JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, B09403, doi:10.1029/2012JB009296, 2012

Determination of the Earth’s pole tide Love number k,
from observations of polar motion using an adaptive

Kalman filter approach

F. Seitz,' S. Kirschner,1 and D. Neubersch??

Received 7 March 2012; revised 23 July 2012; accepted 24 July 2012; published 7 September 2012.

[1] The geophysical interpretation of observed time series of Earth rotation parameters
(ERP) is commonly based on numerical models that describe and balance variations of
angular momentum in various subsystems of the Earth. Naturally, models are dependent on
geometrical, rheological and physical parameters. Many of these are weakly determined
from other models or observations. In our study we present an adaptive Kalman filter
approach for the improvement of parameters of the dynamic Earth system model
DyMEG which acts as a simulator of ERP. In particular we focus on the improvement
of the pole tide Love number k,. In the frame of a sensitivity analysis k, has been
identified as one of the most crucial parameters of DyMEG since it directly influences
the modeled Chandler oscillation. At the same time %, is one of the most uncertain
parameters in the model. Our simulations with DyMEG cover a period of 60 years after
which a steady state of &, is reached. The estimate for k,, accounting for the anelastic
response of the Earth’s mantle and the ocean, is 0.3531 + 0.0030i. We demonstrate that the
application of the improved parameter k, in DyMEG leads to significantly better
results for polar motion than the original value taken from the Conventions of the
International Earth Rotation and Reference Systems Service (IERS).
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1. Introduction

[2] The rotation of the Earth and its temporal variations
have been monitored for decades with very high accuracy by
space geodetic and astrometric observation systems, such as
Global Navigation Satellite Systems, Satellite Laser Rang-
ing, and Very Long Baseline Interferometry. Observations
of the position of the Earth axis with respect to an Earth-
fixed reference system and the angular velocity of the rota-
tion are transformed into time series of the so-called Earth
rotation parameters (ERP) polar motion and length-of-day
(LOD) respectively.

[3] Precise knowledge of temporal variations of ERP is
fundamental for a variety of applications, e.g., for the
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realization of highly precise time systems and geodetic ref-
erence systems, in order to relate Earth-fixed and space-fixed
coordinate systems, and for precise navigation on Earth and
in space. Besides, time series of ERP are of great interest for
various disciplines of geosciences since dynamic processes
in the Earth system are reflected in their temporal variations.
In particular Earth rotation is influenced by the redistribution
and motion of masses, involving the exchange of angular
momentum between the Earth’s subsystems, such as atmo-
sphere, hydrosphere, and solid Earth [e.g., Brzezinski et al.,
2002; Chao et al., 2000; Chao and Yan, 2010; Dehant and
de Viron, 2002; Eubanks, 1993; Greiner-Mai et al., 2003;
Gross et al., 2003]. Hence, the analysis of ERP time series
allows for conclusions with respect to processes and inter-
actions in the Earth system on various temporal scales.

[4] Since ERP are integrated quantities their variations are
influenced by a multitude of effects in various subsystems of
the Earth. Therefore the time series do not allow for conclu-
sions with respect to particular processes without additional
information from other observation techniques and numeri-
cal models. Some components of the ERP time series can be
explained very well by models of specific Earth system
processes, such as models for the effects of solid Earth and
ocean tides [e.g., Petit and Luzum, 2010]. However, a com-
prehensive analysis of ERP time series over a wide spectral
range requires a combined analysis and balance of a
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Figure 1. Observed polar motion (1962-2010) from the C04 series of the IERS [Dick and Richter, 2009].

multitude of Earth system processes. Therefore much effort is
put into the development of extensive Earth system models in
which the processes and interactions (e.g. exchange pro-
cesses of energy, mass and momentum) within and between
various subsystems of the Earth are described and balanced
in a physically consistent way [e.g., Gent et al., 2011]. Some
of these models allow for the simulation and for an advanced
analysis of the Earth’s rotational dynamics over multiple
temporal scales [Hense et al., 2009; Landerer et al., 2007,
Ponte et al., 2002; Seitz and Drewes, 2009].

[5] Such models are dependent on a variety of geometri-
cal, rheological and physical parameters. Many of them are
weakly determined with unknown accuracy from (simpli-
fied) model assumptions and can adulterate the model
results. In this paper we report on the development of an
inverse model approach with the objective of estimating and
improving inaccurate model parameters using geodetic
observations of ERP as constraints. Our study is based on
the dynamic Earth system model DyMEG (Dynamic Model
for Earth Rotation and Gravity [Seitz et al., 2004]) on which
an adaptive Kalman filter is applied. After a review of
DyMEG (Section 2) we demonstrate the adaptive Kalman
filter approach theoretically (Section 3) before we present
numerical results (Section 4). Discussion and outlook con-
clude the paper (Section 5). In this article we focus on the
estimation of an appropriate value for the pole tide Love
number k. This parameter has earlier been identified as one
of the most crucial model parameters of DyMEG since it
directly influences the model’s rotational dynamics [Seitz
and Kutterer, 2005].

2.

2.1.

[6] Physical model approaches for Earth rotation are based
on the balance of angular momentum in the Earth system.
With respect to an Earth-fixed coordinate system the balance

Physical Model of Earth Rotation
Theory

of angular momentum is described by the Euler-Liouville
equation [Lambeck, 1980]:

d
EH@ +w(t) x H(t) = L(2),

)
where H(f) is the Earth’s angular momentum vector, L(f)
denotes external torques due to, e.g., lunisolar gravitational
forces and w(f) is the Earth rotation vector. The angular
momentum vector of the Earth comprising its deformable
body and the fluid system components can be written as
H() = 1(?) - w(f) + h(t). Here 1(¢) is the Earth’s tensor of
inertia that describes the time-variable distribution of the
mass elements in the Earth system and A(f) stands for
angular momentum variations due to the motion of masses
with respect to the reference system. The Earth rotation
vector reads w(f) = Q[my, my, 1 + m3]?, where the small
quantities m; (i = 1, 2, 3; m; < 1) describe deviations from
the uniform rotation of the reference system with angular
velocity 2 = 27/86164 s about its z-axis. The equatorial
components m; and m, describe the time-variable orientation
of the Earth rotation axis with respect to the z-axis of the
reference system, and the absolute value of the Earth rotation
vector is linked to the angular velocity of the rotation from
which changes of LOD can be inferred. Variations of LOD
will not be discussed in this article. Here we focus on the
equatorial components that are directly related to polar
motion. See Gross [1992] for details.

[7] Observations of polar motion (Figure 1) show a clear
beat between two oscillations, namely an oscillation with a
period of one year (approx. mean amplitude: 0.09 as; here as
means seconds of arc), and another one with a period of
about 432 days, the so-called Chandler oscillation (approx.
mean amplitude: 0.17 as). The annual oscillation is pre-
dominantly induced by geophysical processes in the Earth
system. The Chandler oscillation is a free rotational mode of
the Earth, originating from the misalignment of the polar
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Figure 2. Decomposition of the x-component of polar motion from the C01/C04 series of the (top; trend
removed) IERS into (middle) Chandler and (bottom) annual oscillation by means of wavelet filtering.

principal axis of inertia and the Earth rotation axis. Figure 2
displays time series of the two main signal components of
polar motion for a period of 150 years between 1860 and
2010 from Morlet wavelet filtering [Seitz and Schmidt,
2005] of observations provided by the IERS in its CO1
and C04 series [Dick and Richter, 2009]. While the annual
signal is rather uniform, the Chandler oscillation features
strong amplitude variations. Due to energy dissipation in the
Earth system, mainly caused by the anelasticity of the
Earth’s mantle, the Chandler oscillation is damped. Angular
momentum variations within the coupled atmosphere-ocean
system excite this resonance oscillation and thus counteract
its damping [Gross, 2000; Seitz and Schmidt, 2005].

2.2. Dynamic Earth System Model DYMEG

[8] Mass redistributions and motions in the components of
the Earth system contribute to variations of the tensor of
inertia I(¢) and angular momenta /(¢) respectively. Thus they
influence the balance of angular momentum and give rise to
variations of Earth rotation. The effects from various sub-
systems are modeled and balanced within the dynamic Earth
system model DyMEG. Figure 3 displays a principle sketch
of the model; for more details on set-up and numerical
implementation we refer the reader to the model description
by Seitz et al. [2004]. DyMEG allows for the consideration
and superposition of various effects which makes the model
an ideal tool for the forward simulation and analysis of ERP.
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Figure 3. Principle sketch of DyMEG.
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It has been shown in several studies that the results of
DyMEQG agree well with observed ERP on timescales from
days to several years [e.g., Seitz and Schmidt, 2005].

[v] However, it has also been shown that the model results
of DyMEQG are highly dependent on the numerical values of
some geometrical, rheological and physical model para-
meters. A sensitivity analysis of DyMEG [Seitz and Kutterer,
2005] revealed that especially the pole tide Love number £, is
a critical parameter. It describes the back-coupling effect of
polar motion on the mass distribution in the Earth system
(so-called rotational deformations) as a consequence of the
Earth’s non-rigidity. The parameter &, depends on the rhe-
ological behavior of the Earth in response to polar motion
that includes the previously mentioned dissipation due to
friction (and therewith the damping of the Chandler oscil-
lation). Consequently an erroneous value of k, directly
entails a mismodeling of the Chandler oscillation.

[10] For our study we apply a simple Earth model that
consists of an anelastic mantle and a spherical liquid core.
Mantle and core are assumed to be fully decoupled, meaning
that no exchange of angular momentum between these two
model components is taken into account (see Seitz et al.
[2004] for more details). For basic considerations on the
applicability of such a model for studies related to Earth
rotation we refer to, e.g., Brzezinski [2001] and Moritz and
Mueller [1987]. A discussion of the effect of core-mantle
decoupling on the parameter &, and the Chandler oscillation
can be found, e.g., in the publications by Dickman [2005]
and Smith and Dahlen [1981].

2.3. Rotational Deformations

[11] Rotational deformations are modeled as temporal
variations of the Earth’s centrifugal potential [Petit and
Luzum, 2010]:

a3
ACy (1) = —@(m(kz) ~my () + 3(ky) - ma(2)) 2
2
2
A1) = — 1€ (k) - ma(e) — 3(ka) - ma (1),

T 3GM

(here higher order terms are neglected) where ¢ and M
denote radius and mass of the Earth and G is the gravita-
tional constant. The response of the solid Earth and the
ocean to variations of the Earth’s centrifugal potential as a
consequence of perturbations of the rotation axis is referred
to as solid Earth pole tide and ocean pole tide respectively
[Smith and Dahlen, 1981]. Variations of the geopotential
coefficients depend on the rheological properties of the Earth
and the ocean that are described by the complex valued pole
tide Love number k,. R and J stand for real and imaginary
part respectively. The Conventions of the IERS [Petit and
Luzum, 2010] provide a value of &k, = 0.3077 + 0.0036i
(i =+/—1) which accounts for solid Earth pole tides
including the anelastic response of the Earth’s mantle. The
latter effect entails the damping of the Chandler oscillation.
The provided value has been derived from theoretical model
assumptions based on the geophysical standard Earth model
PREM [Dziewonski and Anderson, 1981]. Since PREM is a
substantially simplified representation of the real Earth, the
accuracy of this value can not be quantified. The contribu-
tion of equilibrium ocean pole tides is incorporated by
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adding a surcharge of 0.044 [Smith and Dahlen, 1981;
Mathews et al., 2002]. Consequently the effective pole tide
Love number &, equals 0.3517 + 0.0036i. The assumption of
equilibrium ocean pole tides means a simplification: Strictly
speaking, the ocean pole tide involves a small dynamic
component that might be capable of influencing the Chandler
period by almost one day and also might contribute to the
dissipation of energy and thus to the damping [Dickman,
1993]. In this respect the previously described formalism
means an approximation, neglecting the small contributions
of pole tide currents to relative angular momentum and
changes in the tensor of inertia due to variations of the
potential coefficients AC,; and AS,, that are dependent not
only on polar motion (m;, m,) but also on polar motion rates
(1, my). Alternative to the correction of the solid Earth pole
tide Love number by adding 0.044, the effects of equilibrium
ocean pole tides can be computed on the basis of a self-
consistent equilibrium model following Desai [2002]. This
approach is proposed by the most recent version of the IERS
Conventions 2010 [Petit and Luzum, 2010], while it was not
included in the previously effective IERS Conventions 2003
[McCarthy and Petit, 2004]. In this concept, variations of the
potential coefficients AC5; and AS,; due to polar motion are
computed separately for solid Earth pole tides (using the
solid Earth pole tide Love number given above) and for
ocean pole tides (using spherical harmonic coefficients from
the equilibrium model). In our study we follow the previous
approach by incorporating one pole tide Love k, number that
accounts for both effects. However, we point out that our
result is not directly comparable to numerical values of the
alternative separated pole tide modeling approach due to
conceptual differences (cf. Section 5). The changes of the
Earth’s centrifugal potential are directly linked to variations
of the tensor of inertia:

with 8 = %< [Lambeck, 1980]. This way rotational defor-
mations influence the balance of angular momentum and
therewith the model results of DyMEG. In the previously
mentioned sensitivity analysis of DyMEG the dependence of
the model results of polar motion on the value of k, has been
studied [Seitz and Kutterer, 2005]. The real part of k, is
strongly related to the period of the modeled Chandler
oscillation [Smith and Dahlen, 1981]. Figure 4 displays the
Chandler period from several runs of DyMEG in which
R(ky) was altered between 0.31 and 0.38 while I(k,) was
kept constant (0.0036i).

[12] The model runs that are presented in the following
were forced by consistent atmospheric and oceanic data
from the atmospheric reanalysis of the National Centers for
Environmental Prediction (NCEP) [Kalnay et al., 1996] and
the global ocean circulation model ECCO [Fukumori, 2002]
over a time span of 60 years (1950-2009). Furthermore the
effects of solid Earth deformations due to tides and loading
are considered.

[13] Mass variations in the continental hydrology con-
tribute predominantly to seasonal variations of ERP [Chen
et al., 2000]. Their contribution to inter-annual polar motion
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Figure 4. Modeled Chandler period from DyMEG against different values of R(k,). I(k2) = 0.0036 is

kept constant.

excitation is uncertain [Chao and Yan, 2010] and has been
subject of several studies [e.g., Brzezinski et al., 2012] that
identified a considerable dependency of the result to the
applied hydrological models. The strong sensitivity of polar
motion excitation to any small error in a hydrological model
follows from the distribution of continents and oceans on the
Earth’s surface and has been described in detail by Chao and
O’Connor [1988]. Due to their small influence on the
Chandler oscillation and their relatively large uncertainty
hydrological mass variations are neglected in our study.
Likewise, no interactions between core and mantle are con-
sidered in the applied model set-up. This includes the
neglect of small mass redistributions in the core that might
result from its response to polar motion.

[14] In order to study the effect of the imaginary part of &,
on the model results, runs with DyMEG were performed in
which R(k,) was kept constant (0.3517) while 3(k,) was
modified. Figures 5 and 6 show the results of two runs for
3(k2) = 0.0020 (weak damping) and I (k,) = 0.0045 (strong
damping) respectively. A clear influence of the imaginary
part of k, on the damping of the Chandler oscillation is
obvious: While both runs were started with identical initial

conditions (i.e. pole coordinates), the Chandler amplitude
becomes too high in the case of weak damping, while it
develops too low in the case of strong damping.

[15] The damping of the Chandler oscillation is often
expressed in terms of a quality factor Q. The quality factor is
reciprocal to the specific dissipation of a damped oscillation.
The specific dissipation of the modeled Chandler oscillation
can be computed from model runs, in which geophysical
excitations (i.e. atmosphere, oceans, tides and loading) are
neglected. The envelopes of the resulting damped oscilla-
tions (Figure 7) can be expressed by c(f) = ¢y - e °¢),
where ¢ is the initial amplitude of the oscillation and ¢ is the
damping coefficient that is related to the specific dissipation
(see Seitz and Schuh [2010] for details).

[16] From the two model runs with 3(k;) = 0.0020 and
J(ky) = 0.0045 we derive quality factors of O = 145 and
QO = 65 respectively. The value from the Conventions of the
IERS corresponds to Q = 82.

[17] The quality factor of the observed Chandler oscilla-
tion has been discussed in various studies (Table 1). Its
numerical value is characterized by a high level of uncer-
tainty. In the following we propose a procedure for the
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Figure 5. Model result for polar motion (x-component) from DyMEG with NCEP/ECCO forcing (blue),
using k, = 0.3517 + 0.0020i (weak damping). (top) Full signal; (bottom) Chandler oscillation. The red line
shows the observed signal derived from the IERS C01/CO1 series.
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Figure 6. Same as Figure 5, using k, = 0.3517 + 0.00457 (strong damping).

estimation of %k, from the combination of observations with
the dynamic Earth system model. Since k, is directly related
to the Chandler oscillation of DyMEG an appropriate value
for the parameter can be derived by inverting the model. Due
to the high accuracy of the geodetic observations a signifi-
cant improvement of k, can be expected. Note, that due to
the neglect of interactions between core and mantle in
DyMEG the resulting estimate for k, represents a mantle-
ocean Love number [Dickman, 2005].

3. Adaptive Kalman Filter Approach

3.1. Theory of the Adaptive Kalman Filter

[18] The traditional Kalman filter is a discrete time filter.
It is composed of a state-space system equation (model
equation) and a measurement equation. The latter connects
the system state (i.e. model predictions) to observations. In a
recursive procedure an updated system state is estimated
from a given previous state by combining model predictions
with measurements. In this process the uncertainties of both
the model predictions and the measurements are taken into
account. A precondition of the applicability of a standard
Kalman filter for meaningful state estimates is the availability
of a system model with acceptable accuracy. In the problem
at hand, the system model (DyMEG) contains inaccurate
model parameters. Therefore we apply an adaptive Kalman
filter (AKF) approach that allows for the adaptation of the
system model in each step by adjusting the parameters in
question (here: the Love number k) [Neubersch, 2010].

In the case of an AKF the system equation consists of two
parts:

M1 = Agmy + By + wy, 4)
xlfﬂ = xlfv (%)

where £ is the time step index, m represents the system state
(ERP), x” is the vector of system parameters (real and
imaginary part of the Love number k), w stands for the
system noise (model accuracy), and A and B denote transi-
tion and input (forcing) matrix respectively. The two equa-
tions can be combined into

Xk+1 = AZxk + BZ + Wi (6)

Ay O

0 E/)
a2 x 2 identity matrix. The so-called extended state vector,
the extended transition matrix and the extended input matrix
are denoted by x, A” and B“ respectively. Likewise the noise
vector w is extended by [0 0]”. The measurement equation
reads

with x; = (my, xf)", AY = B{ = (B, 0)"; E is

Ve = Hx 4w, (7

where y are the geodetic observations (polar motion), v is the
measurement noise and H is the so-called measurement

1970 1990

Year

20101950

1970 1990
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Figure 7. Damped Chandler oscillations from DyMEG (normalized) for (left) 3(k;) = 0.0020 and

(right) J(k,) = 0.0045.
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Table 1. Quality Factors in the Literature

Q Range Source

100 [50, 400] Wilson and Haubrich [1976]
24 Lenhardt and Groten [1985]
179 [47, >1000] Wilson and Vicente [1990]
72 [30, 500] Kuehne et al. [1996]
49 [35, 100] Furuya and Chao [1996]

82 Petit and Luzum [2010]

matrix, selecting the polar motion components from the
extended state vector x:

1000 0
H_(01000)' ®

3.2. From the Euler-Liouville Equation to the System
Equation

[19] In Section 2.1 we introduced the Euler-Liouville
equation on which the Earth system model DyMEG is based
(note, that we omit the time-dependency (7) in the following
derivations for the benefit of compactness):

d
S wth) +wx T wth) =L )

In expanded form this equation reads:

lwtrl o+h+wxl wtwxh=L. (10)

We split the tensor of inertia into two parts:

1=1Ig+ I (11)

[20] The first term I describes that part of the Earth’s
tensor of inertia that is independent from variations of the
components m; and m, of the Earth rotation vector. Tem-
poral variations of I result from geophysically induced
mass redistributions in the solid Earth and the fluid system
components. These are due to, e.g., atmospheric and oceanic
mass variations as well as due to deformations by tides and
loading. The second term I describes the effect of rotational
deformations and depends on m; and m, (equation (3)). With
all terms containing m; (i = 1, 2, 3) assembled on the left
hand side, the Euler-Liouville equation becomes [Seitz and
Schuh, 2010]:

g wtlw=-lgw—wxlw—wxh+L—h. (12)

The left hand side of this equation reads in explicit form:
‘R(kz)}’h] + S(kz)l’i’lz i
Qﬂ 9{(](2)7512 — S(kz)ﬁ’ll + QI 7ty =

m(kz) S(kz) 0 nmi
Q3| —3(k) Rk) 0| +QA| | iy | =F .
0
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[21] Since the m; are very small, all non-linear terms in m;
are dropped. On the right hand side we separate terms
dependent on m; from terms independent from m;:

g w—wxlw—wxh+L—h=N -m+M, (14)
where N' and M’ are matrices containing the respective

variations of the tensor inertia, relative angular momenta and
torques. Consequently we end up with the equation

F-in=N-m+M, (15)

or, by introducing N =F ! N and M=F ' - M":

m=N-m+M. (16)

[22] From this reformulated Euler-Liouville equation the
transition matrix A and the input matrix B of the Kalman
system equation can be derived by discretization. It is
assumed that M is invariant during one time step 7 (in our
model we select 7= 0.5 d). Consequently we can apply a
zero-order hold discretization [Chen and Francis, 1995]:

A= B =N1(A—E)-M. (17)

[23] The model is initialized with ERP from geodetic
observations at the starting date. As initial values for R(k;)
and 3(k;) we introduce 0.3517 and 0.0036 respectively.
After a prediction step the modeled ERP are compared with
geodetic observations. From this comparison a correction of
the predicted values (the so-called Kalman gain) is derived.
Simultaneously, improved values for the system parameters
x? (i.e. R(ky) and I(ky)) are computed; see Neubersch
[2010] for details.

4. Results

[24] Figure 8 shows the temporal development of the
values for R(k,) and J(ky) over the entire time span of
60 years as derived from the AKF. While R(k,) reaches a
steady state already after few years, J(k;) shows large
fluctuations over many decades. However, by the end of the
simulation the imaginary part converges to a stable estimate
as well. The different behavior of real and imaginary part of
the pole tide Love number is not surprising since R(k,) is
directly related to the Chandler period that can be deter-
mined with high accuracy already after few years of the
simulation. On the other hand, the damping of the Chandler
oscillation is relatively low compared to the model time
span, and the Chandler amplitude is largely influenced by
the applied geophysical forcing. Therefore the estimates are
characterized by a high degree of uncertainty at the begin-
ning of the simulation, and a time span of several decades is
required until the value reaches a steady state.

[25] By the end of our simulation we obtain a pole tide
Love number &k, = 0.3531 + 0.0030;. The standard deviation
o amounts to 0.0001 for both components. This value cor-
responds to a model Chandler period of 432.98 days and a
quality factor of 97. The result for R(k,) agrees well with the
initial value (difference: 0.4%), the result for 3(k;,) suggests

7 of 11



B09403

SEITZ ET AL.: EARTH’S POLE TIDE LOVE NUMBER &,

B09403

0.5 T T

04

03F

02 I 1

0.008 T T

0.004

0

—-0.004 I I

1950 1960 1970

1980 1990 2000
Year

2010

Figure 8. Result of the AKF (NCEP/ECCO forcing) for (top) R(kz) and (bottom) I(k,). Dotted lines

indicate 20 error margins.

a significantly lower damping than proposed by the initial
value (Q = 82).

[26] In order to assess the improvement of the model we
apply the estimated value of k4, in DyMEG and run it as
forward model. As above, we perform a simulation of the
ERP over the entire time span of 60 years. The result
(x-component) is displayed in Figure 9. The top panel shows
the time series of the full polar motion, the lower panel
shows the Chandler component. Both curves agree excellent
with respective geodetic observations: the correlation coef-
ficient for full polar motion is 0.95, the RMS difference
amounts to 43.7 mas; for the Chandler oscillation the cor-
relation coefficient is 0.99 and the RMS difference equals
17.3 mas.

[27] For comparison, Figure 10 shows the model results
from DyMEG using the initial value for k,. The amplitude of
the oscillation clearly is too low toward the end of the sim-
ulation as a consequence of the strong damping. Correlation
coefficients amount to 0.82 (full polar motion) and 0.89

04

(Chandler oscillation), the RMS differences are 82.2 mas
and 55.7 mas respectively.

[28] In order to verify our result we repeat the estimation
procedure with alternative forcing. The previously applied
atmosphere/ocean model combination NCEP/ECCO is replaced
by atmosphere and ocean data from ECMWF (European
Centre for Medium-Range Weather Forecasts) and OMCT
(Ocean Model for Circulation and Tides). Respective varia-
tions of I(¢) and h(f) were computed from ECMWF and
OMCT effective angular momentum functions (see Dobslaw
et al. [2010] for details).

[29] The ECMWEF reanalysis ERA-40 [Uppala et al.,
2006] covers the period between 1958 and 2001. In order
to be able to run our adaptive Kalman filter over a time span
as long as possible (which has turned out to be decisive
especially for a reliable estimate of J(k,); cf. Figure 8), we
extended ERA40 after 2001 by operational ECMWF data
until 2010. This way we created one time series that covers
52 years (hereafter simply called ECMWF). But it has to be
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Figure 9. Model result for polar motion from DyMEG with NCEP/ECCO forcing (blue) applying the
estimated value &, = 0.3531 + 0.0030i (x-component). (top) Full polar motion; (bottom) Chandler com-

ponent. Red: observed signals.

8 of 11



B09403

0.4

SEITZ ET AL.: EARTH’S POLE TIDE LOVE NUMBER &,

B09403

0.2
0

[as]

-0.2

-0.4

NCEP/ECCO A

04

0.2
0

[as]

-0.2

iy G 1
Aoy s d W
| YHERTT

b h HJYHA\”\M_

00 11 ¥ b

,\‘UU_
by

1950 1960 1970

1980 1990 2000 2010

Year

Figure 10. Same as Figure 9, using the initial value of the pole tide Love number &, = 0.3517 + 0.0036:.

kept in mind that this series is not fully consistent due to
conceptual differences of the two data sets. Likewise a
combined OMCT series was created by combining two
OMCT versions forced by ERA40 and operational ECMWF
data. The time span of 52 years is still significantly shorter
than the period of 60 years covered by NCEP and ECCO.
Therefore it is not possible to provide a result from our AKF
that is fully comparable with the previous estimate of &,
since it has been demonstrated above that including or
excluding almost a decade of data might have a considerable
effect on the numerical result.

[30] From this experiment (applying an unchanged set-up
of the AKF) we obtain the value k, = 0.3526 + 0.0025i
(standard deviation: 0.0001 for both components), corre-
sponding to a Chandler period of 432.07 days and a quality
factor of 117. With this, the results for NCEP/ECCO and
ECMWEF/OMCT agree within the range of 30. Figure 11
shows the temporal development of the estimates for R (k)
and 3(k,) in comparison with the results of the previous run

using NCEP/ECCO. Like above the real part converges
quickly. The imaginary part shows larger fluctuations over
several decades, and by the end of the time series the con-
vergence is not as good as in the case of NCEP/ECCO.
Therefore this result for 3(k,) appears to be less reliable.

[31] The result of a forward simulation from DyMEG with
ECMWEF/OMCT forcing (applying &, = 0.3526 + 0.0025i) is
displayed in Figure 12. Like above the agreement between
model simulation and geodetic observations (correlation
coefficients: 0.91 (full polar motion) and 0.95 (Chandler
oscillation); RMS differences: 53.2 mas and 36.6 mas
respectively) improves with respect to a simulation using the
initial value for &, (not shown; correlation coefficients: 0.88
(full polar motion) and 0.94 (Chandler oscillation); RMS
differences: 61.0 mas and 42.3 mas respectively).

[32] However compared to NCEP/ECCO (Figure 9) the
agreement of the DyMEG simulations with ECMWF/
OMCT and the observations is significantly worse. A com-
parison of the Chandler components in the lower panels of
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Figure 11. Comparison of the AKF results for NCEP/ECCO forcing (black; same curve as in Figure 8)
and ECMWEF/OMCT forcing (blue) for (top) R(k,) and (bottom) I (k). Thin lines indicate 20 error

margins.
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Figure 12. Model result for polar motion from DyMEG with ECMWEF/OMCT forcing (blue) applying
the estimated value &, = 0.3526 + 0.0025; (x-component). (top) Full polar motion; (bottom) Chandler

component. Red: observed signals.

Figures 9 and 12 reveals that NCEP/ECCO is superior with
respect to the reproduction of the observed Chandler oscil-
lation. This holds not only for the amplitude (which is
influenced by the estimate of &) but also for the shape of the
curve (which is independent from &, and depends on the
excitation energy provided by the atmospheric and oceanic
forcing). This leads to the conclusion that the atmospheric-
oceanic variability in the Chandler frequency band described
by NCEP/ECCO appears to be more realistic. Since the
results for k, agree within the range of 30, the repetition of
the experiment with the alternative forcing provides confi-
dence on the procedure and the model set-up in general. But
due to the length of the time series, the better convergence of
the AKF, and the excellent agreement of the DyMEG result
with the observations the value of k, = 0.3531 + 0.0030:
from NCEP/ECCO is more reliable.

5. Discussion

[33] The results of the previous section demonstrate the
ability of the applied adaptive Kalman filter approach to
improve the dynamic Earth system model DyMEG. We
focused on the pole tide Love number k, for which the
simulated polar motion is most sensitive. The real part of the
parameter has earlier been determined with good accuracy,
and our result (0.3531) is very close to the initial value
(0.3517). The discrepancy of 0.4% between these values
corresponds to a difference in the period of the modeled
Chandler oscillation of less than one day. It might be pos-
sible that this discrepancy can at least partly be attributed to
the neglect of the dynamic effect of the ocean pole tide in the
equilibrium ocean pole tide correction of 0.044 to the solid
Earth pole tide Love number (Section 2.3); see Dickman
[1993] for a discussion. The result for the imaginary part
(0.0030, corresponding to Q = 97) differs significantly from
the initial value (0.0036, corresponding to Q = 82). Conse-
quently DyMEG requires a lower damping than proposed by
the value for the pole tide Love number provided by the
Conventions of the IERS in combination with the (real

valued) correction for the effect of equilibrium ocean pole
tides following Smith and Dahlen [1981] and Mathews et al.
[2002]. Up to now no runs have been performed with
DyMEG using the alternative ocean pole tide model of
Desai [2002] (cf. Section 2.3). As mentioned above this
model follows a different concept for the computation of the
effect of ocean pole tides. Therefore a different simulation
result for polar motion can be expected. For testing purposes
it is planned to implement this model in DyMEG. Before
this has been realized we are unable to appraise if the result
will be closer to the curve that we obtained from our adap-
tive Kalman procedure (Figure 9).

[34] The procedure (and therewith the estimated value of
k») minimizes the discrepancy between the model result and
the observations and thus depends on model set-up and
forcing. With respect to the latter any over- or underesti-
mation of the atmospheric-hydrospheric angular momentum
variability in the Chandler frequency band might directly
influence the estimate (the resulting imaginary part will be
too large or too small respectively). For a discussion of a
possible underestimation of atmospheric and oceanic angu-
lar momentum variations, in particular by NCEP and
ECMWEF, on intraseasonal, seasonal and inter-annual time-
scales see, e.g., Chao and Yan [2010] and the references
therein. A further important task in this context is the eval-
uation of the system noise that is related to the accuracy of
the models and data sets from which the forcing is derived.

[35] Although there are several tasks that require further
investigation, the first results from the application of the
adaptive Kalman filter that we presented in this paper are
very promising. It has been demonstrated that observations
of Earth rotation are important quantities for Earth system
research that allow for the discovery of valuable new infor-
mation via inverse model approaches. In principle the pre-
sented AKF approach can be extended to further parameters
of the model. This, however, requires further studies
concerning the sensitivity of the results on various model
parameters and their correlations.
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