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Chemical communication in insects’ sexual interactions is well-known to involve olfaction
of volatile compounds called sex pheromones. In theory, sexual chemical communication
may also involve chemicals with low or no volatility exchanged during precopulatory
gustatory contacts. Yet, knowledge on this latter type of chemicals is so far mostly
restricted to the Drosophila fly model. Here we provide the most comprehensive
characterization to date of the cuticular chemical profile, including both volatile and
non-volatile compounds, of a model butterfly, Bicyclus anynana. First, we characterized
the body distribution of 103 cuticular lipids, mostly alkanes and methyl-branched alkanes,
by gas chromatography coupled to mass spectrometry (GC-MS). Second, we developed a
multivariate statistical approach to cope with such complex chemical profiles and showed
that variation in the presence or abundance of a subset of the cuticular lipids indicated
body parts, and traits involved in B. anynana mate choice, namely sex and age. Third, we
identified the chemical structure of the 20 most indicative compounds, which were on
average more abundant (1346.4 ± 1994.6 ng; mean ± SD) than other, likely less indicative,
compounds (225.9 ± 507.2 ng; mean ± SD). Fourth, we showed that wings and legs
displayed most of the chemical information found on the entire body of the butterflies.
Fifth, we showed that non-random gustatory contacts occurred between specific male
and female body parts during courtship. The body parts mostly touched by the conspecific
displayed the largest between-sex differentiation in cuticular composition. Altogether, the
large diversity of cuticular lipids in B. anynana, which exceeds the one of Drosophila flies,
and its non-random distribution and evaluation across individuals, together suggest that
gustatory information is likely exchanged during sexual interactions in Lepidoptera.
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INTRODUCTION
Chemical communication, including both olfaction and taste,
is common in most living organisms but remains understud-
ied compared to other modes of communication such as vision
and audition (Wyatt, 2003, 2009). Chemical communication
is based on combinations of chemical compounds that pro-
vide the potential to transfer sophisticated information about
individuals, as documented in some vertebrates (Brennan and
Zufall, 2006), and in social invertebrates (Moore et al., 1997;
Thom et al., 2007; Guerrieri et al., 2009). For example, over
a thousand cuticular hydrocarbons were identified in around
eighty species of ants (Martin and Drijfhout, 2009), and effi-
cient discrimination between “friends” (nest-mates) and “foes”
(non-nest-mates) is based on the presence of specific cuticular

hydrocarbons (Guerrieri et al., 2009). Social parasites of ants
such as the caterpillars of Maculinea butterflies have cracked their
host’s chemical code using chemical camouflage and mimicry to
access the ant nest (Nash et al., 2008). Refined information can
thus be transferred among individuals, which reflects the com-
plexity of the social interactions observed at intraspecific and
interspecific levels.

Chemical signals should also convey a wide diversity of
information regarding the quality or identity of potential mat-
ing partners encompassing both intraspecific (assessment of
mate quality) and interspecific (species recognition) interactions
(Andersson, 1994; Wyatt, 2003; Johansson and Jones, 2007). In
this regard, sex pheromones are chemicals used for intraspecific
communication between potential mating partners. Pioneering
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work in Drosophila fruit flies revealed that both olfactory and
gustatory communications are of primary importance for mate
choice. Fruit flies rely on the presence of the volatile cis-vaccenyl
acetate (cVA) and on several abundant, sex-specific cuticular
hydrocarbons of low volatility for deciphering species, strain,
sex, mating status, and for eliciting between-sexes courtships as
well as inhibiting same-sex courtships (Cobb and Jallon, 1990;
Greenspan and Ferveur, 2000; Ferveur and Cobb, 2010). While
cVA is sensed through olfactory neurons (Kurtovic et al., 2007),
it was recently demonstrated that the cuticular hydrocarbons are
detected by contact using chemosensitive receptors and are nec-
essary to initiate courtship (Thistle et al., 2012). Thus, non-social
species also exchange refined information using chemical signals,
and both volatile and non-volatile compounds such as cuticular
hydrocarbons may be essential for mate choice.

Although courtship in insects often involves precopulatory
inter-individual contacts as it is known in Drosophila (Hall,
1994), providing room for close range olfactory and gusta-
tory assessments of mate quality (Bonduriansky, 2001), the role
of cuticular hydrocarbons, and other cuticular lipids with low
volatility, remains poorly studied for mate choice in species other
than Drosophila and some Diptera, Coleoptera, and Orthoptera
species (Tregenza and Wedell, 1997; Rantala et al., 2002, 2003;
Rantala and Kortet, 2004; Kortet and Hedrick, 2005; Thomas and
Simmons, 2009; Ginzel, 2010). This is particularly surprising in
Lepidoptera, as this insect order includes several model organisms
in chemical communication for mate choice and sexual selec-
tion using volatile sex pheromones produced by females to attract
males from a long distance (Svensson, 1996; Millar, 2000; Ando,
2004; Johansson and Jones, 2007; Millar et al., 2010). Males of
some species of moths and of butterflies also produce volatile
sex pheromones but their study has received much less atten-
tion. Partial behavioral and chemical analyses of such male sex
pheromones (MSP) have been made for some species of moth
(Baker et al., 1981; Nishida et al., 1982; Phelan et al., 1986; Teal
and Tumlinson, 1989; Dussourd et al., 1991; Jacquin et al., 1991;
Heat et al., 1992; Thibout et al., 1994; Kimura and Honda, 1999;
Iyengar et al., 2001; Sasaerila et al., 2003; Hillier and Vickers, 2004;
Landolt et al., 2004; Monteys et al., 2012) and a few species of
butterfly (Pliske and Eisner, 1969; Taylor, 1973; Grula et al., 1980;
Sappington and Taylor, 1990a,b,c; Nishida et al., 1996; Andersson
et al., 2007; Nieberding et al., 2008, 2012). MSPs are usually
employed at short–range during the courtship sequence (Myers,
1972; Birch et al., 1990; VaneWright and Boppre, 1993) and are
associated with scent-releasing organs called coremata or andro-
conia found on the legs, wings, thorax, or abdomen (Birch et al.,
1990). Male olfactory displays in Lepidoptera are thought to be
involved in mate assessment where they can convey information
about the prospective mates (Mustaparta, 1996; Costanzo and
Monteiro, 2007), such as quality and quantity of nuptial gifts
(Dussourd et al., 1991), or male size (Iyengar et al., 2001) (but
see Kemp et al., 2008; Nieberding et al., 2008), though experi-
mental demonstration of the role of hair-pencils and other organs
associated with the release of MSP remains scarce (Davie et al.,
2010). In addition, Lepidoptera also produce cuticular lipids with
no or low volatility, but their role in mate choice and sexual selec-
tion remains barely understood. This is partly due to the difficulty

in identifying behaviorally and physiologically active compounds
when these have low or no volatility. To date, a partial analysis of
the cuticular compounds was undertaken in eight moth species
[Cydia pomonella (Piskorski et al., 2010), Conogethes punctifer-
alis (Xiao et al., 2012), Orgyia leucostigma (Grant et al., 1987),
Lymantria dispar (Jurenka and Subchev, 2000), Helicoverpa zea,
Heliothis virescens, Manduca sexta (Carlson and Milstrey, 1991;
Böröczky et al., 2008), Anticarsia gemmatalis (Heath et al., 1983)]
and in eight butterfly species [Colias eurytheme (Grula et al.,
1980; Sappington and Taylor, 1990c), Idea leucone (Nishida et al.,
1996; Schulz and Nishida, 1996), Pieris rapae (Arsene et al.,
2002), Papilio polytes (Ômura and Honda, 2005), two species
in the Danaus genus (Hay-Roe et al., 2007) and two species
in the Lasiommata genus (Dapporto, 2007)]. It was shown that
some of these compounds act as MSP (Sappington and Taylor,
1990c; Schulz and Nishida, 1996) or play a key role in reproduc-
tive isolation between closely related species (Grula et al., 1980),
but the structure or the function of the large majority of the
chemicals found on the cuticle of Lepidoptera remains so far
uncharacterized.

Against this background, we herein provide the characteriza-
tion of compounds up to 40 carbon atoms of the cuticular profile
of the model butterfly Bicyclus anynana. The tropical sub-Saharan
butterfly genus Bicyclus (Bush Browns; Lepidoptera, Satyrinae)
includes over 80 species that are poorly differentiated morpho-
logically and up to 20 species can be found in sympatry in a single
forest patch (Condamin, 1973). The main morphological char-
acter used to discriminate species is the position and shape of
the androconia, which are male wing patches and brushes formed
by modified scales and thought to produce the MSP components
(Condamin, 1973). Large chemical, but limited morphological,
divergence together suggest that chemical profiles are used for
species recognition in this group of butterflies, and may be
involved in Bicyclus speciation (Bacquet et al., in revision). In the
model species B. anynana (Butler, 1879; Brakefield et al., 2009),
we have now extensive physiological (Nieberding et al., 2008),
behavioral (Costanzo and Monteiro, 2007; Nieberding et al., 2008,
2012; Van Bergen et al., 2013; Westerman and Monteiro, 2013),
comparative (Bacquet et al., in revision)., quantitative genetics
(Nieberding et al., 2012) and biosynthetic (Liénard et al., 2014)
evidence of the function and the selective forces acting on the
volatile sex pheromone. Females rely for mate choice on the per-
ception of three volatile male-specific wing components forming
the male sex pheromone, namely (Z)-9-tetradecenol (MSP1 here-
after), hexadecanal (MSP2), and 6,10,14-trimethylpentadecan-
2-ol (MSP3) (Costanzo and Monteiro, 2007; Nieberding et al.,
2008). The MSP composition enables females to finely assess age
and inbreeding differences between courting males (Nieberding
et al., 2012; Van Bergen et al., 2013). MSP composition also
mediates learning of visual signals implicated in mate choice in
B. anynana (Westerman and Monteiro, 2013). Yet, chemical com-
munication in this species is likely not limited to the information
conveyed by MSP composition for the following two reasons.
First, male and female cuticles likely display, as in other insects,
a much larger number of compounds but the majority have low
volatility and as such could not be previously detected by gas-
chromatography coupled to electro-antennograms (GC-EAD;
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Nieberding et al., 2008). Second, B. anynana courtship as
observed by ultrafast camera images (Nieberding et al., 2008)
might be close to Drosophila melanogaster’s one in the way that
a male and a female touch specific parts of each other body with
their antennae, proboscis, legs and abdominal tip (Hall, 1994).
As olfactory receptors are found in the fly antennae while recep-
tors for cuticular lipids are found in the fly antennae, legs and
proboscis (Amrein and Thorne, 2005; Ebbs and Amrein, 2007;
Miyamoto and Amrein, 2008; Thistle et al., 2012), it suggests that
different body parts may convey specific pieces of information
using chemicals of different structure and volatility. We herein
provide the most complete description of compounds present on
the cuticular surface of a butterfly to date, including the struc-
tural identification for the most abundant compounds, and their
quantification. On the basis of courting interactions between
individuals, we hypothesized that the distribution of cuticular
lipids and the location of gustatory contacts between sexes may
not be random and may inform about some aspects of quality
of the potential mate in B. anynana. In particular, we predicted
that: (i) the composition in cuticular lipids across different body
parts may be indicative of sex and age, and that (ii) the gustatory
contacts, if involved in mate choice, should preferentially occur
between body parts showing a sex-specific composition.

MATERIALS AND METHODS
INSECTS REARING
An outbred laboratory stock of the African butterfly, B. anynana,
was established in 1988 from over 80 gravid females collected
in a single source population in Malawi and maintained at a
large population size (Brakefield and Reitsma, 1991). The genetic
diversity was maintained at a level similar to the one of the orig-
inal population (Brakefield et al., 2009). The experiments were
performed on the wet, reproductive, seasonal form: larvae were
reared in a climate room under a standard temperature regime
(27◦C), 12:12 L:D regime and high relative humidity (80%), while
adults were subject to the following day-night range of tem-
perature and humidity: 22–27◦C and 50–60% humidity. Larvae
and adults were fed ad libitum on maize Zea maïs, and banana
Musa acuminate, respectively. Individuals of different sexes or
ages were kept apart within 12 h after emergence in different
cylindrical hanging netted cages (diameter 30 cm, height 38 cm)
at a maximum density of 15 adults per cage.

ANALYSIS OF CUTICULAR LIPIDS COMPOSITION
Acquisition of cuticular samples
Virgin male and female butterflies were sampled at the follow-
ing age classes: 1, 3, 8, 14, and 21-days old. All butterflies were
killed 7 h after lights were switched on (at 10:00 am) by placing
them in individual envelopes at −80◦C. For the GC-MS analy-
ses, three to six individuals were sampled per category (two sexes
and five age classes; n = 10 categories). The antennae, wings and
legs of each individual were carefully cut using cleaned fine scis-
sors, while their abdomen and head were not cut to avoid the
contamination of the extract by hemolymph. The head was first
soaked in n-hexane then the body of the butterfly was turned
over in another vial with n-hexane (VWR, Leuven, Belgium) to
soak abdomen. All body parts were separately soaked in a precise

volume of n-hexane (50 µL for antennae and legs, 270 µL for
abdomen and head, 300 µL for wings) for 5 (all body parts but
wings) or 10 (wings) min (n = 210 n-hexane extracts in total for
GC-MS analyses). Next, gas chromatography coupled to a flame
ionization detector (GC-FID) analyses were carried out in order
to increase the sample size of our dataset and hence validate the
robustness of our statistical analyses based on GC-MS dataset.
For the GC-FID analyses, we sampled 3–18 individuals per cat-
egory and only extracted the legs and wings simultaneously in the
same vial (see results’ section Validation of the list of indicative
compounds by GC-FID) using 350 µL of n-hexane with inter-
nal standard at 15 ng/µL for 10 min (n = 106 extracts in total).
The other butterfly parts were not extracted for GC-FID analy-
ses. The extracts were filtered using glass Pasteur pipettes fitted
with a small piece of glass wool (15 mg) to remove the scales from
the samples prior to GC-MS and GC-FID analyses. Blanks of n-
hexane were sampled after extraction of every three individuals
to check the absence of contamination in the solvent used during
the extraction procedure.

Gas chromatography coupled to mass spectrometry (GC-MS)
analyses 1
Conventional GC-MS analyses were carried out on a Thermo
Trace GC Ultra coupled with a Thermo Trace MS Finnigan
mass selective detector (Thermo Electron Corp., Interscience,
Louvain-la-Neuve, Belgium) and equipped with an Optima-5-
Accent (Macherey-Nagel, Düren, Germany) capillary column
(30 m × 0.25 mm I.D., 0.25 µm film thickness). The oven tem-
perature program was initiated at 40◦C held for 2 min then
raised at 10◦C/min to 320◦C and held at this final temperature
for 10 min. Carrier gas was Helium at a constant flow rate of
1.5 mL/min. Injection volume was 1 µL in splitless mode (split-
less time: 0.80 min). The temperature of the injector was fixed
at 300◦C. The temperature of the interface between GC and MS
was fixed at 320◦C. MS detection was performed in the elec-
tron impact (EI) mode at 70 eV by operating with the full-scan
acquisition mode in the 30–500 amu mass range. The identifi-
cation of the natural compounds was performed by comparing
the obtained mass spectra fragmentation patterns with those
from the Nist spectral library and by comparing their reten-
tion indices to literature data (Pherobase data) and Nist data.
Retention indices (Ii) were determined relative to the retention
times of two mixes of n-alkane standards (C7–C30 at 10 ng/µL in
n-hexane, Sigma, Bornem, Belgium; and C9–C40 at 50 ng/µL in
n-hexane, Dr. Ehrenstorfer, Augsburg, Germany) measured under
the chromatographic conditions described above. Quantification
of compounds (in ng) was established by external standardization
by comparing the area of each peak to the mean area of C7-C30
reference alkanes at 10 ng/µL injected in GC-MS [10 replicates,
Relative Standard Deviation (RSD) of manual injection repeata-
bility = 4.4%: this value is lower than the maximal acceptable
limit of 12%, according to the AOAC norm (2006), to con-
sider that the method is validated]. External standardization was
preferred in GC-MS analyses instead of internal standard quan-
tification because prior to commencing our experiment we had
no idea of the nature of cuticular compounds of the butterflies
precluding the selection of an appropriate internal standard.
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GC-MS analyses 2
Complementary identification of the most abundant hydrocar-
bons was performed using a subset of the cuticular extracts
analyzed by the first GC-MS analyses, by a comparison of their
MS fragmentation patterns and retention times with a mix of n-
alkane standards (C7–C30) (Fluka, Germany). The GC-MS anal-
ysis was performed using a Varian 240 MS quadrupole ion-trap
mass detector coupled to a Varian 450 GC (QIT GC-MS) (Kroiss
et al., 2011). All analyses were performed in the external ion-
ization configuration. A DB-5 ms column (Agilent Technologies,
Böblingen, Germany; 30 m × 0.25 mm i.d. × 0.25 µm film)
was used to separate the hydrocarbons. The temperature of the
split/splitless GC injector was set to 250◦C, and the injector was
operated in the splitless mode. The GC oven temperature was pro-
grammed as follows: 150◦C for 1 min, 5◦C/min to 300◦C and a
hold for 5 min. Helium was used as the carrier gas at a constant
flow rate of 1 mL/min.

Gas chromatography coupled to a flame ionization detector
(GC-FID) analyses
GC-FID analyses were performed on a Thermo Trace GC Ultra
gas chromatograph equipped with a flame ionization detector
and an AS 3000 autosampler (Thermo Scientific, Interscience,
Louvain-la-Neuve, Belgium). The capillary column, the temper-
ature program, the injection conditions and the carrier gas at
constant flow of 1.5 mL/min were the same than in GC-MS anal-
yses 1. Detection was performed with 300 Hz FID detector at
310◦C. The flame composition of the detector was: 350 mL/min
air, 35 mL/min hydrogen, 30 mL/min nitrogen (makeup gas).
Identification of cuticular compounds was done by comparing
their retention indices (calculated with a mix of n-alkanes, see
GC-MS analyses 1) to those of GC-MS analyses 1. Quantification
was achieved by means of internal standard, palmityl acetate
(Sigma, Bornem, Belgium) at 15 ng/µL in n-hexane (as extraction
solvent).

STATISTICAL ANALYSES OF CUTICULAR LIPIDS COMPOSITION
Statistics on the GC-MS and GC-FID datasets
The GC-MS dataset consisted of 210 cuticular extracts sampled
for three qualitative factors—sex (two levels, fixed), age (five lev-
els, fixed) and body parts (five levels, fixed)—with three to six
replicates per group (a group is characterized by one sex, one age,
and one body part), and of 103 quantitative variables formed by
the cuticular compounds. The GC-FID dataset consisted of cutic-
ular extracts sampled for two qualitative factors, sex (two levels,
fixed) and age (five levels, fixed), with three to 18 replicates per
group (n = 106 analyses in total), and of 57 quantitative variables
(cuticular compounds). We used either each cuticular extract
independently or we pooled all body parts of each insect (“com-
plete individuals” hereafter) for the following statistical tests. All
analyses described here under were performed using the GC-
MS dataset, and we conducted the perMANOVA analysis, the
indicative compound analysis (ICA) and the nMDS ordination
on the GC-FID dataset as well in order to determine differences
of composition in cuticular compound profiles for sexes and ages.

First, to assess the repeatability of the compounds, non-
parametric Spearman rank correlations were performed between

compounds within factors (sex, age, body parts) across individ-
uals. Second, we performed a cluster analysis to characterize the
overall distribution of the absolute abundances of the 103 cutic-
ular compounds according to sex, age, or body parts. We used
the Ward hierarchical algorithm (Ward, 1963) consolidated by a
maximum of 10 K-means iterations (Lloyd, 1982). The cluster-
ing was performed on the whole axes of a principal component
analysis (PCA) in order to allow the use of Euclidean distance
in K-means. The R function HCPC was used. The number of
relevant clusters (three large and four small groups) was fixed
by the major break in the inertia gain barplot. We tested the
stability of the clusters without the four small groups and it
showed very stable association measures with the three factors of
interest. Independence chi-squared tests were used to assess the
significance of the clustering.

Third, we assessed whether there were significant differ-
ences in cuticular lipids composition among factors and iden-
tified which cuticular compound was indicative of each factor.
Permutational multivariate analyses of variance (perMANOVA)
were performed using the Bray-Curtis similarity matrix and 999
permutations (Anderson, 2001; McArdle and Anderson, 2001).
It is a permutation-based version of the multivariate analysis of
variance (MANOVA) (Anderson, 2005). Like conventional analy-
ses of variances, the perMANOVA calculates a F-statistic by taking
the ratio of “among-group sums of squares” to “within-group
sums of squares,” and produces a p-value used to detect significant
differences in the abundance and composition of cuticular lipids
across samples. As it is a permutational test, the perMANOVA
does not depend on: (i) the correlation between variables, (ii)
the presence of some null data in the dataset, and (iii) the multi-
normality of groups (the different levels of the qualitative factor
considered) (Anderson, 2005). Next, an ICA was conducted to
identify which compounds are indicative of age, sex or body part.
Of note, the ICA is similar to better-known “Indicator Species
Analysis” (Indval), which is usually used with species data but is
here applied to chemical data. This analysis calculates the prob-
ability that a compound is found in association with one factor.
An indicator value, which is function of the relative abundance
and frequency of a compound, was calculated for each cuticu-
lar compound and allowed to identify the factor with the highest
indicator value for each compound. All indicator analyses were
performed in R using the indval function from the labdsv package.

Fourth, we performed non-metric multi-dimensional scaling
(nMDS) ordinations to visually assess compositional differences
in cuticular compounds. For this we used the R functions ecodist,
ellipse (based on standard deviation with a confident interval of
0.95) and BiodiversityR. All nMDS plots were generated employ-
ing a Bray-Curtis similarity matrix, two dimensions (applying
a conventional cutoff of <0.2 for the stress value) and 50 runs
to fully explore the ordination space at that dimensionality. The
minimum stress solution from this was used to produce the
nMDS plots in which each spatial distance between samples can
be interpreted as the relative difference in chemical composition.

Finally, we assessed how similar the chemical profiles obtained
either by GC-MS or by GC-FID methodologies are. For this, we
calculated the Spearman-rank correlations for the abundance of
each chemical compound between pairs of individuals sampled
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either by GC-MS or by GC-FID (each sex and age categories
separately). We used the 57 chemical compounds found in both
GC-MS and GC-FID analyses and present in the wing and leg
extracts performed for both GC-MS and GC-FID. We also esti-
mated the correlation of the chemical profiles between individuals
(age and sex factors separately) sampled using the same method-
ology (either both by GC-MS, or both by GC-FID). This allows
us to distinguish whether the variation in abundance between
the quantities of each compound across samples is due to the
used methodology (GC-MS vs. GC-FID) or is due to biologi-
cal diversity, as different individuals were used for each sample
(MS-MS comparison, and FID-FID comparison). All statistical
analyses were performed using R (2.14.0 version, at http://www.

cran.org/).

BEHAVIORAL ASSESSMENT OF GUSTATORY CONTACTS BETWEEN
SEXES DURING COURTSHIP INTERACTIONS
Previously published observations using high speed camera
images revealed that males touch females during courtship, pro-
viding room for gustatory assessment of potential mating part-
ners in this species (Nieberding et al., 2008). Here, we designed
two behavioral experiments to assess where males and females
taste each other during courtship interactions and to test the
biological relevance of these contacts. Specifically, we predicted
that the gustatory contacts between sexes should not be ran-
dom but linked with sex differences in the cuticular composi-
tion between specific body parts. We made use of fluorescent
dust powders to track and characterize the contacts that occur
between sexes specifically during courtship interactions (Joron
and Brakefield, 2003) and that are too quick for direct eye obser-
vations (Nieberding et al., 2008). As chemical receptors are known
to be present on antennae and legs of insects, we dusted either the
two antennae (Experiment 1) or the four legs (Experiment 2) of
ca. 1-month old males and ca. 10-day old virgin females with col-
ored “rodent-tracking” fluorescent dust (colors red “TP10” and
chartreuse “TP35” Radiant Color, Belgium). We ran two repli-
cates for each experiment. We dusted both sexes with a different
color (yellow or red) per replicate and reversed colors between
replicates. In a large cage (120 × 59 × 60 cm) filled with moist
banana ad libitum and two maize plants allowing females to
escape unwanted mating attempts by disappearing from male
visual range, we released for each replicate 10 dusted males 1–3 h
after day light was switched on, and then released 10 dusted
females 1 h later. We collected all butterflies 24 h after the females
had been released and inspected males and females under ultravi-
olet illumination to assess the transfer of fluorescent dust between
sexes on the following body parts: head (including antennae and
proboscis), thorax, abdomen, legs, and wings.

RESULTS
LARGE DIVERSITY AND DIFFERENTIATION OF CUTICULAR LIPIDS
ACROSS BODY PARTS
To gain information on the spatial distribution of the chem-
ical compounds potentially involved in courtship and mating
behavior sequences of B. anynana butterflies, we first analyzed
and quantified independently by GC-MS the cuticular com-
position of separated body parts (head, abdomen-thorax, legs,

wings and antennae) of 42 B. anynana individuals (n = 210
samples, Supplement 1). We found 103 distinct compounds, of
which the structure of the most abundant ones was determined
(Supplement 2). Although our sampling was based on a limited
number of individuals per group (n = three to six individuals
per group; see Materials and Methods), the high repeatability
of presence and abundance of compounds across GC-MS spec-
tra supported that most indicative compounds for body parts,
sex and age were identified in this study (average intra-category
Spearman correlations between individuals is r = 0.73 ± 0.13,
mean ± SE; coefficient of determination R2 = 0.56 ± 0.18).

Alkanes and methyl-branched alkanes formed the majority
of cuticular compounds, both in terms of number of compo-
nents (19 and 11 identified alkanes and methyl-branched alkanes,
respectively) and in terms of proportions [41.7 ± 15.9% and
17.0 ± 5.7% (mean ± SD) per individual for alkanes and methyl-
branched alkanes, respectively]. No alkene was identified; other
cuticular lipids found on B. anynana body parts were aldehydes,
alcohols, ketones and acids (Table 1, Supplement 2). The differ-
entiation of cuticular lipid composition was significantly associ-
ated with body parts, sex and age (Ward hierarchical clustering
consolidated by some K-means iterations with chi-square test for
body parts and age: p < 0.01; chi-square test for age: p < 0.05).

The cuticular composition of each body part was significantly
different (perMANOVA: df = 206, F stats = 30.0, p < 0.001).
Moreover, a number of cuticular compounds were found to be
indicative of each body part, i.e., the abundance and the presence
of these compounds contributed significantly to the discrimina-
tion between factor levels: six compounds for antennae, 11 for
head, 18 for legs, 56 for wings and nine for abdomen-thorax,
(ICA; Supplement 2).

Table 1 | Main chemical classes of cuticular compounds identified in

B. anynana, with their mean percentage per individual.

Class of Number of % compound class

compound compounds per individual

(Mean ± SD)

MAIN CHAIN LENGTH (NUMBER OF CARBON ATOMS)

C14–C19 29 23.4 ± 22.3

C20–C24 14 3.4 ± 1.9

C25–C29 9 14.8 ± 9.0

C30–C34 9 11.5 ± 4.2

C35–C39 5 22.9 ± 7.5

>C40 1 10.1 ± 5.4

CUTICULAR HYDROCARBONS

Alkanes 19 41.7 ± 15.9

Branched alkanes 13 17.0 ± 5.7

MAIN FUNCTIONAL GROUPS

Alcohols 6 20.3 ± 19.7

Aldehydes 11 4.5 ± 3.1

Ketones 1 0.9 ± 0.9

Acids 3 1.7 ± 2.0

Others 3 0.05 ± 0.1

Unidentified compounds 47 14.7 ± 6.5
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CUTICULAR LIPID COMPOSITION INDICATES SEX
We have tested whether a difference in chemical profiles existed
between sexes using the same dataset of 42 individuals as above
(see GC-MS chromatogram in Supplement 3). The cuticular
composition of complete butterflies (perMANOVA; df = 40, F
stats = 18.6, p < 0.001) and of each body part, but the antennae,
differed significantly according to sex (perMANOVA for all parts
but antennae: df = 40, F stats > 9.4; p < 0.001; for antennae:
df = 40, F stats = 1.4, p = 0.23; non-metric multi-dimensional
scaling (nMDS); Figure 1). This held true when the three male-
specific wing sex pheromone components (Supplement 2) were
excluded from the multivariate analysis (perMANOVA on whole
insects; df = 40, F stats = 6.4, p < 0.001).

We identified 29 male-indicative (including the three MSP
components), and six female-indicative, compounds (ICA,
Supplement 2). Males produced significantly more compounds
(58.3 ± 16.2 for males vs. 43.9 ± 9.5 for females; mean ± SD;
two-sample t-test: p < 0.005) and in significantly higher amounts
as compared with females (43.4 ± 18.5 µg for males and
25.5 ± 12.5 µg for females; mean ± SD; two-sample t-test:
p < 0.001).

We assessed whether the sampling of different body parts sep-
arately affected our finding of sex-specific compounds. For this,
we compared the list of indicative peaks for sex when either
(a) the complete individuals were used or (b) each body part
was analyzed independently. We found that 27 of the 29 male-
indicative compounds and all six female-indicative compounds
were present in wings and legs (Supplement 2).

CUTICULAR LIPID COMPOSITION INDICATES AGE
From the GC-MS dataset, the cuticular composition of butterflies
also allowed us to discriminate between individuals of different
age classes (from 1 to 21 day old; perMANOVA for complete indi-
viduals or each body part: df = 37, F stats > 2.4, p < 0.001).
Moreover, the cuticular lipid composition of abdomens, legs
and wings generated a gradient distribution of increasing age
classes (nMDS; Figure 2). With respect to sex, the discrimination
between ages remained significant when the MSP components
were excluded from the analysis (p < 0.001). Respectively, 1, 4,
25, 6, and 29 compounds were found to be indicative of the
age classes of 1, 3, 8, 14, and 21 day old individuals (ICA,
Supplement 2). Sampling wings and legs was again sufficient to
obtain almost all indicative compounds found in complete indi-
viduals (respectively, 1, 4, 21, 4, and 23 age-indicative compounds
in legs and wings; Supplement 2).

SUBSET OF POSSIBLY BEHAVIORALLY ACTIVE CUTICULAR
COMPOUNDS
We identified above, from the GC-MS dataset, a subset of
compounds allowing the discrimination of body parts (85
compounds), sex (63 compounds), and age (89 compounds)
(Supplement 2). The indicative value of a compound varied
between zero and one according to the ICA and was highly
correlated to the number of times that this compound sig-
nificantly contributed to the discrimination of body parts, sex
or age (between zero and 47 times; Supplement 2) (Figure 3).
Compounds that were most indicative of body parts, sex or age,

FIGURE 1 | Discrimination of B. anynana sexes based on cuticular

lipid composition (including the three MSP components) of

abdomen, antennae, head, legs, wings and whole individuals,

using non-metric multi-dimensional scaling nMDS ordination based

on Bray-Curtis distance. Triangles represent males and circles,
females.
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FIGURE 2 | Discrimination of B. anynana age classes (males and

females) (1-day (blue), 3-day (red), 8-day (black), 14-day (green) and

21-day (gray) old) based on cuticular lipid composition (including the

three MSP components) of abdomen, antennae, head, legs, wings

and whole individuals, using nMDS ordination based on Bray-Curtis

distance.

FIGURE 3 | Correlation between the indicative value of a compound

(Y axis, between 0 and 1, based on indicative compound analysis

(ICA), see S2 for raw data) and the number of times that this

compound is indicative and allows for the discrimination of body

parts, sex and age (X axis, between 0 and 47, see S2 for raw

data). A logarithmic relationship was found between the two variables
(coefficient of determination R2 = 0.44). Dashed lines correspond to the
values of two variables for the three MSP components that were used
as a threshold for selecting the most indicative compounds, i.e., a

mean indicative value ≥0.6 and a number of times that a compound is
indicative ≥8. List of compounds from number 1 to 20: 1.
Z -9-tetradecenol (MSP1); 2. Heptadecane; 3. Hexadecanal (MSP2); 4.
6,10,14-trimethyl-pentadecan-2-ol (MSP 3); 5. Heptadecenal; 6Unidentified
(Rt = 19.20); 7. Octadecanal; 8. Phytol; 9. 1-eicosanol; 10. Pentacosane;
11. Hexacosane; 12. Heptacosane; 13. Octacosane; 14. Nonacosane; 15.
Triacontane; 16. Triacontanal; 17. Dimethyl-tritriacontane; 18. Unidentified
hydrocarbon (Rt = 30.47); 19. Dimethyl-pentatriacontane; 20.
Hexatriacontane.
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such as the three previously identified MSP components, had
an indicative value of 0.6 or higher and were discriminative for
eight or more factor levels (Supplement 2). In this regard, we
selected a subset of 20 highly indicative compounds which com-
plied with the same thresholds (Table 2). These compounds were
more repeatable (intra-category Spearman correlation of com-
pounds for whole individuals: r = 0.94 ± 0.04; R2 = 0.88 ±
0.07; mean ± SE) compared to other, less indicative compounds
(r = 0.77 ± 0.12; R2 = 0.60 ± 0.18; mean ± SE). The 20 highly
indicative compounds were on average more abundant (1346.4 ±
1994.6 ng; mean ± SD) than other, less indicative, compounds
(225.9 ± 507.2 ng; mean ± SD). Among these 20 indicative
compounds, eight were indicative of male sex (six were more
abundant in males than in females and two were present in males
only) and four were indicative of females (all due to their higher
abundance in females compared to males) (Supplement 1). Ten
compounds of this subset were more abundant (2510.3 ± 2317.3
ng; mean ± SD) than the mean abundance found for all
cuticular lipids (443.4 ± 1070.7 ng; mean ± SD) (in italics in
Table 2).

VALIDATION OF THE LIST OF INDICATIVE COMPOUNDS BY GC-FID
Based on the results obtained by GC-MS, we decided to confirm
the statistical validity of the identified top 10–20 indicative com-
pounds by sampling a larger number of individuals (n = 3–18 per
group; n = 106 individuals in total) using the GC-FID method-
ology. We expected that the two GC methods (GC-MS and GC-
FID) used in this study should yield similar results with respect
to the compounds that are indicative of sex, age, or body parts, at
least when these indicative compounds are abundant on B. any-
nana as trace compounds were only detectable by GC-MS. Here
we sampled only wings and legs of individuals which were pooled
in the same extract, as most indicative compounds were found
in these body parts in the GC-MS analyses. We added an inter-
nal standard, palmityl acetate, for quantifying the compounds as
it was absent from the cuticular extract (as shown by the GC-MS
analyses). The 57 cuticular compounds detected and identified by
GC-FID (Supplement 4) were also found in the GC-MS analy-
ses (Supplement 2). Yet, 46 additional compounds detected by
GC-MS were not detected by GC-FID, among which three that
were only present in antennae, head and/or abdomen [Retention
time (Rt hereafter) = 21.64, 23.46, 25.05 min, Supplement 1] and
not in legs or wings. The additional 43 GC-MS-specific com-
pounds were not found by GC-FID due to its lower sensitivity
in comparison with the GC-MS system.

The cuticular composition of leg and wing extracts again
differed significantly according to sex (perMANOVA; df = 104,
F stats = 57.9, p < 0.001; nMDS). We identified 25 male-
indicative compounds including the three MSP components of
which 15 were also indicative of male sex in GC-MS analy-
ses (ICA, Supplement 2). Of note, two (Rt = 26.65, 28.98 min)
of the 25-male indicative compounds in GC-FID analyses were
in contrast indicative of female sex in GC-MS analyses. We
also identified eight female-indicative compounds of which three
were indicative of female sex in GC-MS though one (Rt =
29.78 min) was indicative of male sex in GC-MS analyses (ICA,
Supplement 2).

The cuticular composition of butterfly legs and wings also
allowed us to discriminate between individuals of 14 vs. 21 days
of age (perMANOVA: df = 101, F stats = 3.2, p < 0.001). We
identified by GC-FID one (Rt = 37.16 min) and six compounds
(Rt = 16.43, 18.12, 20.19, 20.80, 30.33, 30.47 min) indicative of
the age classes of 14- and 21-day old individuals, respectively.
Of note, the compound indicative of 14-day old individuals in
GC-FID was indicative of eight-day old butterflies in GC-MS.
Among the six compounds indicative of 21-day old individuals
in GC-FID, three of them (Rt = 18.12, 30.33, 30.47 min) were
indicative of the same age class in GC-MS while the three oth-
ers (Rt = 16.43, 20.19, 20.80 min) were not indicative of age in
GC-MS (ICA, Supplement 2).

In summary, using GC-MS analyses on various body parts 15
out of the 20 compounds are statistically the most indicative of
sex and age and remained indicative of sex and age in GC-FID
analyses performed on legs and wings only (in bold in Table 2).
This included the 10 most abundant compounds among the list
of 20 indicative compounds that were found both by GC-MS and
GC-FID analyses.

COMPARISON OF GC-FID AND GC-MS ANALYSES
Some discrepancies were found between GC-MS and GC-FID
analyses, regarding first the identity of the indicative compounds
(5 out of 20 compounds indicative of sex or age in GC-MS
analyses were not found to be indicative in GC-FID analyses,
see above), and second the type of information provided by the
presence of a specific compound (for example, the compound
with Rt 29.78 min was indicative of male sex in GC-MS but of
female sex in GC-FID). Variation in abundance of each com-
pound across samples is likely responsible for the discrepancies
observed between the GC–MS and GC-FID analyses. This varia-
tion may be due to the used methodology (GC-MS vs. GC-FID)
or to the biological diversity inherent in B. anynana as different
individuals were sampled for the GC-FID and GC-MS analyses.
To distinguish between these two possibilities, we assessed the
average level of correlation between pairs of samples obtained
from either the same methodology (MS-MS comparison, 159 cor-
relations; and FID-FID comparison, 437 correlations) or obtained
from the two different methodologies (MS-FID comparison, 296
correlations). The average level of correlations of compounds
abundance was satisfying when GC–MS and GC-FID methods
were compared (r = 0.63 ± 0.13; mean ± SE; Supplement 5);
Yet, the average correlation obtained when the two methods are
compared is lower than the average correlation obtained between
pairs of individuals sampled by the same method (FID-FID com-
parison: r = 0.72 ± 0.13; mean ± SE; MS-MS comparison: r =
0.88 ± 0.10; mean ± SE). Thus, the differences observed in the
list of indicative compounds for sex and age are partly due to the
methods of sampling, and partly due to the biological variability
of the samples.

COURTSHIP INVOLVES SPECIFIC GUSTATORY CONTACTS BETWEEN
SEXES
We recorded a total of 19 instances (involving 17 individuals) of
dust transfer between sexes: from the male antennae to the wings
of three females, from the female antennae to the wings of five
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males, from the female legs to the head of six males (including
male antennae in one instance and male proboscis in another
one) and to the wings of one male, and from the male legs to
the abdomen of one female and to the head of another female.
These dust transfers occurred during courtship as (i) males and
females come close to each other only during such sexual inter-
actions (Nieberding et al., personal observation; Holveck et al.,
in preparation), and (ii) each sex was dusted with a different color,
excluding within-individual transfer of dust of different colors
due to grooming. Although the number of contacts between indi-
viduals remained limited, these results show that both sexes have
the opportunity to taste each other by contact of their anten-
nae and legs to different and specific body parts (head, wings,
abdomen) during courtship. These contacts were not random as
the body parts mostly touched by the other sex during courtship
were the ones with the highest between-sex difference in cuticular
composition, namely all body parts but the antennae (18 contacts
with wings, head, abdomen, proboscis and legs against 1 with
antennae, Chi2 = 15.2, P < 0.001; see Figure 1 for differences in
cuticular composition between body parts). Yet, the antennae rep-
resent a small target compared to the rest of the body which may
partly explain that the other body parts entered more often into
contact.

DISCUSSION
Despite accumulating evidence in both social and non-social
insects (Carlson et al., 1971; Chase et al., 1992; Tregenza and
Wedell, 1997; Bonduriansky, 2001; Rantala et al., 2002, 2003;
Rantala and Kortet, 2004; Kortet and Hedrick, 2005; Nieberding
et al., 2008; Thomas and Simmons, 2009), the role of cuticu-
lar lipids with low or no volatility in transferring information
between individuals remains surprisingly poorly investigated in
Lepidoptera, a model group for the study of olfactory communi-
cation using volatile sex pheromones in mate choice and sexual
selection (Johansson and Jones, 2007). Here, we found in the but-
terfly B. anynana over a hundred cuticular compounds composed
by up to 40 carbon atoms by GC-MS. The number of cuticu-
lar compounds found in B. anynana is much higher compared
to what is found in Drosophila or in Orthoptera [usually below
20 compounds (Howard and Blomquist, 2005; Yew et al., 2009;
Everaerts et al., 2010; Ferveur and Cobb, 2010)]. The restricted
number of compounds in Drosophila compared to what is found
in B. anynana and in another butterfly studied to date (150 com-
pounds found in Idea leucone; Schulz and Nishida, 1996) suggests
that the fly model may not be representative of the diversity of
organisms using cuticular lipids for mate choice. As such, there
is a need for chemical and functional characterizations of the
chemical profiles of additional, phylogenetically distant, species.
Moreover, the high number of cuticular compounds found in
B. anynana suggests that refined information about mate qual-
ity may be transferred using cuticular lipids during close-range
courtship, in agreement with our behavioral observations that
males and females taste specific body parts of potential mating
partners during courtship.

The large number of cuticular compounds has often pre-
cluded the identification of their chemical structure, while
their lipophilic nature and length have usually hampered
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the identification of the behaviorally active compounds by
electro-antennogram recordings or by the manipulation of the
chemical profile of alive individuals (Hefetz et al., 2010). In
Lepidoptera, most pheromones identified to date are classified as
“type I” and “type II” compounds. “Type I” pheromones consist
in primary alcohols and their derivatives (acetates and aldehydes)
with a straight chain from 10 to 18 carbon atoms while “type II”
pheromones comprise polyunsaturated hydrocarbons and their
epoxy derivatives with a straight chain from 17 to 23 carbon
atoms (Millar, 2000; Ando, 2004; Millar et al., 2010). In the but-
terfly B. anynana, most cuticular lipids do not belong to the “type
I” or “type II” compounds typically found in the sex pheromone
gland of moths (Jurenka, 2004) but rather we found mostly
n-alkanes, methyl-branched alkanes and functional groups (alco-
hol, aldehyde, ketone or acid) as described in another butterfly,
Pieris rapae (Supplement 6; Arsene et al., 2002). Most B. anynana
indicative compounds were previously shown to be behaviorally
active as male or female sex pheromone components in other
insects including moths and butterflies such as Colias eurytheme
(Supplement 6). Chemical structures similar to those found in
B. anynana were also found in other insects (www.pherobase.
com), where they can play a role in cuticle waterproofing but
may also have a specific function in insect chemical communi-
cation (sex pheromone, kairomones, species recognition, fertility
cues,. . . ) (Blomquist and Bagnères, 2010). These cuticular com-
pounds were extracted with a non-polar solvent (n-hexane) and
we expect the chemical cuticular diversity to be even larger if addi-
tional solvents with a large range of polarities were used. There
may also be additional cuticular compounds of molecular weight
higher than 40 carbons in B. anynana, which could be screened in
future analyses using matrix-assisted laser desorption/ionization
time-of-flight MS (MALDI-TOF-MS) (Cvačka et al., 2006). In
addition, UV-LDI-o-TOF-MS was used for the identification of
oxygenated polyenes in D. melanogaster, whose polar compounds
are hardly detected by classic GC-MS analyses (Yew et al., 2009).
However, the UV-LDI-o-TOF-MS technique is rather insensitive
to monoenes and does not allow detection of alkanes, the major
class of compounds found in our B. anynana cuticular extracts
(Table 1).

B. anynana cuticular lipids were on average much more abun-
dant (443 ± 1070 ng per compound per individual; 46 ± 1 µg
of total compound per individual of which 27 ± 2 µg con-
sisted of the 20 highly indicative compounds; see Supplement 2)
than in other Lepidoptera (www.pherobase.com). In addi-
tion, most B. anynana indicative compounds varied quantita-
tively in abundance, rather than qualitatively, across categories
(Supplement 1): males had a larger number of sex-specific com-
pounds than females and the indicative compounds were more
abundant in males than in females (see Results). This is similar
in D. melanogaster for which the abundance of C23–C25 com-
pounds, including 7-tricosene (7T) and 7-pentacosene (7P), is
higher in males whereas females display a higher proportion of
C25–C27 compounds including 7,11-heptacosadiene (7,11-HD)
and 7,11-nonacosadiene (7,11-ND) (Jallon, 1984; Hefetz et al.,
2010). Cases of both marked, and absence of, sexual dimorphism
in cuticular hydrocarbons were found in several other species of
the “melanogaster” subgroup (Cobb and Jallon, 1990). A similar

sexual differentiation in the composition of cuticular lipids was
also found in some Lepidoptera [e.g., Papilio polytes (Ômura and
Honda, 2005), Lasiommata species (Dapporto, 2007)], but not in
others [e.g., Pieris rapae (Arsene et al., 2002)]. Such variation in
the level of sexual dimorphism across closely related taxa suggests
that sexual selection may be a strong driving force in the evolution
of the composition in cuticular lipids.

Furthermore, quantitative variation of cuticular lipid compo-
sition was indicative of age classes. In this regard, we previously
showed that variation in the abundance of three volatile male-
specific sex pheromone components allowed females to detect
male age and inbreeding status and to mate preferentially with
middle-aged and outbred males (Nieberding et al., 2012; Van
Bergen et al., 2013). We here showed that male and female age
differences also induced significant changes in cuticular lipid
composition across all body parts. The indicative value of the
three MSPs (0.32 ± 0.32; mean ± SD) for age was lower than the
one of the 17 other highly indicative compounds (0.66 ± 0.10;
mean ± SD) suggesting that some cuticular lipids may be more
indicative of age. Therefore, we suggest that, rather than simply
providing back-up message (reviewed in Candolin, 2003) on male
age during sexual interactions at a closer range, some cuticular
compounds may provide additional, potentially fine-scale, infor-
mation to complement the information already provided by the
MSP composition about male age during sexual interactions at a
closer range (Robertson and Monteiro, 2005).

Natural variation in cuticular lipid composition across body
parts, sex and age classes, high abundance of the most indicative
compounds, strong sexual dimorphism both in terms of abun-
dance and number of indicative cuticular lipids, and non-random
gustatory contacts during courtship together suggest that cuticu-
lar lipids may provide a substrate for adaptive evolution through
mate choice and sexual selection. The large diversity of cuticu-
lar lipids on B. anynana body suggests more complex gustatory
interactions than hitherto appreciated in non-social insects.
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Supplement 1 | (Dataset, Excel file). List of B. anynana cuticular extracts

used for the GC-MS analyses. The retention time (min) and abundance

(ng) of each 103 compounds are indicated for each 210 samples.

Supplement 2 | (Dataset, Excel file). List of the cuticular compounds found

in, and results of the Indicative Compound Analysis (ICA) performed for,

the GC-MS (left) and GC-FID (right) B. anynana cuticular extracts. From left

to right, we listed for each of the 103 compounds their retention time,

retention index, tentative name, criteria used for attributing the tentative

chemical structure, abundance (ng), repeatability across samples and

correlated abundance with other compounds (reported for Spearman

correlations r > 0.8). Next we provided the indicative value (between 0

and 1) of each compound obtained from the ICA for discriminating among

body parts, sex or age, based on GC-MS (left) or GC-FID samples (right).

Of note, the retention times of the three, previously identified, MSP

components were MSP1 = 16.43 min, MSP2 = 18.12 min, and MSP3 =
18.46 min (Nieberding et al., 2008). The 20 most indicative compounds are

highlighted in bold (see also Table 2).

Supplement 3 | (Figure 4 Tiff file). Representative GC-MS chromatograms

(from 15 to 40 min) of wing extracts of a 8 day-old female (A) and a 8

day-old male (B).

Supplement 4 | (Dataset, Excel file). List of B. anynana cuticular

compounds found by GC-FID analyses. The retention time (min) and

abundance (ng) of each 57 compounds were indicated for each of the 106

samples.

Supplement 5 | (Figure 5, Tiff File). Distribution of the spearman rank

correlations for the ranked amounts of chemical compounds obtained for

pairs of individuals and quantified by: (A) GC-MS vs. GC-FID [n = 57

compounds, N = 296 correlations, r = 0.63 ± 0.13 (mean ± SE)]; (B)

GC-FID (n = 57 compounds, for N = 437 correlations, r = 0.72 ± 0.13

(mean ± SE)]; (C) GC-MS (n = 57 compounds, for N = 159 correlations,

r = 0.88 ± 0.10 (mean ± SE)].

Supplement 6 | (Table, Word File). Non-exhaustive list of the pheromonal

function of the indicative compounds in other Lepidoptera species (based

on Pherobase search on March 21st, 2014).
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