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Abstract. Means to coherently control single x-ray photons in resonant scattering

of light off nuclei by electric or magnetic fields are investigated theoretically. In order

to derive the time response in nuclear forward scattering, we adapt the Maxwell-Bloch

equations known from quantum optics to describe the resonant light pulse propagation

through a nuclear medium. Two types of time-dependent perturbations of nuclear

forward scattering are considered for coherent control of the resonantly scattered x-

ray quanta. First, the simultaneous coherent propagation of two pulses through the

nuclear sample is addressed. We find that the signal of a weak pulse can be enhanced

or suppressed by a stronger pulse simultaneously propagating through the sample

in counter-propagating geometry. Second, the effect of a time-dependent hyperfine

splitting is investigated and we put forward a scheme that allows parts of the spectrum

to be shifted forward in time. This is the inverse effect of coherent photon storage and

may become a valuable technique if single x-ray photon wavepackets are to become

the information carriers in future photonic circuits.

PACS numbers: 78.70.Ck, 41.20.Jb, 42.50.Nn, 76.80.+y
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Recent experimental developments of coherent light sources have opened the x-

ray parameter regime for fascinating coherent control concepts originally developed

in quantum optics. Thus, new fields such as x-ray quantum optics [1] and nuclear

quantum optics [2] emerge. The interest in nuclear systems is sustained by the recent

commissioning of X-ray Free Electron Laser (XFEL) facilities [3, 4, 5, 6, 7] and the

development of x-ray optics devices [8, 9, 10, 11, 12, 13, 14] which bring into play higher

photon frequencies. Nuclei with low-lying collective states therefore become candidates

for nuclear quantum optics [2, 15, 16, 17, 18] or nuclear coherent population transfer

[19, 20].

Coherent control tools based on nuclear cooperative effects [21, 22, 23, 24, 25] are

known also from nuclear forward scattering (NFS) experiments with third-generation

light sources. The underlying physics here relies on the delocalized nature of the

nuclear excitation produced by coherent XFEL or synchrotron radiation (SR) light,

i.e., the formation of so-called nuclear excitons. For instance, a NFS setup in planar

thin film waveguides [26] was used for novel quantum optics experiments in the x-ray

regime using nuclei instead of atoms. The excitonic nature of the nuclear excitation

in NFS was exploited to identify the cooperative Lamb shift [24], or to demonstrate

electromagnetically induced transparency [25] and spontaneously generated coherence

[27] in a nuclear system. Furthermore, NFS setups also offer a framework for control

of single x-ray photons, which might become a useful tool for optics and quantum

information applications at shorter wavelengths on the way towards more compact

photonic devices [28]. Phase-sensitive storage and π phase modulation for single hard x-

ray photons in a NFS setup have been recently proposed [29], as well as the generation of

a nuclear polariton with two entangled counter-propagating branches [30] comprising a

single x-ray photon. Using Mössbauer sources, the coherent control of the single-photon

wavepackets shape has been recently demonstrated [18].

In this work we focus on advanced field-control means to coherently manipulate

the resonant x-ray pulse propagation through a nuclear medium and the corresponding

single-photon wave packets. In particular, we first consider the case of two resonant

pulses simultaneously propagating through the same nuclear sample. A counter-

propagating geometry is envisaged in order to easily discern between the scattered

signal of the individual pulses. We find that the signal of a weak pulse (potentially a

single-photon wavepacket) can be enhanced or suppressed by the presence of a counter-

propagating stronger pulse, depending on the corresponding time delay. The underlying

mechanisms of this behaviour are identified and discussed. The signal enhancement and

suppression effects in the interaction between the two pulses might prove very useful for

enhancing detection and control of the single-photon wave packet. Secondly, we address

the effect of time-dependent hyperfine magnetic fields that switch the nuclear system

from the degenerate, two-level system case, to a non-degenerate multi-hyperfine-level

one. External magnetic fields have been used to control the NFS and in particular

to store the nuclear excitation [31, 32, 29, 33]. As a new feature, we discuss here a

magnetic field control sequence which allows the shift of the NFS signal forward in
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time, i.e., towards shorter, earlier times. This is the inverse effect of coherent photon

storage presented in Ref. [29] which shifts the NFS signal towards later times. Using

these two magnetic-field switching techniques, one has efficient time-signal processing

tools of single-photon wave packets.

In order to study the field-control effects described above, a versatile theoretical

method is required which allows to easily incorporate perturbations of the NFS signal by

means of time-dependent electric or magnetic fields. There are a number of theoretical

approaches to treat the coherent nuclear excitations induced by SR pulses and calculate

the amplitude of the scattered light [34]. The first time-dependent theory of NFS of SR

was developed by Kagan, Afanasev, and Kohn [35]. Fourier transformation from the

frequency to the time domain as shown in Ref. [35] has been used ever since in many

works to consider more complicated cases of interactions of nuclei with their environment

[34, 36, 37]. Alternatively, the scattering problem can be directly treated semi-classically

in time and space, see Ref. [38], leading to a wave equation for the scattered field to

be solved iteratively. In this work we adopt a more general approach from atomic

quantum optics based on the Maxwell-Schrödinger or Maxwell-Bloch equations (MBE)

[39]. This allows to determine the field propagation through the nuclear medium easily

taking into account additional perturbation such as time-dependent magnetic fields or

the simultaneous propagation of several light pulses through the same sample. The

parameter regime for which the MBE reproduce the well-known dynamical beat results

for a single nuclear transition is deduced. The case of NFS off multi-level nuclei is

discussed and the form of the MBE is derived taking into account hyperfine splitting

for the case of the 57Fe Mössbauer nucleus. Using a forward-backward decomposition,

the MBE can also be generalized to treat the propagation and medium response of two

counter-propagating pulses. For atomic resonant media, two-pulse propagation in short-

pulse electromagnetically-induced transparency (EIT) scenarios have been previously

successfully described using the MBE formalism [40].

The paper is organized as follows. In Sec. 1 we derive the MBE for the scattering

of light off identical nuclei and discuss the parameter regime for which they describe

the NFS spectra. The case of field-controlled NFS with two pulses simultaneously

propagating in the same nuclear sample is presented in Sec. 2. Sec. 3 addresses

forwarding the nuclear response in time by means of time-dependent external hyperfine

magnetic fields. Finally, Sec. 4 summarizes the results.

1. Theoretical Approach

In a typical NFS experiment, monochromatized light pulses shine perpendicular to a

sample containing Mössbauer nuclei, usually 57Fe. The delayed nuclear response is

then recorded by observing the resonantly scattered light in the forward direction, as

illustrated schematically in Fig. 1(a). The interval between successive light pulses is

chosen long enough to facilitate the nuclear response detection, typically larger than

1/Γ, where Γ denotes the nuclear spontaneous decay rate. The driven magnetic dipole
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(M1) nuclear transition connects the 57Fe ground state characterized by spin Ig = 1/2

to the first excited state at 14.413 keV with Ie = 3/2. The hyperfine-split level scheme

of 57Fe for the states of interest is depicted in Fig. 1(b). The resonant scattering occurs

via an excitonic state, i.e., an excitation coherently spread out over a large number of

nuclei. In case of coherent scattering, the nuclei return to their initial state, such that

the scattering path and the number of occurred events are unknown. This leads to

cooperative emission, with scattering only in forward direction (except for the case of

Bragg scattering [35, 34, 41, 42]) and decay rates modified by the formation of sub- and

superradiant states as key signatures. The observed decay signal is therefore far from

being exponential, as can be seen in the example presented in Fig. 1(c).
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Figure 1. (a) Typical NFS setup. The resonant x-ray pulse shines perpendicularly

to the nuclear sample depicted by the green rectangle. After each pulse, the delayed

nuclear response in the forward direction is recorded by the detector. The blue thick

vertical arrow shows the applied magnetic field B(t). (b) 57Fe ground and first excited

state nuclear hyperfine levels. In this example, the ∆m = 0 transitions are driven by

linearly polarized x-rays. (c) Intensity of the coherently scattered light in the forward

direction (red solid line) for an incident field driving the ∆m = 0 transitions. The

envelope given by the Bessel function for the degenerate states case is shown by the

green long-dashed line. The hyperfine magnetic field depicted by the blue short-dashed

line is kept constant during the scattering for this example.

The exciton picture [34, 23, 43] justifies the coherently scattered radiation

proceeding in the forward direction, but does not provide a straightforward manner to

correctly derive the scattering spectrum. This can be rather achieved by means of the

wave equation for the time-dependent field propagation which reveals the field intensity

at the exit from the sample. The ansatz of forward emission of the resonantly scattered

light is however related to the exciton picture and enters the MBE phenomenologically.
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In quantum optics, the light-nuclei interaction is typically described by monitoring

the quantum time evolution of the density operator ρ̂, given by the master equation [39]

∂tρ̂ =
1

i~
[Ĥ, ρ̂] + ρ̂s . (1)

Here, Ĥ is the interaction Hamiltonian between the matter and the incident

electromagnetic field and ρ̂s describes decoherence processes such as spontaneous decay.

For a two-level system corresponding to a single nuclear resonance with ground state

|g〉 and excited state |e〉, the interaction Hamiltonian is given by

Ĥ = −~
2

(
0 Ω∗p

Ωp 2∆p

)
, (2)

where ~ is the reduced Planck constant, and ∆p is the detuning (i.e., mismatch) between

the field and nuclear transition frequencies. Furthermore, Ωp denotes the Rabi frequency

defined as

Ωp =
1

~
〈e|Ĥ|g〉 . (3)

By using the Coulomb gauge for the vector potential ~A(z, t) and the rotating wave

approximation, we can obtain a useful expression of the reduced interaction matrix

element,

〈e|Ĥ|g〉 = − 〈e|~̂j(~k)· ~̂A(z, t)|g〉 (4)

= E(z, t)
√

2π

√
L+ 1

L

kL−1

(2L+ 1)!!

√
B(ε/µL, |g〉 → |e〉)

≡ E(z, t)α(ε/µL, |g〉 → |e〉) , (5)

where ~̂j(~k) is the current density operator in momentum representation, E(z, t) is the

electric field envelope, L is the angular momentum of the transition, ε/µ the transition

type (electric/magnetic), and B(ε/µL, |g〉 → |e〉) the nuclear reduced transition

probability [44]. For the equation above we have considered the case of a single nuclear

transition from a degenerate ground state. Typically, in atomic quantum optics only

electric dipole transitions are of interest and α(ε1, |g〉 → |e〉) stands then for the electric

dipole moment. In our case, we have written in Eq. (5) the general expression of the

Rabi frequency involving the electromagnetic multipole moment α(ε/µL, |g〉 → |e〉).
With the notation ρmn = 〈m|ρ̂|n〉 with {m,n} ∈ {e, g} we obtain the Bloch

equations

∂tρgg = Γρee −
i

2
(Ωpρge − Ω∗pρeg) ,

∂tρeg = −
(
i∆p +

Γ

2

)
ρeg −

i

2
Ωp(ρee − ρgg) ,

∂tρee = − Γρee +
i

2
(Ωpρge − Ω∗pρeg) , (6)

where the spontaneous decay rate Γ comprises the radiative and the internal conversion

channel.
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By coupling the equations above for the density matrix to the Maxwell wave

equation, we can describe the dynamics of both matter and radiation field, i.e., the

propagation of a light pulse through the resonant medium taking into account also

the sample response. In the following we consider an electromagnetic wave with the

polarization vector ~ex, frequency ω and wave number k0 = ω/c (here c denotes the

speed of light) with a slowly varying envelope

~E(z, t) = E(z, t)e−i(ωt−k0z)~ex . (7)

Considering only unidirectional propagation in the forward direction according to our

ansatz, the wave equation(
∂2

∂z2
− 1

c2

∂2

∂t2

)
~E(z, t) =

4π

c2

∂

∂t
~I(z, t) (8)

for the electric field intensity has as source term the macroscopic current density ~I(z, t)

induced by the radiation in the system of resonant nuclei. The induced current density

can be written as

~I(z, t) = I(z, t)e−i(ωt−k0z)~ex . (9)

We consider the parameter regime for which |∂E(z,t)
∂t
|, |c∂E(z,t)

∂z
| � |ωE(z, t)| holds. In

the slowly varying envelope approximation, the wave equation reduces to

∂E(z, t)

∂z
+

1

c

∂E(z, t)

∂t
= −2π

c
I(z, t) . (10)

The crucial step here is to express the current density with the help of the density matrix

in order to couple the Bloch and Maxwell equations. For a two-level system interacting

with the field in atomic quantum optics, the current can be expressed with the help

of the coherence ρeg and the dipole moment α(ε1, |g〉 → |e〉). Following the argument

presented in Ref. [38], the current density for a single nuclear resonance is obtained

by summing over all nuclei participating in the coherent scattering and tracing over

~̂j(~k)eik0zρ̂. Taking into account the alternative form of the Hamiltonian with the vector

potential written in the Coulomb gauge, Ĥ = i~̂j(~k) · ~exeik0zE(z, t)/ω, we can relate to

the matrix element in Eq. (5) and express the current in the simplified form

I(z, t) = N〈e|~̂j(~k)eik0z|g〉ρeg (11)

=
ω

i
Nα(ε/µL, |g〉 → |e〉)ρeg , (12)

where N is the particle number density and we take into account all nuclei over which

the excitation is coherently shared. Combining Eqs. (5), (10) and (12) we obtain an

additional equation involving the Rabi frequency,

1

c
∂tΩp(z, t) + ∂zΩp(z, t) = i

2πωN [α(ε/µL, |g〉 → |e〉)]2

~c
ρeg . (13)

Together with the three Bloch equations (6), we now have arrived at the MBE for

the Rabi frequency. The scattered field is then proportional to Ωp and the scattered

intensity I ∝ |Ωp|2. We proceed now with some changes of notation in order to facilitate
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the comparison with established NFS results. The expression of the radiative nuclear

decay rate Γγ is also connected to the reduced transition probabilities B(ε/µL, |e〉 → |g〉)
via

Γγ =
8π(L+ 1)

L[(2L+ 1)!!]2

(
E0

~c

)2L+1

B(ε/µL, |e〉 → |g〉) , (14)

where E0 denotes the transition energy and

B(ε/µL, |e〉 → |g〉) =
2Ig + 1

2Ie + 1
B(ε/µL, |g〉 → |e〉) , (15)

i.e., they are equal when considering the case of a single nuclear resonance. The resonant

cross section can also be expressed as

σ =
2π

k2
0

2Ie + 1

2Ig + 1

Γγ
Γ

= [α(ε/µL, |g〉 → |e〉)]2 8πk

~Γ
. (16)

Introducing the dimensionless effective thickness [38] ξ = NσL/4 with L the length of

the sample, we can rewrite the wave equation in the MB equations as

1

c
∂tΩp(z, t) + ∂zΩp(z, t) = iηρeg(z, t) , (17)

with η = ξΓ
L

.

As initial conditions for the MBE we now consider

ρmn(z, 0) = δmgδng ,

Ωp(z, 0) = 0 ,

Ωp(0, t) = Ω0pδ(t− τ) , (18)

where τ marks the arrival of the incident resonant light pulse. In the following we set

the detuning ∆p to zero. Taking the incident pulse as a small perturbation such that

Ωp � Γ and no Rabi oscillations may occur, we obtain in first order perturbation theory

from Eqs. (6) and (17) only two coupled equations for Ωp,

∂tρeg = −Γ

2
ρeg +

i

2
Ωp ,

1

c
∂tΩp + ∂zΩp = iηρeg . (19)

Performing a change of variable and using the Fourier transform, the dispersion relation

of the system can be obtained [45],

k(ω) =
ω

c
− η

2ω
− i Γ

2c
. (20)

The solution for the Rabi frequency can be found by inverse Fourier transform

Ωp(z, t) =
1

2π
e−

Γ
2

[ z
c

+(t−τ)]

∫ ∞
−∞

e−i[(
ω
c
− η

2ω
)z−ω(t−τ)]dω (21)

=

δ
[z
c
− (t− τ)

]
− ξΓz

L

J1

[
2
√

( ξΓz
L

)(t− τ − z
c
)

]
2
√

( ξΓz
L

)(t− τ − z
c
)

 e−
Γ
2

( z
c

+t−τ) ,
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where J1(z) is the Bessel function of the first kind. The terms z/c are typically negligible

because L/c is much smaller than (t − τ). With this, the result above reproduces the

expression of the dynamical beat [35, 46, 34, 38] known from the time-dependent theory

of NFS for a single nuclear resonance. An illustration of the dynamical beat for a test

case is given by the green dashed line in Fig. 1(c). We would like to emphasize here that

the dynamical beat is a general feature for the propagation of short weak laser pulses

through resonant matter and by no means limited to NFS, as shown by earlier studies

in atomic systems [47, 48, 49].

The MBE become more complicated for the case of the resonant driving of several

nuclear resonances in a hyperfine-split, multi-level system. The typical example is 57Fe in

a hyperfine magnetic field which has two ground (Ig = 1/2) and four excited (Ie = 3/2)

magnetic sublevels. The hyperfine levels are coupled by six transitions, depending on

the magnetic field geometry and polarization of the incident SR or XFEL field. Let

us first consider the x-ray pulse is linearly polarized and the direction of polarization

is parallel to the x axis. The magnetic field B(t) that sets the quantization axis for

the nuclear ground and excited state spin projections mg and me is parallel to the y

axis, as depicted in Fig. 1(a). In this scenario, the two ∆m = me −mg = 0 magnetic

dipole transitions will be driven by the incident pulse. The MBE include then a number

of Clebsch-Gordan coefficients that quantify the individual couplings between the four

states,

∂tρ11 = Γ(C2
14ρ44 + C2

15ρ55)− i

2
C15(Ωpρ15 − Ω∗pρ51) ,

∂tρ22 = Γ(C2
24ρ44 + C2

25ρ55)− i

2
C24(Ωpρ24 − Ω∗pρ42) ,

∂tρ42 = − 1

2
(2i∆p,4→2 + C2

14Γ + C2
24Γ)ρ42 −

i

2
C24Ωp(ρ44 − ρ22) ,

∂tρ44 = − Γ(C2
14 + C2

24)ρ44 +
i

2
C24(Ωpρ24 − Ω∗pρ42) ,

∂tρ51 = − 1

2
(2i∆p,5→1 + C2

15Γ + C2
25Γ)ρ51 −

i

2
C15Ωp(ρ55 − ρ11) ,

∂tρ55 = − Γ(C2
15 + C2

25)ρ55 +
i

2
C15(Ωpρ15 − Ω∗pρ51) ,

1

c
∂tΩp + ∂zΩp = iη′(a51ρ51 + a42ρ42) . (22)

In the above equations, the states |1〉 and |2〉 denote the two ground states withmg = 1/2

and mg = −1/2, respectively, and |3〉, |4〉, |5〉 and |6〉 the four excited states with

me = −3/2, me = −1/2, me = 1/2 and me = 3/2, respectively. The shortened

notation used for the Clebsch-Gordan coefficients [50] is Cij = C(Ig Ie 1;mgmeM)

where i ∈ {1, 2} sets the value of mg and j ∈ {3, 4, 5, 6} the one of me. Furthermore,

∆p,4→2 = ω42−ω and ∆p,5→1 = ω51−ω, where ω51 and ω42 are the resonant frequencies

of the |1〉 → |5〉 and |2〉 → |4〉 transitions, respectively. The coefficients η′, a51 and a42

can be deduced by studying the limiting case when the magnetic field B(t) goes to zero

and Eqs. (22) should resume the form of (6) and (17). The last equation in (22) then
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becomes

1

c
∂tΩp + ∂zΩp = iη

(
ρ51

C15

+
ρ42

C24

)
. (23)

The MBE is therefore a very convenient method to treat NFS involving multiple

resonances since the system of equations can be solved numerically. For completion,

the corresponding equations for the case of a circularly polarized pulse driving the four

∆m = me −mg = ±1 transitions between the six ground and excited hyperfine levels

are given in the Appendix.

Comparison of theoretical and experimental NFS results for SR show very good

agreement. This might appear as surprising since most theoretical approaches, including

the MBE discussed here, rely on the classical Maxwell equation for the scattered field.

However, in experiments the produced excitation is very weak, such that typically either

no photon or one photon is resonantly scattered per pulse and the spectra describe

the propagation of a single-photon wavepacket. The legitimate question may arise

how come does the classical field correctly describe the behavior of single photons?

This would be the case if the photon state under investigation were a coherent state

[39]. In our case, the weak excitation produced by SR pulses can be described by the

coherent-like state C0|0〉 + C1|1〉 + C2|2〉 + . . . where |n〉 is the n-photon Fock state

and |C0|2 � |C1|2 � |C2|2 � . . .. This relation between the observed photon number

events for small n is verified by typical NFS experiments and justifies our classical

field treatment for single photons. A rigorous quantum treatment of NFS will hopefully

provide more insight in the behaviour of single and few x-ray photons in nuclear samples.

2. Two resonantly propagating pulses

Let us consider the case of two resonant pulses interacting simultaneously with a nuclear

target containing 57Fe Mössbauer nuclei. We choose the counter-propagating geometry

as shown schematically in Fig. 2(a) such that the two signals can be easily separated

experimentally. The recent development of normal-incidence x-ray mirrors [11, 12] is an

important step allowing such more complex setup geometries. For simplicity we assume

a single nuclear transition resonant with the two light pulses which reach the target

from opposite directions at z = 0 and z = L. We consider the case of two pulses both

with zero detuning ∆ but of different intensity. A weak pulse of Rabi frequency Ωw is

perturbed and controlled by the simultaneous passage of a stronger pulse Ωs through

the sample. The physical case behind such a setup may involve a weaker pulse which

produces a single-photon excitation that can in turn be controlled by a more intense

XFEL pulse. In order to describe the fields in the counter-propagating geometry we

consider a backward-forward decomposition of the radiation field [51],

~E(z, t) = Ew(z, t)e−i(ωt−k0z) ~ex + Es(z, t)e
−i[ωt−k0(L−z)] ~ex . (24)

In our case, since for each pulse only the respective forward scattering wave is taken

into account, each term in the equation above represents the contribution of one of
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the pulses. For the numerical calculation we use the same decomposition also for the

coherence terms

ρeg(z, t) = ρegw(z, t)e−i(ωt−k0z) + ρegs(z, t)e
−i[ωt−k0(L−z)] , (25)

and the Rabi frequencies,

Ω(z, t) = Ωw(z, t) + Ωs(z, t) . (26)

A similar decomposition in the MBE was used to describe the coherent propagation of

Stokes light in a Λ three-level amplifier, where the Raman and fluorescence components

play the role of the two counter-propagating in our setup [52]. Writing separately the

wave equations for the forward and backward Rabi frequencies, we obtain the MBE

∂tρee = − Γρee +
i

2
[(Ωwρgew − c.c.)+ (Ωsρges − c.c.)

+ (Ωwρgese
−ik0L+i2k0z − c.c.) + (Ωsρgewe

ik0L−i2k0z − c.c.)
]
,

∂tρgg = Γρee −
i

2
[(Ωwρgew − c.c.) + (Ωsρges − c.c.)

+ (Ωwρgese
−ik0L+i2k0z − c.c.) + (Ωsρgewe

ik0L−i2k0z − c.c.)] ,

∂tρegw = −
(
i∆ +

Γ

2

)
ρegw −

i

2
Ωw(ρee − ρgg) ,

∂tρegs = −
(
i∆ +

Γ

2

)
ρegs −

i

2
Ωs(ρee − ρgg) ,

1

c
∂tΩw + ∂zΩw = iηρegw ,

1

c
∂tΩs − ∂zΩs = iηρegs , (27)

The MBE above can be solved numerically. For numerical efficiency, we consider

instead of incident delta pulses in Eq. (18) a Gaussian pulse shape Ω(z, t) = Ω0e
− (t−τ)2

σ2

with σ = 1 ns, which is still much shorter than the nuclear decay time scale of hundreds

of ns (the nuclear spontaneous decay rate, including both the radiative and the internal

conversion channels, is Γ = 1/141 GHz). As numerical example, the weak pulse with

initial Rabi frequency Ωw0 = Γ/10 reaches the sample (z = 0) at τw in the presence

of a stronger pulse (Ωs0 = 200Γ) arriving at other end of the sample (L = 10 µm)

at τs with positive or negative time delay and propagating through the sample in the

opposite direction. The effective thickness of the sample was chosen ξ = 15. The results

for positive and negative time delay are presented in Figs. 2 and 5.

We see that the presence of the stronger pulse plays an important role on the

propagation of the weaker resonant pulse. We address the two situations of positive and

negative pulse delay separately.

2.1. ∆τ < 0

The strong pulse passes the nuclear sample prior to the weak pulse. This situation is

depicted in Fig. 2. We see that in this case the weak pulse signal can be suppressed by



Field control of single x-ray photons in nuclear forward scattering 11

0 100 200 300 400 500 600 700
10
-13

10
-11

10
-9

10
-7

10
-5

0.001

t HnsL

I
Ha
rb
.
u
n
it
L

HbL

Figure 2. (a) Counter-propagating pulses setup with the strong pulse reaching the

sample prior to the weak pulse. (b) NFS time spectra I ∝ |Ωw|2 for the weak pulse

in the absence (red solid line) or presence of a stronger counter-propagating pulse Ωs.

The latter reaches the sample prior to the weak pulse. The time delay ∆τ = τs − τw
between the two pulses is −10 ns (green dotted line) and −50 ns (black dashed line).

The time origin is set by the center of the incident weak pulse reaching the sample at

z = 0.

several orders of magnitude depending on the delay time ∆τ . The underlying mechanism

for this suppression relies on two aspects: (i) the diminished nuclear ground state

population left available for the later arriving weaker pulse and (ii) the building up of

the weak pulse coherence term ρegw. The strong pulse produces a significant population

of the excited states at t = 0 and the population dynamics is still ongoing by the time

the weaker pulse reaches the sample. This is illustrated in Fig. 3 where the contour

plot of the time-dependent excited state population produced by the strong pulse as a

function of position in the sample z is presented. We see that at t = 10 ns and t = 50

ns after the passing of the strong pulse, a still large amount of excitation is present in

the sample and correspondingly fewer ground states are available for excitation by the

weak pulse. However, this does not direcly explain why the arrival of the weak pulse

with 50 ns delay time leads to a more suppressed signal in Fig. 2(b) than the case of

10 ns delay, since the excited state population is higher in the latter case. A study of

the MBE for the two counter-propagating pulses (27) reveals in the equation for the

coherence ρegw that it is the population inversion (ρee − ρgg) which is decisive for the

intensity of the scattered signal. Indeed, the weak pulse itself can produce only a weak

excitation such that ρee − ρgg ' −1. The imaginary part of the coherence at t = 0 is

then given by the product between the incident (here Gaussian) pulse and the difference

(ρee− ρgg). However, with the strong pulse arriving prior to the weak pulse, the nuclear

population is first pumped in the excited state and (ρee − ρgg) changes sign. A contour

plot of the population inversion produced by the strong pulse is presented in Fig. 4. At
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t = 10 ns when the weak pulse reaches the sample, the population inversion is approx.

0.8, leading to a smaller absolute value of the imaginary part of the initial coherence

ρegw for the weak pulse and a suppressed signal. If the weak pulse arrival is delayed up

to 50 ns, the population inversion cancels with ρee − ρgg ' 0 over most of the sample.

The coherence Im[ρegw] and consequently the weak pulse signal is even more strongly

suppressed. We note that the change of sign for the coherence term at t = 0 does not

play a role here since it only affects the initial phase of the scattered electric field and

not its intensity.
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Figure 3. Excited state population ρee produced solely by the strong pulse as a

function of time (here t = 0 denotes the center of the strong pulse entering the sample)

and position z in the sample.

2.2. ∆τ > 0

The strong pulse arrives during the weak pulse propagation through the sample as shown

in Fig. 5(a). Our results for this situation are depicted in Fig. 5(b). In this case the

effect of the strong pulse arriving with a delay after the weak pulse is a substantial

increase of the response of the latter. Similar arguments related to the strong-pulse-

induced population inversion and coherence hold also in this case. However, the main

difference now is that the weak pulse evolves first unperturbed and the coherence term

ρegw is non-zero and decreasing when the strong pulse arrives. Thus, unlike in the

previous situation discussed above, a sudden change in the sign of the population

inversion will produce now an increase of ρegw and consequently also an increase of

the weaker pulse signal |Ωw|2. The population inversion for both ∆τ = 10 ns and

∆τ = 50 ns has similar values leading to a comparable enhancements of the weak pulse

signal for the green and the black curves in 5(b).
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Figure 4. Population inversion (ρee − ρgg) produced solely by the strong pulse as a

function of time (here t = 0 denotes the center of the strong pulse entering the sample)

and position z in the sample.
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Figure 5. (a) Counter-propagating pulses setup with the weak pulse reaching the

sample prior to the strong pulse. (b) NFS time spectra I ∝ |Ωw|2 for the weak pulse

in the absence (red solid line) or presence of a stronger counter-propagating pulse Ωs.

The weak pulse reaches the sample first and ∆τ = 10 ns (green dotted line) and 50

ns (black dashed line). The time origin is again set by the center of the incident weak

pulse reaching the sample at z = 0.
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In order to further test our understanding of the two-pulse propagation dynamics

in the nuclear sample, we have also considered a hypothetical modified setup where the

effect of the strong pulse on the excited state population for the weak pulse vanishes.

The concrete example is a three-level V -type system where the two pulses each couple

only to one of the two transitions, leading to the population of two different excited

states. The population inversion relevant for the weak pulse is therefore never changing

sign, since ρeew � ρgg at all times. As expected, we observe the suppression of the weak

pulse signal for all (positive and negative) delay times, with no enhancement observed.

To summarize, prior arrival of a strong pulse can suppress while a later arrival can

enhance significantly the NFS signal of a weak pulse. This can have exciting applications

in the framework of single-photon signal processing, for instance to enhance detection

of single-photon wave packets. The key phenomenon here is the significant modification

of the population inversion in the sample by the strong pulse. Obviously, in order to

achieve the effects under investigation here, a certain intensity is required for the strong

pulse. The value assummed here of Ωs0 = 200Γ corresponds to a peak intensity of

1.8 × 1022 W/cm2, which is not far from present XFEL intensity values considering

excellent focus [53]. However, a narrower bandwidth would be required which may be

available only at future seeded XFEL facilities. For comparison, we present here our

results also for a Ωs0 = 100Γ for ∆τ = ±10 ns in Fig. 6. In this case, the suppression

and enhancement effects are visible but already less spectacular.
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Figure 6. NFS spectra |Ωw(L, t)|2 unperturbed (solid red line) and in the presence

of a counter-propagating strong pulse with Ωs0 = 100Γ reaching the sample with the

pulse delay ∆τ = 10 ns (green dotted line) and ∆τ = −10 ns (black dashed line).

3. Forwarding the nuclear response in time

We now investigate the case when only one pulse propagates resonantly through the

sample, however under the action of a time-dependent magnetic field. In the absence

of the magnetic field, the 57Fe nuclei behave as two-level systems. If the magnetic



Field control of single x-ray photons in nuclear forward scattering 15

field is switched on, the introduced hyperfine splitting renders six transitions possible.

We consider in the following a setup for which the incident pulse polarization and the

geometry of the magnetic field, when present, allow only for the driving of the two

∆m = 0 transitions. As further parameters, the magnetic field intensity of B=17.2 T

and an effective thickness for the two-level nuclear system of ξ = 40 are envisaged. The

hyperfine splitting effectively produces in this case a shift to a smaller value of ξ since the

ground state population distributes half-half over the two hyperfine-split ground states

with mg = −1/2 and mg = 1/2. This is illustrated by the shapes of the dynamical beat

in the NFS time spectra for the two cases in the presence and absence of the magnetic

field presented in Fig. 7. The envelope of the quantum beat follows here the dynamical

beat corresponding to ξ = 20.
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Figure 7. Intensity of the coherent scattered light for a single nuclear transition in

the absence of hyperfine splitting and for an effective thickness of ξ = 40 (solid red

line). In the presence of the magnetic field, the two ∆m = 0 transitions interfere and

introduce a quantum beat in the spectrum (green dotted line).

We now attempt to switch between the degenerate and non-degenerate nuclear level

systems by turning the magnetic field on or off. Coherent storage of nuclear excitation

has been theoretically shown to be possible when the magnetic field present at t = 0

when the incident SR or XFEL pulse arrived is switched off at certain times. A by-

product of the coherent storage is that the NFS signal appears to be shifted backwards

in time. Here, we investigate the opposite situation. Initially, the incident pulse hits

the 57Fe sample in the absence of any hyperfine magnetic field. The magnetic field is

switched on later, in our first example at t0 = 50 ns, when the minimum of the dynamical

beat is reached. Quantum beats then appear in the NFS spectrum as a result of the two

hyperfine transitions that can constructively or destructively interfere. This situation is

illustrated in Fig. 8(a) by the black line. The signal for t < 50 ns can be described by

ξ[J1(2
√
ξΓt)]2e−Γt/(Γt) where ξ = 40. Later on, after the hyperfine magnetic field has

been switched on, the envelope illustrated in 8(b) by the red curve can be described as

ξ′[J1(2
√
ξ′Γ(t+ t0))]2e−Γt/(Γ(t+ t0)) where ξ′ = ξ/2. The comparison between the case
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with magnetic field at all times and magnetic field only after t = 50 ns is presented for

the NFS spectra and the real and imaginary parts of the coherence term ρ42 in Figs.

8(a), (c) and (d).
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Figure 8. NFS time spectra (a,b) and the real (c) and imaginary (d) parts of the

coherence term ρ42. The dashed green line depicts the case of scattering in the presence

of a magnetic field at all times, while the black line presents the case of the magnetic

field being switched on rapidly at t = 50 ns. Correspondingly a 50 ns shift of the signal

can be observed. The red solid line in (b) illustrates for comparison the dynamical beat

envelope for ξ = 20 as discussed in the text.

The surprising feature of the two NFS spectra in the presence of magnetic field

in Figs. 8 is that the system dynamics, including both the scattered signal and the

coherence terms, is identical and just shifted in time up to the effect of the exponential

spontaneous decay. Indeed, a numerical comparison of the unperturbed and shifted

spectra shows that they coincide when considering the 50 ns time shift and accounting

for the corresponding spontaneous decay. The turning on of the magnetic field after

the incident radiation pulse arrived thus displaces the signal forward by the same time

interval ∆t=50 ns compared to the spectrum with constant hyperfine splitting. This is

the opposite effect compared to the coherent photon storage presented in Ref. [29]. In

order to demonstrate this, we design a succession of four manipulations on the magnetic

field in order to produce the forward shift of the signal and the coherent storage. The

results are illustrated in Fig. 9. The incident pulse reaches the nuclear sample at

t0 = 0 when there is no magnetic field present and no hyperfine splitting in the sample.

Later on, at t1 = 105 ns, the magnetic field is switched on rapidly and the quantum
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Figure 9. NFS time spectra for a hyperfine splitting constant in time (green dashed

line) compared to the switching scheme turning the magnetic field on (t1 = 105 ns),

off (t2 = 145 ns), and on again (t3 = 251 ns), described in the text (black line).

beats occur. At a later time, when a quantum beat minimum is reached (t2 = 145

ns), the magnetic field is switched off again and coherent storage [29] is achieved. The

effect of the coherent storage is to shift now the signal backwards, i.e., towards longer

scattering times, thus canceling the effect of the first signal shift forward in time. Finally,

at t3 = 251 ns the magnetic field is switched on and we retrieve the NFS signal which

matches exactly the situation when the magnetic field was on during the whole scattering

period, as shown in Fig. 9. The shifts forwards and backwards in time cancel each other

since t0 − t1 ' t3 − t2. We would like to emphasize here that, just as in the case of

coherent photon storage [29], shifting the signal forwards in time occurs preserving the

phase information, i.e., we witness the phase-sensitive shift of the signal in time.

Thus, temporal signal control can be achieved via fast switching on and off of

the magnetic field. The experimental challenges for the control on ns time scale of

strong magnetic fields have been first addressed in Ref. [29]. The most promising

solution involves a material with no intrinsic nuclear Zeeman splitting like stainless steel

Fe55Cr25Ni20 [42, 54]. The challenge is to turn off and on the external magnetic fields of

few Tesla on the ns time scale. According to the calculations presented in Ref. [29], the

raising time of the B field should be shorter than 50 ns (the raising time was considered

4 ns for all presented cases). This could be achieved by using small single- or few-turn

coils and a moderate pulse current of approx. 15 kA from low-inductive high-voltage

“snapper” capacitors [55]. Another mechanical solution, e.g., the lighthouse setup [56]

could be used to move the excited target out of and into a region with confined static

B field. The nuclear lighthouse setup is based on a rotating sample. This changes the

direction of the coherently emitted photon which is always in the forward direction with

respect to the sample, thus explaning the name “lighthouse effect”. The rotation can

be used to bring the sample in and outside a region with confined static magnetic field.

The switching time is then given by the time needed for the rotation of the sample
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Figure 10. Sketch of the lighthouse setup for the coherent storage of hard x-ray

single photons. (a) Bird view of the lighthouse setup. Gray area depicts the side view

of the rotor rotating with angular frequency R, the two red wide arrows illustrate the

regions with confined static magnetic field B and the blue arrows the trajectories of SR

and emitted single hard x-ray photons. The light green rectangles depict snapshots of

the rotating 57Fe target attached on the inner surface of the rotor. (b) The geometric

arrangement of the lighthouse scheme.

from the edge of the confined magnetic field region to the outside, magnetic-field free

region. With the setup illustrated in Fig. 10, we estimate that a rotor with rotational

frequencies R of up to 70 kHz and a diameter of few mm [56] is fast enough to rotate the

sample out a depth of few µm in a few tens of ns. If mastered, this fast magnetic-field

switching would allow elaborated coherent control over the nuclear excitation in NFS

and accordingly over the dynamics of single x-ray photon wave packets.

4. Conclusions

Nuclei, although typically difficult to drive with electromagnetic fields, may be the

key to coherently control single x-ray photons in a NFS setup. Accordingly, means to

coherently control the x-ray quanta may have a great potential for exciting quantum
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applications. Here, we have investigated theoretically two advanced field-control

schemes to enhance, suppress or shift in time the single x-ray photon signal. Our

theoretical approach relies on the MBE, which are computationally advantageous and

allow the straightforward treatment of time-dependent perturbations in the resonant

propagation of light through the nuclear medium. We have shown that the simultaneous

propagation of two pulses through the same nuclear sample can lead to the transfer of

signal intensity between the two, depending on the corresponding intensities and time

delay between the pulses. Thus, the presence of a strong pulse, for instance produced

by the XFEL, can lead to the enhancement or suppression of the signal of a weaker

excitation, potentially comprising a single resonant x-ray photon. Furthermore, the

signal of such a weak excitation can be shifted forward in time by the alternation between

scattering intervals in the presence and absence of a hyperfine magnetic field. This is

the inverse effect of coherent photon storage and may become a valuable technique if

single x-ray photons are to become the information carriers in future photonic devices.
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Appendix A. The MBE for circular polarization

A circularly polarized incident pulse will drive either the ∆m = me−mg = 1 (this field

is denoted below by Ω+) or the ∆m = me − mg = −1 (respectively Ω−) transitions

between the two ground state and four excited state hyperfine levels. Using the level

notations defined in the text in Sec. 1, we obtain the Bloch equations

∂tρ11 = Γ(C2
14ρ44 + C2

15ρ55 + C2
16ρ66)

− i

2
[C14(Ω−p ρ14 − c.c.) + C16(Ω+

p ρ16 − c.c.)] ,

∂tρ22 = Γ(C2
23ρ33 + C2

24ρ44 + C2
25ρ55)

− i

2
[C23(Ω−p ρ23 − c.c.) + C25(Ω+

p ρ25 − c.c.)] ,

∂tρ32 = − 1

2
(2i∆p,3→2 + C2

23Γ)ρ32 −
i

2
C23Ω−p (ρ33 − ρ22)− i

2
C25Ω+

p ρ35 ,

∂tρ33 = − C2
23Γρ33 +

i

2
C23(Ω−p ρ23 − c.c.) ,

∂tρ41 = − 1

2
(2i∆p,4→1 + C2

14Γ + C2
24Γ)ρ41 −

i

2
C14Ω−p (ρ44 − ρ11)− i

2
C16Ω+

p ρ46 ,

∂tρ44 = − (C2
14 + C2

24)Γρ44 +
i

2
C14(Ω−p ρ14 − c.c.) ,

∂tρ52 = − 1

2
(2i∆p,5→2 + C2

15Γ + C2
25Γ)ρ52 −

i

2
C25Ω+

p (ρ55 − ρ22)− i

2
C23Ω−p ρ53 ,

∂tρ53 = − 1

2
(2i∆p,5→2 − 2i∆p,3→2 + C2

15Γ + C2
25Γ + C2

23Γ)ρ52
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− i

2
C23Ω−p ρ52 +

i

2
C25Ω+

p ρ23 ,

∂tρ55 = − (C2
15 + C2

25)Γρ55 +
i

2
C25(Ω+

p ρ25 − c.c.) ,

∂tρ61 = − 1

2
(2i∆p,6→1 + C2

16Γ)ρ32 −
i

2
C16Ω+

p (ρ66 − ρ11)− i

2
C14Ω−p ρ64 ,

∂tρ64 = − 1

2
(2i∆p,6→1 − 2i∆p,4→1 + C2

14Γ + C2
16Γ + C2

24Γ)ρ64

− i

2
C14Ω−p ρ61 +

i

2
C16Ω+

p ρ14 ,

∂tρ66 = − C2
16Γρ66 +

i

2
C16(Ω+

p ρ16 − c.c.) ,

(A.1)

with the Maxwell equations for the Rabi frequencies Ω+
p and Ω−p of the two components

given by

1

c
∂tΩ

+
p + ∂zΩ

+
p = i

η

2

(
ρ61

C16

+
ρ52

C25

)
,

1

c
∂tΩ

−
p + ∂zΩ

−
p = i

η

2

(
ρ41

C41

+
ρ32

C23

)
. (A.2)

References

[1] Adams B W, Buth C, Cavaletto S M, Evers J, Harman Z, Keitel C H, Pálffy A, Picón A,
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