pass cutoff frequencies were chosen during the preprocessing (0.1 Hz, 0.15 Hz, 0.2 Hz, 0.25 Hz, and 0.3 Hz). Decoding
performance on low-pass filtered data with cutoff frequencies between 0.15 Hz and 0.3 Hz is very similar. When the data are low-pass filtered with a
cutoff frequency of 0.1 Hz decoding performance declines.
doi:10.1371/journal.pone.0101729.g003
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Furthermore we included 12 parametric regressors [48], one for

each of the 12 onset regressors which modeled the modulation of

the hemodynamic response due to variations in the mean

corrected response times, resulting in a total of 24 regressors.

We further refer to this set of regressors as event-related

parametric modulated (ER-PM). The model used in the GLM

furthermore included discrete cosine functions to attenuate slow

drifts below 1/128 Hz.

The regression approach described above is similar to the

analysis used in the study from Weissman [5].

Figure 4. Behavioral results. Performance (left) and reaction times (right) for the congruent (blue) and incongruent (red) conditions. Responses to
the congruent stimuli had a significant higher hit rate and were given faster compared to the incongruent stimuli. Reaction times to both the
congruent and the incongruent stimuli were slower in the second part of the experiment (bottom). Between the third and the fourth run the
instruction was to shift the attention from global to local or vice versa and potentially caused the slow response time in run 4. Error bars represent
standard error of the mean.
doi:10.1371/journal.pone.0101729.g004
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Analysis II: Decoding
The aim of Analysis II was to predict (mean corrected) single

trial behavioral response times using support vector regression

(SVR). For the prediction we used all 44 channels from both

chromophores of the hemoglobin (HbO and HbR) resulting in 88

channels. Further preprocessing steps of the data after the

application of the modified Beer-Lambert law included linear

drift correction and z-normalization. Both preprocessing steps

were performed separately for each run. Data used for the

decoding was extracted by a sliding window that moved with a

step size of 3 samples and had a width of 7 samples. The range

covered by the sliding window analysis started at 25 s (231

samples) and ended at 14.7 s (92 samples) relative to the stimulus

onsets. For each trial the data from all the 88 channels x 7 time

points were transformed into a vector and used as features for

space-time decoding [49]. The advantage of this approach is that

spatial patterns as well as temporal patterns (for example temporal

gradients) can enhance the decoding performance. Correct trials

from 5 of the 6 experimental runs were used to train the SVR.

Trials from the run that was not used for training were used to

estimate the accuracy of the prediction by calculating the

correlation coefficient between predicted and actual (mean

Figure 5. FIR-GLM parameter estimates. For illustration purposes the FIR-parameters for an HbO-channel in parietal (left) and prefrontal (right)
areas are plotted. A) Time courses of FIR-parameter estimates for 2 reliable (based on a t-test on the parameter estimates) HbO-channels in parietal
(left) and prefrontal (right) areas (the selected channels are marked with black circles in B below). Red: FIR parameter estimates of the ER-HR; Green:
FIR parameter estimates of the ER-PM. The ER-HR can be thought of the mean averaged response to the stimuli and the ER-PM is the reaction time
dependent modulation of the amplitude. For the two channels this means that for long reaction times the amplitude of early time points will be
reduced and for late time points the amplitude will be increased. Please note the difference in amplitude between the prefrontal and parietal
channel. B) FIR results of event-related hemodynamic response (ER-HR, top) and event-related parametric modulation (ER-PM, bottom) for the most
significant time points (6 and 7 s after stimulus onset for the ER-HR and ER-PM, respectively) plotted on a 3D head surface. Black circles indicate the
selected channels for which the time course is plotted in A.
doi:10.1371/journal.pone.0101729.g005
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corrected) reaction times. Each experimental run was used once as

test data set, i.e. we implemented a 6-fold cross validation. The

correlation coefficients were Fisher-Z normalized and averaged for

each subject across the cross validation steps. The accuracy (i.e.

mean Fisher-Z corrected correlation) was then tested for statistical

significance across subjects for each step of the sliding window.

Analysis III: Time-frequency decoding
The same analysis as described above was also performed for

individual frequencies of the NIRS data. We first calculated a

wavelet transformation on the signal and separated the signal

between 0.001 and 0.25 Hz into 250 frequency bands. Afterwards

we performed a decoding analysis very similar to the one described

above, but now for each derived frequency band separately.

Instead of space-time decoding, the signal within the sliding

window was averaged.

Results

Behavior
Figure 4 shows the behavioral results. The performance (correct

responses) and the response times (only for the correct responses)

of the congruent trials were compared to the incongruent trials.

Through the whole experiment and combined across the

congruent and incongruent condition there were 10.5 errors

(standard error of the mean (SEM): 2.16) ranging from a

maximum of 19 to a minimum of 4 errors. In the congruent

condition participants made 2.75 errors (SEM: 1.03) ranging from

a maximum of 9 to a minimum of 0 errors. In the incongruent

condition participants made 7.75 errors (SEM: 1.03) ranging from

a maximum of 18 to a minimum of 3 errors. There were

significant effects in both measures (performance: t(7) = 2.673 p,

0.05, g = 1.17, response time: t(7) = 26.016 p,0.001, g = 20.79).

We calculated a 262 repeated measurement ANOVA on the

performance with the factors congruency (congruent, incongruent)

and attention (global, local) that revealed a significant main effect

for congruency (F(1,7) = 7.14 p,0.05) but not for attention

(F(1,7) = 0.796 p = 0.402). The interaction congruency X attention

was also not significant (F(1,7) = 0.092 p = 0.771). The same 262

repeated measurement ANOVA on the response times revealed

also a significant main effect for congruency (F(1,7) = 36.198 p,

0.001) but not for attention (F(1,7) = 0.737 p = 0.419) and not for

the interaction (F(1,7) = 0.847 p = 0.388). Therefore, we concluded

that the behavior was similar between the two attention

conditions.

A 266 repeated measurement ANOVA with the factors

congruency (congruent, incongruent) and time (run 1, 2, 3, 4, 5,

and 6) was calculated on the response times to test for time

sequence effects. The ANOVA again revealed a significant main

effect for congruency (F(1,7) = 36.198 p,0.001) and additionally

for time (F(5,35) = 3.846 p = 0.007). The interaction congruency X

time was also significant (F(5,35) = 4.692 p = 0.002). Please note

that after the first three runs subjects had to switch their attention

from either global to local or vice versa, which potentially caused

the strong response time increase in run 4.

In a final analysis we tested for sequence effects that are

dependent on the global/local-attention task. Therefore, we

calculated a 26263 repeated measures ANOVA on the response

times with the factors congruency (congruent, incongruent),

attention (global, local) and time (first, second or third run with

the same instruction). The ANOVA revealed a significant main

effect for congruency (F(1,7) = 36.198 p = 0.001) only. All other

Figure 6. Decoding of response times. Timeline of the averaged accuracy (averaged Fisher-Z normalized correlation) of the prediction of
subjects’ single trial reaction times. During the time points that are marked with red asterisks (the time window that is highlighted with the red bar)
decoding was significant (p,0.05; t-test on the Fisher-Z normalized correlation) above chance level.
doi:10.1371/journal.pone.0101729.g006
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main effects and interactions were not significant (attention

F(1,7) = 0.737 p = 0.419, time F(2,14) = 1.472 p = 0.263, congru-

ency X attention F(1,7) = 0.847 p = 0.388, congruency X time

F(2,14) = 0.943 p = 0.413, attention X time F(2,14) = 0.378

p = 0.692, and congruency X attention X time F(2,14) = 2.71

p = 0.101).

Taken together we found the typical Stroop effect with lower

performance and longer response times for the incongruent

compared to the congruent stimuli. However, it is very important

to note that we corrected the individual reaction times of each run

with a condition and run specific mean, such that the mean for

congruent and incongruent responses was zero. As a consequence

only fluctuations around a condition specific average reaction time

were used to model the NIRS response (Analysis I) and predicted

by the NIRS response (Analysis II and III).

Analysis I: Finite Impulse Response
The group average parameter estimates of the ER-HR revealed

a classic hemodynamic response profile with a significant increase

around 7 seconds after stimulus onset in most channels of

oxygenated hemoglobin (HbO, Figure 5, red lines). The second set

of regressors (Figure 5, green lines), for which mean corrected

reaction times of the single trial were modulated by the height of

the regressors’ amplitude, also showed significant effects.

Analysis II and III: Multivariate SVR
Support vector regression revealed significant decoding of the

reaction times between 4 and 8 seconds after stimulus onset which

is around the observed time of the peak of the BOLD response as

shown in Figure 6. There were no significant effects before

stimulus onset which could have predicted single trial reaction

Figure 7. SVR weight vectors. Average SVR weight vector for the most significant time point plotted on the surface of a 3D brain. The weights
constitute a filter where channels with high or low values have a strong influence on the support vector regression. We found channels contributing
to the prediction in both HbR (bottom) and HbO (top), and in prefrontal (left) as well as in parietal (right) brain regions.
doi:10.1371/journal.pone.0101729.g007
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times. The average inter-individual weighting vector reveals that

mainly the channels from parietal areas contributed to regression

(Figure 7). Please note that the neurophysiological interpretation of

weight vectors of linear multivariate models can lead to wrong

conclusions [50]. For example, channels that contain correlated

noise can receive strong weights for removing the noise and

increase the predictive power of the model. However these

informative noise channels are only indirectly informative as they

are used to ‘clean’ other channels. Further analysis of the spectral

components (Analysis III) lead to significant effects in frequencies

between 0.1 and 0.15 Hz (see Figure 8). The effect seen around

this frequency range reflects the inter-trial-interval of the repetitive

experimental design.

Discussion

In the present study, we used a Stroop attention paradigm to

measure fluctuations in reaction times and their neural correlates

using NIRS. We were able to decode reaction time variability

from NIRS signals using several approaches. Using univariate

analysis techniques, we found that variations in reaction times

were correlated with HbO changes in frontal and parietal regions.

Results of the FIR analysis suggest that the effects are higher in

HbO as compared to HbR. The average event-related hemody-

namic responses (ER-HR) follow the expected canonical hemo-

dynamic response with significant peaks between 5–8 seconds in

frontal and parietal areas. The event-related parametric modula-

tion (ER-PAR) showed that the time of peak is related to the

reaction time of the subject: For slower reaction times there are

also later peaks of the hemodynamic response. Neural correlates of

attentional slips have been reported previously using fMRI [5].

Our results show that even at the much lower spatial resolution

and with hemodynamic responses only from the surface of the

brain it is possible to decode attention changes.

We showed that decoding of single trial reaction times is feasible

using spatio-temporal patterns of HbR/HbO changes. Significant

group statistic results were gained in the time range of 6–9 seconds

after stimulus onset (Figure 6). This is also the time where the

hemodynamic response is strongest and where we found strong

univariate parametric modulations of the reaction times. However,

we were not able to predict reaction times before stimulus onset. It

has been reported previously that neural responses before stimulus

onset effect responses to a stimulus [51,52]. However, usually the

pre-stimulus effect is small and only found by averaging many

trials.

It might be possible that the NIRS signal reflects a recognition

signal of slow (and fast) response performance. In other words it

might be possible that the subject’s awareness of slow/fast

responses was decoded. However, we think that this is very

unlikely because we decoded the single trial reaction times

(condition specific mean corrected) of a whole block. It seems

extremely unlikely that participants are aware of the specific

deviation of their responses from the condition specific mean for

each of their given responses. Furthermore, the participants might

be aware when they have responded very slow but for a successful

decoding of the response times this ‘awareness signal’ would have

to be correlated with the actual given response times. However, a

temporal separation of the response and the signal that reflects the

awareness of a slow/fast response would not be possible with

fNIRS and therefore we can only speculate whether the observed

fNIRS signal reflects a recognition signal of slow response

performance. In further studies the combination of fNIRS with

EEG with much higher temporal resolution could be used to

approach specifically this interesting question.

Our decoding accuracy was significant, but not very high. One

of the reasons for this could be that we measured vigilance

fluctuations as the variation of reaction times during a task that

was performed for roughly one hour. In contrast, other studies

have used tasks where subjects have to monitor very rare events,

and then used the hit rate as a measure of vigilance [40]. For us

such a task was not practical because we aimed for a continuous

and parametric model of vigilance. However, our choice might

have a disadvantage because reaction times are influenced also by

other, non attention-related factors such as motivation or motor

fatigue. Thus, the significant but rather low decoding performance

Figure 8. Result of the time-frequency decoding. Averaged decoding performance (averaged Fisher-Z normalized correlation) for subjects’
single trial performance for individual frequencies (wavelet transformation). Most information was encoded 5 s after stimulus onset in the slow
frequency range between 0.1–0.15 Hz.
doi:10.1371/journal.pone.0101729.g008
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should be considered a lower bound of the potential to decode

vigilance, and future studies might want to seek neural correlates

of vigilance that are robust across multiple tasks. A second reason

for the low decoding performance could be that NIRS might not

have sufficient information for the high accuracies required in real-

world applications. In future, simultaneous other measurements

for example of blood pressure, heart rate, and eye movements

could be included in the decoding and potentially enhance the

decoding performance.

Summary

Taken together in the present study we show that neural

correlates of vigilance can be assessed from the surface of

prefrontal and parietal brain regions using NIRS. However,

decoding performance on single trials is not good enough to allow

for a continuous vigilance measuring device that could be of

practical use yet. Therefore, further research with different tasks

and simultaneous acquisition of NIRS with other physiological

parameters could be fruitful.
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