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Zusammenfassung

Die Bewegung eines Elektrons, das mit einem starken elektromagnetischen Feld wechselwirkt,
wird in dieser Arbeit mit besonderer Betonung auf den Freiheitsgrad des Spins untersucht. Es
wird gezeigt, dass der Hamilton-Operator dieses Systems mit Hilfe der kanonischen Transfor-
mierten der Feldvariablen in zwei Teile getrennt werden kann, nmlich die Wechselwirkung des
Elektrons mit der Einzelmode des elektromagnetischen Felds und mit dessen Fluktuationen.
Eine strungstheoretische Behandlung dieser Fluktuationen erlaubt es, die Bedingungen fr die
Anwendbarkeit der Einzelmodenapproximation zu bestimmen. Darber hinaus wird die zeitliche
Entwicklung des Spins in dieser Nherung untersucht. Zustzlich zu den schnellen Spinoszil-
lationen mit der Laserfrequenz kann eine zweite Zeitskala identifiziert werden, die durch die
Ausstrahlung und Absorbtion der Feldquanten verursacht wird, die so genante “collapse” und
“revival” Dynamik. Dieser Effekt ist bei gegenwrtig verfgbaren Intensitten von 1018 W/cm2

beobachtbar. Danach wird der Fall eines starken Felds betrachtet, bei dem die Fluktuationen
vernachlssigbar sind. Dabei untersuchen wir die Asymmetrien in der Streuung der Elektronen,
hervorgerufen durch die Elektronpolarisation sowie die Dauer des Laserimpulses, und geben
die optimalen Bedingungen zur Beobachtung dieser Asymmetrie an.

Abstract

The electron motion in the presence of a strong classical and quantized pulse of an electro-
magnetic field is studied with a special emphasis on the spin degree of freedom. It is shown
that the Hamiltonian of this system can be separated into two parts with the help of canonical
transformations of the field variables, namely the interaction between an electron and a single-
collective-mode of the field and fluctuations relatively to this collective-mode. The application
of perturbation theory to the fluctuations allows the conditions of applicability of the single-
mode approximation for the quantized external field to be formulated. Furthermore, within this
approximation the electron spin evolution is investigated. In addition to fast spin oscillations at
the laser frequency, a second time scale is identified due to the intensity-dependent emissions
and absorptions of field quanta, that is collapse and revival dynamics. The effect is observable
at the experimentally feasible intensity of 1018 W/cm2. After this, we switch to the regime of
higher intensities, when the fluctuations of the external field can be neglected. We investigate
the asymmetries in the electron scattering arising due to the electron polarization and pulse
duration, and constrain the optimal conditions for the asymmetry observation.
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Notation

Three-dimensional

Three-dimensional tensor indices are denoted by Latin letters i, k, l, . . . taking the values x,
y, z or 1, 2, 3.

Three-dimensional vector is denoted by bold letter a.
The three-dimensional volume element is d3x or dx.

Four-dimensional

Four-dimensional tensor indices are denoted by Greek letters λ, µ, ν, . . ., taking the values
0, 1, 2, 3.

A metric has signature −2. The metric tensor gµν = diag{1,−1,−1,−1}.
Components of a four vector are stated in the form aµ = (a0,a).
To simplify the formulas, the index is often omitted in writing the components of a four

vector.
The scalar products of four vectors are written as (a·b) or a·b; (a·b) ≡ ∑3

µ=0 aµbµ = a0b0−a·b.
The summation over repeated indices is assumed.
The radius vector is xµ = (t, r). The 4-volume element is d4x or dx.
The operator of differentiation with respect to the coordinate xµ is ∂µ = ∂/∂xµ.
The fully antisymmetric 4-tensor Levi-Civita is ϵµνγδ, with ϵ0123 = −ϵ0123 = −1.
The four-dimensional delta function δ4(a) = δ(a0)δ(a).

Operators

Operators are denoted by letters in straight font A or for vector operators with bold straight
font p.

The commutator of two operators A and B is [A,B] = AB − BA.
The Hermitian conjugate operator is A†.

Dirac’s equation

The Dirac matrices are α and β, with α2 = β2 = 1; αβ + βα = 0 and αiα j + α jαi = 2δi j.
The covariant notation is γ0 = β, γ = βα; (γ0)2 = 1 and (γi)2 = −1. (γµ)† = γ0γµγ0.

The product of a four vector a with the Dirac matrices is â = (γ · a) ≡ ∑
µ γ

µaµ.
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Units

The natural units are used, with ℏ = c = 1. In this units e2 = 1/137.

Constants

Velocity of light c = 2.997925 · 1010 cm/s.
Unit of charge e = 4.80310−9 CGS electrostatic units.
Electron mass m = 9.11 · 10−28g.
Planck’s constant ℏ = 1.055 · 10−34 J · s.
Fine structure constant α = e2/ℏc; 1/α = 137.04.
Classical electron radius re = e2/mc2 = 2.818 · 10−13 cm.
Compton wavelength of the electron ℏ/mc = 3.862 · 10−11 cm.
Electron rest energy mc2 = 0.511 · 106 eV = 2.606 · 1010 cm−1.
Electron volt 1 eV = 1.602 · 10−19 J = 0.510 · 105 cm−1.

Other

Coulomb law V(r) = α/r.
Fourier expansion

f (r) =
∫

f (k)eik·r dk
(2π)3 , f (k) =

∫
f (r)e−ik·rdx.



Introduction

Quantum electrodynamics (QED) is considered as one of the most successful gauge field theo-
ries available today [1]. Firstly, among the four fundamental forces the electromagnetic interac-
tion can be experimentally accessed in the easiest way. Secondly, compared to other quantum
field theories, the interaction Hamiltonian between electromagnetic and electron-positron fields
is precisely known [2]. Finally, quantum electrodynamics includes only two constants: the elec-
tron charge e and mass m, which can be measured nowadays with an extremely high accuracy.
For example, in a recent experiment [3] the electron mass was determined with the amazingly
small relative error of 3·10−11. The accurate knowledge of the electron mass enables to compare
the measured value of the electron g-factor in heavy hydrogen-like ions with bound state QED
calculations, thus providing a unique framework for tests of fundamental physics.

Another possibility for tests of theoretical predictions is connected with the invention of very
powerful lasers [4–7]. The HERCULES [8] laser facility provides pulses with peak intensity of
1022 W/cm2 and pulse duration of 30 fs. Moreover, even higher intensities up to 1025 W/cm2

are expected at the the forthcoming ELI and HiPER experiments [9, 10]. It is clear that such
strong external fields1 can not be treated by means of perturbation theory in the light-matter
interactions. Luckily, the exact solution of the Dirac equation in the field of a plane electromag-
netic wave is known [11], allowing us to switch to the Furry representation of QED [12]. In this
picture the external field is treated in a non-perturbative way and only the interaction with the
secondary-quantized vacuum field is regarded as a perturbation.

This approach was employed for the first time in the pioneering works of Reiss, Ritus and
Nikishov [13–17]. They studied the action of a monochromatic plane electromagnetic wave
with frequency ω on Compton effect and electron-positron pair creation. It was shown that
these processes dependence on the external field can be characterized via two dimensionless
parameters ξ and χ. The first parameter ξ determines the strength of an electromagnetic field
and does not contain Planck’s constant. It is equal to the work, referred to m, performed by
the field of strength E over the wavelength2, i.e., ξ = eE/(mω). It can also be represented as
the ratio of the field work over the Compton wavelength to the energy ω of the field quantum.
In the limit of small ξ ≪ 1 the most probable processes are those where only few photons
participate. For example, the standard (linear) Compton effect includes only two electrons and
two photons. The first-order correction to the linear case is proportional to ξ2. When ξ increases,
the probability to absorb more than one photon from the external field becomes larger and the
process turns out to be multi-quantum. Consequently, for the correct description we have to

1The field intensity 3.5 ·1016 W/cm2 corresponds to electric field amplitudes of the same order as the Coulomb
field in atoms at the first Bohr radius.

2ξ ∼ 1 corresponds to 1018 W/cm2 for ω in the visible spectral region.
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switch to the Furry representation in which matrix elements have non-linear dependence on the
field. Therefore we can state that the parameter ξ defines non-linearity. The second parameter
χ contains Planck’s constant ℏ and is equal to the work, in the units of m, performed by the field
over the Compton wavelength in the particle rest frame. This parameter is responsible for the
magnitude of quantum effects. In the non-linear case, i.e., when ξ ≫ 1 the quantum effects are
the largest when χ ∼ 1, while in the linear one they are optimal when χ ∼ ξ.

This ground breaking investigation was performed as early as in 1964, only four years later
after the realization of the first laser by Maiman [18]. At those days the field intensity did not
even reach 1014 W/cm2, therefore, all experimentally accessible processes were in the regime of
ξ ≪ 1, where perturbation theory is applicable. The situation, changed only with the appearance
of the chirped pulse amplification technique [19] in 1985, when the threshold of 1015 W/cm2

was achieved. Since then, the laser intensity has constantly grown, to face recently the above
mentioned high values. However, such extreme field intensities are accessed not in the con-
tinuos laser operation regime, but in a pulsed one. This motivated a lot of research aimed at
reexamining results obtained by Ritus and investigating the effects coming from the pulse shape
and duration.

For example, the influence of the pulse duration on the process of Compton scattering in
the absence of polarization effects is investigated in refs. [20–29] by means of the analyses
of the emitted photon spectra. Two cases of an external field are distinguished: the case of a
short and single laser pulse and a sequence of such short laser pulses. Comparison of these
two approaches shows that for pulses which include only few oscillations of the laser field the
emitted photon spectra look very similar and do not coincide with the case when an external
field is a monochromatic plane wave, in particular asymmetries in the angular distribution are
present. Nevertheless, when the pulse duration increases all three scenarios of the external field
provide the same radiation spectra.

Further attempts to describe Compton scattering in the presence of a short intense pulse
were made, namely the calculation of the second-order processes in the absence of polarization
effects in a monochromatic plane wave [30] and in a short laser pulse [31]. It was shown that the
total decay rate of the non-linear process in the limit of a very long laser pulse and in the regime
ξ ∼ 1 can be up to 30 % larger than the perturbative one. Moreover, the angular distributions are
altered significantly in the non-linear case, thus highlighting that the non-perturbative descrip-
tion is necessary. The comparison of the monochromatic plane wave case with the short laser
pulse one shows, that the positions of the spectral peaks are significantly shifted into the re-
gion of larger frequencies. We should also mention here that the analysis of the emitted photon
spectra allows one to determine the carrier envelope phase of the external laser pulse [32].

In analogy with Compton scattering the reexamination of the processes of laser assisted
bremsstrahlung [33], pair production by the photon (Breit-Wheeler process) [34–40] and by
the field of a nucleus (Bethe-Heitler process) [41–44] in the presence of an external laser pulse
was performed. The main focus is on the investigation of the influence of the external field
polarization and carrier-envelope phase of the laser pulse on the energy spectra of the created
electrons and positrons. For instance, it was shown that the probability of the Breit-Wheeler
process is the largest at the linear polarization of the external field. Furthermore, the change of
the carrier-envelope phase of the laser pulse can vary the angular distributions of electrons or
positrons from being the symmetric to the asymmetric.

Apart from the above mentioned works, another growing field is the investigation of the
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role of spin in strong field processes. Here the publications are limited to the semi-classical
calculation of spin radiation [45] and the scattering of an electron by a standing wave (Kapitza-
Dirac effect) [46, 47] and to the QED treatment of the polarization of the electrons through
Compton scattering in a field of a monochromatic plane wave [48–55]. In the latter case, it
was shown that the self-polarization of the electrons exists only for non-head-on geometries
and can achieve a high value up to 65%, however, the time needed for the polarization is very
large, of the order of one second, hence is not accessible with presently available laser fields.
The influence of the laser pulse duration is investigated only in the two works [56, 57]. In the
first one, non-linear Compton scattering by a linearly polarized laser pulse of a finite duration
is analyzed, with a focus on the spin effects of the target electrons only. It was shown that only
in small parts of the emission spectra the influence of spin can be significant. While in the
second work, only one regime of the scattering process was presented and was stated that the
spin probability is larger at smaller ξ.

In all the above mentioned references the external electromagnetic field was considered as
a classical plane wave and its quantum fluctuations were generally assumed to be negligible for
interactions with very strong fields. Therefore, it is of interest to formulate a question about the
influence of quantum fluctuations on the system dynamics. Among all known exact solutions of
the Dirac equation related to laser pulses [11, 58–75], one describes the electron motion in the
single-mode quantized field [61]. This allows one to study QED processes also in the presence
of a quantized field. The issue was addressed in a few articles, in particular the effect of the
quantized field on non-linear Compton scattering [76–78], on the electron motion in a magnetic
field [79], on the dynamics of Rydberg atoms [80, 81] and the investigation of entanglement
between an electron and a photon [82]. In the case of Compton scattering [77] the frequency
of the emitted photon has corrections due to the depletion of the external field mode, i.e., the
number of photons in the mode in the initial state is not equal to the number of photons in the
final state. Consequently, in the emitted photon spectra additional harmonics will appear, that
is a purely quantum effect.

At the same time, it is well known from quantum optics that the dynamics of an atom in a
comparably weaker and resonant laser field depends on the quantum fluctuations of the field.
One of the most interesting phenomena of this kind is the collapse-revival effect in the evolu-
tion of the Jaynes-Cummings model [83–85] for a two-level atom. This effect was predicted
theoretically [86–89] and later observed experimentally [90,91]. Its qualitative explanation and
analytical description were also given in [92–96]. It was shown that the evolution of the popu-
lation of the atomic states is characterized by two time scales. The first time scale is the period
of Rabi oscillations, while the second, slower one is defined by the collapse and revival times of
the populations being associated with the absorption and emission of field quanta. An electron
can, on one hand, be considered as a two-level system with regard to the spin space. On the
other hand, the electron has no other internal quantum degrees of freedom such as the atom.
For that reason, the question arises, weather the observation of collapse-revival dynamics for
laser-driven electrons is feasible.

In analogy with an atom, qualitatively different time scales can be selected in the evolu-
tion of a quasi-energy3 electron state ψ(e)

p (r, t) with definite quasi-momentum p. One of these

3When an electron interacts with an external field, only the total four momentum of the system is a physical
quantity. The term quasi-momentum (energy) is defined as the difference between the full momentum (energy) of
the system and the momentum of the external field.
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scales is defined by the frequency ω of the electromagnetic field. Another scale is defined by
the coherence time Tc, i.e., the length on which the radiation is emitted by the electron. The
characteristic time Tc is inversely proportional to the probability wc of a photon emission per
unit of time. An approximation for Tc was found in [15]: Tc ∼ w−1

c ≈ 2T/ξ2. The existence
of two time scales is expected to be observable when the interaction time between an electron
and a field Tint satisfies Tint > Tc ≫ T , which can be fulfilled for realizable parameters of the
laser pulse. Consequently, the collapses and revivals in the electron dynamics are expected to
be observable in this regime.

Another issue that was not investigated in the literature is connected with the fact, that
the arbitrary wave packet of the electromagnetic field can not be expressed as a function of
one coordinate and time (see 4). In this connection, it is quite obvious that electromagnetic
pulses exist, which can not be treated as a plane electromagnetic waves. For example, Gaussian
beams [97] reflect the situation of strongly focused laser pulses. As a consequence, the wave
packet is not described by the plane-wave exact solutions [11, 61].

The usual laser pulse is characterized by its intensity I, duration τ and focusing area S .
The parameters τ and S determine the frequency spread and angular divergence respectively,
and are connected with the total pulse energy W = IS τ. Accordingly, the estimations of these
quantities must be obtained in order to answer the question about the applicability of the single-
mode approximation for the description of a realistic laser-matter interaction.

An analogous problem in quantum optics is the analysis of the evolution of an atom interact-
ing with a resonant field in a cavity. Although different aspects of the atom-field interaction were
discussed through this model (see for example, [85] and references therein), in most works the
external field was assumed to be a single-mode cavity eigenstate. Few extensions to the model
were proposed. One of them is based on the inclusion of the losses of the resonant mode through
a lossy cavity [98–108]. Another one is the generalization for the case of few discrete modes
interacting with an atom [109–113]. However, models taking into account a superposition of
modes in the vicinity of a resonant one have been discussed only recently [114–119].

The just described analysis of the literature connected with strong field QED motivates the
research direction of the present thesis. Namely, we will address three issues:

• Formulation of the applicability conditions of the single-mode approximation for the de-
scription of realistic laser pulses.

• The influence of the quantized nature of a driving electromagnetic field on the evolution
of the electron spin.

• The dependence of non- linear Compton scattering on the electron polarization and dura-
tion of the laser pulse.

Accordingly the work is organized in the following way:
In chapter I we investigate exact solutions of the Dirac equation for an electron in the field of

a plane electromagnetic wave. The classical electromagnetic field corresponds to the Volkov’s
solution [11], while the single-mode and quantized field corresponds to the Berson’s one [61].
Berson’s solution was for the first time derived for the coordinate representation of the creation
and annihilation operators of the quantized field, which is not convenient for most calculations.
Therefore, we obtained the exact solution of the Dirac equation with a potential given by the



Introduction 17

single-mode quantized field in abstract form of the creation and annihilation operators. After
this we answer the question about the applicability of the plane wave approximation for the
description of realistic laser pulses. In order to achieve that we include in the Dirac equation
all modes of the quantized field. Next, performing Bogolubov’s [120] canonical transformation
of the field variables the Hamiltonian of the system is separated into two parts. The first one
describes the interaction between an electron and a single-collective-mode of the field and coin-
cides with the Dirac equation with a single mode (thus exactly solvable). The properties of this
mode are defined by the superposition of the modes corresponding to the pulse wave packet.
The second part of the Hamiltonian takes into account the field fluctuations relatively to the
collective-mode. The single-mode approximation is applicable if the influence of fluctuations
on the collective-mode is small. Therefore, we build a perturbation theory over fluctuations
and find the conditions on pulse duration, intensity and focusing for which the single-mode
approximation is valid.

In chapter II we use the results of chapter I and investigate the influence of the quantum
nature of the electromagnetic field on the electron spin. We assume that before the interaction
starts the external electromagnetic field is in a coherent state and the electron is a free particle.
However, the exact solution of the Dirac equation in a single-mode quantized field does not
address such a situation, since it describes the interaction of the electron with the field being in
a Fock state. Therefore, the wave function of the system is decomposed in a linear combination
of solutions of the Dirac equation and coefficients of this combination are found from the above
mentioned initial conditions. Next, in the limit of a strong external field, i.e., for a large occupa-
tion number of the external field mode, the expectation value of the electron spin is calculated.
This is performed with the help of the saddle point and modified cumulant methods. Two time
scales are identified in the problem. The first one is defined by the frequency of the external
field, while the second one is associated with the dispersion of the coherent state occupation
number. The second time scale represents the so called collapse and revival dynamics of the
electron spin. After this, the possibility of an experimental observation of collapses and revivals
is discussed.

In contrast to chapter II, chapter III describes the interaction of an electron with the external
field of such a strength, that its fluctuations can be neglected. We focus our attention on the
influence of the spin on non-linear Compton scattering in short laser pulses. In this section the
Furry [12] representation is used for the description of the scattering processes, i.e., the external
field is treated in a non-perturbative way by means of the exact solution of the Dirac equation
described in chapter I, while the interaction with a vacuum electromagnetic field is treated via
perturbation theory. The combined analytical and numerical scheme of calculations is built,
which permits to investigate all possible scattering scenarios, for example, the dependence on
the field strength and pulse duration and different scattering geometries.

Finally we provide conclusion and outlook.





Chapter I

Exact solutions of the Dirac equation in
classical and quantized electromagnetic
fields

1 Exact solution of the Dirac equation in a classical electro-
magnetic field

For the description of many quantum electrodynamical (QED) processes in the presence of an
external field the Furry representation [12] for the electron states is used. The application of this
representation to the calculation of the QED effects in the presence of a strong electromagnetic
field is possible as the exact solution for an electron in the field of an electromagnetic plane
wave exist [11].

The four potential of the plane wave A with a wave four vector k (k2 = 0) depends only on
the field phase ϕ = (k · x), so A = A(ϕ), and satisfies the Lorentz gauge condition ∂µAµ = 0. In
such a field the exact solution of the Dirac equation

(iγµ∂µ − γµeAµ(ϕ) − m)ψ = 0 (1.1)

is

ψp =

[
1 +

e
2(k · p)

k̂Â
]

u(p)√
2p0

eiS , (1.2)

where

S = −(p · x) −
∫ (k·x) [ e

(k · p)
(p · A) − e2

2(k · p)
A2

]
dϕ. (1.3)

The constant bispinor u(p) is the same bispinor as the bispinor amplitude of the free electron’s
plane wave and is normalized via the condition ūu = 2m. We note here that the conditions
k̂k̂ = 0 and k̂Â = −Âk̂ are important for the solution procedure.

The wave functions (1.2) satisfy the normalization condition (see 17)

1
(2π)3

∫
ψ†p′ψpdr =

1
(2π)3

∫
ψ̄p′γ

0ψpdr = δ(p′ − p). (1.4)
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The knowledge of the wave function gives the possibility to calculate all observable quanti-
ties of the system. For example, the current density four vector is

jµ =
1
p0

[
pµ − eAµ + kµ

(
e(p · A)
(k · p)

− e2A2

2(k · p)

)]
. (1.5)

It is crucial to emphasize, that the Volkov solution (1.2) is a quasi-classical solution: the
electron is described quantum mechanically and the external field is described classically. How-
ever, the electromagnetic field is essentially the quantum object and consequently the solution
(1.2) need to be modified for the fully quantum mechanical description.

2 Dirac equation with a multi-mode quantized electromag-
netic field

The system of equations of quantum electrodynamics contains a set of the Dirac and Maxwell
equations for the secondary-quantized electron-positron wave function and the four potential
operator of the field. If a single-particle approximation [2] is used such system can be reduced
to one equation for the state vector and has the form

i
∂Ψ

∂t
=

∑
k

ωka
†
kak +α ·

p −∑
k

ee(k)
√

2ωkV

(
akeik·r + a†ke−ik·r

) + βm

Ψ. (2.1)

Equation (2.1) includes the energy of the quantized electromagnetic field, the energy of the
electron and the energy of the interaction. Here we used notations for a normalization volume
V , a photon wave vector k, a frequency ωk and a polarization vector e(k), photon annihilation
and creation operators ak and a†k of the mode k, an electron charge e and mass m.

The system’s state vectorΨ is a bispinor and is a realization of the irreducible representation
of the Lorenz group [121]. The photon creation and annihilation operators act in the Hilbert
space of the occupation numbers and satisfy the commutator relation [a, a†] = 1. We consider
that the electromagnetic field is in the Lorenz gauge, which employs k · e(k) = 0.

Equation (2.1) can also be written in covariant form if the transformation Ψ = e−i
∑

k ωkta†kakψ
is used, thus obtaining the covariant Dirac equation:(

iγµ∂µ − γµeAµ − m
)
ψ = 0, (2.2)

with the four potential of the field

Aµ =
∑

k

eµ(k)
√

2ωkV

(
ake−i(k·x) + a†kei(k·x)

)
, e0 = 0.

In the following paragraphs we will find the exact solution of equation (2.2) in the single-
mode approximation and formulate the conditions of its applicability. In order to do so we need
to perform several additional transformations. Firstly, the electron coordinates can be excluded
from the field operators with the transformation ψ = ei

∑
k(k·x)a†kakχ. As a result, the operators are

changed as follows:

iγµ∂µ → iγµ∂µ −
∑

k

γµkµa
†
kak, ak → akei(k·x), a†k → a†ke−i(k·x),
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and equation (2.2) leads toi∂̂ −∑
k

k̂a†kak −
∑

k

b̂(k)(ak + a†k) − m

χ = 0, (2.3)

where bµ(k) = eeµ(k)/
√

2Vωk and e0(k) = 0. With the transformation χ = e−i(q·x)φ, the coordi-
nate dependence is separated from the field and spin degrees of freedom

(q̂ − m − H) =

q̂ − m −
∑

k

k̂a†kak −
∑

k

b̂(k)(ak + a†k)

φ = 0, (2.4)

where the four vector q can be considered as the total momentum of the system [61]. The final
form of equation (2.4) will be used below.

3 Exact solution of the Dirac equation in a single-mode quan-
tized electromagnetic field

The accurate analytic solution of the Dirac equation in a single-mode quantized electromagnetic
field was found by Berson [61] in 1969. However, that solution was obtained in a coordinate
(Bargmann) representation for the creation and annihilation operators of the field. In what
follows we show that it is possible to find an analogous solution directly in operator form.

In 2 we found that the total four momentum of the electron and the field satisfies the
equation (2.4). In order to obtain the equation with the only one mode of the field we drop
all sums over k in equation (2.4), thus yielding

Hϕ ≡
(
q̂ − k̂a†a − b̂(a + a†) − m

)
ϕ = 0. (3.1)

To solve equation (3.1), the photon and spin variable should be separated, which can be
performed by means of the transformation

ϕ = Uφ, U = elk̂b̂(a+a†),

with a constant l that is to be defined later on.
In the Lorentz gauge, the value (k · b) = 0 leads to

b̂k̂ + k̂b̂ = 2(k · b) = 0, k̂k̂ = k2 = 0, U = elk̂b̂(a+a†) = 1 + lk̂b̂(a + a†).

Calculating the operator H′ = U−1HU, one can find(
q̂ − k̂a†a + l(a + a†)(2b̂(q · k) − 2k̂(q · b))−

− b̂(a + a†) − 2l2(a + a†)2(q · k)b2k̂ − m + l(a + a†)22(q · k)b2k̂
)
φ

= 0. (3.2)

If we choose

l = 1/(2(q · k)),
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the terms linear in b̂ are canceled and equation (3.2) changes to

H′φ =
(
q̂ − m − k̂

[
a†a +

(q · b)
(q · k)

(a + a†) − b2

2(q · k)
(a + a†)2

] )
φ = 0. (3.3)

The operator H′ is diagonalized via the following transformations

φ = DBΘ, D = eαa†−α∗a, B = e−
η
2 (a2−a†2), (3.4)

with the parameters α and η. Here, as well known, the operator D shifts a and a† by the complex
numbers α and α∗, respectively:

D−1aD = a + α, D−1a†D = a† + α∗.

The operator B transforms the operators a and a† as follows

B−1aB = a chη + a† shη,
B−1a†B = a shη + a† chη.

These parameters are defined by the condition that the operator H1 = B−1D−1H′DB trans-
forms to a diagonal form. This leads to

H1Θ =

(
q̂ − k̂

(√
1 − 2b2

(q · k)
(a†a +

1
2

) − 1
2
− (q · b)2

(q · k)
1

(q · k) − 2b2

)
− m

)
Θ = 0;

α = − (q · b)
(q · k)

1
1 − 2b2/(q · k)

, chη =
1
2

(√
κ +

1
√
κ

)
, κ =

1√
1 − 2b2

(q·k)

. (3.5)

The eigenvector of equation (3.5) can be represented in the form

(p̂n − m)Θ = 0, Θ = u(pn)|n⟩, (3.6)

where |n⟩ is the state vector of the harmonic oscillator, u(pn) is the constant bispinor which
satisfies the same equation as in the case of the free electron, and the vector pn depends on the
quantum number n as follows

pn = q − k
(√

1 − 2b2

(q · k)
(n +

1
2

) − 1
2
− (q · b)2

(q · k)2

1
1 − 2b2/(q · k)

)
. (3.7)

As a result of all these transformations, the wave function of the electron in the single-mode
quantized field has the following form

ψqn = Ne−i(q·x)+ia†a(k·x)
(
1 +

k̂b̂
2(q · k)

(a + a†)
)

eα(a†−a)e−
η
2 (a2−a†2)u(pn)|n⟩, (3.8)

where N is a normalization constant.
The vector pn satisfies

p2
n − m2 = 0, (3.9)
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which is a consequence of equation (3.6), and the four-vector q is the total moment of the
system.

The wave function (3.8) coincides with Berson’s solution [61] if the Bargmann representa-
tion

a =
1
√

2
(x +

∂

∂x
); a† =

1
√

2
(x − ∂

∂x
), (3.10)

is used for the operators, with x being the field variable.
It was also shown in [61] that if the field operators are changed to the classical values

a ≈ a† ≈ β, the wave function (3.8) coincides with Volkov’s solution 1 for a classical field,

Aµ =
eµ√
2ωV

2β cos(k · x). (3.11)

The wave functions ψqn satisfy the orthogonality condition

1
(2π)3

∫
ψ†q′n′ψqndr = N22εnδn′nδ(q′ − q), (3.12)

where εn =
√

p2
n + m2. Thus the normalization constant N can be chosen as for the free electron

N = 1/
√

2εn.

4 Wave packet of an electromagnetic field
In the next paragraphs we will investigate the question of the applicability conditions of the
plane wave approximation. This question arises due to the fact that the arbitrary wave packet of
an electromagnetic field can not be written as the function of (k · x) = ω(t − z). Let us explicitly
demonstrate it. For this purpose, we proceed with the usual procedure of the wave packet’s
construction [122]:

u(r, t) =
∫

dkC(k − k0)eik·r−iωt, (4.1)

with k0 (k2
0 = ω

2
0) the central wave vector of the wave packet. The substitution k = q + k0, the

selection of the coordinate system with z axis directed along k0 and the decomposition of the
frequency in a Taylor series up to the second order leads to

u(r, t) = eik0·r−iω0t
∫

dqC(q) exp
{

iq · r − i
k0 · q
ω0

t − it
2ω0

(
q2 − (k0 · q)2

ω2
0

)}
= eiω0(t−z)

∫
dqC(q) exp

{
iqxx + iqyy − iqz(t − z) − it

2ω0
(q2

x + q2
y)
}
. (4.2)

From here, we can conclude, that the arbitrary wave packet can not be written as the function
of ω(t − z). Moreover, the term proportional to the q2

x + q2
y is responsible for the spreading, thus

is always present in the field.
The Volkov solution of the Dirac equation [11] in which the four potential depends only on

the field phase (k · x) = ω(t − z) is a solution in the field of a plane electromagnetic wave. In
Ref. [61] was shown, that if the external field is the single-mode quantized and is in a coherent
state, then the expansion of the quantized solution of the Dirac equation near the quasi-classical
value n̄ of the photon number, leads to the Volkov solution. This means that the single-mode
approximation is indeed the plane wave approximation.
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5 An approximating single-mode Hamiltonian and the canon-
ical transformation for its diagonalization

In paragraph 3 we have found the exact solution of the Dirac equation in the operator form for
the case when an electron interacts only with one mode of the field. However, the experimental
realization of the external field is based on the application of laser pulses which have a finite du-
ration and a transversal spread. This corresponds to the electron’s interaction with a multi-mode
wave packet with a non-zero spectral width and angular divergence. Therefore, it is of great im-
portance to find the accurate conditions of the applicability of the single-mode approximation,
in order to compare theoretical predictions and experimental results. For this purpose we em-
ploy the method of approximating Hamiltonian described in detail in reference [120]. The idea
of this method consists in the separation of equation (2.4) into two parts, namely the single-
collective-mode of the field and fluctuations relative to this collective mode. Consequently, the
single-mode approximation can be applicable if the influence of this fluctuations on the system
dynamics is small. Parts of this chapter were published as [123].

Experimentally available laser pulses, can be described by a quasi-monochromatic wave
packet with the central frequency ω0 and the wave vector k0 = ω0n (n is a unit vector) with
corresponding spreads in the solid angle ∆Ω:

δω ∼ 1
τ
, δk0 ≈ ω2

0∆Ω ∼
1
S
, (5.1)

characterizing by the duration τ and spacial width S of the laser pulse. The non-monochromaticity
will be characterized via two dimensionless parameters

σ2 =
δω

ω0
≈ 1
ω0τ

, σ1 =
δk0

k2
0

≈ 1
ω2

0S
. (5.2)

For highly intense pulses, as those considering in the following all modes within the volume
∆ = δωδk0 in the k-space are highly populated and correspond to the large quantum numbers
nk of the field state vector.

Since the non-vanishing modes of the quantized external field are inside the small volume
∆ in k-space the total field Hamiltonian H in equation (2.4) can be written as:

H ≡ HA + H1 + H2,

HA =
∑
k<∆

[k̂0a†kak + b̂0(ak + a†k)] +
∑
k>∆

k̂a†kak, (5.3)

where constant four vectors k0, b0 and the small volume ∆ in k-space near k0 are the variational
parameters of the approximating Hamiltonian and will be defined later. The sums

∑
k<∆ and∑

k>∆ mean summation inside and outside the volume ∆ respectively and the operators H1,2 are
determined identically from equation (2.4)

H1 =
∑
k<∆

[
(k̂ − k̂0)a†kak + (b̂(k) − b̂0)(ak + a†k)

]
,

H2 =
∑
k>∆

b̂(k)(ak + a†k). (5.4)
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By the definition in ref. [120], the approximating Hamiltonian HA should quantitatively
describe the system, be accurately diagonalizable and the perturbations due to the operators
H1,2 need to be small. For the diagonalization of HA let us utilize the method of canonical
transformations, which was introduced by Bogolubov and Tyablikov for the polaron problem
in the strong field limit [124]. For this purpose we go back to the coordinate representation in
(5.3):

HA =
1
2

k̂0

∑
k<∆

(p2
k + q2

k) + b̂0

√
2
∑
k<∆

qk +
∑
k>∆

k̂a†kak, (5.5)

qk =
ak + a†k√

2
, pk = −i

∂

∂qk
= −i

ak − a†k√
2

.

Following Bogolubov [124], we introduce the collective variable Q in which all field modes are
added coherently and the “relative” field variables yk which define quantum fluctuations relative
to the collective mode

Q =
∑
k<∆

qk, yk = qk −
1
N

Q, qk = yk +
1
N

Q,
∑
k<∆

yk = 0, N =
∑
k<∆

1, (5.6)

where N ≫ 1 is equal to the number of modes in the volume ∆. The transformation of the
momentum operators is calculated according to its definition [124]:

pk = −i
∂

∂qk
= −i

∂Q
∂qk

∂

∂Q
+

∑
∆ f

∂y f

∂qk

∂

∂y f

 . (5.7)

Calculation of the derivatives with the help of (5.6) gives the generalized momenta:

pk = P + pyk,
∑
∆k

pyk = 0, P = −i
∂

∂Q
, pyk = −i

∂

∂yk
+

i
N

∑
∆ f

∂

∂y f
. (5.8)

Insertion of (5.8) and (5.6) into the Hamiltonian (5.5) leads to the separation of the collective
coordinates, the fluctuation operators yk and the “external” variables ak and a†k , corresponding
to k outside the ∆ volume:

HA =
1
2

k̂0

[
1
N

Q2 + NP2
]
+ b̂0

√
2Q +

1
2

k̂0

∑
k<∆

(p2
yk + y2

k) +
∑
k>∆

k̂a†kak. (5.9)

We can now quantize the collective and “relative” variables by introducing the new set of
creation and annihilation operators

Q =

√
N
√

2
(A + A†), P = −i

1
√

2N
(A − A†), [A,A†] = 1,

yk =
1
√

2
(c̃k + c̃†k), pyk = −i

1
√

2
(c̃k − c̃†k), (5.10)

c̃k = ak −
1
N

∑
f<∆

a f , [ak, a
†
k1

] = δkk1 , [c̃k, c̃
†
k1

] = δkk1 +
1
N
.



26 Exact solutions of the Dirac equation in classical and quantized electromagnetic fields 6

With the accuracy of ∼ 1/N the Hamiltonian (5.9) transforms into

HA = k̂0A†A + b̂0

√
N(A + A†) + k̂0

∑
k<∆

c̃†k c̃k +
∑
k>∆

k̂a†kak ≡ Hsm + H f + He, (5.11)

Hsm = k̂0A†A + b̂0

√
N(A + A†), H f = k̂0

∑
k<∆

c̃†k c̃k, He =
∑
k>∆

k̂a†kak.

where the operators are written in the normal form and the energy of “vacuum oscillations” is
not taken into account. In this representation the operator Hsm which corresponds to the single-
mode approximation is completely separated from the contributions defined by the fluctuation
operator H f and by the external modes operator He. Therefore the state vector of the system in
the zeroth approximation is represented as the product:

|Ψ(0)⟩ = |ΨA⟩|{n f }⟩|{ne}⟩, c̃†k c̃k|n f
k ⟩ = n f

k |n
f
k ⟩, a†kak|ne

k⟩ = ne
k|ne

k⟩, (5.12)

where |n f
k ⟩ defines the state of the “fluctuations”, |ne

k⟩ is the state of the “external” modes of
the electromagnetic field not interacting with an electron, and |ΨA⟩ describes the state of the
electron interacting with a collective mode of the field. |ΨA⟩ satisfies the equation:{

q̂(0) − m − HA

}
|ΨA⟩ =

{
(q̂(0) − â) − m − [k̂0(A†A + f ) + b̂0

√
N(A + A†)]

}
|ΨA⟩ = 0,

aµ =
∑
k>∆

kµne
k, f =

∑
k<∆

n f
k . (5.13)

The Hamiltonian HA in equation (5.13) up to the constant four vectors aµ and fµ = k0µ f
coincides with the Dirac equation with only one mode of the field and can be diagonalized 3:

|ΨAn(a, f )⟩ = C1

1 + k̂0b̂0
√

N
2(z · k0)

(A + A†)
 Su(pn)|n⟩,

S = eα(A†−A)e−
η
2 (A2−A†2), A†A|n⟩ = n|n⟩, (5.14)

pn = z − k0

(√
1 −

2Nb2
0

(z · k0)
(n + 1/2) − 1/2 + f − (z · b0)2N

(z · k0)2

1
1 − 2Nb2

0/(z · k0)

)
,

α = − (z · b0)
√

N
(z · k0)

1
1 − 2Nb2

0/(z · k0)
, cosh η =

1
2

(√
κ +

1
√
κ

)
, κ =

1√
1 − 2Nb2

0
(z·k0)

,

where zµ = q(0)
µ − aµ and u(pn) is a bispinor which coincides with a free Dirac bispinor.

6 Corrections to the approximating Hamiltonian
In 5 we built the eigenvectors (5.12) of the approximating Hamiltonian HA and assumed that
they define the main contribution to the solution of the initial equation (2.4). However, we have
not determined the optimal parameters (∆, k̂0, b̂0) of the approximating Hamiltonian and not
found the conditions for the wave packet when the single-mode approximation can be applied.
In order to do so, in accordance with the method defined in ref. [124] one should now consider
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the corrections given by the operators H1,2 from (5.4). The first-order correction to the system’s
energy determines the optimal parameters (∆, k̂0, b̂0) of the approximating Hamiltonian (5.3).
The second-order correction defines the width and lifetime of the collective mode and gives
the conditions on the wave packet intensity and duration, thus determining the single-mode
approximation.

We build the corresponding perturbation theory for the initial equation (2.4) by inserting a
formal parameter λ in (2.4)

{q̂ − m − HA} |Ψ⟩ = λ(H1 + H2)|Ψ⟩, (6.1)

and representing a solution in a form of a series [124]:

|Ψ⟩ = |Ψ(0)⟩ + λ|Ψ(1)⟩ + . . . , q = q(0) + λq(1) + . . . . (6.2)

From equation (6.2) the first two orders of the perturbation can be found:

(q̂(0) − m − HA)|Ψ(0)⟩ = 0,
q̂(1)|Ψ(0)⟩ + (q̂(0) − m − HA)|Ψ(1)⟩ = (H1 + H2)|Ψ(0)⟩. (6.3)

The first equation coincides with equation (5.13) and has the set of eigenvectors (5.14) which
form a full and orthogonal basis in a Hilbert space.

The closest field state to the experiment is a coherent state. Therefore, we suppose that the
electromagnetic field is described by the wave packet:

|Ξ⟩ = C exp

∑
k

[uka
†
k − u∗kak]

 |0⟩, ak|0⟩ = 0, (6.4)

which is a set of coherent states with the amplitudes uk. This wave packet is localized in k-space
near the momentum k0 and can be modeled with the Gaussian distribution:

uk = e
− k2

⊥
2σ2

1ω
2
0 e
− (ω−ω0)2

2σ2
2ω

2
0 , k = k⊥ + ω

k0

ω0
, k⊥ · k0 = 0, (6.5)

where σ2 and σ1 determine a frequency and an angular spread in the laser pulse respectively.
The constant C in (6.1) for a pulse of an intensity I, a transversal width S and a duration τ can
be obtained from the normalization on the full pulse energy W:

W = IS τ = ⟨Ξ|
∑

k

ωka
†
kak|Ξ⟩ = C2 V

8π3

∫
dωdk⊥ω|uk|2 = C2 V

8π3ω
4
0π

3/2σ2
1σ2,

C =

√
8π3/2IS τ
Vσ2

1σ2ω
4
0

. (6.6)

The wave packet (6.4) can be expanded in a series over the full set of states (5.14):

|Ξ⟩ =
∑
n,a, f

Cn(a, f )|ΨA(n, a, f )⟩, (6.7)
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with coefficients Cn(a, f ), which depend not only on the collective mode quantum number n,
but also on the “fluctuating” and the “external” modes quantum numbers f and a respectively.
This linear combination can be used for the description of QED processes (non-linear Compton
scattering, electron-positron pair creation) in Furry picture, taking into account the realistic
duration and angular spread of the laser pulse. In the following we show that the dependencies
on f and a can be neglected if the k-space volume ∆ is chosen in a consistent way.

We can estimate the contribution of the various terms in the Hamiltonian HA using the state
(6.4):

⟨Ξ|ω0A†A|Ξ⟩ ≈ ⟨Ξ|
∑
k<∆

ω0a†kak|Ξ⟩ =
ω0C2V
(2π)3

∫
k<∆

dk|uk|2 =

=
8π3/2IS τ23

(2π)3

∫
∆1

σ1ω0

0
dte−t2


2 ∫ ∆2

σ2ω0

0
due−u2

= IS τΦ3(δ), (6.8)

where we assumed that the volume ∆ in k-space can be written as ∆ = ∆2
1∆2 = δ

3σ2
1σ2ω

3
0. Here

δ is dimensionless parameter that will be defined below and Φ(z) = 2/
√
π
∫ z

0
e−t2dt is the error

function. Other terms in HA are calculated in a similar way:

N =
V

8π3 δ
3σ2

1σ2ω
3
0,

⟨Ξ| f |Ξ⟩ = ⟨Ξ|
∑
k<∆

a†k − 1
N

∑
l<∆

a†l

 ak −
1
N

∑
l<∆

al

 |Ξ⟩
= C2

∑
k<∆

u∗k − 1
N

∑
l<∆

u∗l

 uk −
1
N

∑
l<∆

ul


= C2 V

(2π)3

(∫
dk|uk|2 −

V
(2π)3N

∣∣∣∣∣∫ dkuk

∣∣∣∣∣2) = IS τΦ3(δ)

1 − 23π
3
2

δ3

Φ6( δ√
2
)

Φ3(δ)

 ,
⟨Ξ|a|Ξ⟩ ≤ ⟨Ξ|a0|Ξ⟩ = ⟨Ξ|

∑
k>∆

ω0a†kak|Ξ⟩ = IS τ
(
1 − Φ3(δ)

)
, (6.9)

The contribution due to the “fluctuating” modes in (6.9) is defined by the value ⟨Ξ| f |Ξ⟩ and
is equal to zero if the parameter δ is chosen as the solution of the equation

1 − 23π
3
2

δ3

Φ6( δ√
2
)

Φ3(δ)
= 0, δ ≈ 3.54. (6.10)

It is evident that the actual value of this parameter depends on the laser pulse form but in any
case it can be calculated in a similar way.

The contributions of the “external” pulse modes to HA can be neglected because they are
defined by the value

⟨Ξ|a0|Ξ⟩
⟨Ξ|ω0A†A|Ξ⟩ =

(
1 − Φ3(δ)

)
Φ3(δ)

≈ 1.64 · 10−6, (6.11)

when δ is found from (6.10).
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A similar estimation
(
1 − Φ3(δ)

)
≈ 10−6, defines the difference between the energy accumu-

lated in the collective mode (6.8) and the total energy of the laser pulse (6.6). It means that if
the parameter ∆ is chosen as

∆ ≈ (3.54)3σ2
1σ2ω

3
0, (6.12)

the values a and f can be omitted in the operator HA that corresponds to the vacuum of the
“fluctuating” and “external” modes. In this case HA can be considered as the single-mode
Hamiltonian in the zeroth order (6.3).

Now we determine the parameters k̂0, b̂0, ω0 of this Hamiltonian. Let us consider the first
order equation in (6.3). Using its projection on the state vector ⟨Ψ(0)| (we pay attention to the
fact, that for the correct perturbation theory for the Dirac equation the eigenvalue ⟨Ψ(0)| of a zero-
order is not a hermitian conjugate to |Ψ(0)⟩ but is the Dirac conjugate i.e. ⟨Ψ(0)| =

(
|Ψ(0)⟩

)†
γ0):

⟨Ψ(0)|q̂1|Ψ(0)⟩ = ⟨Ψ(0)|(H1 + H2)|Ψ(0)⟩. (6.13)

According to Bogolubov [124] the stable solution of the initial equation (2.4) exists if the
first-order correction to the eigenvalue is equal to zero and this condition allows one to find the
unknown parameters. In our case it leads to two equations

⟨Ψ(0)|H1|Ψ(0)⟩ = 0; ⟨Ψ(0)|H2|Ψ(0)⟩ = 0, (6.14)

because the operators H1, H2 refer to different variables. The details of the calculations of the
expectation values of the Hamiltonian H1 can be found in Appendix A. The result reads

⟨H1⟩ = n0

(
κ +

1
κ

) ∑
k<∆

k
N
− k0

 · pn

+ 2
2ακn0 + α

(
κ + 1

κ

)
n0

√
N(z · k0)

(b0 · pn)
∑
k<∆

(k · k0) − (k0 · pn)
∑
k<∆

(k · b0)


−

n2
0(κ + 1/κ)κ + n2

0(κ − 1/κ)κ2
(z · k0)2

∑
k<∆

b2
0(k · k0)(k0 · pn) (6.15)

+
4α
√

N

∑
k<∆

b(k) − Nb0

 · pn +
4κn0

(z · k0)

{ Nb2
0 −

∑
k<∆

(b0 · b(k))

 (k0 · pn)

+ (b0 · pn)
∑
k<∆

(b(k) · k0)
}
− 12ακn0

√
N

(z · k0)2 b2
0

∑
k<∆

(b(k) · k0)(k0 · pn),

The calculation of the average value of the Hamiltonian H2 is performed in exactly the same
way

⟨H2⟩ = ⟨0 f |⟨ne
k|⟨ΨA|H2|ΨA⟩|ne

k⟩|0 f ⟩ =
∑
k>∆

⟨ΨA|b̂(k)|ΨA⟩⟨Ξ|(ak + a†k)|Ξ⟩ (6.16)

=
∑
k>∆

(
2b(k) · pn +

4α
√

N
(z · k0)

(
b(k) · k0b0 · pn

− b0 · b(k)k0 · pn
) − 2κn0N

(z · k0)2 b2
0b(k) · k0k0 · pn

)
⟨Ξ|(ak + a†k)|Ξ⟩.
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As was stated above, according to ref. [124] the first corrections to the approximating Hamil-
tonian HA are equal to zero. This gives a condition for determination of the variational parame-
ters ∆, b0, k0 of the Hamiltonian HA. Therefore, if we choose

ω0 =
1
N

∑
k<∆

ωk, k0 =
1
N

∑
k<∆

k, b0 =
1
N

∑
k<∆

b(k), (6.17)

the average of the Hamiltonian ⟨H1⟩ turns into zero. The average of the Hamiltonian H2 vanishes
according to symmetry consideration as it is not bilinear over polarization vectors

∑
k>∆ b(k).

The physical meaning of this choice is that the collective single-mode corresponds to an average
over the modes of a quasi-monochromatic wave packet.

We have determined the variational parameters of the approximating Hamiltonian and con-
sequently can proceed with the estimation of the field intensity for which the single-mode ap-
proximation is valid. For this purpose, the second-order correction

E(2)
0 = −

∑
E0,E0α

|⟨E0|H1|E0α⟩|2
E0α − E0

,

to the system’s energy needs to be calculated. Here H1 is the perturbation operator

H1 =
∑
k<∆

1
2

(k̂ − k̂0)
(
P2 +

Q2

N2

)
+

∑
k<∆

1
2

(k̂ − k̂0)(p2
yk + y2

k)

+
∑
k<∆

(k̂ − k̂0)
(
Ppyk + Q

yk

N

)
+

∑
k<∆

√
2(b̂(k) − b̂0)

(
yk +

Q
N

)
. (6.18)

As it can be seen from equation (6.18) only the last two terms contribute to E(2)
0 . The state |E0α⟩

is the wave function

|0 f n0⟩ =
u(p)
√

2ϵ
S |n0⟩|0 f ⟩, (6.19)

where ϵ is the electron’s energy, n0 is the number of quanta in the “collective” mode, |0 f ⟩ is the
state of the field fluctuations and for simplicity we neglected the term proportional to k̂b̂. Let
us rewrite the Hamiltonian H1 in the variables A, A† of the “collective” mode and c̃k, c̃†k of the
fluctuations respectively

H1 = (k̂ − k̂0)

− 1

2
√

N
(A − A†)(c̃k − c̃†k) + (A + A†)

(c̃k + c̃†k)

2
√

N


+
√

2(b̂(k) − b̂0)

 c̃k + c̃†k√
2
+

A + A†
√

2N

 . (6.20)

Now we can calculate the transition matrix element ⟨0 f n0|H1|n f n⟩:

⟨0 f n0|H1|n f n⟩ =
ū(p)(k̂ − k̂0)u(p)

2ϵ
√

N
⟨n0|S†A†S|n⟩δ1 f ,n f (6.21)

+
ū(p)(b̂(k) − k̂0)u(p)

2ϵ

[
δ1 f ,n f δn0,n +

1
√

N
⟨n0|S†(A + A†)S|n⟩δ0 f ,n f

]
.
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The use of the transformation (A.4) of the creation and annihilation operators of the “collective”
mode by the operator S and the calculation of the averages in a spin space yields

⟨0 f n0|H1|n f n⟩ =
((p · k) − (p · k0))δ1 f ,n f

ϵ
√

N

[
1
2

(√
κ +

1
√
κ

) √
n0δn0−1,n

+
1
2

(√
κ − 1
√
κ

) √
n0 + 1δn0+1,n

]
+

(b(k) · p) − (b0 · p)
ϵ

[
δ1 f ,n f δn0,n

+

√
κ(
√

n0 + 1δn0+1,n +
√

n0δn0−1,n)
√

N
δ0 f ,n f

]
. (6.22)

Consequently we can write down the second-order correction to the system’s energy

E(2)
0 ≈

∑
k<∆

|(v · k) − (v · k0)|2
4N

(
κ2
+n0

ω0 − ωk
− κ

2
−(n0 + 1)
ωk + ω0

)
+

∑
k<∆

|(v · b(k)) − (v · b0)|2
(

1
ωk
− κ

ω0N

)
, (6.23)

where κ+ =
√
κ + 1/

√
κ, κ− =

√
κ − 1/

√
κ and vµ = pµ/ϵ = (1,v) and v is the velocity of an

electron.
Equation (6.23) has four terms but only two are important. The term inversely proportional

to the frequency difference ω0−ωk describes a resonance and defines the frequency shift and the
lifetime of the collective mode. The term inversely proportional to ωk defines the fluctuations
arising due to the interaction between an electron and an external field. The remaining two
terms can be neglected as the second one is not a resonance and the fourth one is inversely
proportional to the normalization volume V (N ∼ V and b ∼ 1/

√
V).

In order to perform a summation in k-space we firstly fix a coordinate system. Let the z-axis
be directed along k0, the x-axis along v⊥ - the velocity component perpendicular to the k0. The
details of the summations over k can be found in appendix B. The second-order correction to
the energy of the system reads

E(2)
0 =

n0ω0πv2
⊥

4

λ tan−1 4λ − 1
4
+

iπ
2
·


λ, λ > 1
1
λ
, λ < 1


+ e2

δ5σ2
1σ2ω0

(
σ2

2

(
v2 − v2

z

)
2 + 16σ2

1v2
⊥v2

z

)
96(2π)3v2 , (6.24)

where λ = σ2/(δσ2
1).

7 Conditions of the applicability of the single-mode approx-
imation

The first term in (6.24) is proportional to the same quantum number n0 as the energy of the
“collective” mode. Its real part defines the shift ∆ω0 and the imaginary part defines the width
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Γ/2 of the collective mode. Therefore, one can rely on the single-mode approximation if these
values are small in comparison with ω0:

∆ω0

ω0
=
πv2
⊥

4

[
λ tan−1 4λ − 1

4

]
≪ 1,

Γ

ω0
=
π2v2

⊥
4
·


λ, λ > 1
1
λ
, λ < 1

≪ 1. (7.1)

As was stated above, the single-mode approximation is valid when the change in E(2)
0 due

to the fluctuations of the quantum field are small with comparison to the ground state energy of
the “collective” mode (6.8). These fluctuations are defined by the last term in equation (6.24).
This leads to the additional parameter

µ = e2
δ5σ2

1σ2ω0v2
⊥
(
σ2

2v2
⊥ + 16σ2

1v2
z

)
96(2π)3v2IS τΦ3(δ)

≪ 1, (7.2)

which defines the lowest pulse intensity for which the single-mode approximation can be used.
Modern lasers can reach nowadays high intensities [5–7, 9, 10] up to 1022 W/cm2 with a

pulse duration of about 30 fs. Let us estimate the parameters (7.1) and (7.2) for an intensity
I = 1022 W/cm2, photon frequency ω = 7.8 · 104 cm−1 (a corresponding wavelength of 800
nm), pulse duration τ = 8.7 · 10−4 cm−1 (corresponding to 30 fs) and focusing S = 10−8 cm2.

The physical parameters σ1 and σ2 are connected with the characteristics of the laser pulse
by equation (5.2), and their numerical value for the above I, S , τ is equal to

σ1 = 0.127, σ2 = 0.014. (7.3)

An electron beam always has angular divergence ∆θ and v⊥ ∼ ∆θ ∼ 1/γ, where γ is the
electron’s gamma factor. Therefore, for the moderately relativistic electrons we can consider
that v⊥ ≤ σ1.

By plugging the numerical values in equations (7.1) and (7.2) one obtains

µ ∼ 10−28,
∆ω

ω0
∼ 6 · 10−4, (7.4)

Γ

ω0
∼ 0.01, (7.5)

and we can conclude that the single-mode approximation is applicable.
As can be seen from equation (7.5) the parameter µ and frequency shift are very small values

for the intensities in the strong field QED range, i.e., 1016−1022 W/cm2 and pulse duration of 30
fs. This means that the electron mainly interacts with the collective single-mode. The influence
of the fluctuations is suppressed.

However, the most important parameter, which can limit the applicability of the single-
mode approximation is indeed independent on the intensity, but depends on the pulse duration.
It determines the width of the collective mode Γ/ω0, equation (7.5). The decrease of the pulse
duration from 30 fs to 3 fs, will increase its value by one order. The physical meaning of this
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result, corresponds to the situation that for the really short laser pulses, the collective field mode
does not have sufficient time for its formation.

Concluding we can state, that the applicability of the single-mode approximation is mainly
limited not by the pulse intensity, but rather by its duration and focusing size. Therefore, for a
particular spectral distribution of the external laser pulse one should estimate σ1 and σ2, then
insert their values together with the transversal electron velocity v⊥ into equations (7.1-7.2) and
make the conclusion about the applicability of the single-mode approximation.





Chapter II

Collapse-and-revival dynamics of an
electron in a quantized electromagnetic
field

8 Evolution of an electron state vector in a quantized elec-
tromagnetic field

When the experimental realization of the external electromagnetic field is based on the appli-
cation of laser pulses of high intensity and certain duration, such that the single-mode approx-
imation can be applied, it is commonly accepted that this external field can be considered as
classical. This leads to the use of Volkov solution for external electron lines in the Furry picture
of QED. However, the electromagnetic field is a system having an infinite number degrees of
freedom and there is no conservation law for the number of particles. Therefore, its possible
states include states with an arbitrary number of particles. For this reason, one might consider
that the electron behavior in a quantized field will be different from the behavior in a classical
one. In order to investigate this feature we will apply the exact solutions obtained in Chapter I
for the calculation of electron’s observables. Parts of the present chapter have been published
in Refs. [125].

Let us first find the evolution of the state vector of the electron and the quantized field. We
will start with the fix of the time reference. It is natural to connect it with the moment t = 0
when the electron passes the boundary of the laser pulse. This means that the system state vector
at t = 0 is described by a free electron wave function and the field by a coherent state [95]

ψ0 = eip0·(r−r0) u(p0)
√

2ε0
|β⟩, |β⟩ =

∞∑
n=0

βn

√
n!
|n⟩e−β2/2, (8.1)

where |β⟩ is a coherent state of the field, p0 the electron momentum, u(p0) a constant bispinor
normalized with the condition

ū(p0)γ0u(p0) = 2ε0,

and the vector r0 defines the initial phase of the electron state.
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Let us now use a linear combination of the solutions (3.8)

Ψ(x) =
∫

dq
∑

n

Cq,nψqn(x); x = (t,x) (8.2)

in order to satisfy the initial condition

eip0(r−r0) u(p0)
√

2ε0
|β⟩ = Ψ

∣∣∣
t=0
. (8.3)

The wave function Ψ(x) indeed defines the evolution of the system’s state vector with correct
initial conditions. Therefore, we need to calculate the unknown coefficients Cq,n. As the wave
functions ψqn are orthogonal, we find that

Cq,n =
1

(2π)3

∫
drψ†qneip0·r u(p0)

√
2ε0
|β⟩. (8.4)

Inserting the wave function ψ†qn into equation (8.4), one obtains

Cqn =
1

(2π)3

∫
dre−i(q−p0)·r ū(pn)

√
2εn

(
γ0

(
1 +

2α
2(q · k)

)
⟨n|S†qeik·ra†aeβa†−β∗a|0⟩ (8.5)

+
b̂k̂γ0√κ
2(q · k)

(√
n + 1⟨n + 1|S†qeik·ra†aeβa†−β∗a|0⟩ +

√
n⟨n − 1|S†qeik·ra†aeβa†−β∗a|0⟩

)) u(p0)
√

2ε0
,

where

S †q = e
ηq
2 (a2−a†

2
)e−αq(a†−a), κ =

1√
1 − 2b2/(q · k)

, αq = −
(q · b)
(q · k)

1
1 − 2b2/(q · k)

, (8.6)

and coherent state |β⟩ = eβa†−β∗a|0⟩. The index q of the quantities αq and ηq indicates their
dependence on q.

The problem of calculating the coefficients Cq,n reduces to that of calculating a matrix ele-
ment of the type

⟨n|S †qeik·ra†aeβa†−β∗a|0⟩.
For this, we need the representation of the exponential of a sum of operators in normal form.
The normal form of the operator of the coherent state is [95]

eβa†−β∗a = e−|β|
2/2eβa†e−β

∗a = e|β|
2/2e−β

∗aeβa† . (8.7)

The decomposition of the exponent with the second power of the creation and annihilation
operators is 11

e
η
2 (a2−a†2) = e−

1
2 thηa†2e− ln chη(a†a+ 1

2 )e
1
2 thηa2

. (8.8)

This decomposition is possible since the three operators a2, a†2 and a†a form a closed alge-
bra. Taking into account the transformation of the creation and annihilation operators with an
operator S†,

S†(a + a†)S =
√
κ(a + a†) + 2α, (8.9)
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the action of the creation operator a† on the left bra vector ⟨0| yields zero and the harmonic
oscillator state vector is connected with the vacuum by ⟨n| = ⟨0|an/

√
n!, and we obtain

⟨n|e
η
2 (a2−a†2)e−α(a†−a)eik·ra†aeβa†−β∗a|0⟩ = e−|θ|

2/2+αθ−α2/2+1/2(θ−α)2thη√
chη

⟨0|
((a − thηa†) + θ−α

chη )n

√
n!

|0⟩.(8.10)

In order to calculate the vacuum average in (8.10), we replace the power n by the nth derivative
of the exponent

⟨0|
((a − thηa†) + θ−α

chη )n

√
n!

|0⟩ = 1
√

n!

dn

dxn ⟨0|e
x(a−thηa†)+x θ−αchη |0⟩

∣∣∣∣
x=0
= (8.11)

1
√

n!

dn

dxn ex θ−αchη ⟨0|ex(a−thηa†)|0⟩
∣∣∣∣
x=0
=

1
√

n!

dn

dxn ex θ−αchη −x2thη/2
∣∣∣∣
x=0
. (8.12)

Selecting the full square of the variable x and changing variables, we obtain

1
√

n!

dn

dxn ex θ−αchη −x2thη/2
∣∣∣∣
x=0
=

1
√

n!

dn

dxn e
−[(
√

thη
2 x− θ−α√

2thηchη
)2− (θ−α)2

sh2η ]
∣∣∣∣
x=0
,

y =

√
thη
2

x − θ − α√
2thηchη

, x = 0, y = − θ − α√
2thηchη

,
dn

dxn =

(
thη
2

) n
2 dn

dyn , (8.13)

1
√

n!

dn

dxn e
−[(
√

thη
2 x− θ−α√

2thηchη
)2− (θ−α)2

sh2η ]
∣∣∣∣
x=0
=

e
(θ−α)2

sh2η

√
n!

(
thη
2

) n
2 dn

dyn e−y2
∣∣∣∣
y=− θ−α√

2thηchη

. (8.14)

Using the definition of Hermitian polynomials,

Hn(y) = (−1)ney2 dn

dyn e−y2
,

we finally get

⟨n|S†e−ik·ra†aeβa†−β∗a|0⟩ = e−|θ|
2/2+αθ−α2/2+1/2(θ−α)2thη√

chη

1
√

n!

(
thη
2

) n
2

Hn

 θ − α√
2thηchη

 . (8.15)

Cq,n =
ū(pn)γ0u(p0)
√

2εn
√

2ε0

(
1 +

2α
(q · k)

)
Mq,n +

ū(pn)b̂k̂γ0u(p0)
√

2εn
√

2ε0

√
κ
(√

n + 1Mq,n+1 +
√

nMq,n−1

)
2(q · k)

,(8.16)

where the matrix element Mq,n is calculated via

Mq,n =
1

(2π)3

∫
dre−i(q−p0)·(r−r0) e−|θ|

2/2+αθ−α2/2+1/2(θ−α)2thη√
chη

1
√

n!

(
thη
2

) n
2

Hn

 θ − α√
2thηchη

 , (8.17)

θ = βeik·r, and β is a coherent state parameter.
For that reason, the wave function (8.2) with the coefficients (8.16) describes exactly the

evolution of the system consisting of a relativistic electron in a linearly polarized single-mode
quantized field.
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9 Strong field limit

In the previous paragraph 8 we have obtained an electron’s wave function evolution in a field
of an arbitrary strength being a coherent state. The results of a previous paragraph simplifies
essentially if the external field is strong, i.e. the number of photons n = β2 is a large value.

Let us estimate the characteristic parameters of the problem. Consider a strong laser field,
with density of photons [14]

ρ =
n
V
,

with n being the number of photons and V a normalization volume. For real system parameters,
the limits

V → ∞; n→ ∞; n/V → const. (9.1)

should be considered and all other terms inversely proportional to a power of V can be neglected.
In spite of the fact that the photon energy is small compared to the electron energy ω/ε ≪ 1,

the total momentum of the field kn can be compared with the momentum of the electron p0 ∼
kn, because the photon number n is large.

Taking into account the condition (9.1) the parameters α, chη, shη, thη in the state vector
(8.2) simplify to:

α = − (q · b)
(q · k)

1

1 − 2b2

(q·k)

≈ − (q · b)
(q · k)

, κ =
1√

1 − 2b2

(q·k)

≈ 1, (9.2)

chη =
1
2

4

√
1 − 2b2

(q · k)


√

1 − 2b2

(q·k) + 1√
1 − 2b2

(q·k)

 ≈ 1, thη =
1 −

√
1 − 2b2

(q·k)

1 +
√

1 − 2b2

(q·k)

≈ shη ≈ η ≈ b2

2(q · k)
.

It is also important to find the dispersion relation for the zero component q0 of the four-
vector q that is given by the equation

p2
n − m2 = 0. (9.3)

Substituting into equation (9.3) the connection between the vector pn and q, the dispersion
relation can be found:

(q0)2 − 2q0k̃0 − (q2 − 2q · k̃ + m2) = 0, (9.4)

k̃ = k0


√

1 − 2b2

(q · k)

(
n +

1
2

)
− 1

2
− (q · b)2

(q · k)2

1
1 − 2b2/(q · k)2

 .
Then the solution of the quadratic equation gives the required zero component of the four-vector
q in the limits (9.1)

q0 = ωn +
√

m2 + (q − kn)2. (9.5)
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10 Electron spin as an observable quantity

It is well known from quantum optics that the dynamics of an atom in a comparably weaker and
resonant laser field depends on the quantum fluctuations of the field. One of the most interesting
phenomena of this kind is the collapse–revival effect in the evolution of the Jaynes-Cummings
model [83–85] for a two-level atom. This effect was predicted theoretically [86–89,92–96] and
later observed experimentally [90, 91]. It was shown that the evolution of the population of
the atomic states is characterized by two time scales. The first time scale is the period of the
Rabi oscillations while the second slower one is defined by the collapse and revival times of the
populations being associated with the absorption and emission of the field quanta.

An electron can be considered as a two-level system with regard to spin space. For that
reason, the questions of the feasibility of collapse–revival dynamics for laser-driven electrons
arises.

As was already stated in the introduction, qualitatively different time scales can be selected
in the evolution of a quasi-energy electron state ψ(e)

p (r, t) [126] with definite quasi-momentum
p. One of these scales is defined by the frequency ω of the electromagnetic field:

T =
2π
ω
≈ 10−4 cm,

for the photon energy ω ≈ 1 eV.
Another scale is defined by the coherence time Tc which was introduced in [14, 15]. The

characteristic time Tc is inversely proportional to the probability wc of a photon emission per
unit of time by an electron which is in a Volkov state. It equals the distance in which the
uncertainty of the phase for the Volkov wave function changes by 2π. An approximation for
this time was found in [15]:

Tc ∼ w−1
c ≈

2
ξ2 T ; ξ =

ea
m
≤ 1,

where ξ is an invariant parameter which characterizes the “strength” of the electromagnetic field
[121], a is the amplitude of the electromagnetic field potential, and e and m are the electronic
charge and mass, respectively. It is well known that the value ξ ≈ 0.35 corresponds to the
intensity of electromagnetic field I0 ≈ 1018 W/cm2 when ω ≈ 1 eV.

The existence of two time scales is expected to be observable when the travel time of an
electron in the field L = Tint (that is, the time of interaction between an electron and the field)
satisfies

L > Tc ≫ T,

which can be fulfilled for realizable parameters of the laser pulse.
In order to analyze the influence of quantum effects on the system dynamics, we consider

the electron spin four-vector, which is defined via [121]

sµ(x, t) =
⟨ψ|γ0γ5γµδ(x − r′)|ψ⟩

⟨ψ|ψ⟩ . (10.1)
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To calculate the average value of the spin (10.1), one should perform the averaging in spin
space. For this purpose, the density matrix of the free electron is used,

ρ = u(p) ⊗ ū(p) =
1
2

( p̂ + m)(1 − γ5â), (10.2)

where a is the four-vector that differs from the four-vector s by the normalization a = ε
m s [121].

In the case of a free electron, the four-vector sµ has components

s =
m
ε
ζ +

p(p · ζ)
ε(ε + m)

, s0 =
p · ζ
ε

, (10.3)

where ζ is the electron spin in the rest frame

ζ = ⟨σ⟩,

σ are the Pauli matrices, p is the electron momentum, and ε the electron energy, which satisfies

ε2 = p2 + m2.

Now we recall the expression for the spin in the quasi-classical limit, which follows from
the Volkov solution of the Dirac equation 1. The calculation of the spin using definition (10.2)
with the use of the density matrix (10.3) yields

⟨s⟩ = a
m
ε
+

me
ε(k · p)

(k(A · a) −A(k · a)) − me2

2ε(k · p)2k(k · a)A2. (10.4)

The time dependence in (10.4) is contained only in the four-potential A, which is a periodic
function (3.11). In this case, the components of the electron spin include parts which oscillate
at the frequency of the classical field. If one averages the expression (10.4), the linear terms in
A vanish and the mean value becomes

⟨s̄⟩ = a
m
ε
− me2

2ε(k · p)2k(k · a)Ā2, (10.5)

where the bar on the top of the variable denotes averaging over the initial phases of the electron
in the beam when entering into the area of space with the field.

As follows from equation (10.5), the observation of the change in spin dynamics caused by
the influence of the field is possible only if the amplitude A0 of the four-potential is comparable
with the electron energy ε. This amplitude is connected with the average number of photons
through

A0 =

√
2n̄
√

Vω
.

This means that the field quantum number n̄ should be large, and this corresponds to the limits
of strong field 9.
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11 Cumulant method for the matrix element calculation

When the calculations of different matrix elements of the type ⟨n′|eλA|n⟩, with λ being a small
parameter, need to be performed, the cumulant method can be applied [127]. It is based on
perturbative expansion of a matrix, with the accuracy defined, by the number of cumulants and
transitions close to the diagonal. For example, the expansion for N cumulants and transitions
from the main diagonal (n, n) to the diagonals (n, n ± 1) and (n, n ± 2) looks like

⟨n′|eλA|n⟩ = δnn′e
∑N

k=1 λ
kK0k + λB±δ(n±1)n′e

∑N
k=1 λ

kK±1k + λC±δ(n±2)n′e
∑N

k=1 λ
kK±2k , (11.1)

where K0k, K±1k, K±2k, B± and C± are cumulant coefficients. If we decompose the left and
right hand sides of equation (11.1) and equate terms with the same powers of λ, the cumulant
parameters can be found as:

K01 = 0; K02 =
1
2
⟨n|A2|n⟩; B± = ⟨n ± 1|A|n⟩; K11 =

1
2
⟨n ± 1|A2|n⟩;

C± = ⟨n ± 2|A|n⟩; K21 =
1
2
⟨n ± 2|A2|n⟩. (11.2)

Hence, the matrix element with the second-order accuracy in parameter λ is

⟨n′|eA|n⟩ ≈ δnn′e
1
2 ⟨n|A2 |n⟩ + ⟨n + 1|A|n⟩δ(n+1)n′e

1
2 ⟨n+1|A2 |n⟩ + ⟨n − 1|A|n⟩δ(n−1)n′e

1
2 ⟨n−1|A2 |n⟩

+ ⟨n + 2|A|n⟩δ(n+2)n′e
1
2 ⟨n+2|A2 |n⟩ + ⟨n − 2|A|n⟩δ(n−2)n′e

1
2 ⟨n−2|A2 |n⟩. (11.3)

In order to show how the method works, we will apply it to the calculation of the matrix
element of a type

⟨n′|e ∆2 (a2−a†2)e−
δ√
κ

(a†−a)|n⟩, (11.4)

where ∆ and δ are small quantities and are functions of a small parameter η. On the first step,
we represent the multiplication of two exponentials by one exponential.

Imagine an operator function of a parameter τ

E(τ) = exp[τ(a + b)]. (11.5)

If operators a and b commutes, then E(τ) = exp(τa) exp (τb). The additional dependence on
the commutators can be shown by introducing an operator K

E(τ) = exp(τb)K exp(τa). (11.6)

The ordering of multiples in (11.6) can be arbitrary, however for every order the equation for K
will be different. By differentiating equation (11.6) by τ the equation for K can be obtained:

∂K
∂τ
= exp(−τb)a exp(τb)K − Ka. (11.7)

By setting τ = 0 we specify an initial condition

K(0) = 1. (11.8)
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If operators a and b are such that the majority of commutators are equal to zero, equation (11.7)
can be solved. For example, if [a, b] = c, than it is the only non-vanishing commutator and

exp(−τb)a exp(τb) = a − τ[b, a],

yielding well known Glauber’s formula

exp[τ(a + b)] = exp(τa) exp(τb) exp
(
τ2

2
[b, a]

)
. (11.9)

If commutators of a type [b, [b . . . [b, a], . . .]] are not equal to zero, i.e., they are all commute
with each other and with a, the equation can be easily solved, giving

E(τ) = exp(τb) exp
[∫ τ

0
dt exp(−tb)a exp(tb)

]
. (11.10)

Even if all commutators are not equal to zero, a case exist, when a simple solution can be
obtained. If we consider operators a, b and all their commutators as a set, and this set has finite
number of elements, then commuting all elements sequentially with each other, after some time,
we obtain the same elements of a set. Consequently, the problem of decomposing exponent
is reduced, to the decomposition over the elements of this set and finding the decomposition
coefficients. For example, if operators satisfy the identities

[a, b] = c, [a, c] = −λa, [b, c] = λb, (11.11)

our set consists of three elements a, b and c. Therefore we seek a solution in a form

E(τ) = exp(α(τ)b) exp(β(τ)c) exp(γ(τ)a), (11.12)

where α, β and γ are unknown functions of τ. Differentiating this equation over τ, we obtain

a + b = α′(τ)b + β′(τ) exp(αb)c exp(−αb) + γ′(τ) exp(αb) exp(βc)a exp(−βc) exp(−αb).

By using commutation relations and comparing coefficients near corresponding operators we
find the system of equations

γ′ = exp(−λβ), β′ = α, a′ = 1 − λα
2

2
, (11.13)

solution of which is

α = γ =

√
2
λ

th

√λ

2
τ

 , β =
2
λ

ln ch

√λ

2
τ

 . (11.14)

Therefore we found a decomposition of the exponent over the elements of a set.
Let us come back to the operator (11.4) and calculate the commutator of the two operators[

∆

2
(a2 − a†2),− δ

√
κ

(a† − a)
]
=
∆δ
√
κ

(a† − a), (11.15)
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and therefore the commutators of the type[[[
∆

2
(a2 − a†2),− δ

√
κ

(a† − a)
]
,
∆

2
(a2 − a†2)

]
, ...,
∆

2
(a2 − a†2)

]
,

are not zero. This gives the possibility for the application of the formula (11.10), yielding

exp
{
− δ
√
κ

(a† − a) +
∆

2
(a2 − a†2)

}
= exp

∆

2
(a2 − a†2) exp

{
−(

δ
√
κ
+

δ∆
√

2κ
)(a† − a)

}
.(11.16)

The parameters δ and ∆ are small quantities and are functions of some other parameter η, con-
sequently their product is the quantity of a higher order in the parameter η. For this reason, we
can consider that the operators −δ/

√
κ(a† − a) and ∆/2(a2 − a†2) commute with each other.

Now we can calculate cumulant coefficients

⟨n|A2|n⟩ = −2δ2n
κ
− ∆

2n2

2
, ⟨n ± 1|A2|n⟩ = − δ∆√

κ
n

3
2 ,

⟨n ± 2|A2|n⟩ = δ
2n
κ
, ⟨n ∓ 1|A|n⟩ = ±δ

√
n
√
κ

(
1 − ∆

2

)
,

⟨n ∓ 2|A|n⟩ = ±∆n
2
. (11.17)

Here we pay attention to the fact, that despite the second order of parameters δ and ∆ is small,
these quantities are multiplied by the quantum number n, which is the large value. Conse-
quently, the unknown matrix element becomes

⟨n′|S †q′S q|n⟩ = δn,n′e−
δ2n
κ −

∆2n2
4 + δn−1,n′

δ
√

n
√
κ

e−
δ∆

2
√
κ

n
3
2 − δn+1,n′

δ
√

n
√
κ

e−
δ∆

2
√
κ

n
3
2

+ δn−2,n′
∆n
2

e
δ2n
2κ − δn+2,n′

∆n
2

e
δ2n
2κ . (11.18)

12 Electron spin evolution in a quantized field

In the previous paragraphs we have found how the electron state vector evolve in a quantized
field, being in the closest to the experimental realization state, i.e., in the coherent state. We have
formulated the cumulant method for the matrix elements evaluation and introduced a motivation
for the calculation of the observable value of the electron’s spin. In this paragraph we will
calculate the observable value of the spin being in a strong coherent field with the number of
photons n̄ = β2.

Let us use the spin definition (10.1) with the wave function (8.2):

⟨sµ⟩ = 1∑
n′′

∫
dq′′|Cq′′,n′′ |2

∫
dqdq′

∑
n′

∑
n

ei(q′−q)x⟨n′|S†q′
ū(pn′)√

2εn′

[
1 +

(a + a†)
2(q′ · k)

b̂k̂
]

· γ5γµ
[
1 +

(a + a†)
2(q · k)

k̂b̂
] u(pn)
√

2εn
Sq|n⟩C∗q′,n′Cq,n. (12.1)
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In order to carry out the calculations in equation (12.1) the averages over the field variables, the
averages in a spin space, the summation over n-s and integrations over q-s need to be performed.
We start the evaluation of (12.1) by calculating the matrix element between the field states

Tn′n = ⟨n′|S†q′
ū(pn′)√

2εn′

[
1 +

(a + a†)
2(q′ · k)

b̂k̂
]
γ5γµ

[
1 +

(a + a†)
2(q · k)

k̂b̂
] u(pn)
√

2εn
Sq|n⟩, (12.2)

or, expanding the brackets,

Tn′n = γ5γµ⟨n′|S†q′Sq|n⟩ +
γ5γµk̂b̂
2(q · k)

[√
κ⟨n′|S†q′Sq(a + a†)|n⟩ + 2α⟨n′|S†q′Sq|n⟩

]
+

b̂k̂γ5γµ

2(q′ · k)

[√
κ′⟨n′|(a + a†)S†q′Sq|n⟩ + 2α′⟨n′|S†q′Sq|n⟩

]
+

b̂k̂γ5γµk̂b̂
4(q′ · k)(q · k)

(√
κ′
√
κ⟨n′|(a + a†)S†q′Sq(a + a†)|n⟩

+ 4αα′⟨n′|S†q′Sq|n⟩ + 2α
√
κ′⟨n′|(a + a†)S†q′Sq|n⟩

+ 2α′
√
κ⟨n′|S†q′Sq(a + a†)|n⟩

)
. (12.3)

The evaluation of the matrix element (12.2) is reduced to the calculation of the matrix ele-
ment ⟨n′|S†q′Sq|n⟩ with n , n′ in the general case. The method of the calculation of the matrix
element of such a type was developed in 11. Therefore, the result of the evaluation is

⟨n′|S †q′S q|n⟩ = δn,n′e−
δ2n
κ −

∆2n2
4 +

δ
√

n
√
κ

e−
δ∆

2
√
κ

n
3
2 (δn−1,n′ − δn+1,n′) +

+
n∆
2

e
δ2n
2κ (δn−2,n′ − δn+2,n′), (12.4)

where δn,n′ is the Kronecker symbol, δ = αq′ − αq, and ∆ = ηq′ − ηq. The matrix elements with
additional creation and annihilation operators in (12.3), for example, ⟨n′|S†q′Sq(a + a†)|n⟩, can
be obtained from equation (12.4) by shifting indices, multiplying by the corresponding power
of n, and leaving the terms in which n changes by no more than two.

Insertion of equation (12.3) into equation (12.4) with the use of the results of the 9 of a
strong field limit, yields

⟨sµ⟩ = 1∑
n

∫
dq|Cq,n|2

∫
dqdq′

∑
n

ei(q′−q)x ū(pn′)√
2εn′

×
{

C∗q′,nCq,n

(
γ5γµ +

b̂k̂γ5γµk̂b̂
2(q′ · k)(q · k)

n
)

e−δ
2n− ∆2n2

4

+C∗q′,n−1Cq,n

[
δ
√

ne−
δ∆
2 n

3
2

(
γ5γµ +

b̂k̂γ5γµk̂b̂
2(q′ · k)(q · k)

n
)

+

(
e−δ

2n− ∆2n2
4 +

∆n
2

e
δ2n

2

) (
b̂k̂γ5γµ

2(q′ · k)
+
γ5γµk̂b̂
2(q · k)

) √
n
]

+C∗q′,n+1Cq,n

[
− δ
√

ne−
δ∆
2 n

3
2

(
γ5γµ +

b̂k̂γ5γµk̂b̂
2(q′ · k)(q · k)

n
)
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+

(
e−δ

2n− ∆2n2
4 − ∆n

2
e
δ2n

2

) (
b̂k̂γ5γµ

2(q′ · k)
+
γ5γµk̂b̂
2(q · k)

) √
n
]

+C∗q′,n−2Cq,n

[ (
e−δ

2n− ∆2n2
4 +

∆n
2

e
δ2n

2

)
b̂k̂γ5γµk̂b̂

4(q′ · k)(q · k)
n

+
∆n
2

e
δ2n

2 γ5γµ + δ
√

ne−
δ∆
2 n

3
2

(
b̂k̂γ5γµ

2(q′ · k)
+
γ5γµk̂b̂
2(q · k)

) √
n
]

+C∗q′,n+2Cq,n

[ (
e−δ

2n− ∆2n2
4 − ∆n

2
e
δ2n

2

)
b̂k̂γ5γµk̂b̂

4(q′ · k)(q · k)
n − ∆n

2
e
δ2n

2 γ5γµ

− δ
√

ne−
δ∆
2 n

3
2

(
b̂k̂γ5γµ

2(q′ · k)
+
γ5γµk̂b̂
2(q · k)

) √
n
]}

u(pn)
√

2εn
. (12.5)

Further simplifications of (12.5) are possible in the limit of large n, when the coefficients Cq,n

(8.11) can be estimated using the asymptotic of the Hermitian polynomials [128] and Stirling’s
formula for the factorial (see appendix C), i.e.

lim
n→∞, x→∞

Hn(x)→ 2nxn, n! ∼
n→∞

√
2πnn+1/2e−n. (12.6)

Insertion of the approximation (12.6) into the coefficients Cq,n yields

Cq,n ≈
(2π)−1/4

(2π)3

(
ū(pn)
√

2εn
γ0 u(p0)
√

2ε0
+

ū(pn)
√

2εn
b̂k̂γ0 u(p0)

√
2ε0

√
n

2(q · k)

)
Mq,n,

Mq,n =

∫
dr exp

{
− i(q − p0)(r − r0) − |θ|2/2 + αθ − α2/2 +

1
2

(θ − α)2η

− 1
2

(n +
1
2

) ln n +
n
2
+ n ln(θ − α)

}
. (12.7)

Equation (12.7) contains various products of the coefficients Cq,n and the complex conjugate
C∗q,n′ , involving various combinations of n and n′. These products can be written in the general
form as

ei(q′−q)·xC∗q′,n+lCq,n =
(2π)−

1
2

(2π)6 A∗q′Aq

∫
dr′dreΦl(t,x,q,q′,r,r′,n), (12.8)

where the phase function is equal to

Φl(t,x, q, q′, r, r′, n) = it(q0′
n+l − q0

n) − i(q′ − q) · x + i(q′ − p0)(r′ − r0)

− i(q − p0)(r − r0) − β2 + β
(
α′e−ik·r′ + αeik·r

)
−

(
n +

1
2

)
ln n

+ n + n
(
ln β2 − ik(r′ − r) − 1

β

(
α′eik·r′ + αe−ik·r

))
+
β2

2

(
η′e−2ik·r′ + ηe2ik·r

)
− l

2
ln n + l(ln β − ik · r′) (12.9)

with Aq being the non-oscillating amplitude factor and index l runs through {0, 1, 2}.
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The evaluation of (12.5) for the average value of the spin will be carried out in two steps.
At the first step, we will calculate the integrals over the variables r, r′, q, q′, and sum over the
field quantum number n. At the second step, we average the matrix element over a spin space.

The integrations over the variables r and r′ in equation (12.8) will be performed in the
coordinate system where z and z′ axes directed along the k vector. Therefore, any vectors can
be written in the form y = y⊥ + yz, with yz being directed along z, z′ and y⊥ being directed
perpendicular to the latter. Then the integrations over r⊥ and r′⊥ give rise to the product of
δ-functions δ(q′⊥ − p0⊥)δ(q⊥ − p0⊥), which removes the integration over q′⊥ and q⊥ and leads to
the conservation law

q⊥ = q′⊥ = p0⊥. (12.10)

Then the phase function (12.9) transforms to

Φ(qz, q′z, z, z
′, n) = it(q0′

n±l − q0
n) − i(q′z − qz)zi + i(q′z − p0z)z′ − i(qz − p0z)z

− β2 + β
(
α′e−iωz′ + αeiωz

)
−

(
n +

1
2

)
ln n + n

+ n
(
ln β2 − iω(z′ − z) − 1

β

(
α′eiωz′ + αe−iωz

))
+
β2

2

(
η′e−2ikz′ + ηe2ikz

)
− l

2
ln n + l(ln β − iωz′),

q0
n = ωn +

√
p2

0⊥ + (qz − ωn)2 + m2; zi =
xk

ω
− z0. (12.11)

The change of variables

qz − ωn→ qz; qz → qz + ωn.

modifies the phase:

Φ(qz, q′z, z, z
′, n) = iωlt + it

(√
p2

0⊥ + (q′z − ωl)2 + m2 −
√

p2
0⊥ + q2

z + m2
)

− i(q′z − qz)zi + i(q′zz
′ − qzz) + i(ωn − p0z)(z′ − z)

− β2 + β
(
α′e−iωz′ + αeiωz

)
−

(
n +

1
2

)
ln n + n

+ n
(

ln β2 − iω(z′ − z) − 1
β

(
α′eiωz′ + αe−iωz

))
+
β2

2

(
η′e−2ikz′ + ηe2ikz

)
− l

2
ln n + l(ln β − iωz′). (12.12)

Now one should average over the coordinate zi, which corresponds to the averaging over the
initial electron coordinate r0 in the uniform electron beam in real experiments. The averaging
results in an additional δ-function, δ(qz − q′z), which removes the integration over q′z and leads
to the conservation law

qz = q′z.
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Let us estimate the values of δ and ∆ in equation (12.5) after the integrations have been
already performed. Using the definition

δ = αq′ − αq =
∂α

∂q
(q′ − q) +

∂α

∂n
l, ∆ = ηq′ − ηq =

∂η

∂q
(q′ − q) +

∂η

∂n
l, (12.13)

these values are equal to zero within the considered accuracy because q′ = q and the derivatives
over n also vanish, i.e.

α = − (q · b)
(q · k)

=
q⊥ · b

k(
√

p2
0⊥ + m2 + q2

z − qz)
,

∂α

∂n
= 0,

η =
b2

2(q · k)
=

b2

2k(
√

p2
0⊥ + m2 + q2

z − qz)
,

∂η

∂n
= 0.

(12.14)

The spin (12.1) then transforms to

⟨sµ(t)⟩ = 1∑
n

∫
dq|Cq,n|2

∫
dqzdz′dz

∑
n

|Aq|2
{
eΦ0

ū(pn)
√

2εn
γ5γµ

u(pn)
√

2εn

+
ū(pn)
√

2εn

b̂k̂γ5γµk̂b̂
4(q · k)2 n

u(pn)
√

2εn

(
eΦ0 + eΦ−2 + eΦ2

)
+

ū(pn)
√

2εn
(b̂k̂γ5γµ + γ5γµk̂b̂)

√
n

2(q · k)
u(pn)
√

2εn

(
eΦ−1 + eΦ1

) }
. (12.15)

The main contributions to the sum over the field quantum number n arise from values of n
near the quasi-classical value n̄ ≫ 1. This gives the possibility of changing the summation over
n to an integration over the complex variable. Then this integral in the complex plane can be
evaluated using the saddle point method (see Appendix C). According to the method, the saddle
point is defined by the first derivative of the phase

Φ(qz, q′z, z, z
′, n) = iωtl + it(

√
p2

0⊥ + (qz − ωl)2 + m2 −
√

p2
0⊥ + q2

z + m2) + iqz(z′ − z)

− ip0z(z′ − z) − β2 + β
(
α′e−iωz′ + αeiωz

)
+
β2

2

(
η′e−2ikz′ + ηe2ikz

)
−

(
n +

1
2

)
ln n + n + n

(
ln β2 − 1

β

(
α′eiωz′ + αe−iωz

))
∓ l

2
ln n

± l(ln β − iωz′). (12.16)

This gives the equation for the determination of the saddle point

∂Φ

∂n
= −α

β

(
eikz′ + e−ikz

)
− ln n + ln β2 = 0. (12.17)

The value β =
√

n̄ is a large number, and therefore we can build a solution of equation (12.17)
as a series over parameter 1/β. With the accuracy o(1/β2) one obtains the saddle point n0 as

n0 = β
2 − αβ(cos kz′ + cos kz) − iαβ(sin kz′ − sin kz). (12.18)
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The zeroth order solution for n0, which is equal to β2, yields the quasi-classical limit. The
first order corrections, proportional to the parameter βα, give rise to the desired quantum effects.

The substitution of equation (12.18) into the phase (12.16) gives

Φl(n0) = iklt

1 − qz√
p2

0⊥ + m2 + q2
z

 + i(qz − p0z)(z′ − z) − 2iαβ(sin kz′ − sin kz)

+
ηβ2

2
(cos 2kz′ + cos 2kz) − i

ηβ2

2
(sin 2kz′ − sin 2kz) − ln β − ilkz′, (12.19)

and the integrals in the expression for the spin have the form∫
dndqzdz′dz

∑
n

{
A∗qAqeΦl(n0)+Φ

′′
nn
2! (n−n0)2}

, (12.20)

where Φ′′nn denotes the second derivative calculated at the saddle point n0.
The phase Φl(n0) has linear and second order terms in β. We now show that the terms in

the phase Φl(n0) which are quadratic in the coherent state parameter β can be neglected for
intensities up to including 1018 W/cm2.1 For this purpose, let us estimate the absolute values
of βα and ηβ2. If we choose the density of photons ρ = 1020 cm−3, the photon frequency
ω = 105 cm−1, and γ = εq/m = 10, then the values of the products are

βα ≈ e0

√
ρθ

√
ωω(γ−2 + θ2)

∼ 103 (12.21)

and

β2η ≈ e2
0

ρ

ω2mγ(γ−2 + θ2)
∼ 10−1, (12.22)

where e0 is the charge of the electron and θ is the angle between k and p (in this case, the
Doppler effect has its maximum value) i.e.

θ ∼ γ−1 ≪ 1.

This allows us to neglect the second order terms in comparison with the first order ones in
(12.19).

The integrals over z, z′, and qz in the expression (12.15) have the following form∫
dzdz′dqzeΦl(n0), l = {0,±1,±2}, (12.23)

and can be calculated analytically. For example, examining a general form of the integrals and
leaving only linear terms in β one obtains

A =
∫ ∞

−∞
eiQze−ia sin kzdz. (12.24)

1Note, for intensities higher than 1018 W/cm2 the parameters αβ and ηβ2 are comparable. That is why the
inclusion of ηβ2 leads to the replacement of Bessel functions by generalized Bessel functions in the sum (12.28).
In this case an analytical evaluation of the sum (12.28) is impossible and numerical methods should be used instead.
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We now separate the interval of integration into parts. Each part has the length 2π. Then (12.24)
transforms to

A =
∞∑

m=−∞

∫ π/k

−π/k
eiQ(z+2πm/k)e−ia sin kzdz =

∞∑
m=−∞

eiQ2πm/k
∫ π/k

−π/k
eiQze−ia sin kzdz. (12.25)

The first exponential in (12.25) has the representation [129]
∞∑

m=−∞
eiQ2πm/k =

∞∑
p=−∞

δ(
Q
k
− p) = k

∞∑
p=−∞

δ(Q − pk). (12.26)

Therefore, for A, we obtain

A =
∞∑

p=−∞
δ(Q − pk)J∗p(a). (12.27)

The application of (12.27) to the integrals will give the desired expression:∫
dzdz′dqzeΦl = (2π)2

∞∑
u=−∞

e
iklt

(
1− p0z+kl+ku
√

(p2
0⊥+m2+(p0z+kl+ku)2)

)
J−u(−2αβ)Ju+l(2αβ). (12.28)

The summation over u in (12.28) can be evaluated via the Euler-Maclaurin formula [128],
where the sum is replaced by an integral. The use of the integration formula of Bessel functions
by their index

∫ ∞

−∞
a−µ−xb−ν+xeicxJµ+x(a)Jν−x(b)dx =

 2 cos
(

c
2

)
a2e−

1
2 ic + b2e

1
2 ic


µ
2+

ν
2

ei c
2 (ν−µ)

· Jµ+ν
([

2 cos
(c
2

)
(a2e−

1
2 ic + b2e

1
2 ic)

] 1
2
)
, (12.29)

yields ∫
dzdz′dqzeΦl = (2π)2(−i)leiklt

(
1− 2p0z+kl

2ε0

)
Jl(4αβ sin

k2lt
2ε0

). (12.30)

The norm of the coefficients Cq,n can be calculated in the same way as the calculation of the
product of Cq,n-coefficients. This coincides with the integral of

∫
dzdz′dqzeΦ0 and leads to∑

n

∫
dq|Cq,n|2 = (2π)2|Aq|2

∫
dne− ln β+Φ

′′
nn
2! (n−n0)2

. (12.31)

Therefore, when we insert the norm into the spin expression (12.15), it cancels the integral over
n and eΦ0 .

The last step is to calculate the average in spin space. For this purpose, the zeroth order
value for n0 can be inserted into all pre-exponential terms. This gives the expression for the
averages

ū(pn)
√

2εn
γ5γµ

u(pn)
√

2εn
;

ū(pn)
√

2εn
b̂k̂γ5γµk̂b̂

u(pn)
√

2εn
;

ū(pn)
√

2εn
(b̂k̂γ5γµ + γ5γµk̂b̂)

u(pn)
√

2εn
. (12.32)
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Inserting the density matrix of the electron

ρ = u(p) ⊗ ū(p) =
1
2

( p̂ + m)(1 − γ5â), (12.33)

into equations (12.32), we obtain

ū(pn)
√

2εn
γ5γµ

u(pn)
√

2εn
=

1
εn

Spργ5γµ;

ū(pn)
√

2εn
b̂k̂γ5γµk̂b̂

u(pn)
√

2εn
= −kµb2

εn
Spργ5k̂; (12.34)

ū(pn)
√

2εn
γ5(b̂k̂γµ + γµk̂b̂)

u(pn)
√

2εn
=

1
εn

Sp
(
kµργ5b̂ − bµργ5k̂

)
.

By using the results of paragraph D, i.e., taking into account the fact that the trace of the product
of the gamma matrices is nonzero only for even numbers of matrices,

(
γ5

)2
= 1 and γ5 anti-

commutes with γµ one obtains

ū(pn)
√

2εn
γ5γµ

u(pn)
√

2εn
=

m
εn

aµ;

ū(pn)
√

2εn
b̂k̂γ5γµk̂b̂

u(pn)
√

2εn
= −mkµb2

εn
(a · k); (12.35)

ū(pn)
√

2εn
γ5(b̂k̂γµ + γµk̂b̂)

u(pn)
√

2εn
=

m
εn

(
kµ(a · b) − bµ(a · k)).

Combining all together, we get the mean value of the electron spin four vector as

⟨sµ(t)⟩ = m
ε0

aµ0 −
m
ε0

kµ(a0 · k)
β2b2

(p0 · k)2
(1 + ReΠ2) +

[
m
ε0

β

(p0 · k)
(kµ(a0 · b) − bµ(a0 · k))

]
2ReΠ1,

Πl = (−i)leiωlt
(
1− p0z

ε0

)
Jl(4αβ sin

ω2lt
2ε0

), l = 1, 2, (12.36)

where ε0 =

√
p2

0 + m2, a0 is the initial four-vector of the electron spin, p0 = (ε0,p0), and Jl the
Bessel function of the order l.

For the analysis of the electron polarization, we also need to calculate the electron current
density jµ(x, t) = ⟨ψ|γµδ(x − r′)|ψ⟩/⟨ψ|ψ⟩ averaged over the initial coordinates of the electron,
r0. This value can be evaluated in the same way as for the electron spin density. Here we present
only the final result.

jµ(t) =
pµ

ε0
− βbµ

ε0
2ReΠ1 +

kµ

ε0

(
β(b · p)
(k · p)

2ReΠ1 −
β2b2

(k · p)
(1 + ReΠ2)

)
. (12.37)

13 Quasi-classical limit
In the previous paragraph, we have calculated the observable value of an electron’s spin in the
case when an external field is quantized, i.e., including quantum fluctuations of the field. We
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have stated that the solution for the saddle point (12.18) can be represented as a series in the
inverse powers of the coherent state parameter β, with the zero order solution n0 = β2 being
a quasi-classical limit. Therefore, in this case the quantum spin vector s must coincide with
the corresponding quasi-classical Volkov one, when the former is not averaged in time. This
corresponds to the quantum case when the averaging over the initial coordinate zi in the phase
of the expression (12.17) is not performed.

In order to show this correspondence we use the saddle point method to evaluate the sum
over the field quantum number n without averaging over zi. As before, this leads to the same
equation for n (12.17), but in this case we preserve only the leading term in β, which is equal to

n0 = β
2,

and coincides with the quasi-classical limit. This means that the values αβ and ηβ2 are equal to
zero.

We now change the variable q′z to q′z − ωl in (12.16). This leads to the integrals

I ∼ eiωl(t−zi)−ln β ·
∫

dz′dq′ze
it
√

p2
0⊥+q′2z +m2−iq′zzi+iq′zz

′−ip0zz′

·
∫

dzdqze−it
√

p2
0⊥+q2

z+m2+iqzzi−iqzz+ip0zzer(δ,∆), (13.1)

where er(δ,∆) represents additional terms appearing in the cumulant expansion. They are inde-
pendent of z and z′, and thus are not relevant here.

The integrals over z and z′ yield the product of delta functions δ(qz − p0z)δ(q′z − p0z), which
cancels the integration over qz and q′z and removes r(δ,∆). The average in spin space is carried
out analogously to the previous calculation for the derivation of equation (12.36).

Therefore, the average value of the spin four-vector can be expressed through the integrals

I ∼ eiωl(t−zi),

which exactly leads to the quasi-classical Volkov value without time averaging.

14 Description of the final electron polarization
The interaction process of the electron with the field can be understood in the following way.
For t < 0, the electron is free, such that it is described by the free solution of the Dirac equation
and the field is in a coherent state β, with the average number of photons n̄ = β2.

At t = 0, the electron crosses the border of the field beam and the interaction starts. We
suppose that the boundaries of the field beam are rather sharp. However, the real boundary
transition width is not of zero width, and carrying out the above averaging over the initial
coordinate r0 corresponds to an averaging over this width. This procedure is widely used in
scattering theory and is described in great detail in reference [122]. During the interaction,
the system of the electron and the field is described by the wave function (8.2). The electron
interacts with the field during the time

t0 ∼
d

v0 sin θ
, (14.1)
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Figure 14.1 – Electron motion in a single-mode quantized field. p0 is the initial momentum of
the electron, b the polarization vector of the field, the z-axis is directed along the
wave vector k, a and a† are, respectively, the annihilation and creation operators,
ω is the frequency of field, and N+1 (N−1) the number of particles with helicity
equal to 1 (-1).

where d is the “thickness” of the laser pulse, v0 the velocity of the electron, and θ the angle
between k and v0 (see Figure 14.1).

At t = t0, the interaction is turned off, the electron becomes free and the detector2 can
measure the spin s(t0). A change in the interaction time t0 will lead to different spin values.
This time can be changed in two ways. The first is to change the energy of the electron. The
larger the electron energy, the less time it spends in the field. The second way is to change the
angle θ. The closer the angle θ is to π, the more time the electron interacts with the field.

The polarization of the electron is characterized by its helicity—the projection of the spin s
on the direction of its momentum ν = p0/p0. The eigenvalues of the helicity operator for a free
electron are ±1. According to the general rules of quantum mechanics, the expectation value of
the helicity operator can be written as

⟨Σ · ν⟩ = p1 · 1 + p−1 · (−1), (14.2)

with p1 and p−1 being the probabilities of observing the electron with helicity +1 and −1,
respectively. Usually, one considers at the beginning the situation of p1 being unity and p−1

zero, and the interest is how p1 and p−1 are modified due to the interaction.
However, in a real experiment, there is no single electron, but rather, a beam of N electrons.

If an initial electron beam was fully polarized, some quantity of electrons with opposite polar-
ization should appear after the interaction is finished. Namely, the number N−1 of such electrons
is equal to

N−1 = p−1N (14.3)

if at the initial moment of time t = 0 the helicity of the electron was equal to +1.
To calculate the polarization, we choose a coordinate system with z-axis directed along k. It

is further assumed that the initial electron momentum p0 has the angle θ with the z-axis and that
2Here we assume that the detector tracks solely the electrons that possess initial momentum p0 while in [55],

the electrons scattered by the field are tracked (the number of such an electrons is small).
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the field is linearly polarized and directed perpendicularly to the z-axis (Fig. 14.1). We assume
that at the initial moment of time, the vector ζ (the average spin in the electron’s rest frame) is
directed along the momentum in the laboratory frame, such that p · ζ = p, which corresponds
to the helicity of the electron’s being +1.

In this coordinate system,

p0 = (ε0, 0, p0 sin θ, p0 cos θ), k = (ω, 0, 0, ω),
b = (0, 0, b, 0), ζ = (0, sin θ, cos θ),

a0 =
ε0

m
s0 =

ε0

m

(
p0

ε0
, 0, sin θ, cos θ

)
. (14.4)

If one uses the definitions (14.4), the four-products in (12.36) can be found as follows:

m
ε0

(a0 · k) = ω(v0 − cos θ),
m
ε0

(a0 · b) = −b sin θ,

(p0 · k) = ωε0(1 − v0 cos θ), βα = −β (q · b)
(p0 · k)

=
βb
ε0

ε0

ω

v0 sin θ
1 − v0 cos θ

, (14.5)

where the velocity of the electron is v0 = p0/ε0 and the the total momentum of the system
q = p0 + kβ2.

In order to find the helicity of the electron after the interaction with the field, we project the
spin vector s onto the direction of the electron momentum ν = p0/p0 = (0, sin θ, cos θ):

s · ν = s0 · ν + k · p0(s0 · k)
β2b2

(p0 · k)2
(1 + Re Π2)

+
β

(p0 · k)
(k · p(s0 · b) − b · ν(s0 · k)) 2Re Π1. (14.6)

Taking into account that the scalar products are equal to

s0 · ν = 1, k · ν = ω cos θ, b · ν = b sin θ (14.7)

and inserting them into (14.6), we find

s · ν = 1 +
ξ2

γ2

(v0 − cos θ) cos θ
(1 − v0 cos θ)2

(1 + Re Π2) − 2
ξ

γ

v0 sin θ
1 − v0 cos θ

Re Π1, (14.8)

where

ReΠ1 = sin(ωt(1 − v0 cos θ))J1

(
4
ξ

γ

ε0

ω

v0 sin θ
1 − v0 cos θ

sin
(
ω

2ε0
ωt

))
,

ReΠ2 = − cos (2ωt (1 − v0 cos θ)) J2

(
4
ξ

γ

ε0

ω

v0 sin θ
1 − v0 cos θ

sin
(
ω

ε0
ωt

))
and the dimensionless parameter

ξ =
βb
m

(14.9)

was introduced. However, to find the observable quantity which is the polarization, equation
(14.8) should be normalized by the probability of finding an electron at the observation point,
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i.e., divide by j0(t), the zeroth component of the current density vector, defined in (12.37). Then
the observable value of the polarization amounts to

s · ν
j0 =

1 + ξ2 f − 2ξg
1 + ξ2 f1 − 2ξg

, (14.10)

where

f =
(v0 − cos θ) cos θ
(1 − v0 cos θ)2γ2

(1 + Re Π2) , g =
v0 sin θRe Π1

(1 − v0 cos θ)γ
, f1 =

(1 + Re Π2)
(1 − v0 cos θ)γ2 .

Equation (14.10) describes the dependence of the electron polarization on the interaction
time t. Using equations (14.2), (14.10), and the condition p1 + p−1 = 1, the probabilities of
finding the electron in the transmitted (non scattered) beam in various polarization states can be
calculated as follows

p1 =
1
2
+

1
2

1 + ξ2 f − 2ξg
1 + ξ2 f1 − 2ξg

, p−1 =
1
2
− 1

2
1 + ξ2 f − 2ξg
1 + ξ2 f1 − 2ξg

. (14.11)

These probabilities should be compared with the Volkov probabilities written in the same
variables,

pv,1 =
1
2
+

1
2

1 + ξ2 fv

1 + ξ2 f1v
, pv,−1 =

1
2
− 1

2
1 + ξ2 fv

1 + ξ2 f1v
, (14.12)

where fv = (v0 − cos θ) cos θ/((1 − v0 cos θ)2γ2) and f1v = 1/((1 − v0 cos θ)γ2).
One can see that the probabilities depend on time in the quantum case, unlike those of

Volkov’s solution. This means that the quantum fluctuations can change the system dynamics
similarly to what takes place for the two level atom.

Let us find the parameter which governs the slow oscillations in the time evolution in (14.8).
For this purpose, we investigate the system evolution for small times t. In this case, the sine
inside the Bessel functions can be expanded in its Taylor series and one finds that the amplitude
of the quantum fluctuations is defined by the parameter ξ that corresponds to the parameter x,
which was introduced by Ritus in his work [14].

15 Collapse-and-revival dynamics of an electron spin

Modern lasers can reach nowadays high intensities [5–7, 9, 10] up to 1022 W/cm2 with a pulse
duration of about 30 fs. For our concrete analysis, we choose the intensity I = 1018 W/cm2,
and the photon frequency ω = 7.8 · 104 cm−1, i.e. a corresponding wavelength of 800 nm. As
was already mentioned, the interaction time can be adapted either via the electron’s energy or
by changing the electron’s path in the light pulse such as e.g. by varying the entrance angle θ.
Figure 15.1 displays the probability of finding the particles with the flipped polarization in the
electron beam as a function of the equal entrance and exit angles θ between p0 and k.

As can be seen from the graphs, when the interaction time increases, corresponding to larger
angles, characteristic structures of the probabilities appear. In addition to fast oscillations at the
frequency of field ω, there are slow oscillations governed by the parameter ξ. These oscillations
occur around the mean value, which corresponds to the quasi-classical Volkov case. It should be
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Figure 15.1 – The probability of finding the electron with flipped polarization as a function of
the angle θ for an intensity I = 1018 W/cm2, a frequency of the photon ω =

7.8 · 104 cm−1 (corresponding to wavelength of 800 nm), an initial probability
p−1 = 0, and γ values of the electron equal to 5 and 10.
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Figure 15.2 – The probability of finding an electron with flipped polarization as a function of γ
for an intensity I = 1018 W/cm2, a frequency of the photon ω = 7.8 · 104 cm−1

(corresponding to wavelength of 800 nm), an initial probability p−1 = 0, and
values of the entrance angle θ equal to 30 and 140 degrees.

noted that this special structure appears only when the field is considered as a quantum object:
it can not appear in the quasi-classical case.

Figure 15.2 shows the dependence of the probability of finding an electron with flipped
polarization as a function of the electron energy for the two values of fly-in angle θ equal to
30 and 140 degrees. As in the previous case, there are oscillations which appear due to the
quantum nature of the electromagnetic field. The average of these oscillations represents the
quasi-classical Volkov probability. Figure 15.3 shows the dependence of the probability of
finding an electron with a flipped polarization as a function of the dimensionless parameter
ξ, with the entrance angle θ equal to 140 degrees and two values of the gamma factor of the
electron equal to 5 and 10. As in Fig. 15.1 and 15.2, the probability oscillates near the quasi-
classical Volkov value. Since probability p−1 is inversely proportional to γ, the spin flip will
have larger values for less relativistic electrons. However, p−1 is also proportional to ξ and
the interaction time Tint decreases for large ξ and γ, such that there is trade-off of the various
parameters.
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Figure 15.3 – The probability of finding an electron with flipped polarization as a function
of ξ for the entrance angle θ equal to 140 degrees, a frequency of the photon
ω = 7.8·104 cm−1 (corresponding to wavelength of 800 nm), an initial probability
p−1 = 0, and values of the γ factor of the electron equal to 5 and 10. The
parameter ξ equal to 0.1 corresponds to the intensity 8.4 · 1016 W/cm2 and ξ

equal to 0.35 to the intensity 1.0 · 1018 W/cm2.

In real experiments an electron beam involves a spread in both initial energy and direction.
We ensured that an uncertainty of one percent in energy and in the angular distribution does
not change the displayed probabilities in above figures visibly. We emphasize from the order of
magnitude in the probabilities in Figs. 15.1 & 15.2 that the number of electrons should be well
above 1000 and that mutual interactions shall be avoided with appropriate densities.

Note that the atomic two-level system possesses an analogous behavior. In this case, the
level population is considered instead of the electron polarization. The fast oscillations in the
population inversion essentially depend on the Rabi frequency while for an electron in a quan-
tized field, it can be linked to the oscillations at the frequency of the electromagnetic field ω.
The structure of the slow oscillations is reminiscent of the “collapse–revival” effect for inverted
populations, according to which the population inversion of the two-level system vanishes but
after some time revives again. This effect is purely quantum mechanical and can not be found
in a quasi-classical analysis.

At the end we want to address the influence of the Compton effect on the collapse-revival
effect, because there always is low energy photon emission in which the emerging electron
is measured as having unchanged momentum. For that reason the “momentum unchanged”
channel will be contaminated by Compton electrons. The number of such electrons, estimated
via Klein-Nishina formula [2] for the employed parameters, does not exceed 10−6 of the total
number of electrons in the beam.



Chapter III

Spin-dependent Compton scattering in an
intense classical electromagnetic field

16 Furry picture in quantum electrodynamics

In the second chapter we assumed that the single-mode approximation is valid and applied the
exact solution of the Dirac equation to study the collapse-revival dynamics of an electron in
the field of a quantized plane electromagnetic wave in a non-perturbative way. We have found
important peculiarities of the evolution of the electron spin, which have a special structure: fast
oscillations at the frequency of the fieldω, and slow oscillations that correspond to the collapse–
revival effect. The slow oscillations are governed by the invariant parameter ξ. This special
structure appears due to the quantum nature of the electromagnetic field. We proposed the
possibility of the observation of the collapses and revivals for the field intensity I = 1018 W/cm2

which corresponds to the parameter ξ ∼ 0.35. In this section, however we will neglect the
quantum fluctuations of the external field and investigate the limit ξ ≫ 1, with the description
of QED processes in Furry representation [12]. In what follows we will revise this approach.

When electrons, positrons and photons interact with each other, the stationary states of
this system change, moreover the number of particles changes as well. Consequently, this
bring us to the secondary-quantization of the fields. This means, that the wave function of the
system does not only depend on the coordinates and time, but is an operator acting in a space of
the occupation numbers. Then for the description of the scattering processes the “interaction”
picture is used. If the Hamiltonian of the system can be introduced as a sum H = H0 + Hi of
the interaction Hamiltonian Hi and the free Hamiltonian H0, then in the “interaction” picture the
evolution of the state vectors is governed by the interaction Hamiltonian and operators (F is an
arbitrary operator) are time dependent and governed by the free Hamiltonian:

i
∂

∂t
Φ(t) = H(i)

i Φ(t), (16.1)

∂

∂t
F = i[H0,F].

The unitary operator S(t, t0), which connects operators in the Heisenberg representation and
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operators in the interaction representation satisfies the same equation as Φ(t)

i
∂

∂t
S(t, t0) = H(i)

i S(t, t0), S(t0, t0) = 1, (16.2)

Φ(t) = S(t, t1)Φ(t1).

We call the operator S(t, t0) the evolution operator or S-matrix. The interaction operator in QED
is Hi = −

∫
N(jµAµ)dx, where jµ = ie/2[ψ̄(x), γµψ(x)] is the electron-positron current density, N

is the normal ordering operator and Aµ is the operator of an electromagnetic field.
After the evolution operator is specified, we suppose that the adiabatic hypothesis is valid,

i.e., it is considered that the interaction between the fields is slowly turned off at t = ±∞, which
corresponds to that the state vector of the system in the interaction representation coincides with
the state vector in the Heisenberg representation

Φ(−∞) = Φi.

The state vector Φ(+∞) = S(+∞,−∞)Φ(−∞) can be decomposed as a superposition of free
field states

Φ(+∞) =
∑

f

a fΦ f , (16.3)

This gives a possibility to find the probability of a transition of the system of electrons,
photons and positrons from the state i to state f :

a f = (Φ f ,SΦi) ≡ ⟨ f |S|i⟩. (16.4)

By obtaining equation (16.4) we considered that the interaction can be switched off adiabat-
ically. This means, that the interaction Hamiltonian

Hi = 0 when t = ±∞. (16.5)

However, independently on the distance between the interacting particles we can not consider
the condition (16.5) to be fulfilled, as the interaction always exist between the electron-positron
and the vacuum electromagnetic fields. The only formal possibility to vanish Hi is to set the
charge of an electron to zero. At the same time, the change of e will lead to the change of the
electron mass, which is the energy of the ground state of the interacting fields. We have no
reason to consider that this mass is equal to the mass of an electron which does not interact
with an electromagnetic field (“bare” electron). Therefore, the condition (16.5) coincide to
the transition from real physical particles to the ideal “bare” particles, with a different mass
spectrum. In order to overcome this difficulty the renormalization procedure of an electron
charge and a mass need to be introduced [2].

Concluding, the application of the S-matrix formalism (16.4) to the calculation of the quan-
tum electrodynamical processes is based on the secondary-quantization of the fields, on the
“interaction” representation of state vectors and operators, on the applicability of the adiabatic
hypothesis and the renormalization procedure.

Equation (16.2) is an operator equation for the determination of the transition operator S and
can not be solved in the general case. However, the current density operator jµ is proportional
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to the electron charge, which plays a role of the interaction constant between the fields. This
constant

α =
e2

ℏc
=

1
137.0388

is a small value, an consequently we can try to find a solution in a form of a series in α [2]:

S(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0
dt1

∫ t

t0
dt2 . . .

∫ t

t0
dtnT(Hi(t1)Hi(t2) . . .Hi(tn)), (16.6)

or

S(t, t0) = T
(
exp

(
−i

∫ t

t0
Hi(t′)dt′

))
, (16.7)

where T is a time ordering operator. The time ordering operator places operators by increasing
time, for example

T(Hi(t1)Hi(t2)) =
{

Hi(t1)Hi(t2), t2 < t1

Hi(t2)Hi(t1), t1 < t2
. (16.8)

Let us introduce the N-product of operators. The action of N on the product of creation
and annihilation operators results in the creation operators are always on the left side from the
annihilation operators. For example:

N(a1a†2a†3a4) = δa†2a†3a1a4,

where δ is equal to (−1)n, with n being a permutation power for the Fermi operators and 1 for
the Bose operators.

The time ordering can be decomposed using Wick theorem [130]:

Wick theorem 1. A T-ordering product of the field operators is equal to the sum of N-products
where operators are contracted in all possible ways:

T(a1a2a3 . . . an) = N(a1a2 . . . an) + N(a•1a•2a3 . . . an) + N(a•1a2a•3 . . . an) + . . .
+ N(a•1a2a3 . . . a•n). (16.9)

Wick theorem 2. A mixed T-ordering is equal to the sum of N-products, in which operators are
contracted in all possible ways, except of contractions inside the same N-product:

T(N(a1a2)N(a3a4) . . .N(an−1an)) = N(a1a2a3 . . . an) + N(a•1a2a•3a4 . . . an−1an) (16.10)
+ N(a•1a2a3a•4 . . . an−1an) + . . . + N(a•1a2a3a4 . . . an−1a•n).

The contractions a•1a•2, a•3a•4, ...,a•n−1a•n are not in the sum (16.10).
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The contractions between field operators are defined in the following way

A•µ(x)A•ν(x′) = gµνD(x − x′),

ψ
•
α(x)ψ•β(x′) = 0,

ψ̄
•
α(x)ψ̄•β(x′) = 0, (16.11)

ψ
•
α(x)ψ̄•β(x′) = S αβ(x − x′),

ψ̄
•
β(x)ψ•α(x′) = −S αβ(x − x′),

where

D(x) =
−i

(2π)4

∫
ei(k·x)

k2 − i0
d4k and S αβ =

−i
(2π)4

∫
p̂ + m

p2 + m2 − i0
ei(p·x)d4 p (16.12)

and α, β are the spinor indices.
The series for the S-matrix is a product of different field operators in the “interaction” picture

taken in a spacial points x1, x2, ..., xn. Therefore the matrix elements of these operators need to
be calculated. In order to do so, we mention, that the field operators in the “interaction” picture
satisfy the same equation of motion as in the case of free fields and can be decomposed in series

Aµ(x) =
∑
k,λ

1
√

2Vω

(
eµλckλe−i(k·x) + e∗µλ c†kλe

i(k·x)
)
,

ψ(x) =
∑
p,µ

1
√

2Vϵ

(
uµ(p)apµe−i(p·x) + ūµ(−p)b†pµe

i(p·x)
)
, (16.13)

ψ̄(x) =
∑
p,µ

1
√

2Vϵ

(
ūµ(p)a†pµe

i(p·x) + uµ(−p)bpµe−i(p·x)
)
,

where c†kλ is the creation and ckλ is the annihilation operators of a photon with the wave vector k
and polarization λ; analogously operators apµ, a†pµ are the annihilation and creation operators of
an electron with the momentum p and helicity µ, and, at last, bpµ, b†pµ are the annihilation and
creation operators of the positron with the momentum p and helicity µ.

From here, it is not difficult to find the non-vanishing matrix elements

⟨0kλ|Aµ(x)|1kλ⟩ =
1
√

2Vω
eµλe
−i(k·x), ⟨1kλ|Aµ(x)|0kλ⟩ =

1
√

2Vω
e∗µλ ei(k·x),

⟨0+pµ|ψ(x)|1+pµ⟩ =
1
√

2Vϵ
uµ(p)e−i(p·x), ⟨1+pµ|ψ̄(x)|0+pµ⟩ =

1
√

2Vϵ
ūµ(p)ei(p·x), (16.14)

⟨0−pµ|ψ̄(x)|1−pµ⟩ =
1
√

2Vϵ
ūµ(−p)e−i(p·x), ⟨1−pµ|ψ(x)|0−pµ⟩ =

1
√

2Vϵ
uµ(−p)ei(p·x).

Equation (16.6), (16.11) and (16.14) are the basis of the perturbation theory in QED, which is
relativistically invariant.

Above we considered that when t tends to ±∞ particles become free. However, the S-matrix
formalism gives possibility to solve problems when particles are moving in an external electro-
magnetic field (Furry representation) and interact with a secondary-quantized electromagnetic
field.
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Let the particles move in the external field A(e)
µ . Then the secondary-quantized wave func-

tions ψ(x), ψ̄(x) of an electron and a positron can be decomposed in a series over exact solutions
of the Dirac equation in the external field A(e)

µ :

ψ(x) =
∑

s

asψ
(+)
s (x) +

∑
r

b†rψ
(−)
r (x),

ψ̄(x) =
∑

s

a†sψ̄
(+)
s (x) +

∑
r

brψ̄
(−)
r (x),

(16.15)

where indices + and − denote states with positive and negative energies respectively.
The matrix elements in this case change and look like

⟨0+s |ψ(x)|1+s ⟩ = ψ(+)
s (x), ⟨1+s |ψ̄(x)|0+s ⟩ = ψ̄(+)

s (x),

⟨0−r |ψ̄(x)|1−r ⟩ = ψ̄(−)
r (x), ⟨1−r |ψ̄(x)|0−r ⟩ = ψ(−)

r (x). (16.16)

An external field is weak in many cases and can be considered via perturbation theory,
through the inclusion in the potential A′µ(x) = Aµ(x) + A(e)(x). For this reason the electron’s
current jµ(x) will interact also with the external field and we can still use the S-matrix formalism.
In this case the decomposition of the secondary-quantized wave functions ψ(x) and ψ̄(x) is build
over the eigenfunctions of a free particle.

There is also an intermediate case, when a part of an external field is considered as a strong
and is included through the exact solution of the Dirac equation and another weak part can be
considered as a small perturbation. Then as in a previous case the decomposition (16.15) for
the electron-positron wave functions is used and in addition a vector potential becomes the sum
A′µ(x) = Aµ(x) + A(e)(x).

17 Orthogonality of Volkov solutions
The orthogonality of Volkov’s solutions is important for the construction of the perturbation
theory. Following [15], we will represent here an explicit prove as some papers [131, 132]
contain the very strange statement that the Volkov solutions are not orthogonal and consequently
the conclusions that the Hamiltonian is non-Hermitian.

In order to do so, we chose the coordinate system with the z-axis be directed along k. In
this coordinate system four vectors of the problem are

k = (ω, 0, 0, ω), A = (0, Ax, Ay, 0),
p = (ϵ,p⊥, pz), p⊥ = (px, py, 0), (17.1)

and consequently scalar products in the Volkov wave function looks like:

(k · p) = ω(ϵ − pz) = ωp−, (p · A) = −p⊥ ·A,
A2 = −A2, (k · x) = ω(t − z) = ωη. (17.2)

By plugging (17.2) into equation (1.2) one obtains

ψpµ =

[
1 +

ek̂Â
2(k · p)

]
uµ(p)√

2p0
exp

{
i
(
p⊥ · x − p−

t + z
2
−

∫ η

0
dη′

(p⊥ − eA)2 + m2

2p−

)}
. (17.3)
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As can be seen from equation (17.3), the field term in the exponent does not depend on the
x and y coordinates, but depends on the t and z. For this reason, during investigation of the
orthogonality condition we will be able to integrate in x, y plane, which yields two dimensional
delta function δ(p′x − px)δ(p′y − py):∫

drψ†p′µ′(r)ψpµ(r) = (2π)2δ(p′x − px)δ(p′y − py)

×
∫ ∞

−∞
dz

ūµ
′
(p′)√
2p′0

[
1 +

eÂk̂
2ωp′−

]
γ0

[
1 +

ek̂Â
2ωp−

]
uµ(p)√

2p0
(17.4)

× exp
{
−i(p′− − p−)

t + z
2
− i

p′− − p−

2p′−p−

∫ η

0
dη′

(
(p⊥ − eA)2 + m2

)}
.

Next we make a variable change

u = z +
1

p′−p−

∫ η

0
dη′

(
(p⊥ − eA)2 + m2

)
, (17.5)

dz =
du

1 − (
(p⊥ − eA)2 + m2) /(p′−p−)

,

and equation (17.4) transforms to

(2π)2δ(p′x − px)δ(p′y − py)
∫ ∞

−∞
du

ūµ
′
(p′)√
2p′0

[
1 +

eÂk̂
2ωp′−

]
γ0

[
1 +

ek̂Â
2ωp−

]
uµ(p)√

2p0
(17.6)

× exp {−i(p′− − p−)(t + u)/2}
1 − (

(p⊥ − eA)2 + m2) /(p′−p−)
.

Then with a very lengthy and cumbersome calculation it is possible to show that the average
value from spinors exactly cancels the denominator of the equation (17.6). Consequently, we
can integrate over u, which yields δ(p′− − p−). For this reason∫

drψ†p′µ′(r)ψpµ(r) = (2π)3δ(p′x − px)δ(p′y − py)δ(p′− − p−)
p−

p0 uµ
′†(p)uµ(p)δµ′µ. (17.7)

18 Characteristic parameters of an electron and a field sys-
tem

In this section we will revise one more time the characteristic parameters of strong field QED.
The field strength is characterized through the invariant parameter [15]

ξ =
eA
m
, (18.1)

where A is the amplitude of the potential of an electromagnetic field. This parameter does not
contain Planck’s constant and is equal to the work referred to m, performed by the field over
the wavelength. It can also be represented as the ratio of the field work over the Compton
wavelength to the energy ω of the field quantum.
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In the limit of small ξ the most probable processes, are those where only few photons par-
ticipate. For example, standard (linear) Compton effect includes only two electrons and two
photons. From a mathematical perspective, the decomposition of a secondary-quantized wave
functions ψ and ψ̄ over the plane wave states takes place, and all the matrix elements are calcu-
lated using equations (16.14). The first correction to the linear case is proportional to ξ2. In the
limit ξ ≪ 1 a strong external electromagnetic field is reduced to a single photon.

When ξ increases, the probability to absorb more than one photon from the external field
becomes larger and the process turns out to be multi-quantum. Equation (16.14) must be re-
placed by equation (16.16), transition amplitudes which are connected with the matrix elements
(16.16) have non-linear dependence on the field. Therefore we can state, that the parameter ξ
defines non-linearity.

The second parameter

χ =
e
√
−FµνFµδpνpδ

m3 , (18.2)

contains the Planck’s constant ℏ and is equal to the work, in the units of m, performed by the
field over the Compton wavelength in the particle rest system or equivalently χ = E/Ecr in
a particle rest frame, where the critical field Ecr = m2/e. This field performs a work m over
a Compton wavelength λc = 1/m. The parameter χ is responsible for the magnitude of the
quantum effects. In the non-linear case, i.e., when ξ ≫ 1 the quantum effects are the largest
when χ ∼ 1, while in the linear case they are optimal when χ ∼ ξ. We note here, that in
the head-on collision of a bunch of relativistic electrons with an intense laser plane wave, the
parameter χ can be represented as

χ = 2ξ
ω

m
γ, (18.3)

where γ is the electron gamma factor, γ = ϵ/m and ω is the wave frequency.
Whenever the scattering processes in the presence of a strong laser field are analyzed, the

validity of the single-mode approximation must be verified 7, i.e. we have conditions on the
pulse duration, focusing and the field intensity.

19 Non-linear Compton effect transition amplitude in a short
laser pulse

In the first chapter we investigated the exact solution of the Dirac equation in the field of a plane
wave. In 16 we have shown how the secondary-quantized wave function can be expanded over
these exact solutions. Consequently, we can obtain the first non-vanishing S-matrix element:

S =
∫

d4xT
(
N

(
jµ(x)Aµ(x)

))
= ie

∫
d4xN

(
ψ̄(x)γµψ(x)Aµ(x)

)
= ieN

[ ∑
s

a†sψ̄
(+)
s (x) +

∑
r

brψ̄
(−)
r (x)

 γµ ∑
s

asψ
(+)
s (x) +

∑
r

b†rψ
(−)
r (x)

 (19.1)

×
∑
kλ

√
4π

√
2Vω

(
eλµckλe−i(k·x) + e∗λµc

†
kλe

i(k·x)
) ]
.
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p

p1

k1

Figure 19.1 – Feynman diagram of the first-order scattering process in the field of a plane elec-
tromagnetic wave.

From equation (19.1) we conclude, that there are few possible decay processes of the first
order, for example:

• An electron-positron pair creation by a photon.

• An electron-positron pair annihilation into a photon.

• An electron decay into photon and electron.

• A positron decay into photon and positron.

All these processes are described by a single diagram, which is depicted on Fig. 19.1. We pay
attention, that contrary to the free case, a photon emission is possible due to the presence of the
plane wave.

We are interested in the case of Compton scattering, i.e., when in the initial state was a
single electron |pµ⟩ with the momentum p and helicity µ, which decayed into the final state of
an electron |p1µ1⟩ and a photon |k1λ1⟩, with the four vector k1 and polarization λ1. By using
formulas (16.16) for the matrix elements, we find the expression for the S-matrix

S f i = −ie
√

4π
∫

ψ̄µ1 p1(x)
ê∗ei(k1·x)

√
2Vω1

ψµp(x)d4x (19.2)

where ψµp(x) are the Volkov wave functions, which were defined in 1 and ê∗ is the polarization
vector of the emitted photon.

For the evaluation of (19.2) the model for the vector potential of the external field need to
be specified. We choose the circular polarization with an envelop function:

Aµ(x) =
mξ
e

f (ϕ)(Aµ1 cos ϕ + Aµ2 sin ϕ), (19.3)

where ϕ is the phase of the wave ϕ = (k · x), k is the four wave vector k = (ω,k), f (ϕ) is the
envelope function, A1 and A2 are the constant four vectors, which satisfy the conditions

(A1 · A2) = 0, (A1 · A1) = (A2 · A2) = −1, (k · A1) = (k · A2) = 0. (19.4)

We will normalize the Volkov wave functions not on the momentum, but rather on the
differences p− ≡ p0 − p3 , see 17:∫

dxψ†µ1 p1
ψµp = (2π)3δ(p1

1 − p1)δ(p2
1 − p2)δ(p−1 − p−)

p−

p0 uµ1†(p)uµ(p)

= (2π)3δ(p1
1 − p1)δ(p2

1 − p2)δ(p3
1 − p3)θ(p0

1 − p0)uµ1†(p)uµ(p) (19.5)
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where θ is the Heaviside function. There are two sets of variables in equation (19.5), which are
x− = x0 − x3, x1, x2, x3 and x0, x1, x2, x3. The Jacobian of this transformation is equal to 1.

The usual procedure with the replacement of δ-functions with a corresponding volume leads
to

δ(p1
1 − p1)δ(p2

1 − p2)δ(p−1 − p−) −→ V
(2π)3 ,

δ(p1
1 − p1)δ(p2

1 − p2)δ(p3
1 − p3) −→ V

(2π)3 . (19.6)

Consequently the normalization of the Volkov wave function in the final volume V can be
represented as ∫

V−
|ψµp|2dx = 2V p−. (19.7)

Let us come back to the calculation of the transition matrix element (19.2). By plugging the
definition (1.2) of the Volkov wave functions into equation (19.2) one obtains

S f i = −
ie
√

4π√
8V3 p−1 p−ω1

∫
ūµ1(p1)

(
ê∗ +

e
2(k · p)

ê∗k̂Â +
e

2(k · p1)
Âk̂ê∗ (19.8)

+
e2

4(k · p1)(k · p)
Âk̂ê∗k̂Â

)
uµ(p)eiS−iS ′+i(k1·x)dx.

The evaluation of equation (19.8) is convenient to perform in the coordinate system with the z
axis be directed along k. In this system the scalar product (k · x) = ω(t − z) ≡ η. Consequently,
we can write down the phase in (19.8) as

i((k1 · x) − S 1 + S ) = i(ω1 + ϵ1 − ϵ)t − i(k1z + p1z − pz)z − i((k1 + p1 − p) · r)⊥

+ imξ
(
(p1 · A1)
(k · p1)

− (p · A1)
(k · p)

) ∫ η

f (φ) cosφdφ

+ imξ
(
(p1 · A2)
(k · p1)

− (p · A2)
(k · p)

) ∫ η

f (φ) sinφdφ (19.9)

+ im2ξ2
(

1
(k · p1)

− 1
(k · p)

) ∫ η

f 2(φ)dφ,

where the ⊥ abbreviation means the scalar product in the transversal to the z axis plane, i.e.,
(a · b)⊥ = axbx + ayby.

The four potential of the external field depends only on the variable η, thus the integration
in (19.8) over ⊥ direction can be performed, yielding the two dimensional delta function:

(2π)2δ(k⊥1 + p
⊥
1 − p⊥). (19.10)

The change of variables

η = ω(t − z), dz = − 1
ω

dη, z = t − 1
ω
η (19.11)
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allows us to rewrite the transition matrix element in the following way

S f i =
ie
√

4π(2π)2δ(k⊥1 + p
⊥
1 − p⊥)√

8V3 p−1 p−ω1ω

∫
dtdηūµ1(p1)

{
ê∗ +

mξ f (η)
2(k · p)

ê∗k̂(Â1 cos η + Â2 sin η)

+
mξ f (η)
2(k · p1)

(Â1 cos η + Â2 sin η)k̂ê∗ +
m2ξ2 f 2(η)(k · e∗)

2(k · p1)(k · p)
k̂
}

uµ(p) (19.12)

× exp
[
i(k−1 + p−1 − p−)t + i

k1z + p1z − pz

ω
η

+ imξ
(
α1

∫ η

f (φ) cosφdφ + α2

∫ η

f (φ) sinφdφ
)
+ im2ξ2β

∫ η

f 2(φ)dφ
]
,

where

α1 =

(
(p1 · A1)
(k · p1)

− (p · A1)
(k · p)

)
, α2 =

(
(p1 · A2)
(k · p1)

− (p · A2)
(k · p)

)
,

β =

(
1

(k · p1)
− 1

(k · p)

)
.

As follows from equation (19.12) the integration over t can be performed, which gives the
delta function

(2π)δ(k−1 + p−1 − p−).

We now define a set of integrals

f0 =

∫
dη exp

[
iΦ(η)

]
, f11 =

∫
dη f (η) cos η exp

[
iΦ(η)

]
,

f21 =

∫
dη f (η) sin η exp

[
iΦ(η)

]
, f12 =

∫
dη f 2(η) cos2 η exp

[
iΦ(η)

]
, (19.13)

f22 =

∫
dη f 2(η) sin2 η exp

[
iΦ(η)

]
,

where
f12 + f22 =

∫
dη f 2(η) exp

[
iΦ(η)

]
and

Φ(η) =
k1z + p1z − pz

ω
η + mξ

(
α1

∫ η

f (φ) cosφdφ + α2

∫ η

f (φ) sinφdφ
)

(19.14)

+ m2ξ2β

∫ η

f 2(φ)(sin2 φ + cos2 φ)dφ.

The use of these notations gives the compact form of the transition matrix element

S f i =
ie
√

4π(2π)3δ(k⊥1 + p
⊥
1 − p⊥)δ(k−1 + p−1 − p−)√

8V3 p−1 p−ω1ω
ūµ1(p1)

{
ê∗ f0

+
mξ

2(k · p)
ê∗k̂(Â1 f11 + Â2 f21) +

mξ
2(k · p1)

(Â1 f11 + Â2 f21)k̂ê∗ (19.15)

+
m2ξ2( f12 + f22)(k · e∗)

2(k · p1)(k · p)
k̂
}

uµ(p)
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20 The role of the adiabatic switch off of an electromagnetic
field

Let us come to the analysis of the integrals which are defined by equation (19.13). These
integrals can be divided into two groups, namely f0 and the rest. The shape function f (η)
vanishes when η → ±∞, consequently the integrals of the second group are well convergent
when η→ ±∞. We show that if the field is adiabatically switched off and on, the integral f0 can
be expressed as a liner combination of the f11, f12, f21, f22.

The application of the adiabatic hypothesis to the integral corresponds to the following
mathematical procedure∫ ∞

−∞
dΦ(η)eiΦ(η) =

∫ 0

−∞
dΦ(η)eiΦ(η) +

∫ ∞

0
d(η)eiΦ(η)

=

∫ 0

−∞
dΦ(η)e(i+λ)Φ(η) +

∫ ∞

0
dΦ(η)e(i−λ)Φ(η) (20.1)

=
e(i+λ)Φ(η)

i + λ

∣∣∣∣∣∣Φ(η)=0

Φ(η)=−∞
+

e(i−λ)Φ(η)

i − λ

∣∣∣∣∣∣Φ(η)=∞

Φ(η)=0

,

where λ is a small parameter. Consequently, the regularized right hand side of equation (20.1)
is equal to zero.

On the other hand, this integral can be written as∫ ∞

−∞
dΦ(η)eiΦ(η) =

∫ ∞

−∞
dη

dΦ
dη

eiΦ(η). (20.2)

The calculation of the phase derivative yields

dΦ(η)
dη

=
k1z + p1z − pz

ω
+ mξ (α1 f (η) cos η + α2 f (η) sin η) + m2ξ2β f 2(η). (20.3)

By plugging equation (20.3) into equation (20.2) one obtains

k1z + p1z − pz

ω
f0 + mξ(α1 f11 + α2 f21) + m2ξ2β( f12 + f22) = 0. (20.4)

Consequently, f0 is expressed as a linear combination of the other functions

f0 = −ω
mξ(α1 f11 + α2 f21) + m2ξ2β( f12 + f22)

k1z + p1z − pz
. (20.5)

The adiabatic hypothesis plays a very important role, as it gives the possibility to introduce
the regularization procedure. Moreover, when the field is switched off, the Volkov solution
must coincide with the solution of the free Dirac equation. From here, we can immediately
conclude, that the normalization of the wave functions does not change, and Volkov solutions
are orthogonal, leading to the correct construction of the perturbation theory (The strict proof is
given in 17).

The physical meaning of this result corresponds to the situation that the interaction always
takes place in the finite volume of space.
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21 The decay rate of the first-order process in the field of a
plane electromagnetic wave

In the previous paragraph we have obtained the transition matrix element for the non-linear
Compton effect and have shown that it is proportional to the three delta functions which define
the process kinematics. For the arbitrary first-order decay process it can be written in the general
form as

S f i = ie
√

4π
(2π)3δ(k⊥1 + p

⊥
1 − p⊥)δ(k−1 + p−1 − p−)√

8V3 p−1 p−ω1ω
M f i, (21.1)

where M f i is called the amplitude. The probability of the process Wi→ f is proportional to the
absolute value square of S f i and consequently proportional to the square of delta functions. We
can replace one of these delta functions by

δ(k⊥1 + p
⊥
1 − p⊥)δ(k−1 + p−1 − p−) −→ V

(2π)3 , (21.2)

thus obtaining

|S f i|2 =
e2(2π)3δ(k⊥1 + p

⊥
1 − p⊥)δ(k−1 + p−1 − p−)

2V2 p−1 p−ω1ω2 |M f i|2 (21.3)

In the case of the scattering both final and initial states belong to the continuous spectrum and
the interest is to find the probabilities of the final particles being in the range d3 p1 and d3k1.
Consequently, we need to multiply |S f i|2 by the number of states d3k1V/(2π)3, d3 p1V/(2π)3 in
the intervals d3 p1 and d3k1 respectively. This yields the following expression for the probability
dWi→ f :

dWi→ f =
e2d3 p1d3k1

16π2 p−1 p−ω1ω2 δ(k
⊥
1 + p

⊥
1 − p⊥)δ(k−1 + p−1 − p−)|M f i|2. (21.4)

When the scattering is considered in the absence of the external field the transition probabil-
ity is proportional to the four dimensional delta function δ(4)(

∑
pi −

∑
p f ), and consequently its

square is proportional to the finite interaction time T . In our case, the fourth delta function can
not be selected from the amplitude, therefore the finite time dependence is included in |M f i|2.

We pay attention to the fact that the differential d3 p1 of the final fermion is written in the
new variables x−, x1, x2, x3. This gives the possibility to consider p0 and p3 as the independent
variables when integrating the probability over the final states.

Integrating over one of the momenta in (21.4) removes delta function. We will distinguish
two cases. In the first case the final photons are tracked, therefore the integration over d3 p1 need
to be performed. The second case corresponds to the integration over d3k1 and to the tracking
of final fermion respectively. This yields the connection between variables of the final particles

p1x = px − k1x

p1y = py − k1y

p1z = ω1 + ϵ1 − ϵ − k1z + pz

,


k1x = px − p1x

k1y = py − p1y

k1z = ω1 + ϵ1 − ϵ − p1z + pz

. (21.5)
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We have shown how the probability of the first-order process can be expressed through an
amplitude. However, absolute value square of the amplitude has not been evaluated. In what
follows we show how this calculation can be performed.

The amplitude of the process is expressed in the general form as

M f i = ū f Qui, (21.6)

where indices f and i denote a final and an initial states respectively and consequently the square
of the amplitude reads

|M f i|2 = (ū f Qui)(ūiQ̄u f ) = uiαūiα′ Q̄α′β′u fβū fβ′ . (21.7)

Here Q̄ = γ0Q†γ0, α and β are spinor indices. The electron’s polarization is characterized via
spin four vector defined in equation (10.3) with the corresponding density matrix (10.2):

ρ = u(p) ⊗ ū(p) =
1
2

( p̂ + m)(1 − γ5â), (21.8)

a = ζ +
p(p · ζ)

m(ε + m)
, a0 =

p · ζ
m

.

Therefore, we can replace uiαūiα′ with the density matrix ρiαα′ .
However, for the determination of the final electron polarization we can formulate two prob-

lems: the first is to find the probability of an electron with a certain polarization and the second
is to determining the polarization of a final electron or, equivalently, determining its density
matrix.

The first question corresponds to the certain measurement type, which is performed with a
detector, selecting a state with a definite polarization. This polarization is characterized through
a polarization vector ad (detector polarization). Consequently the replacement of uiαūiα′ to the
corresponding density matrix can be performed, giving

|M f i|2 −→ Sp{ρiQ̄ρdQ} (21.9)

Let us come back to the second question of the determination of the density matrix of a final
electron. If the electron is in a final state with the bispinor u f , then the probability to measure
a certain polarization ad by a detector is proportional to |ūdu f |2. We can replace the bispinors
with the corresponding density matrices

ud ⊗ ūd → ρd, u f ⊗ ū f → ρ f .

Therefore this probability is proportional to Sp{ρ fρd}. On the other hand it must be equal to the
probability (21.9):

Sp{ρ fρd} ∼ Sp{ρiQ̄ρdQ}. (21.10)

Equation (21.10) allows to find the density matrix of the final electron, because ρ f is defined
only by the final spin four vector a f , which reads

aµf =
1

2m
Sp{ρiQ̄( p̂ f + m)γ5γµ( p̂ f + m)Q}

Sp{ρiQ̄( p̂ f + m)Q}
. (21.11)
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From equation (21.11) the density matrix of the final electron can be easily found:

ρ f =
( p̂ f + m)QρiQ̄( p̂ f + m)Q

Sp{ρiQ̄( p̂ f + m)Q}
. (21.12)

The formulas (21.9), (21.11) and (21.12) are sufficient for the probability calculation involv-
ing electrons. However, M f i contains the polarization vectors of the final photons and |M f i|2 is
bilinear over them. In the general case, |M f i|2 can be written as

|M f i|2 = Sp{ρiQ̄′µρdQ′ν}eµe∗ν, (21.13)

where he have calculated the average in a spin space according to (21.9) and selected polariza-
tion vectors eµ, e∗µ from the matrices Q and Q̄. The matrices without polarization vectors are
denoted with primes.

As in the electron’s case we can formulate two problems: the first is to find the probability
that the emitted photon will have a certain polarization and the finding of the polarization of the
emitted photon itself (finding its density matrix).

The solution of the first problem corresponds to the replacement

eµe∗ν −→ ρp
µν,

where the photon density matrix is defined in the following way [2]:

ρp
µν = −

1
2

gµν +
ξ1

2
(u(1)

µ u(2)
ν + u(2)

µ u(1)
ν ) − i

ξ2

2
(u(1)

µ u(2)
ν − u(2)

µ u(1)
ν )

+
ξ3

2
(u(1)

µ u(1)
ν + u(2)

µ u(2)
ν ), (21.14)

and four vectors u(1)
µ , u(2)

µ satisfy the conditions

(u(1))2 = (u(2))2 = −1, (u(1) · u(2)) = 0, (k · u(1)) = (k · u(2)) = 0.

From these considerations we can write down the absolute value square of the amplitude as

|M f i|2 = Sp{ρiQ̄′µρdQ′ν}ρp
µν. (21.15)

The solution of the second problem can be performed in the same way as for the electron.
This yields the density matrix of the emitted photon, which reads

ρ
pµν
f =

Sp{ρiQ̄′µρdQ′ν}∑
µ Sp{ρiQ̄′µρdQ′µ}

. (21.16)

22 Evaluation of the decay rate for the non-linear Compton
scattering

In this section we will apply the rules which were formulated in paragraph 21 for the evaluation
of the decay rate and provide comparison of the numerical results with the other works.
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Let us specify all quantities which have appeared in the decay probability (21.4). First of
all, we fix a coordinate system by directing the z-axis along k, Figure 22.1. Consequently the
angles of the spherical coordinate system will be counted from k.

We will distinguish two cases of the final states. In the first case the detector will track
photons and in the second one it will track electrons. This corresponds to the integration over
d3 p1 and over d3k1 in the first and second cases respectively. Consequently we have two set of
conservation laws defined by equation (21.5). In the coordinate system depicted on Figure 22.1
these conservation laws can be rewritten as

k1x = −p1 sin θ cosφ
k1y = p sin θi − p1 sin θ sinφ
k1z = ω1 + ϵ1 − ϵ − p1 cos θ + p cos θi

,


p1x = −ω1 sin θ cosφ
p1y = p sin θi − ω1 sin θ sinφ
p1z = ω1 + ϵ1 − ϵ − ω1 cos θ + p cos θi

. (22.1)

In order to find the frequency ω1 of the emitted photon, which is expressed through the electron
variable or the energy of electron expressed through the photon ones, the condition that the
particles lie on their mass shells must be used:

k2
1x + k2

1y + k2
1z = ω

2
1, p2

1x + p2
1y + p2

1z + m2 = ϵ2
1 . (22.2)

With the help of the conservation law (22.1) these equations can be easily solved, yielding

ω1 =
1
2

(
p2 − 2pp1 sin θ sin θi sin ϕ + 2p1 cos θ(−p cos θi + ϵ − ϵ1)

− 2p cos θi(ϵ − ϵ1) + p2
1 + ϵ

2 − 2ϵϵ1 + ϵ
2
1

)
/

(
− p cos θi + p1 cos θ + ϵ − ϵ1

)
, (22.3)

ϵ1 =

(
− pω1 sin θ sin θi sin ϕ − ω1 cos θ(p cos θi + ω1 − ϵ)

− p cos θi(ϵ − ω1) + ω2
1 + ϵ

2 − ω1ϵ

)
/

(
ω1 cos θ − p cos θi − ω1 + ϵ

)
.

The presence of δ function in the decay rate shows that it is non-vanishing only in that
points where the conservation law takes place. By integrating over d3k1 or d3 p1 we eliminate δ
function and obtain relations (22.3), which must satisfy additional conditions

ω1 ≥ 0, ϵ1 ≥ m. (22.4)

If (22.4) are not fulfilled than the decay rate is equal to zero. The relations (22.4) truncate
unphysical processes and coincide to the situation that the frequency of the emitted photon
can not be negative and the energy of the final electron must be greater than its rest energy.
Consequently, we obtained the boundaries for the final electron (photon) momentum and its
angles, which coincide with the physical result.

For the description of the final electron polarization the spin quantization axis can be chosen
by two different ways. According to the first, it is chosen along the final electron momentum in
the laboratory frame. Consequently, the initial and final electron spins read

ζ =
p

|p|µ, ζ1 =
p1

|p1|
µ1. (22.5)
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Figure 22.1 – Coordinate systems in which the decay rate is evaluated. Left pane: detector
tracks final electrons. Right pane: detector tracks final photons.

The spin flip occur when µ1 = −µ.
The second way of the description corresponds to the situation when the final electron spin

quantization axis is chosen along initial electron momentum in the laboratory frame. In this
case the spins look like

ζ =
p

|p|ζ, ζ1 =
p

|p|ζ1, (22.6)

ζ = µ, ζ1 , µ1.

The spin flip occur when ζ1 = −ζ.
The second description is more convenient from the experimental point of view as we look

how the same quantum number changes during the scattering process. For this reason we will
follow this way in subsequent calculations.

When the evaluation of the trace according to equation (21.13) is performed, the electron
density matrix ρ = 1/2( p̂ + m)(1 − γ5â), with the spin four vector a is used. The vector a is
connected with the three vector ζ (see equation (10.3)) as

a =
(
p · ζ

m
, ζ +

p(p · ζ)
m(ϵ + m)

)
. (22.7)

The decay rate includes different scalar products, which must be expressed in our coordinate
system. For this purpose, we will write down all four vectors, included in equation (21.4). For
the electron tracking case

p = (ϵ, 0, p sin θ, p cos θ), k = (ω, 0, 0, ω),
p1 = (ϵ1, p1 sin θ cosφ, p1 sin θ sinφ, p1 cos θ),
k1 = (ω1, k1x, k1y, k1z)|k1 expressed through the conservation law,

a =
( pζ

m
, 0,

ϵζ

m
sin θi,

ϵζ

m
cos θi

)
,

a1 =

(
p1ζ

m
,

p1ζ

m(ϵ1 + m)
p1 sin θ cosφ, ζ1 sin θi (22.8)
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+
p1ζ

m(ϵ1 + m)
p1 sin θ sinφ, ζ1 cos θi +

p1ζ

m(ϵ1 + m)
p1 cos θ

)
,

p1ζ = ζ1 sin θi p1 sin θ sinφ + ζ1 cos θi p1 cos θ,
A1 = (0, 1, 0, 0), A2 = (0, 0, 1, 0).

For the photon tracking case vectors k, p, a,A1,A2 remain the same. For the other quantities,
one obtains

k1 = (ω1, ω1 sin θ cosφ, ω1 sin θ sinφ, ω1 cos θ),
p1 = (ϵ1, p1x, p1y, p1z)|p1 expressed through the conservation law,

a1 =

(
p1ζ

m
,−

p1ζ

m(ϵ1 + m)
ω1 sin θ cosφ, ζ1 sin θi +

p1ζ

m(ϵ1 + m)
(p sin θi − ω1 sin θ sinφ), (22.9)

, ζ1 cos θi +
p1ζ

m(ϵ1 + m)
(ω1 + ϵ1 − ϵ − ω1 cos θ + p cos θi)

)
,

p1ζ = ζ1 sin θi(p sin θi − ω1 sin θ sinφ) + ζ1 cos θi(ω1 − ϵ1 − ϵ − ω1 cos θ + p cos θi).

Equations (22.8) and (22.9) give possibility to find all scalar products which will appear
during traces calculation in the decay rate.

Let us specify the model for the external electromagnetic field. We will distinguish two
cases of different polarization, namely the linear and the circular ones. The linear polarization
case is the limit of circular polarization when the quantities α2, f21, f22, A2 are set to zero in
equations (19.13), (19.14), (19.14) and only cos2 φ is left in the phaseΦ in the term proportional
to β2.

As was already mentioned in the introduction, we are investigating the case of a single laser
pulse with a shape function, which usually is chosen in a form [28, 133]:

f (φ) = e−αφ
2
, f (φ) = sin2

(
φ

N

)
. (22.10)

Some other works [27] model an external short pulse of an electromagnetic field not by an
introducing a shape function on a top of a cosine or sine, but rather by changing the vector
potential to

A =
mξ
e
A1 sechφ. (22.11)

Such a choice of the external field is valid only for the very short pulses, with the length of one
period of laser oscillation.

In our description we will use the exponential shape function in order to model the finite
pulse duration. The constant alpha in the argument of the exponent will give the number of
periods of the laser pulse. The first three graphs on Figure 22.2 represent the different pulse
lengths, starting from ten periods (corresponds to α = 0.01) and finishing with a very short
pulse, which contains only one period (corresponds to α = 4). The last graph represents the
case of sechφ shape function.

Let us come to the description of the numeric procedure for the calculation of the inte-
grals f11, f12, f21, f22. As for the last integral f0, it is represented as a linear combination of
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Figure 22.2 – The dependence of the y component of the vector potential as a function of the
field phase φ for the different pulse length.

f11, f12, f21, f22, which was shown in 20. We will use the numerical method proposed by
D. Levin [134]. First of all, as the pre-exponential terms include the rapidly decreasing function
exp−αφ2, the limits of the integration can be replaced from infinity to some final value, which
will be chosen from the stability considerations of the numerical scheme. For this reason, we
can rewrite this integrals in a form

I =
∫ b

a
f (x)eiq(x)dx. (22.12)

We also note here, that the derivative of the phase Φ(η), defined in equation (20.3), which is in
the present abbreviations is equal to q(x), satisfies the condition |q′(x)| ≫ 1.

The Levin method is based on the fact, that if f (x) were of the form f (x) = iq′(x)p(x)+p′(x),
then the integral could be evaluated directly as

I =
∫ b

a
(iq′(x)p(x) + p′(x))eiq(x)dx =

∫ b

a

d
dx

(
p(x)eiq(x)

)
dx = p(b)eiq(b) − p(a)eiq(a). (22.13)

Therefore, equation

f (x) = iq′(x)p(x) + p′(x), (22.14)

can be considered as a differential equation for p(x) and any solution can be used for evaluat-
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ing I. The general solution of equation (22.14) is equal to

p(x) = e−iq(x)
[∫ x

a
f (t)eiq(t)dt + c

]
. (22.15)

In the case of an arbitrary f (x) and q′(x), p(x) is as oscillatory as the integrand of I. How-
ever, if f (x) and q′(x) are slowly oscillatory, it is possible to prove a theorem [134] that there
exist a slowly oscillatory solution p0(x) of (22.14). Consequently, all the difficulties of the
evaluation of the highly oscillatory integrand I have been overcome.

Next, according to the method, the collocation approximation for p0(x) is introduced as

pn(x) =
n∑

k=1

αkuk(x), (22.16)

where {uk}nk=1 are some linearly independent basis functions, with the coefficients {αk}nk=1 deter-
mined from the solution of the system of linear equations

n∑
k=1

αku′k(x j) + iq′(x j)
n∑

k=1

αkuk(x j) = f (x j), j = 1, 2, . . . , n. (22.17)

Here {x j}nj=1 are regularly distributed points of the mesh in [a, b].
After the unknown collocation coefficients were determined, the approximation to the inte-

gral can be computed as

In =

n∑
k=1

αkuk(b)eiq(b) −
n∑

k=1

αkuk(a)eiq(a). (22.18)

Now we are ready to formulate the algorithm of the numerical calculation of the decay rate:

1. We start from the trace evaluation in symbolic form

Sp{ρiQ̄µρdQν}ρp
µν, (22.19)

where

Qµ = γµ f0 +
mξ

2(p · k)
γµk̂( f11Â1 + f21Â2) +

mξ
2(p1 · k)

( f11Â1 + f21Â2)k̂γµ

+
m2ξ2kµ( f12 + f21)

2(p · k)(p1 · k)
k̂

Q̄ν = γ0(Qν)†γ0,

and the density matrices of the initial and final electrons and emitted photons are defined
by equations (21.16) and (21.14) respectively.

2. We chose the spin quantization axis along the initial electron momentum and plug-in in
the equation (22.19) all four vectors, defined by equations (22.8) and (22.9).
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Figure 22.3 – The emitted photon energy spectra as a function of the emitted photon frequency
ω1, for the different values of the field strength ξ and electron gamma factor
γ. The case of a linear polarization of the external field, sechφ shaped vector
potential and averaging over the initial and final electron spins.

3. All four products are calculated, consequently obtaining some cumbersome analytic ex-
pression F(p1, θ, φ, ζ1, ω, ξ,A1,A2, α, p, θi, ζ), which depends on the momentum p1, an-
gles θ, φ and polarization ζ1 of the initial electron (photon), frequency ω, polarizations
A1, A2, the strength ξ and duration α of the external field, the momentum p, entrance
angle θi and polarization ζ of the initial electron.

4. The numerical values of all parameters are inserted into F.

5. A numerical integration with the Levin method is performed.

As the above described algorithm represents a big amount of non-trivial numerical calcula-
tions, it need to be validated on already known configuration of parameters. For this reason, we
calculated the emitted photon spectra, which were investigated in the work [27] for the case of:

• A final particle which is tracked is the photon.

• The external field polarization is chosen to be linear, which is described by the four vector
A2 = (0, 0, 1, 0).

• The external field dependence on its phase is modeled by sechφ.

• The summation over initial and final electron polarizations is performed, which corre-
sponds to the

ρi( f ) =
1
2

(p̂i( f ) + m)

density matrix of the initial (final) electron.
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Figure 22.4 – Validation of the numerical algorithm by comparison of the dependence of the
square of the absolute value of the electron final polarization on the angle θ be-
tween k and k1.

• The averaging over the final photon polarization is carried out. In this case the photon
density matrix is equal to −gµν/2.

• The initial electron counter propagates with the external field (head-on collision).

• θ angle of the emitted photon is equal to zero.

The numerical spectra are depicted on Figure 22.3. The comparison of our results with the
literature results [27] shows perfect agreement.

In the verification of the results in the previous case we have averaged over initial and final
electron spins. Consequently, our algorithm was not checked for the case when this procedure
was not performed. For this reason, we have calculated the ordinary Compton effect and com-
pared our numerical result with the analytical expression in this case. In this connection we
mention here, that the final electron will have a polarization only in the case of a circularly
polarized initial photon. The differential cross section of an unpolarized electron on a circularly
polarized photon reads [2]:

dσ =
r2

0

2
ω2

1

ω2 FdΩ +
r2

0

4
ω2

1

ω2g1 · ζdξ2dΩ, (22.20)

where

F =
ω

ω1
+
ω1

ω
− (1 − ξ3) sin2 θ,

r0 = α/m is the classical electron radius, ξ2, ξ3 are the second and the third Stokes parameter of
the initial photon, θ is the angle between k, k1 and

g1 = −
1
m

(1 − cos θ)
[
k cos θ + k1 − (1 + cos θ)

ω + ω1

ω − ω1 + 2m
(k − k1)

]
.

Equation (22.20) gives possibility to find polarization of the final electron:

ζ1 =
g1

F
ξ2. (22.21)
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In the case of the pure state ζ2
1 = 1. However, during the scattering process there is no guarantee

that the final electron state is a pure one and consequently ζ2
1 ≤ 1.

In order to compare this analytical result with the one, produced by a numerical procedure
we calculated the electron spin four vector a f according to equation (21.11). The scalar product
of a f with itself is equal to −ζ2

1 . The result of a comparison is plotted as a function of the angle
θ between k and k1 on the Figure 22.4. As can be seen from the graph the results coincide
exactly.

23 Polarization effects in non-linear Compton scattering in
a short laser pulse

In the previous section we have described the numerical algorithm for the calculation of the de-
cay rate and verified the results of the numerical evaluation for the limiting well known cases.
In what follows we calculate numerically the decay rate and asymmetry of scattering for polar-
ization dependent Compton effect in a short laser pulse.

Let us specify the parameters regime in which the values of the asymmetry are expected to
be the largest. On one hand, from standard vacuum QED calculations it is well known (22.21),
that the final electron will be polarized only if the initial photon is circularly polarized. As the
limit ξ ≪ 1 coincides with the perturbative one, we can expect that in the non-linear case the
polarization of the final electron will have the largest value for the circular polarization of the
external field. On the other hand, the parameter χ should be of the order of one. This follows
from the analysis of non-linear Compton scattering in the case of monochromatic plane wave,
because for ξ ≫ 1 the quantum effects are the largest when χ ∼ 1 [15]. Consequently, this
motivates the following experimental situation, for the scattering calculation:

• We consider a head-on collision of the electron and laser beam, i.e., k · p = −kp.

• The space-time dependence of the vector potential is given as

Ax ∼
e−αφ

2

1 + 2n
(cosφ + n cos 2φ),

Ay ∼
e−αφ

2

1 + 2n
(sinφ + n sin 2φ).

The parameter α = {0.01, 0.1} specify pulse length and coincides to ten and one laser
oscillations respectively. The parameter n represents the relative intensity of the second
harmonic, which inclusion will be explained later.

• The initial beam of electrons have polarization either directed or oppositely-directed
along the initial electron momentum. We denote +1 and −1 the first and the second
situations respectively.

• The final electron polarization is directed in the opposite direction to the initial polar-
ization. For example, if the initial polarization is +1 then we are interested in the final
polarization −1 and vice versa.
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Figure 23.1 – (Left pane) The decay rate for the non-linear Compton scattering as a function
of the final electron γ1 and θ angle of the spherical coordinate system, for the
parameters ξ = 10 and the field is circularly polarized, γ = 104 (corresponds to
χ = 0.4), φ angle of the final electron is equal to zero, the pulse duration is equal
to approximately ten periods (α = 0.01). (Right pane) The asymmetry of scatter-
ing ∆ as a function of the final electron γ1 and θ angle of the spherical coordinate
system for the same parameters as on the left pane. White color represents the
probability value larger than 10−7 and asymmetry value larger than 10−4.

• All energies will be measured as a fraction of an electron mass m. Consequently, the
initial and final electrons have gamma factors γ and γ1 respectively.

• The dimensionless density Γ of the decay rate is plotted:

dW
d3 p
=

α

m3Γ(ζ, ζ1), α is a fine structure constant.

• The influence of the spin on the scattering process will be characterized by the asymmetry
of the scattering [2]:

∆ =
Γ(1,−1) − Γ(−1, 1)
Γ(1,−1) + Γ(−1, 1)

.

• The laser frequency is chosen to be ω = 1 eV = 1.96 · 10−6 m, which corresponds to the
wavelength 1250 nm.
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• We average over the final photon polarization, i.e. ρp
µν = −gµν/2.

• As was already discussed in 18 the quantum effects take maximum value when parameter
χ is of the order of one and the field is strong ξ ≫ 1. From this consideration we chose
χ = 0.4. For example, this corresponds to γ = 104 of the initial electron and ξ = 10 of the
external field. We note here that the range ξ ≤ 100 is experimentally available [4]. The
cases when χ ≫ 1 and χ ≪ 1 may not be considered as in the first case the more probable
process is the electron-positron pair production, while the second one corresponds to the
linear Compton effect [15].

The results of the numerical evaluation of the decay rate and the scattering asymmetry are
depicted on Figure 23.1, 23.2 and 23.3 as a function of the final electron gamma factor and the
angle θ between k and p1 for the different pulse lengths. As can be seen from Figure 23.1 for
the decay rate we can identify the two regions, namely the central part of the graph and two
spikes of much higher value than the central part. These spikes are located near the angles close
to 0 and π. This means that the majority of the particles will be scattered on the angles close
to 0 or π. Moreover, the number of particles for the γ1 in the depicted range is even a little bit
larger, than the number of electrons which are scattered at the angles near π.

The physical meaning of this result can be understood in the following way: when the
parameter χ is close to unity (in our case χ = 0.4) the influence of the quantum effects is the
largest. Therefore, it is very probable that the electron will be stopped in the field, which means
that it emits a very energetic photon. If this happens, than the electron will be moving in the
field starting from zero velocity. In order to understand why the electron moves along the k
vector, we can solve the classical equations of motion in a field of a plane electromagnetic
wave. According to the solution [135], the electron velocity will be increasing in the direction
of k vector. For this reason we can observe the first spike near θ = 0.

The second spike near θ = π corresponds to the emission of photons of small ω. In order to
understand why the number of the electrons which scatter at the angles close to zero is larger
than the number of electrons which scatters at π we can look at the emission spectra, depicted
at Figure 22.3. As can be seen from the graph, for large γ the emission of photons with higher
frequency is more probable, which leads to the larger number of electrons, which scatters at
angles close to 0.

The electron decay is essentially the non-linear process, therefore, the number of electrons,
which are scattered at different angles exist. However, the number of these electrons is small.

Let us now come to the analysis of the asymmetry of the scattering. As can be seen from the
Figure 23.1 the asymmetry is always negative and form a “sword” like structure at the angular
range θ = {2, 2.8}. Unfortunately, the maximal value of the asymmetry is located in the region
of the non-maximal decay rate, consequently leading to the problem in the observation. This
result coincide with the one, obtained in the reference [55] as there it is shown, that despite the
fact, that the asymmetry is a large value, its observation is difficult as in these regions of space
the decay rate is very small.

Figures 23.2 and 23.3 represent the same dependencies as Figure 23.1 but for different pulse
durations. According to the figures 23.2 and 23.3, the absolute value of the asymmetry growth
when the pulse duration is decreasing. The intermediate pulse length (α = 0.1) shows the in-
crease in the asymmetry value of one order in comparison with the long pulse. Further decrease
of the pulse duration (α = 4) leads to the even larger values of the asymmetry. However, in
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Figure 23.2 – (Left pane) The decay rate for the non-linear Compton scattering as a function
of the final electron γ1 and θ angle of the spherical coordinate system, for the
parameters ξ = 10 and the field is circularly polarized, γ = 104 (corresponds to
χ = 0.4), φ angle of the final electron is equal to zero, the pulse duration is equal
to approximately one period (α = 0.1). (Right pane) The asymmetry of scattering
∆ as a function of the final electron γ1 and θ angle of the spherical coordinate
system for the same parameters as on the left pane. White color represents the
probability value larger than 10−7 and asymmetry value larger than 10−4.

the region of space where the decay rate is non-vanishing the asymmetry is not equal to zero
only in a very narrow angular range, where it changes sign. Consequently, as all detectors have
finite angular resolution the averaging over this range will lead to the almost zero result. The
remaining regions of space where the asymmetry is a large value coincide with the ones of the
zero decay rate. Therefore, we can conclude, that for an extremely short pulses it is practically
impossible to observe the asymmetry.

From the above analysis we could understand the general properties of the asymmetry,
namely

• The asymmetry value increases with the decrease of the pulse duration. The optimal
duration coincides with the approximately one period of the pulse length.

• The large values of the asymmetry lie in the region of space in which the decay rate has
its minimum.

Let us try to explain this result. For this purpose we plot (see Figure 23.4) the trajectory
of the electric (magnetic) field vector in the plane which is perpendicular to the vector k, for



82 Spin-dependent Compton scattering in an intense classical electromagnetic field 23

-20 -10 10 20
j

-0.2

-0.1

0.1

0.2

e-4 j2
sin j

Figure 23.3 – (Left pane) The decay rate for the non-linear Compton scattering as a function
of the final electron γ1 and θ angle of the spherical coordinate system, for the
parameters ξ = 10 and the field is circularly polarized, γ = 104 (corresponds to
χ = 0.4), φ angle of the final electron is equal to zero and the extremely short
laser pulse (α = 4). (Right pane) The asymmetry of scattering ∆ as a function of
the final electron γ1 and θ angle of the spherical coordinate system for the same
parameters as on the left pane. White color represents the probability value larger
than 10−10 and asymmetry value larger than 10−2.

different pulse durations. As can be seen from Figure 23.4 for a long pulse (Pane (a)) within
one turn of the field vector, its magnitude in the upper direction is almost equal to the one in
the down direction. This difference increases as the vector rotates. For this reason, the part of
the electron energy when the spin is directed along the field is almost equal to the energy when
the spin is oppositely-directed with the field. Therefore, the asymmetry between these states
is small (when the difference is large the field is almost equal to zero). This picture perfectly
coincides with the one, depicted on Figure 23.1.

Contrary to the case of a long pulse, for the short pulse (Pane (b)) within a single turn, the
difference in the magnitudes of the field vectors is already a large value. Consequently, the
asymmetry growth for a short pulse as in the agreement with Figure 23.2.

From the above analysis, we can conclude that for the optimal observation of the asymmetry
the pulse duration should be of the order of one period. However, such short pulses with a very
high field strength (ξ ∼ 10) are not experimentally available. For this reason, we suggest to use a
longer pulse with a broken symmetry. One way to implement this is to add the second harmonic
into the field. According to Figure 23.4, (Pane (c)), the inclusion of the second harmonic breaks
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Figure 23.4 – The rotation of the electric (magnetic) field vector in the plane, which is perpen-
dicular to the k. (Pane (a)) Long pulse (α = 0.01), without the second harmonic.
(Pane (b)) Long pulse (α = 0.1), without the second harmonic. (Pane (c)) Long
pulse (α = 0.01), with the second harmonic n = 0.3.

the field symmetry. The calculation of the asymmetry (Figure 23.5) proves this result. Therefore
we achieved the larger value of the asymmetry, for a longer pulse length.

We have also investigated the influence of the field strength on the asymmetry. As follows
from Figure 23.6 the increase of the field strength ξ from 10 to 100 decreases the magnitude of
the asymmetry by one order. This can be understood in a way that when the field is very strong,
the electron spin will be mainly directed along the field [55], consequently, the longitudinal
asymmetry will be small. Therefore, the absolute value of the asymmetry decreases with the
increase of the field strength.

Finally, we can formulate the optimal conditions for the asymmetry observation:

1. The pulse duration need to be of the order of one period. If such a short pulse is unavail-
able, the second harmonic can be included in the field, breaking the symmetry in the field
vector rotation.

2. The absolute value of the asymmetry decreases with an increase of the field strength ξ.

3. The parameter χ should be of the order of one. Together with the remark 2, one can chose
γ ∼ 104 and ξ ∼ 10.
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Figure 23.5 – (Left pane) The decay rate for the non-linear Compton scattering as a function
of the final electron γ1 and θ angle of the spherical coordinate system, for the
parameters ξ = 10 and the field is circularly polarized, γ = 104 (corresponds to
χ = 0.4), φ angle of the final electron is equal to zero and the long laser pulse
(α = 0.01) with a broken symmetry. The symmetry is broken with the help of
the second harmonic (n = 1). (Right pane) The asymmetry of scattering ∆ as a
function of the final electron γ1 and θ angle of the spherical coordinate system for
the same parameters as on the left pane. White color represents the probability
value larger than 10−7 and asymmetry value larger than 10−4.

Figure 23.6 – The asymmetry of scattering ∆ as a function of the final electron γ1 and θ angle
of the spherical coordinate system for the parameters γ = 104, φ angle of the
final electron is equal to zero, the short laser pulse (α = 0.01) and the field is
circularly polarized. (Left pane) ξ = 10, (Middle pane) ξ = 20, (Right pane)
ξ = 100.



Conclusion

The main purpose of this thesis consisted in the search of purely quantum effects, which do
not exist in classical physics, in the interactions between an electron and a strong external
electromagnetic field. The literature analysis presented in the introduction suggested to look in
the direction connected with the quantized nature of the external field and with the spin of the
electron. Consequently, we started in chapter I from the investigation of the exact solutions of
the Dirac equation in the presence of an external single-mode quantized electromagnetic field.
We formulated this solution in the most convenient form for calculations, namely with the use
of the abstract representation of the creation and annihilation operators of the electromagnetic
field. At this stage it was already clear that the plane wave approximation can not describe
all possible laser pulses. For this reason, the conditions for the pulse duration, focussing size
and field intensity must exist, which should justify the single-mode approximation. Starting
from one particle sector of QED for the electron and including all modes of the external field
in the Dirac equation we were able to separate the Hamiltonian of the system into two parts,
that is to say, the single-collective mode of the field and fluctuations relative to the former. This
was achieved with the help of the modified Bogolubov’s canonical transformation of the field
variables. It was shown that the properties of the single-collective mode of the field are related
with the physical parameters of the laser pulse. Next, by building the perturbation theory over
the fluctuations we were able to specify the three dimensionless conditions which specify the
validity of the single-mode approximation. The first two conditions determine the relation of
the frequency shift and collective-mode width to the driven field frequency, while the last one
is defined as the relation between the energy of the fluctuation and the energy of the collective-
mode. The single-mode (plane wave) approximation is proven to be valid when these ratios are
small.

In chapter II we employed the results of chapter I, i.e., the operator form of the exact solution
of the Dirac equation, for the calculation of the electron spin dynamics in the single-mode and
quantized field. We determined the evolution of the electron state for the situation when in
the initial moment of time the field was in the coherent state and the electron was free. This
was done by forming a linear combination of the exact solutions of the Dirac equation and
determining the coefficients of this linear combination from the initial condition. After the
coefficients were determined, the expectation value of the electron spin in the limit of a strong
field has been calculated. During evaluation the saddle point and modified cumulant methods
were used. It was found that, when the interaction time between the electron and the field
increases the special structure in the probability appears, namely collapse-revival dynamics.
Finally, the possibility of the experimental observation of the effect was discussed.

During the discussion in chapter II we considered large, but not extreme, values of laser
intensity. In this regime the quantum fluctuations can change the dynamics of the system. In
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contrast to this, in chapter III we switched to the regime of utmost fields and investigated the
influence of the spin on Compton scattering. We developed a joint analytical-numerical scheme
of calculations of decay rates and compared our numerical results with those, known from the
literature. This allowed us to verify the calculation strategy. On the next step we evaluated the
decay rate as a function of pulse duration and formulated the optimal conditions of the scattering
asymmetry observation: the quantum non-linearity parameter χ should be of the order of one
and the pulse duration need to be small, e.g., contains few laser oscillations. The parameter
χ dependence on the field intensity and gamma factor of the electron gives optimal values of
ξ ∼ 10 and γ ∼ 104. We also noted, that the pulses of such a strength and duration of the order
of one period are still not experimentally available. Therefore, it is suggested to add the second
harmonic to the driven circularly polarized field, thus breaking the symmetry in the electric
(magnetic) field rotation, which is equivalent to a short laser pulse.

Concluding we want briefly address the new results, obtained for the first time in the present
thesis:

• The conditions of the applicability of the single-mode approximation are formulated.

• The collapse-revival dynamics of the electron spin is found for large intensities of the
order 1018 W/cm2.

• The influence of the laser pulse duration on spin-dependent Compton scattering is in-
vestigated and parameters for the optimal observation of the scattering asymmetry are
suggested.

Outlook
The further extension of the present work can be presented in the following ways:

1. The method of the selection of the collective mode can be applied for the description of
the interaction between two electrons and a laser pulse. This will allow to calculate the
entanglement between electron spins. The change of parameters of the laser pulse will
provide a possible control of the entangled electron states.

2. We have shown that during the interaction of the electron with a focussed laser pulse of
a final duration a single-collective mode and fluctuations can be selected. The interac-
tion with the single-collective-mode leads to the Volkov or Berson solutions of the Dirac
equation, which are then used in Furry representation for the calculation of various QED
processes. However, the interaction of the electron with fluctuating modes will give cor-
rections to the scattering cross sections which can be taken into account with the method
developed in this thesis.

3. The quantum nature of the synchrotron radiation leads to the self-polarization effect of
an electron in undulator [136]. If the electron bunch passes through the laser radiation on
one section of the cyclotron ring the self polarization can be amplified. Therefore, it is of
great interest to apply the developed formalism for the description of the electron motion
in strong combined laser and magnetic fields.



Appendix A

Calculation of the first order correction to
the approximating Hamiltonian

We start with the calculation of the average of the Hamiltonian H1. For this purpose we need to
rewrite it in the variables of a “collective” mode A, A† and “fluctuations” c̃k, c̃k

†.
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k<∆
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The expectation value of H1, computed with respect to the ground state of fluctuations (5.11) is
equal to

⟨H1⟩ = ⟨0 f |⟨ne
k|⟨ΨA|H1|ΨA⟩|ne

k⟩|0 f ⟩ (A.2)
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By exploiting the definition of |ΨA⟩ in equation (A.2), one obtains
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where S = eα(A†−A)e−
η
2 (A2−A†2). Next we calculate the average of the field variables, taking into

account the transformation law of A and A† by operator S:
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(
√
κ +

1
√
κ

)A† +
1
2

(
√
κ − 1
√
κ

)A + α. (A.4)

Parameter κ was defined in equation (5.14). Therefore, we can find how the combination of A
and A† in equation (A.3) transforms, for example:

A†A→1
2

(
κ +

1
κ

)
+

1
4

(
κ − 1
κ

) (
A2 + A†2

)
+ α
√
κ
(
A + A†

)
+ β,

(A + A†)A†A→
√
κ

2

(
κ +

1
κ

) (
A + A†

)
A†A

+

√
κ

4

(
κ − 1
κ

) (
A + A†

) (
A2 + A†2

)
+ ακ

(
A + A†

)2

+ β
√
κ
(
A + A†

)
+ α

(
κ +

1
κ

)
A†A +

α

2

(
κ − 1
κ

) (
A2 + A†2

)
+ 2α2√κ

(
A + A†

)
+ 2αβ,

A†A(A + A†)→
√
κ

2

(
κ +

1
κ

)
A†A

(
A + A†

)
+

√
κ

4

(
κ − 1
κ

) (
A2 + A†2

) (
A + A†

)
+ ακ

(
A + A†

)2

+ β
√
κ
(
A + A†

)
+ α

(
κ +

1
κ

)
A†A +

α

2

(
κ − 1
κ

) (
A2 + A†2

)
+ 2α2√κ

(
A + A†

)
+ 2αβ,

(A + A†)A†A(A + A†)→κ
2

(
κ +

1
κ

)
(A + A†)A†A(A + A†)

+
κ

4

(
κ − 1
κ

)
(A + A†)(A2 + A†2)(A + A†)

+ ακ3/2(A + A†)3 + (βκ + 4α2κ)(A + A†)2

+ α
√
κ

(
κ +

1
κ

) (
A†A(A + A†) + (A + A†)A†A

)
+
α
√
κ

2

(
κ − 1
κ

) (
(A + A†)(A2 + A†2) + (A2 + A†2)(A + A†)

)
+ (4αβ

√
κ + 4α3√κ)(A + A†)

+ 2α2
(
κ +

1
κ

)
A†A + α2

(
κ − 1
κ

)
(A2 + A†2) + 4α2β,

A + A† →
√
κ(A + A†) + 2α

(A + A†)2 →κ(A + A†)2 + 4α
√
κ(A + A†) + 4α2
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(A + A†)3 →κ3/2(A + A†)3 + 6ακ(A + A†)2 + 12α2√κ(A + A†) + 8α3 (A.5)

where β =
(
α2 + 1

4

(√
κ − 1√

κ

)2
)
.

According to the definition, the collective mode has a high intensity, i.e. it is highly popu-
lated, with the quantum number n = n0 being a large value. Therefore, the averages with respect
to the field variables are

⟨n0|S†(A + A†)S|n0⟩ = 2α,

⟨n0|S†(A + A†)2S|n0⟩ = κ(2n0 + 1) + 4α2,

⟨n0|S†(A + A†)3S|n0⟩ = 6ακ(2n0 + 1) + 8α3,

⟨n0|S†A†AS|n0⟩ =
n0

2

(
κ +

1
κ

)
+ β,

⟨n0|S†(A + A†)A†AS |n0⟩ = ⟨n0|S†A†A(A + A†)S|n0⟩

= ακ(2n0 + 1) + α
(
κ +

1
κ

)
n0 + 2αβ,

⟨n0|S†(A + A†)A†A(A + A†)S|n0⟩ =
κ

2

(
κ +

1
κ

)
(2n2

0 + n0 + 1) +
κ

4

(
κ − 1
κ

)
(2n2

0 + 2n0)

+ (βκ + 4ακ)(2n0 + 1) + 2α2
(
κ +

1
κ

)
n0 + 4α2β. (A.6)

The last step is to calculate the averages in the Dirac spin space. For this purpose we will
employ the electron’s density matrix u(p)⊗ ū(p) = ρ = 1/2( p̂+m)(1− γ5â), with p and a being
its four momentum and polarization, respectively. For example,

uβ(pn)ūα(pn)

 1
N

∑
k<∆

k̂ − k̂0


αβ

= ρβα

 1
N

∑
k<∆

k̂ − k̂0


αβ

= Sp

ρ  1
N

∑
k<∆

k̂ − k̂0

 . (A.7)

Therefore the calculated values of the traces are

Sp

ρ  1
N

∑
k<∆

k̂ − k̂0

 =∑
k<∆

2k · pn

N
− 2k0 · pn,

Sp

ρb̂0k̂0

∑
k<∆

k̂

 =∑
k<∆

(
2imσab0kk0 + 2k · k0b0 · pn − 2k · b0k0 · pn

)
,

Sp

ρ∑
k<∆

k̂k̂0b̂0

 =∑
k<∆

(
−2imσab0kk0 + 2k · k0b0 · pn − 2k · b0k0 · pn

)
,

Sp

ρb̂0k̂0

∑
k<∆

k̂k̂0b̂0

 = −4b2
0

∑
k<∆

k · k0k0 · pn,

Sp

ρ ∑
k<∆

b̂(k) − Nb̂0

 = 2
∑
k<∆

b(k) · pn − 2Nb0 · pn, (A.8)

Sp

ρb̂0k̂0

∑
k<∆

b̂(k) − Nb̂0

 = 2
(
− im

∑
k<∆

σab0k0b(k) + b2
0Nk0 · pn
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+
∑
k<∆

b(k) · k0b0 · pn −
∑
k<∆

b0 · b(k)k0 · pn

)
,

Sp

ρ ∑
k<∆

b̂(k) − Nb̂0

 k̂0b̂0

 = 2
(
im

∑
k<∆

σab0k0b(k) + b2
0Nk0 · pn

+
∑
k<∆

b(k) · k0b0 · pn −
∑
k<∆

b0 · b(k)k0 · pn

)
,

Sp

ρb̂0k̂0

∑
k<∆

b̂(k) − Nb̂0

 k̂0b̂0

 = −4b2
0

∑
k<∆

b(k) · k0k0 · pn,

where σabcd means the contraction of absolutely antisymmetric four-tensor Levi-Civita with any
four vectors a, b, c, d. For example, σabcd =

∑
αβγδ ϵ

αβγδaαbβcγdδ or σ0abc =
∑
αβγ ϵ

0αβγaαbβcγ.
Inserting (A.6) and (A.8) into (A.3) we find the average value of the Hamiltonian

⟨H1⟩ = n0

(
κ +

1
κ

) ∑
k<∆

k
N
− k0

 · pn

+ 2
2ακn0 + α

(
κ + 1

κ

)
n0

√
N(z · k0)

(b0 · pn)
∑
k<∆

(k · k0) − (k0 · pn)
∑
k<∆

(k · b0)


−

n2
0(κ + 1/κ)κ + n2

0(κ − 1/κ)κ2
(z · k0)2

∑
k<∆

b2
0(k · k0)(k0 · pn) (A.9)

+
4α
√

N

∑
k<∆

b(k) − Nb0

 · pn +
4κn0

(z · k0)

{ Nb2
0 −

∑
k<∆

(b0 · b(k))

 (k0 · pn)

+ (b0 · pn)
∑
k<∆

(b(k) · k0)
}
− 12ακn0

√
N

(z · k0)2 b2
0

∑
k<∆

(b(k) · k0)(k0 · pn),

where only the leading terms in n0 are left.
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Calculation of the integrals in the second
order correction to the approximating
Hamiltonian

The first term in equation (6.23) is∑
k<∆

|(ωk − ω0) − (k − k0) · v|2
ω0 − ωk

=
V

(2π)3

∫
∆

dk
(
(ω0 − ωk)

+2(k − k0) · v + |(k − k0) · v|2
ω0 − ωk

)
=

V
(2π)3

∫
∆

dk
|(k − k0) · v|2
ω0 − ωk

(B.1)

The first two integrals in equation (B.1) are equal to zero as integrals of an odd function over
a symmetric interval. Now, we change a variable k to k0 + q. After expansion of the scalar
product in (B.1), the terms linear in q will also not contribute as they are the odd functions. For
this reason, one obtains

V
(2π)3

∫
∆

dk
|(k − k0) · v|2
ω0 − ωk

=
V

(2π)3

∫
∆

dq
(q · v)2(ω0 + ωk)

ω2
0 − ω2

k

=
2ω0V
(2π)3

∫
∆

dq
(q · v)2

ω2
0 − ω2

k

= −2ω0V
(2π)3

∫
∆

dq
v2
⊥q2

x + v2
z q2

z

2ω0qz + q2
z + q2

x + q2
y
. (B.2)

The denominator of equation (B.2) is equal to zero for qz,1 = −2ω0, qz,2 = −(q2
x + q2

y)/2ω0 and
needs to be regularized via [2]

1
u
= P

1
u
− iπδ(u), (B.3)

with the symbol P being the principal value. Insertion of (B.3) into (B.2) gives

− 2ω0V
(2π)3

∫
∆

dq
v2
⊥q2

x + v2
z q2

z

(qz − qz,1)(qz − qz,2)

+
2iπVω0

(2π)3

∫
dq(v2

⊥q2
x + v2

z q2
z )δ((qz − qz,1)(qz − qz,2))

= − Vv2
⊥

(2π)3

∫
∆

dq
q2

x

qz +
q2

x+q2
y

2ω0

+
iπVv2

⊥
(2π)3

∫
dqq2

xδ

qz +
q2

x + q2
y

2ω0

 . (B.4)
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While obtaining (B.4) we took into account that (qz − qz,1)(qz − qz,2) = 2ω0(qz − qz,2) and the
terms proportional to v2

z can be neglected, as the integration takes place near zero, leading to
q2

z ∼ q4
⊥. The integration in the first term is performed in a polar coordinate system, yielding:

− Vv2
⊥

(2π)3

∫
∆

dq
q2

x

qz +
q2

x+q2
y

2ω0

= − Vv2
⊥

(2π)3

∫
dqzdq⊥dϕ

q3
⊥ cos2 ϕ

qz +
q2
⊥

2ω0

= −πVv2
⊥

(2π)3

(
∆2

1∆2ω0

8
−
∆2

2ω
2
0

2
tan−1 4∆2ω0

∆2
1

)
(B.5)

The integration of the second term with respect to qz yields a Heaviside function θ(ω0∆2 −
q2

x − q2
y) as qz = −(q2

x + q2
y)/2ω0 > −∆2/2. Therefore,

iπVv2
⊥

(2π)3

∫
dqq2

xδ

qz +
q2

x + q2
y

2ω0

 = iπ2Vv2
⊥

(2π)3 ·


(ω0∆2)2

4
,

√
ω0∆2 < ∆1

∆4
1

4
,

√
ω0∆2 > ∆1

, (B.6)

Combining together (B.6) and (B.5)

V
(2π)3

∫
∆

dk
|(k − k0) · v|2
ω0 − ωk

=
πVv2

⊥ω
4
0δ

2

(2π)3

(
δσ2

1σ2

8
−
σ2

2

2
tan−1 4σ2

δσ2
1

)

+
iπ2Vv2

⊥
(2π)3

ω4
0

4
·


δ2σ2

2,

√
σ2

δ
< σ1

δ4σ4
1,

√
σ2

δ
> σ1

. (B.7)

At last, we come to the calculation of the remaining correction in equation (B.1) from the
fluctuations: ∑

k<∆

|v(b(k) − b0)|2
ωk

=
e2

2V

∑
k<∆,α

|v · (ek,α/
√
ωk − e0,α/

√
ω0)|2

ωk
. (B.8)

In order to calculate the integral in equation (B.8), we introduce the polarization vectors

e0,2 =
k0×v
ω0v , e0,1 =

e0,2 × k0

ω0
=

(k0 × v) × k0

ω2
0v

=
vω2

0 − k0(k0 · v)

ω2
0v

,

ek,2 =
k×v
ωkv , ek,1 =

ek,2 × k
ωk

=
(k × v) × k

ω2
kv

=
vω2

k − k(k · v)

ω2
kv

. (B.9)

Here we pay attention to the fact that v · ek,2 = v · e0,2 = 0. Insertion of equation (B.9) into
equation (B.8) gives

e2

2(2π)3ω0

∫
dk

∣∣∣∣∣∣∣v
(

1
√
ωk
− 1
√
ω0

)
− 1

v

 (k · v)2

ω5/2
k

− (k0 · v)2

ω5/2
0


∣∣∣∣∣∣∣
2

. (B.10)
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The change of variable k to k0 + q and the decomposition of the differences in brackets up to
the first order in Taylor series in q bring us to the final result

e2

2(2π)3ω0

∫
dq

∣∣∣∣∣∣∣
− v

2ω5/2
0

+
5(k0 · v)2

2vω9/2
0

k0 · q −
2k0 · v
vω5/2

0

v · q
∣∣∣∣∣∣∣
2

= e2
δ5σ2

1σ2ω0

(
σ2

2

(
v2 − v2

z

)
2 + 16σ2

1v2
⊥v2

z

)
96(2π)3v2 . (B.11)

Combining all together, we finally obtain the second-order correction to the system’s energy

E(2)
0 =

n0ω0πv2
⊥

4

λ tan−1 4λ − 1
4
+

iπ
2
·


λ, λ > 1
1
λ
, λ < 1


+ e2

δ5σ2
1σ2ω0

(
σ2

2

(
v2 − v2

z

)
2 + 16σ2

1v2
⊥v2

z

)
96(2π)3v2 , (B.12)

where λ = σ2/(δσ2
1).





Appendix C

Saddle point method

In the present appendix we will explain saddle point method [137] for an asymptotic integral
evaluation.

Imagine a function of a complex variable z, which is represented as an integral

J(z) =
∫

C
ez f (t)dt, (C.1)

where the integrand goes to zero at the ends of the contour C. Such form of the integral is
commonly used in the theory of special functions. For instance, the integral representation∫ ∞

0
e−ττzdτ of the gamma function Γ(z + 1), with the variable change τ = tz, transforms into

Γ(z + 1) = zz+1
∫ ∞

0
e−tztzdt = zz+1

∫ ∞

0
ez(ln t−t)dt, (C.2)

and consequently, the function Γ(z + 1)/zz+1 coincides with (C.1).
When |z| → ∞, it leads to some very rapid oscillations in the value of the integrand. If

z is complex, or if f (t) is complex along some parts of the contour C, the imaginary part of
z f (t) will generally increase together with the increase of |z|. Therefore, iIm [z f (t)] will rapidly
oscillate, with increasing frequency. Consequently, large positive values are almost completely
cancelled by large negative values on the integration contour. As the contour of the integration
can be chosen in an arbitrary way, we can try to deform a contour, in order to minimize the
oscillations.

In general case, the contour goes through the regions where Re(z f (t)) is positive and where
it is negative. In the regions where Re(z f (t)) is positive the integrand is larger, and it is most
desirable to reduce oscillations. Therefore, we search a contour on which the real part is the
largest and imaginary part is constant. For this reason, we can write the integrand as

J(z) =
∫

C
ez f (t)dt = eIm[z f (t)]

∫
C

eRe[z f (t)]dt. (C.3)

The extremum of Re[z f (t)] is defined by the first derivative of f (t), i.e.,

f ′(t0) = 0. (C.4)

The surface in the neighborhood of t0 must be flat, as it cannot be a maximum or a mini-
mum, because of the theorem of the maximum of the absolute value of a function of a complex
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variable. The point t0 must therefore be a saddle point. By this consideration the contour of
integration can be chosen in two ways. The first one is when the value of z f (t) increases at the
end of the contour, however this choice can not correspond to the convergent integral; hence the
only possible way is to chose a contour such that it decreases as rapidly as possible at its ends,
so most of the value of the integral comes form the neighborhood of t0. For example, a good
analogy is a mountain path. The method works better with the increase of |z|, as the maximum
of the “mountain path” becomes sharper and sharper.

Let us illustrate the above discussion. In the neighborhood of t0 we can expand f (t) in a
Taylor series:

f (t) = f (t0) + f ′′
(t − t0)2

2
+ . . . . (C.5)

The path should be chosen such that the integrand decreases exponentially. The change of the
variable

τ =
√

ei(π+ϕ) f ′′(t0)(t − t0), z = |z|eiϕ, (C.6)

leads to

J(z) ∼ ez f (t0)√
ei(π+ϕ) f ′′(t0)

∫
C

e−
1
2 |z|2τ2

dτ. (C.7)

From here can be seen, as |z| increases, the exponential becomes sharper and less of the contour
becomes important. For sufficiently large |z| is decreasing and at some point becomes effectively
zero. Therefore, contour can be chosen along the real axis from −∞ to ∞. Integration in (C.7)
for |z| → ∞ yields

J(z) ∼ ez f (t0)

√
2π

zeiπ f ′′(t0)
. (C.8)

For a gamma function f (t) = ln t − t and f ′(t0) = 1/2 − 1. Consequently, t0 = 1, f (t0) = −1
and f ′′(t0) = −1. The variable τ = (t − 1)eiϕ/2. Hence, we obtain Stirling’s formula

Γ(z + 1) −→
z→∞

√
2πzz+ 1

2 e−z. (C.9)

Equation (C.8) is the leading term in an asymptotic series. In order to obtain the next terms
in a series we include a phase of z in f (t), thus considering z as a real.

Let us make a substitution in equation (C.5)

f (t) = f (t0) − w2, (C.10)

The variable w is a real as Im [ f (t)] = Im [ f (t0)]. By plugging (C.10) into J(z), one obtains

J(z) = ez f (t0)
∫

C
e−zw2

dt = ez f (t0)
∫

C
e−zw2 dt

dw
dw. (C.11)

We also assume that the integration direction for w is from −∞ to +∞:

J(z) = ez f (t0)
∫ +∞

−∞
e−zw2 dt

dw
dw. (C.12)
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In order to perform evaluation in equation (C.12) the derivative dt/dw need to be computed.
For this purpose, we expand it in a poser series

dt
dw
=

∞∑
n=0

anwn, (C.13)

where according to equation (C.10) only even powers of w will enter. The substitution of (C.13)
into (C.12) gives the asymptotic series

J(z) −→
z→∞

ez f (t0)

√
πa2

0

z

∞∑
n=0

(
a2n

a0

)
Γ
(
n + 1

2

)
Γ
(

1
2

) (
1
z

)n

. (C.14)

The coefficients an are determined by [137]:

an =
1
n!

 dn

dxn

∑
p

Apxp


− n

2−
1
2


x=0

, (C.15)

[
f (t0) − f (t)

(t − t0)2

]
=

∑
p

Ap(t − t0)p.

The application of relations (C.14) and (C.15) to the Γ(z + 1) yields[
t − 1 − ln t

(t − 1)2

]
=

1
2
− t − 1

3
+

(t − 1)2

4
− . . . , (C.16)

and consequently An = (−1)n/(n+2) and a0 = 1/
√

2, a2/a0 = 1/6 and a4/a0 = 1/216. Therefore
the asymptotic series for the gamma function looks like

Γ(z + 1) =
√

2πzn+ 1
2 e−z

[
1 +

1
12z
+

1
288z2 + . . .

]
. (C.17)

The saddle point method is widely used in the theory of the special functions, for example
for finding the asymptotic behavior of the Bessel and related functions.
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Traces of gamma matrices

In order to calculate the decay rates or cross section, with the rules specified in the previous
paragraph we need to calculate the traces of gamma matrices. Here we briefly revise this pro-
cedure [121].

We start from the anti-commutation relation of gamma matrices

γαγβ + γβγα = 2gαβ, (D.1)

γαγ5 + γ5γα = 0, (γ5)2 = 1. (D.2)

Let us prove few statements:

• Trace of the odd number of gamma matrices is equal to zero. As follows from equation
(D.2)

Spγαγβ . . . γσ︸       ︷︷       ︸
even number

= Spγαγβ . . . γσγ5γ5 = −Spγ5γαγβ . . . γσγ5 =

= −Spγαγβ . . . γσγ5γ5 = −Spγαγβ . . . γσ = 0.

• Spγαγβ = 4gαβ

Spγαγβ = Sp(2gαβ − γβγα) = 8gαβ − Spγαγβ.

Therefore

Spâb̂ = 4(a · b).

• Spγαγβγργσ = 4(gαβgρσ − gαρgβσ + gασgβρ)

The proof is exactly the same as in previous case.

• Spγ5 = 0

Spγ5 = Spγ5γ0γ0 = −Spγ0γ5γ0 = Spγ5γ0γ0 = −Spγ5.
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• Spγ5γαγβ = 0

Spγ5γαγβ = Spγ5 1
2

(γαγβ + γβγα) + Spγ5 1
2

(γαγβ − γβγα)

Next we will use the relation

γ5(γαγβ − γβγα) = iϵαβρσγσγρ.

Therefore

Spγ5γαγβ = gαβSpγ5 +
i
2
ϵαβρσSpγργσ = 2iϵαβρσgρσ = 0.

• Spγαγβγργσγ5 = −4iϵαβρσ.

The trace in the left hand side is symmetrical over indices permutation

Spγαγβγργσγ5 = Sp(2gαβ − γβγα)γργσγ5 = −Spγβγαγργσγ5 = . . .

By using the definition of γ5 = −iγ0γ1γ2γ3 we obtain

Spγ0γ1γ2γ3γ5 = 4i = −4iϵ0123

• Spγα1γα2 . . . γαn = gα1α2Spγα3 . . . γαn − gα1α3Spγα2 . . . γαn + . . . gα1αnSpγα2γα3 . . .

This relation gives possibility to decrease the number of gamma matrices inside the trace
from n to n−2. The proof of this relation is performed by using anti-commutation relation
(D.1) as was done in the case of two and four matrices.
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[35] K. Krajewska and J. Z. Kamiński. Correlations in laser-induced electron-positron pair
creation. Phys. Rev. A, 84:033416, Sep 2011.
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