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ABSTRACT

The entrainment of clear air and its subsequent mixing with a filament of cloudy air, as occurs at the

edge of a cloud, is studied in three-dimensional direct numerical simulations that combine the Eulerian

description of the turbulent velocity, temperature, and vapor fields with a Lagrangian cloud droplet

ensemble. Forced and decaying turbulence is considered, such as when the dynamics around the filament

is driven by larger-scale eddies or during the final period of the life cycle of a cloud. The microphysical

response depicted in nd2 hr3i space (where nd and r are droplet number density and radius, respectively)

shows characteristics of both homogeneous and inhomogeneous mixing, depending on the Damk€ohler

number. The transition from inhomogeneous to homogeneous mixing leads to an offset of the homog-

eneous mixing curve to larger dilution fractions. The response of the system is governed by the smaller of

the single droplet evaporation time scale and the bulk phase relaxation time scale. Variability within the

nd 2 hr3i space increases with decreasing sample volume, especially during the mixing transients. All of

these factors have implications for the interpretation of measurements in clouds. The qualitative mixing

behavior changes for forced versus decaying turbulence, with the latter yielding remnant patches of

unmixed cloud and stronger fluctuations. Buoyancy due to droplet evaporation is observed to play

a minor role in the mixing for the present configuration. Finally, the mixing process leads to the transient

formation of a pronounced nearly exponential tail of the probability density function of the Lagrangian

supersaturation, and a similar tail emerges in the droplet size distribution under inhomogeneous

conditions.

1. Introduction

The turbulent mixing of cloudy and clear air involves

a broad range of spatial and temporal scales, over which

water vapor density and temperature fields are coupled

to cloud droplet response through evaporation and the

associated enthalpy of vaporization. In this work, we

study the response of a population of cloud droplets to

entrainment and mixing, including the active thermal

feedback. Upon the mixing of cloudy and clear air, and

assuming there is sufficient condensed water in the initial

cloud, droplets will evaporate until the mixture becomes

saturated. The final, uniquely defined thermodynamic

state, however, can be achieved through very different

microphysical manifestations. For example, the final,

diluted liquid water content (LWC) could be reached

in one extreme due to all droplets evaporating by the

same amount or in the other extreme due to a subset of

droplets evaporating completely, leaving the remaining

droplets unchanged. These extremes were first recognized

by Latham and Reed (1977) and Baker et al. (1980, 1984),

who described them as homogeneous and inhomoge-

neous mixing, respectively. The limits can be convenient-

ly expressed through the Damk€ohler number, defined

as the ratio of a fluid time scale to a characteristic
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thermodynamic time scale associated with the evap-

oration process:

Da5
tfluid
tphase

, (1)

with homogeneous and inhomogeneous mixing corre-

sponding to the limits Da� 1 and Da� 1, respectively

(Lehmann et al. 2009; Andrejczuk et al. 2009). Homo-

geneous mixing occurs when the evaporation of cloud

water droplets is slow compared to the mixing and

therefore takes place in a well-mixed, or in other words,

homogenized environment. Inhomogeneous mixing oc-

curs when the evaporation proceeds much faster than

the turbulence evolves, with the result that droplets near

the clear air–cloud interface experience evaporation

while others do not. Both processes can coexist in a

turbulent cloud because of the broad spectrum of fluid

time scales that are present, with inhomogeneousmixing

dominating at large scales and homogeneous mixing

occurring at fine scales (Lehmann et al. 2009).

The characteristic time scale associated with the re-

sponse of the water vapor density and temperature fields

as a result of droplet growth or evaporation is the phase

relaxation time tphase, which is inversely proportional to

the droplet number density and the mean droplet radius

(e.g., Kostinski 2009; Kumar et al. 2013). For small

droplets or strong dilution by dry air, complete evapo-

ration can occur, suggesting that the appropriate mi-

crophysical response time should be the single droplet

evaporation time scale tevap (cf. Andrejczuk et al. 2006).

It was argued by Lehmann et al. (2009) that the smaller

of the two time scales tphase and tevap is the appropriate

one for specifying Da and therefore the relative homo-

geneity of themixing process, and that suggestion will be

further addressed here.

The mixing problem has been approached in many

recent studies from the point of view of a mixing dia-

gram showing the microphysical response in terms of

cloud droplet mean volume radius hr3i versus number

density nd. This nd 2 hr3i space, introduced by Jensen

et al. (1985), allows a reduction in liquid water content,

W} ndhr3i, to be interpreted as the relative reductions in
cloud droplet number density (through both dilution

and total droplet evaporation) and mean droplet di-

ameter. Andrejczuk et al. (2006) were the first to show

a ‘‘trajectory’’ within a mixing diagram. Note that these

trajectories are for averages taken over the entire volume

and are for a ‘‘bulk’’ cloud treatment. General consis-

tency with scaling laws was found. For example, larger

droplets gave a more homogeneous mixing signature. In

a subsequent paper, Andrejczuk et al. (2009) studied

the ratio of time scales in their numerical simulation, in

particular the ratio of the turbulence time scale to the

droplet evaporation time scale, thereby supporting quan-

tification via the Damk€ohler number [cf. Eq. (1)]. In

a thorough study of measured cloud properties in the

mixing diagram, Burnet and Brenguier (2007) showed a

distinct predominance for inhomogeneous mixing. They

point out that the difficulty in observing homogeneous

mixing in clouds may in some cases be a sampling arti-

fact resulting from spatial averaging. Gerber et al. (2008)

also detected in their measurements signatures that in-

dicate strong inhomogeneousmixing, but they suggest the

possibility that the data could be interpreted as resulting

from homogeneous mixing with a small contrast between

cloud and environment. The possibility of mixing with

already humid air is consistent with the finding of Heus

and Jonker (2008), who showed with large-eddy simu-

lations that cumulus clouds are surrounded by subsiding

shells in which fluid motion is mostly downward. Thus,

the mixing takes place rather locally with diluted cloudy

air in the vicinity of the interface rather than with a

large-scale environment. These numerical results imply

already that homogeneous and inhomogeneous mixing

can coexist and are sometimes difficult to disentangle.

Finally, Lehmann et al. (2009) gave theoretical argu-

ments and field data in support of the concept that a

single Damk€ohler number is not sufficient to explain the

mixing. Based on the cascade concept in turbulence,

they also suggest a length scale at which the system

transforms from dominantly homogeneous to inhomo-

geneous mixing.

Kumar et al. (2012) studied extremes of mixing, not

via range of scales, but by enhanced or suppressed

droplet response within an Euler–Lagrangian model.

The studies showed that a Da similarity does exist within

the range of idealized conditions studied. In other

words, they observed that different turbulent and mi-

crophysical initial conditions having the same Da will

tend to the same final microphysical state when the

mixing process is completed. Kumar et al. (2013) in-

vestigated the phase relaxation process during a mixing

event under a variety of realistic microphysical condi-

tions for a cumulus cloud. In this Lagrangian view of the

mixing process, a range of Da was investigated, and it

was shown that the relevant microphysical time scale is

the ‘‘diluted’’ phase relaxation time (i.e., calculated with

the number density based on the whole volume). In both

of these studies, however, the simulations did not in-

clude the temperature field and therefore the interaction

between latent heat and dynamic coupling through

changes in buoyancy.

Besides numerical studies and measurements, a third

effort consists of the development of parameterized

models describing the essentials of the simultaneous

JULY 2014 KUMAR ET AL . 2565



mixing at multiple scales. Krueger et al. (1997) and Su

et al. (1998) pioneered the extension of the linear eddy

model to the entrainment problem, thereby enabling the

representation of cloud mixing and microphysical re-

sponse on multiple length scales without a direct simu-

lation. Such models can be potentially incorporated into

cloud physics parameterizations in larger-scale models

that do not resolve processes below a few kilometers.

In a different approach based on the simulations of

Andrejczuk et al. (2006), Grabowski (2007) suggested

a simple, subgrid parameterization of cloud droplet re-

sponses to bulk mixing based on increasing fila-

mentation of the turbulent eddies in a steady cascade

process. Lu et al. (2011) explored the possibility of

representing subgrid mixing effects on microphysics via

a dimensionless parameter, the scale number, to char-

acterize the dynamics of different entrainment-mixing

processes. The scale number relates the transition-scale

concept of Lehmann et al. (2009) to the Kolmogorov

length, the mean dissipation scale of the turbulence. Lu

et al. (2013) have coupled measurements and modeling

studies using the linear eddy approach to explore the

degree of homogeneous mixing and its dependence on

transition scales.

Prior computational investigations of the mixing

process, such as those by Jensen and Baker (1989),

Andrejczuk et al. (2004, 2006), Malinowski et al. (2008),

and de Lozar and Mellado (2014), have considered the

problem primarily from the continuum microphysics

perspective. De Lozar and Mellado (2014) included

some more detailed processes such as droplet sedi-

mentation and particle inertia in their bulk formulation.

Here, we explore what additional insight can be gained

by explicitly treating the Lagrangian nature of the dis-

crete droplet field, including droplet inertia and gravi-

tational sedimentation. The coupling of Lagrangian

droplets to the Eulerian vapor density and temperature

fields is similar to the approaches of Vaillancourt et al.

(2001, 2002) and Lanotte et al. (2009); in those studies

the emphasis was on the evolution of the supersatura-

tion field and the droplet population during steady

growth, instead of the microphysical response to a tran-

sient mixing event considered here.

In this work, we consider an idealized cloud slab that

mixes with a dry environment in a small subvolume at

the edge of a cloud. The simple geometry allows for

a clearly defined initial scale for the mixing. The initial

cloud and environment values are purposely set to

rather extreme values, and the motivation for this is

explained here. First, the environment is essentially

completely dry so that a strong signature of homoge-

neous mixing can be observed. Observational studies

often show rather inhomogeneous signatures, and this

can be a result of mixing with very humid air even under

homogeneous conditions (e.g., Gerber et al. 2008).

Second, the initial cloud is taken to have a range of

liquid water content so that cases with partial and with

complete evaporation of droplets can be studied. To

achieve partial evaporation, very large initial liquid

water contents are set in themost extreme case. The goal

is to understand the microphysical response to mixing in

a wide range of parameter space, as opposed to simu-

lating only ‘‘typical’’ cloud conditions.Wewill study two

different flow scenarios: decaying convective (D) and

stationary convective (S) runs. The decaying convective

runs study the mixing in a decaying turbulent case with

feedback by buoyancy. In the stationary convective

runs, the mixing proceeds in a statistically stationary

flow sustained by an additional, steady driving force that

mimics the impact of larger-scale eddies on the dy-

namics in the subvolume.

Several consequences of a finescale study, as is

conducted here (approximately 0.1m3 are simulated),

should be mentioned in order to place the work in

a proper context. Because the subvolume in the present

system is rather small, diffusivities of the scalar fields

are close to the kinematic viscosity magnitude, and

therefore advection and diffusion time scales do not

differ by many orders of magnitude. Thus, the mixing

process always incorporates both diffusion and stirring

(or advection). Both processes cannot be separated from

each other for the given parameters, as has been dis-

cussed by Broadwell and Breidenthal (1982), Sreenivasan

et al. (1989), and Malinowski and Zawadzki (1993). The

scale of this study also does not lend itself to defining

the simulated mixing process as entrainment versus

detrainment; in part because at finescales it is not ob-

vious that a mean cloud surface can be defined, as is

required for a formal distinction between the two

processes (de Rooy et al. 2013). The focus of the study

is on the microphysical response to mixing, regardless

of whether it is occurring in entrainment or detrainment

regions. Finally, a consequence of the relatively small

volume, which can be simulated with existing compu-

tational resources, is that the limit of extremely in-

homogeneous mixing (Da � 1) is not investigated in

this work.

The outline of the manuscript is as follows: The next

section describes the Euler–Lagrangian model and

the setting of the simulations. Section 3 starts with

a brief discussion of the dynamics in both flow set-

tings, followed by a detailed analysis of the mixing

diagrams. Furthermore, we compare Lagrangian dis-

tributions of the droplet size and supersaturation at

droplet positions. We conclude with a summary and

an outlook.
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2. Eulerian–Lagrangian Boussinesq model
of mixing

a. Model equations, parameters, and numerical
method

The buoyancy B is a function of the temperature T,

the vapor mixing ratio qy, and the liquid water mixing

ratio ql. The latter two quantities are defined as qy(x, t)5
ry/rd and ql(x, t)5 rl/rd, where ry, rl, and rd are themass

densities of vapor, liquid water, and dry air, respectively.

The Eulerian equations for the turbulent fields, namely,

the velocity field u, the temperature field, and the vapor

mixing ratio field, are given by

$ � u5 0, (2)

›tu1 (u � $)u52
1

r0
$p1 n=2u1Bez1 fLS , (3)

›tT1u � $T5 k=2T1
L

cp
Cd , (4)

›tqy 1 u � $qy 5D=2qy 2Cd . (5)

The reference density r0 is the dry air density. The

buoyancy term in the momentum equation is defined as

B(x, t)5 g

�
T2T0

T0

1 ~�(qy 2 qy0)2 ql

�
, (6)

where ~�5Ry/Rd 2 1’ 0:608. Here, Ry is the vapor gas

constant, and Rd is the dry air gas constant. The addi-

tional term fLS keeps the flow in a statistically stationary

state during the mixing process. It is used to model the

driving of the entrainment process resulting from larger

scales (LS) that go beyond the volume size considered

here. The term is implemented in the Fourier space in

the applied pseudospectral method and is given by (see

also Kumar et al. 2013)

fLS(k, t)5 �in
u(k, t)

�
k
f
2K

ju(kf , t)j2
dk,k

f
, (7)

with the Kronecker delta

dk,k
f
5 1 if k5 kf , dk,k

f
5 0 otherwise, (8)

and the wavevector subset K that contains a few wave-

vectors. Here, thesewavevectors are given by kf5 (2p/Lx,

2p/Ly, 4p/Lz) plus all permutations with respect to com-

ponents and signs. Physically, we inject a fixed amount of

turbulent kinetic energy per time unit into our flow such

that, in a statistically stationary regime, the parameter �in

would equal the mean kinetic energy dissipation rate in

the flow when the buoyancy feedback would be absent

(see also section 3a).

We will denote runs with fLS 5 0 as decaying con-

vective runs and fLS 6¼ 0 as stationary convective runs.

Furthermore, Cd is the condensation rate, n is the ki-

nematic viscosity of air,D is the vapor mass diffusivity, k

is the thermal diffusivity, cp is the specific heat at con-

stant pressure, and L is the latent heat. The problem is

studied in a cube (i.e., Lx 5 Ly 5 Lz) with periodic

boundary conditions in all three spatial directions. It is

spanned by an equidistant mesh with uniform size

a equal to the Kolmogorov length hK. Further parame-

ters of the initial setup are listed in Table 1. The equa-

tions are solved by a standard pseudospectral method

that uses three-dimensional fast Fourier transformations

(Ferziger and Peri�c 2001; Spyksma et al. 2006). Time

stepping for the Eulerian and Lagrangian parts is done

by a second-order predictor–corrector scheme.

The liquid water component is modeled as a La-

grangian ensemble of N pointlike droplets. From this

ensemble, the liquid water mixing ratio and the con-

densation rate are obtained. The droplets are de-

scribed by

dX

dt
5V(X, t) , (9)

dV

dt
5

1

tp
[u(X, t)2V(X, t)]1 g , (10)

r(X, t)
dr(X, t)

dt
5KS(X, t) . (11)

Here, X is the droplet position, V is its velocity, and r is

the radius. We describe cloud water droplets as inertial

point particles with a finite particle response time tp 5
2rlr

2/(9r0n) that can grow and shrink by diffusion of

vapor to their surface. The vector g5 (0, 0,2g) includes

TABLE 1. Parameters of the initial turbulence conditions for all

parameter runs. The root-mean-square velocity is calculated by

urms 5 hu2i i1/2, the Kolmogorov length is calculated by hK 5 n3/4/

h«i1/4, and the Kolmogorov time is calculated by th 5 (n/h«i)1/2.

Quantity Symbol Value

Grid points N 512

Box length Lx 51.2 cm

Grid size a 1mm

Kinematic viscosity of air n 1.5 3 1025m2 s21

Mean energy dissipation rate h«i 33.75 cm2 s23

Kolmogorov length hK 1mm

Kolmogorov time th 0.066 s

Root-mean-square velocity urms 12.5 cm s21

Large-scale turnover time TL 4.1 s
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the gravitational acceleration g. The constant K in Eq.

(11) is a function of temperature and pressure and in-

corporates the self-limiting effects of latent heat ex-

change (e.g., Rogers and Yau 1989). This diffusional

growth is controlled by the supersaturation, given by

S(X, t) 5 qy(X, t)/qy,s(T) 2 1. The saturation vapor

mixing ratio qy,s(T) has to be determined from the

temperature via the Clausius–Clapeyron equation. For

a more detailed derivation of Eq. (11) and its im-

plementation in the simulation, we refer the reader to

Kumar et al. (2013). To close the set of equations, we

determine the condensation rate field Cd(x, t) following

Vaillancourt et al. (2001, 2002) by

Cd(x, t)5
4prlK

r0a
3 �

4

b51

S(Xb, t)r(Xb, t) . (12)

Here, ma is the mass of air per grid cell, and the sum

collects the droplets inside each of the grid cells of size a3

that surround the (grid) point x. The transmission of the

Eulerian field values at grid positions to the enclosed

droplet position is done by trilinear interpolation. The

inverse procedure is required for the calculation of

the condensation rate, which is evaluated at first at the

droplet position and then redistributed to the nearest

eight grid vertices.

Figures 1a–c show the initial profiles of the fields qy,T,

and B and indicate the slablike filament of supersatu-

rated vapor in which the monodisperse droplets are

seeded homogeneously at the beginning of all runs.

Further parameters of the six different simulation runs

are summarized in Table 2. We have chosen the initial

profiles similar to our previous mixing studies (Kumar

et al. 2013). The initial vapor content profile is given by

qy(x, t5 0)5 (qmax
y 2 qye) exp

"
2l

�
x2

Lx

2

�8
#
1 qye .

(13)

FIG. 1. Initial slablike configuration of the mixing simulations. (a) The water vapor profile qy(x) and qys(x) that

result from the (b) initial temperature profile T(x) (K). The saturation vapor mixing ratio follows from qys 5 es/

(Ryr0T) and es(T) 5 c1 exp(2c2/T) (Rogers and Yau 1989). In both panels we indicate the supersaturated cloud

filament that extends over Lx,1 # x# Lx,2 and the whole y–z cross section of the simulation box. Also indicated are

the environmental values qye and Te as well as Tc. (c) The resulting buoyancy profile (cm s22), as following fromEq.

(6). The profile is obtained for R0 5 20mm. (d) The inhomogeneous mixing limit (blue horizontal line) and the

homogeneous mixing limits for the different initial liquid water contents. The vertical dashed line indicates the

volume ratio of subvolume seeded with droplets to the total box volume.

2568 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 71



Here, qmax
y is the maximum amplitude of qy, which ex-

ceeds qys by 2%, and l5 1.03 10210 cm21 is a constant.

The initial temperature profile is chosen such that both

do not contribute jointly to the initial buoyancy, that

is, T(x, t5 0)5T0 2 ~�T0[qy(x, t5 0)2qy0], as derived

from Eq. (6). The reference values are given by the

volume averagesT05 hT(t5 0)iV and qy05 hqy(t5 0)iV.
Other initial configurations are possible. Ourmotivation

is to use an initial condition with a well-defined inter-

face that is still a smooth function and avoids the Gibbs

phenomenon, that is, numerical overshoots at sharp

interfaces.

All runs start with the same turbulent flow field that

has been generated in a pure fluid simulation of statis-

tically stationary box turbulence ahead of the entrain-

ment runs. The focus of the study is on the entrainment

process, and therefore we neglect droplet collisions. This

is physically reasonable given the short mixing times

simulated relative to typical droplet collision time scales.

b. Homogeneous and inhomogeneous mixing limits

The central dimensionless parameter that quantifies

the mixing of clear and cloudy air is the Damk€ohler

number defined in Eq. (1). The fluid time scales cover

a whole spectrum of values and can vary from the large-

eddy turnover time TL 5 Lx/urms to the Kolmogorov

time scale th 5 (n/h«i)1/2. The evaporation process is

characterized by the phase relaxation time, given ap-

proximately by

tphase 5
1

4pDndR0

, (14)

where nd is the number density of the droplets, and D is

the vapor diffusion constant that contains the self-

limiting effects of latent heat release as described in

Kumar et al. (2012). The inhomogeneous limit stands for

a very rapid evaporation compared to the evolution time

of the fluid. Droplets at the cloud interface will evapo-

rate immediately, while droplets in the center of the

cloud remain unaffected by the mixing of the clear air

into the cloudy filament. As a consequence, the number

density decreases, while the mean cubic radius hr3i
remains essentially unchanged. In a mixing diagram

showing hr3i/R3
0 plotted against nd/nd,0, such a process is

given by a horizontal line (Jensen et al. 1985; Burnet and

Brenguier 2007; Gerber et al. 2008; Lehmann et al.

2009), as shown in Fig. 1d. A second time scale related to

the droplet response is the evaporation time given by

tevap52
r2

2KS
, (15)

which is a direct consequence of Eq. (11) in the case of

a constant supersaturation.

The homogeneous mixing limit assumes a slow micro-

physical response time scale such that the whole cloud

water droplet ensemble evolves in a well-mixed environ-

ment. The corresponding mixing lines for the three dif-

ferent initial radii and the parameters of the initial

configuration are also indicated in Fig. 1d. The calculation

of these lines is performed as follows: it is assumed that

precipitation is absent and that the total water content and

the liquid water potential temperature, ul 5 T2 (L/cp)ql,

are state variables that describe the air parcels. Because

they are conserved duringmixing the following two simple

relations hold (e.g., Gerber et al. 2008):

ql 1 qys(T)5 x[qlc1 qysc(Tc)]1 (12 x)qye , (16)

T2
L

cp
ql 5x

 
Tc 2

L

cp
qlc

!
1 (12 x)Te , (17)

with (Rogers and Yau 1989)

TABLE 2. Parameters of the six DNS runs. We list the initial droplet radius R0, initial liquid water contentW, the number density in the

undiluted initial slablike cloud filament, the phase relaxation time tphase, the single droplet evaporation time given by tevap 52R2
0/(2KS0)

[cf. Eq. (15)], the Damk€ohler numbers based on the Kolmogorov and large-eddy scales, and the Damk€ohler numbers calculated with the

evaporation time scale (rather than the usual phase relaxation time scale). The superscript (0) indicates that the calculations are based on

values at the beginning of the simulation (t5 0). The large-eddy time for all runs isTL5 4.1 s; theKolmogorov time is th5 0.066 s (see also

Table 1). Two scenarios apply here: the purely convective feedback (D1–D3) to the velocity field via the buoyancy term B as given in

Eq. (6) or the buoyancy feedback that is combinedwith an additional volume driving fLS beside the buoyancy feedback (S1–S3). The latter

mimics the motion of larger turbulent eddies that feed energy into the present subsystem (Schumacher et al. 2007). The slablike cloudy

filament is filled with 8.8 million droplets.

Case R0 (mm) W (g cm23) n
(0)
d (cm23) t

(0)
phase (s) t

(0)
evap (s) Da(0)h Da

(0)
L Da(0)h,evap Da

(0)
L,evap

S1 10 0.37 153 4.12 0.93 0.016 1.0 0.07 4.4

S2 15 1.24 153 2.75 2.10 0.024 1.5 0.03 2.0

S3 20 2.95 153 2.06 3.73 0.032 2.0 0.02 1.1

D1 10 0.37 153 4.12 0.93 0.016 1.0 0.07 4.4

D2 15 1.24 153 2.75 2.10 0.024 1.5 0.03 2.0

D3 20 2.95 153 2.06 3.73 0.032 2.0 0.02 1.1

JULY 2014 KUMAR ET AL . 2569



qys(T)’
c1 exp(2c2/T)

Ryr0T
, (18)

with c1 5 2.53 3 108 kPa and c2 5 5420K. Here, x is

defined as the mixture fraction; indices c and e stand for

cloud and environment, respectively. This nonlinear

system of Eqs. (16)–(18) has to be solved by a root-

finding algorithm and results in ql(x) and T(x) values

corresponding to a given x. The quantity hr3i is obtained
via ql5W/r0 andW5 4prlnd,0xhr3i. If it is assumed that

x 5 nd/nd,0, that is, all droplets respond equally and no

subset of droplets is allowed to evaporate completely,

then this yields the homogeneous mixing curves in the

mixing diagram. The homogeneous mixing process

starts from point (1, 1) in the upper right andmoves from

one equilibrium state to another along the mixing lines.

Different lines for the homogeneous limit correspond to

different initial liquid water content W.

3. Simulation results

a. Turbulence in decaying and stationary convective
regimes

As already discussed in section 2, all simulations start

with a statistically stationary fluid turbulence state cor-

responding to a Taylor microscale Reynolds number of

Rl ’ 90. We either continue to sustain the driving fLS,

and thus sustain statistical stationarity of the flow field

during the mixing event, which is done in the stationary

convective regime for runs S1–S3, or we switch off the

additional driving, as done in the decaying convective

runs D1–D3. In both cases, the feedback from the

buoyancy term Bez is present but turns out to be small.

This is likely a result of the relatively low temperature

considered in this study. The dynamical evolution is

close to freely decaying turbulence for cases D1–D3.

Note that we do not sustain a mean temperature gradi-

ent with respect to z, which would cause a strong

buoyancy driving additionally amplified by the periodic

boundary conditions (this regime is known as the ho-

mogeneous Rayleigh–B�enard convection regime; e.g.,

Calzavarini et al. 2006).

Figure 2 (top) displays the temporal evolution of the

turbulent kinetic energy (TKE). As expected, we ob-

serve that the TKE in runs S1–S3 remains on average at

the initial value while it decays within a few seconds for

runs D1–D3. In the steady convective case,

h«(t)iV5 huzB(t)iV 1 hu � fLS(t)iV ’ hu � fLS(t)iV
0h«iV,t ’ hu � fLS(t)iV,t . (19)

Buoyancy, as the lone driving force in the decay-

ing convective cases, causes a transient growth, but

FIG. 2. (top) TKE (cm2 s22) vs time (s) for all six runs as indicated

in Table 2 (see legends). (middle) Variance of the vapor mixing

ratio fluctuations vs time (s). (bottom) Variance of temperature

fluctuations (K2) vs time (s).
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eventually the TKE and temperature fluctuations con-

tinue to decay. The intermediate maximum is due to

buoyancy forcing, which acts as an amplifier when its

own amplitude is still large enough. When comparing

u2i (x, t0) with u2z(x, t0), we observed that both quantities

evolve in similar filaments for the period of the transient

growth, that is, for a period that lasts for a few seconds

starting after 4–5 s. We interpret this finding as a clear

indication that the initial buoyancy profile (as seen in

Fig. 1c) amplifies vertical velocity fluctuations primarily.

Since the whole system decays in the meantime, the

intermediate peak in the fluctuations can be interpreted

by the coupling of vertical velocity and buoyancy for the

period at which temperature differences are still large

enough. In turn, the transiently amplified vertical ve-

locity fluctuations enhance the temperature fluctuations

for this short period, which is displayed in Fig. 1c.

The amplitude of the transient growth increases with

the amount of liquid water that is contained in the initial

cloud slab. The middle panel of Fig. 2 displays the

temporal evolution of the variance of the vapor mixing

ratio fluctuations. The fluctuations are defined as

q0y(x, t)5 qy(x, t)2 hqy(t)iV , (20)

where we take the time-dependent volume mean corre-

spondingly. The presence of the additional large-scale

driving enhances the decay. We also observe that dif-

ferences among the three runs in each of the two series

remain small, implying that the feedback from the

condensation rate source term in Eq. (5) remains very

small. However, this difference is bigger in the stationary

case than in the decaying case. The bottom panel of Fig. 2

displays the variance of the temperature field fluctua-

tions, which have been calculated in the same way as

those of the vapor mixing ratio [cf. Eq. (20)]. The tran-

sient growth depends now clearly on the flow regime and

the initial amount of liquid water in the slab. With in-

creasing initial radius R0, as indicated in the legend, the

transient growth increases in amplitude and time, a man-

ifestation of the enhanced contribution from the source

term in Eq. (4). The additional bulk forcing suppresses

this effect significantly as can be seen when comparing

both series. To summarize, the large-scale forcing fLS
brings the whole system close to the passive mixing case

that has been studied by Kumar et al. (2012, 2013).

In the runs with additional driving, the mixing is

completed when the phase relaxation time is reached

(see Table 2). The turbulence volume is uniformly

mixed and turbulence remains in the statistically sta-

tionary regime. In the decaying case, the system remains

in a transient that ends when the turbulence is com-

pletely faded away.

b. Mixing diagrams

For the rest of the paper we focus on the microphys-

ical response during the mixing process. To analyze the

evolution in the mixing diagrams, we divide the initial

slab into subdomains as displayed in Fig. 3. The droplets

seeded in the four subdomains are colored differently

according to their initial locations, as shown in the top

panel. The bottom panel visualizes the initial distortion

of the cloud slab, with some droplets entering regions of

environmental air and other droplets simply mixing

within the cloud filament. The Lagrangian treatment of

individual cloud droplets allows not only the bulk mi-

crophysical properties of the cloud to be investigated,

but the evolution of the full droplet size distribution.

This includes, for example, the possibility of strong or

even complete evaporation of individual droplets that

experience sudden exposure to dry environmental con-

ditions during the early mixing transients.

Mixing diagrams allow the microphysical response to

mixing to be viewed; that is, to what extent is a given

reduction in liquid water content W } ndhr3i due to

a reduction in nd versus hr3i? The inhomogeneous and

homogeneous mixing lines plotted in the mixing dia-

gram correspond to equilibrium, thermodynamic con-

ditions under the two extremes for mixing. To what

extent the actual cloud microphysical conditions corre-

spond to equilibrium states is not obvious, however,

because until the mixing is complete the system can be

considered to be transient. We follow Andrejczuk et al.

(2009) therefore and plot microphysical trajectories

within the mixing diagram, so that the instantaneous

temporal evolution of microphysical properties can be

visualized. To define the droplet number density and

mean radius, it is necessary to define a sample volume.

We begin by dividing the volume into 16 equally sized

subslabs that occupy the full width of the initial cloud

filament and are arranged 4 3 4 in the y and z di-

mensions (as in Fig. 3, except each colored region there

is further divided into four subvolumes). Microphysical

trajectories for runs S3 and D3, that is, for initial droplet

radii of 20mm, are shown in the top panels of Fig. 4, and

trajectories for runs S2 and D2, that is, for initial droplet

radii of 15mm, are shown in the bottom panels. A first

observation is that the trajectories at least roughly tend

to follow the homogeneousmixing line as opposed to the

inhomogeneous mixing limit. In fact, while the in-

dividual trajectories may deviate during the transient

behavior, the final points are quite close to the homo-

geneous mixing curve. This builds confidence in the

notion that the Damk€ohler number, as defined here,

indeed captures the essential behavior of the system. As

summarized in Table 2, Dah � 1 in all cases, so the
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dissipation-scale mixing is expected to be strongly in the

homogeneous limit. Even for the large eddies, DaL ; 1,

and so the largest simulated scales are only expected to

be in the transition range between homogeneous and

inhomogeneous mixing. Indeed, a hint of this initially

inhomogeneous behavior can be seen in the early tran-

sient response, in which the trajectories can be observed

to initially follow the horizontal mixing line (see espe-

cially the bottom-left panel). Ultimately, a steady state is

reached, and because the initial droplet radii are suffi-

ciently large and the turbulent mixing is sufficiently

rapid, few droplets are able to completely evaporate and

the mean properties of the mixed-cloud approach the

homogeneous limit. As would be expected, the trajec-

tories from the runs with smaller initial radius progress

farther down the homogeneous mixing lines compared

to those with larger initial radius: a straightforward re-

sult of conservation of water mass, given the identical

environmental conditions in the two cases.

Several differences are immediately evident when

comparing the stationary forced results (Fig. 4, left) and

the decaying results (Fig. 4, right). First, the variability

between microphysical trajectories is significantly larger

for the decaying compared to the stationary turbulence

runs. Second, the endpoints of the trajectories of D3 and

D2 do not reach as closely to the homogeneous mixing

line, compared to S3 and S2. These observations can be

interpreted to result directly from the strongly sup-

pressed fluctuations in vapor and temperature fields (see

middle and bottom panels of Fig. 2) in the stationary

forced turbulence relative to the decaying turbulence.

Qualitatively, the decaying turbulence dies out before

the mixture has become thoroughly homogenized, al-

lowing random fluctuations in temperature, vapor con-

centration, and droplet number density to persist and

therefore for the resulting droplet radius fluctuations to

become more pronounced. The scatter in the trajectory

endpoints is especially noticeable in run D2, with nd/nd,0
ranging from approximately 0.4 to 0.6 even in the final,

mixed state. It is also intriguing that in the top-right

panel, corresponding to run D3, several subvolumes

achieve nd/nd,0 . 1 during the initial mixing. In fact, in

just a very short time, the trajectories span nd/nd,0 of 0.4–

1.1 in that case, eventually homogenizing to a range of

Dnd/nd,0 ’ 0.1.

To investigate the possible influence of the sampling

geometry on the results, we vary the subslab size and

show the resulting trajectories in Fig. 5. For this com-

parison, only results for the decaying turbulence D1 are

shown. Here, there is complete evaporation of the

cloud whenmixing is complete, but the trajectories show

interesting differences. In the case with fewer, larger

subvolumes (4 vs 16), there is considerably less variability.

FIG. 3. Illustration of the Lagrangian mixing of the cloud water

droplets. (top) Out of the 8.8 million droplets, we select 20 000

droplets and color them differently based on their initial position in

the cloud filament. (bottom) The mixing and entrainment has

progressed to 1.25 s or 0.3TL. This subdivision of the cloud filament

will be also used later in the text when we discuss the mixing pro-

cess in detail.
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This is not a surprise, since these coarser subvolumes are

rather close to the large-eddy scale, whereas the smaller

subvolumes lie in the inertial subrange. It should be

noted that the very slight increases beyond hr3i/R3
0 5 1

are a result of the small water vapor supersaturation in

the initial profile of qy (cf. Fig. 1).

Especially interesting in the D1 run is the appearance

of what can be termed an inhomogeneous offset: the

curves appear quite similar to the shape of the homo-

geneousmixing curve but are shifted to smaller values of

nd/nd,0. This can be interpreted as resulting from the

relative magnitude of tphase and the single-droplet tevap.

Case D1 with R0 5 10mm is the only scenario in which

tevap is significantly less than tphase. Lehmann et al.

(2009) showed that the relevant microphysical time

scale describing the response to turbulent mixing is

the smaller of tphase and tevap. That is because tphase
is calculated by assuming constant R, whereas tevap is

calculated by assuming constant S, neither strictly correct,

but the smaller of two time scales indicating which as-

sumption is more accurate. Defining a Damk€ohler num-

ber based on tevap results in DaL,evap 5 4.4 for cases S1

and D1, significantly greater than unity and therefore

favoring inhomogeneous mixing at the largest scales in

the inertial subrange. This can be quantified via the

transition length scale, defined as the length within the

inertial subrange at which Da 5 1, that is,

l*5 (t3evaph«i)1/2. For case S1 and D1, we obtain l* 5
5 cm, which is a factor of 10 smaller than the large-eddy

scale Lx and a factor of 50 greater than the Kolmogorov

length scale hK (see Table 1). The trajectories shown in

Fig. 5 therefore can be taken as direct demonstration of

the concept of a shift from inhomogeneous to homoge-

neous mixing as mixing proceeds from the energy in-

jection scale Lx, through l*, and ultimately down to the

energy dissipation scale hK. It should be noted that this

FIG. 4. Mixing diagrams. Mean cubic radius and mixture fraction have been calculated in 16 equally sized subslabs with Lx,1 # x # Lx,2.

They are obtained by splitting the original cloud filament. Details of the four displayed cases are given in Table 2.
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adds support to the parameterization concept of Lu et al.

(2013), which is based on the notion of the transition

length scale. Finally, Fig. 5 and its interpretation also

provide a response to the concluding challenge posed by

Burnet and Brenguier (2007, p. 2009): ‘‘A challenge for

such numerical simulation will be to replicate the typical

features seen in the N2D3
y diagrams. . .with

homogeneous-likemixing features at high LWCdilution

ratio, progressively moving toward an inhomogeneous-

like mixing process when the dilution ratio decreases.’’

We note, finally, that there is a hint of an in-

homogeneous offset in the mixing diagram for case S2 in

Fig. 4; we speculate that the offset is consistent with the

fact that tevap is slightly less than tphase, and DaL,evap 5
2.0, with the result that partial evaporation can occur.

The absence of this signature for case D2 is not un-

derstood at this time.

A wide range of variability in the shape of the in-

dividual trajectories is evident and has implications for

the interpretation of field measurements. Even without

the difficulties of measurement limitations and un-

certainties, considerable scatter in microphysical quan-

tities can be expected simply as a result of the

inevitability of sampling cloud mixing events during

a range of transient times. Most field measurements

displayed on mixing diagrams [e.g., in Burnet and

Brenguier (2007), Gerber et al. (2008), or Lehmann

et al. (2009)] have been interpreted, at least implicitly, as

following homogeneous or inhomogeneous mixing

curves that correspond to thermodynamic equilibrium

states. The trajectories in Figs. 4 and 5 clearly show,

however, that even when the Damk€ohler number favors

homogeneous mixing, a wide range of nd 2 hr3i values
both below and above the homogeneous mixing curve

are encountered. Figure 5 further suggests that the mea-

surement volume geometry may also influence the vari-

ability in themeasured nd2 hr3i values, with the apparent
conflict between the desire to reduce the measurement

volume in order to resolve finescale mixing features, but

at the same time realizing that finer volumes lead to

greater uncertainty in comparing to the theoretical mix-

ing predictions.

c. Distributions of droplet size and supersaturation

In this section, we consider the microphysical re-

sponse of the system inmore detail by looking at droplet

size distributions, including the fraction of fully evapo-

rated droplets, and probability density functions for

supersaturation along Lagrangian droplet paths. Since

the droplet radii remain at r # 20mm in our system,

effects of droplet inertia, for example, the so-called sling

effect (Falkovich and Pumir 2007; Bewley et al. 2013),

are subdominant. The typical order of magnitude of

the Stokes number Sth 5 tp/th , 1021, as discussed in

Kumar et al. (2013).

Some aspects of the conceptual picture that has

emerged from the mixing diagrams can be seen from

a different perspective by considering the total number

of droplets versus time, as shown in Fig. 6. For both S1

and D1, all droplets eventually evaporate because there

is insufficient condensed water to bring the full mixture

to saturation. The cloud with forced turbulence fully

evaporates within approximately two large-eddy times,

whereas the cloud with decaying turbulence requires

more than four large-eddy times. This is a result, on the

one hand, of the forced turbulence more rapidly and

thoroughly mixing cloudy and clear air. The decay-

ing turbulence, on the other hand, presumably leaves

FIG. 5. Mixing diagrams. Mean cubic radius and mixture fraction have been calculated in (left) 16 and (right) 4 equally sized subslabs with

Lx,1 # x # Lx,2. They are obtained by splitting the original cloud filament. Both figures are for case D1 as indicated in Table 2.
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pockets of cloud and clear air that dissipate partially

through diffusion and gravitational settling as the tur-

bulence weakens. Interestingly, even with the single

droplet evaporation time tevap 5 0.9 s being approxi-

mately 1/4 of the large-eddy time TL, significant disap-

pearance of droplets does not occur until t . TL. For

case D1, which was illustrated in Fig. 5 and exhibited

a significant inhomogeneous offset, the time scale for the

transition from inhomogeneous to homogeneous mixing

can be seen to approximately two large-eddy times.

In the other extreme, cases S3 and D3, essentially no

droplets experience full evaporation, again confirming

that the relevant time scale is the lesser of tphase, and

tevap determines the mixing response, that is, phase re-

laxation in both of these cases. The intermediate cases

S2 and D2 are interesting: although the conservation of

water mass constraint allows for finite liquid water

content after equilibrium is reached, a significant frac-

tion of the droplets fully evaporate during the transient

response. In contrast to the fully evaporating cloud cases

(S1 and D1), here the forced turbulence leads to a re-

duction in the number of completely evaporated drop-

lets compared to the decaying turbulence. In this case,

the opposite response is somewhat paradoxically at-

tributed to the same cause: the delayed and somewhat

incomplete nature of the mixing process in the case with

decaying turbulence. The longer-lived inhomogeneities in

the mixture provide droplets at the edge of or even inside

of clear patches to experience strong evaporation for

longer times. The contrasting results therefore have a

similar explanation: decaying turbulence leaves longer-

lived patchiness in the mixing and therefore less direct

approach to the equilibrium state. When the equilibrium

state corresponds to fully evaporated cloud, certain drop-

lets are in patches that take longer to reach that state; when

the equilibrium state corresponds to a partially evaporated

cloud, certain droplets are exposed to transient conditions

for longer times and therefore do not survive.

Mean droplet properties are represented in the mixing

diagrams discussed in section 3b, and now we look at the

detailed droplet response to mixing by plotting probabil-

ity density functions for droplet radius. Probability density

functions (PDFs) are displayed in Fig. 7 for times t5 0.5,

1.0, 2.0, 5.0, 10.0, 20.0, and 30.0 s for the two extreme liquid

water contents: simulations S1 and D1 in the top row and

S3 and D3 in the bottom row. The two top panels corre-

spond to the largest initial Damk€ohler number, with

DaL,evap 5 4.4, and therefore the most inhomogeneous

response of the size distribution. The two bottom panels

correspond to a scenario in which complete droplet

evaporation does not occur and for which the large-eddy

Damk€ohler numbers are close to unity. The size PDFs

indeed exhibit certain features observed for extreme

limits of inhomogeneous and homogeneous mixing, as

explored by Kumar et al. (2012). That those trends still

hold is significant because in that study the temperature

field was neglected; this therefore supports the conclusion

that buoyancy effects are relatively minor in determining

the mixing at these small scales, at least for the conditions

studied here. The S3 simulation case is the most charac-

teristic of homogeneous mixing, with the size distribution

broadening somewhat during the early mixing (within

approximately the first two large-eddy times) and then

evolving mostly via the shifting of the narrow distribution

to smaller mean radius values. Cases S1 and D1 both

exhibit characteristic features of inhomogeneous mixing:

the rapid appearance of a negatively skewed distribution,

with the negative tail being approximately exponential.

Although the tail is pronounced, it does not strongly affect

the mean volume droplet radius. Only after approxi-

mately one large-eddy time does the main droplet size

distributionmode shift to smaller radius values, consistent

with the initially inhomogeneous and subsequently ho-

mogeneous mixing behavior noted in the mixing dia-

grams (cf. Fig. 5). This again substantiates the

transition from inhomogeneous to homogeneous mix-

ing as occurring on a time scale of approximately 2TL.

Droplet growth is directly coupled to the local tem-

perature and vapor mixing ratio fields via the water

vapor supersaturation, so we can gain further under-

standing by plotting probability density functions for S,

FIG. 6. Total number of droplets in the computational domain vs

time for all six cases. For cases S1 andD1, the equilibrium state has

a liquid water content of zero. The rate at which droplets evaporate

is higher for the forced turbulence compared to the decaying tur-

bulence. All other cases end with finite liquid water contents after

transients have vanished; cases S3 and D3 show little full evapo-

ration, but S2 and D2 have significant loss of droplets. In those

intermediate cases, the number of fully evaporated droplets is

greater for the decaying turbulence. These contrasting results are

interpreted in the text. The time is measured in seconds.

JULY 2014 KUMAR ET AL . 2575



as sampled along Lagrangian droplet paths. The PDFs are

displayed in Fig. 8 for the same times and simulation cases

as in Fig. 7. Indeed, as noted by Kumar et al. (2012), there

is always a rapid formation of a negative exponential tail,

likely related to the well-known intermittent properties of

scalar mixing in turbulence. The appearance of a negative

exponential tail in the droplet size distribution observed in

Fig. 7 results directly from the similar shape in the super-

saturation PDFs. For case S3, however, it should be noted

that although the supersaturation PDF displays a negative

exponential tail, the droplet size distribution does not

because of the rapid and thorough (homogeneous)

mixing and the associated collapse of the negative su-

persaturation tail within several large-eddy times. As

expected, the supersaturation PDF in cases S3 and D3

eventually approaches a delta function at S5 0. In cases

S1 and D1, the supersaturation peak never recovers to

S 5 0 due to insufficient initial liquid water content.

Compared to the others, the size distributions for

simulation case D3 are somewhat enigmatic. Although

the initial Da are identical to S3, the droplet size distri-

butions show much more inhomogeneous-like mixing

behavior, that is, the formation of a pronounced negative

exponential tail. Despite the tail formation, however,

the mean droplet radius does not change significantly,

unlike for cases S1 and D1. The negative tail formation

is interpreted to result from the persistence of cloud–

clear air gradients beyond the typical times of t ; TL.

Thus, although the initial DaL would suggest rapid mix-

ing and dissipation of gradients, in fact some of the gra-

dients end up essentially frozen in as the turbulent kinetic

energy collapses. Similarly, in caseD1, it can be seen that

the supersaturation PDF remains quite broad even for

t � TL, because turbulent mixing has become very in-

efficient. This implies that in these cases the buoyancy

feedback is inadequate to force significant subsequent

mixing. There is little positive feedback due to buoyancy

effects in the mixing process, even for the very dry envi-

ronment and large liquid water contents considered here.

4. Summary and conclusions

The work described here is focused on simulating the

mixing of a cloudy filament with environmental air,

under conditions when collisions are not relevant. Al-

though the initial configuration (slab cloud) is highly

idealized,we take the liberty in our numerical experiments

to study this mixing problem under controlled conditions

FIG. 7. PDFs of the size distribution at different times (see legend). (top left) Case S1 and (top right) case D1.

(bottom left) Case S3 and (bottom right) caseD3 (see Table 2). The two extreme cases are shown in order to illustrate

microphysical response under conditions favoring inhomogeneous response in the top row and homogeneous re-

sponse in the bottom row.
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that are very difficult to find in cloud measurements. We

have a clearly defined cloud–clear air interface and can

study essential input parameters disentangled from each

other, for example, initial water mass (controlled by R0)

and turbulence conditions. The approach captures the

full complexity of the microphysical response to a mix-

ing event, including Eulerian description of velocity,

temperature, and water vapor density fields and La-

grangian description of the cloud droplet population.

Cloud droplet growth and evaporation is coupled to the

water vapor field, so that the response to local fluctu-

ations is captured, and the droplet size distribution

evolves in response to the turbulentmixing. Therefore, all

scales from approximately 50 cm and below are resolved,

free of any parameterization.

The microphysical response to mixing is represented

via trajectories (i.e., time histories) within an nd 2 hr3i
space. As pioneered by Jensen et al. (1985), Burnet and

Brenguier (2007), Andrejczuk et al. (2009), and others,

this approach allows the relative contributions of

droplet number density and droplet radius to the liquid

water content, W } ndhr3i. The trajectories generally

show agreement with the theoretical homogeneous

mixing curve when DaL # 1. There are significant

deviations, however, both above and below the ho-

mogeneous mixing line, as a result of turbulent fluctu-

ations. These fluctuations arising from the transient

response to turbulent mixing pose a challenge to the

interpretation of in situ measurements. The magnitude

of the fluctuations also depends on the averaging vol-

ume, with variability increasing as the characteristic av-

eraging length scale reduces below the large-eddy length

scale.

When turbulent mixing is externally forced so that the

energy dissipation rate is stationary, relaxation to the

mixed state is faster and the fluctuations in nd 2 hr3i
space are small relative to those occurring when the

turbulence is decaying except for the buoyancy feed-

back. For the decaying turbulence case, trajectories do

not always end on the homogeneous mixing line within

the simulated times, but for the forced turbulence case,

all trajectories converge to that thermodynamic equi-

librium state. In terms of the scalar fields, the process is

always found to be strongly time dependent. The scalar

fields basically decay quickly, whether the flow is sta-

tistically stationary or not. Their feedback on the flow

via the buoyancy term is found to be weak; in the de-

caying convective regime (D runs), the velocity is very

FIG. 8. PDFs of the supersaturation along the Lagrangian droplet trajectories at different times (see legend). (top

left) Case S1 and (top right) case D1. (bottom left) Case S3 and (bottom right) case D3 (Table 2). The two extreme

cases are shown in order to illustrate microphysical response under conditions favoring inhomogeneous response in

the top row and homogeneous response in the bottom row. Data are for the same cases and times as in Fig. 7.
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close to freely decaying turbulence. Furthermore, and

for this reason as well, the S runs are very close to the

passive mixing problem that was studied by Kumar et al.

(2012, 2013).

The results confirm the finding of Lehmann et al.

(2009) that when the time scale for the evaporation

of a single droplet in the environmental air is less than

the phase relaxation time scale, it becomes the gov-

erning factor in determining the Damk€ohler number.

There has been longstanding disagreement in the lit-

erature as to whether the phase relaxation or droplet

evaporation time should be considered as the relevant

microphysical time scale, so although more of the pa-

rameter space should be investigated, this adds clarity

to the picture.

One of the simulated cases has a large-eddyDamk€ohler

number DaL significantly greater than unity, which is

typically a range that is challenging to achieve in a di-

rect numerical simulation (DNS). The trajectories in

nd 2 hr3i space for that case show a distinct shape, with

initial inhomogeneous mixing eventually changing to

follow the shape of a homogeneous mixing curve, but

they are shifted to smaller nd. This transition from in-

homogeneous to homogeneous mixing corroborates

the concept of the transition length scale, that is, the

length scale within the inertial subrange at which

Da 5 1, above which mixing is primarily inhomoge-

neous and below which mixing is primarily homoge-

neous (Lehmann et al. 2009). This leads to the observed

‘‘inhomogeneous offset’’ in the nd 2 hr3i trajectories.

Further studies under a variety of conditions with

DaL . 1 and with the transition length scale set to

various stages within the inertial subrange are needed

in order to guide quantitative understanding of the

inhomogeneous offset.

Droplet radius and Lagrangian-sampled supersat-

uration PDFs show additional details about the mi-

crophysical response to mixing. In all cases, there is

a sudden and rapid appearance of a negative expo-

nential tail in the supersaturation PDF, presumably

resulting from the initial multiscale mixing of the scalar

(temperature and vapor density) fields. In the more

homogeneous cases, the supersaturation tail quickly

collapses and the droplet size distribution has relatively

little time to broaden as a result. Generally, the size

distribution shifts slowly to a smaller mean radius as all

droplets respond to the well-mixed, homogeneous

background. In the inhomogeneous mixing cases, such

as S1 and D1, the droplet size distributions have suffi-

cient time to adjust to the skewed supersaturation

PDFs and therefore form their own negative expo-

nential tails. The mean droplet radius, however,

remains relatively constant until the transition to

homogeneousmixing occurs, and the distributionmode

shifts to smaller sizes.

The simulations reported here are highly idealized

and only cover a portion of the large microphysical and

thermodynamic parameter space for realistic clouds.

The thermodynamic conditions of this study were taken

to be similar to the cloud observations reported by

Lehmann et al. (2009), which were made near the

freezing point of water. In subsequent work, we aim to

consider a wider range of the parameter space, including

cases allowing us to investigate the role played by

buoyancy as the temperature is increased and latent

heating effects become more pronounced. Microphysi-

cally, the clouds considered here are in the extreme of

dry environment, high droplet concentration, and large

droplet diameters (high liquid water content) so as to

reach large Damk€ohler numbers. In the future, we will

extend the study to conditions more applicable to stra-

tocumulus, that is, with lower cloud droplet number

densities and smaller droplet diameters, and to small

cumulus in more humid environments. In general, lower

liquid water contents tend toward larger phase re-

laxation times and therefore smaller Damk€ohler num-

bers and, all else being equal, more homogeneous

mixing. It can be expected, in contrast, that more humid

environments will tend to favor more inhomogeneous

mixing. Finally, the possible role of a gradient in tur-

bulence intensity, from relatively high inside the cloud

filament to relatively low in the clear air as is commonly

observed in cloud measurements (e.g., Siebert et al.

2013), will be investigated.

The study raises several questions that will require

further study to answer. What is the origin of the nega-

tive exponential tail in the supersaturation PDFs and

can they be quantitatively tied to the distortion of the

cloud–clear air interface through turbulent mixing?

What determines, again quantitatively, themagnitude of

the inhomogeneous offset such as observed in Fig. 5?

Presumably, the dilution and reduction in nd progresses

until the mixing cascades down to the transition length

scale l*, at which point droplets start to see a more

uniform background and evaporate in unison. Finally,

and perhaps most importantly, how will the nature of

mixing change as the limit DaL � 1 is reached, as is

expected in natural clouds? This is ultimately what will

need to be understood in order to develop physically

based parameterizations of the microphysical response

to mixing across the turbulent cascade. Extending sim-

ulations such as those performed here to progressively

higher Reynolds numbers, and therefore a larger range

of turbulent length scales, will allow the phenomenon to

be explored with the level of detail enabled by fully

Lagrangian droplet representation.
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