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Abstract.
This work is dedicated to the study of radiation reaction signatures in the framework of classical and

quantum electrodynamics. Since there has been no distinct experimental validation of radiation reaction
and its underlying equations so far and its impact is expected to be substantial for the construction of new
experimental devices, e.g., quantum x-free electron lasers, a profound understanding of radiation reaction
effects is of special interest. Here, we describe how the inclusion of quantum radiation reaction effects
changes the dynamics of ultra-relativistic electron beamscolliding with intense laser pulses significantly.
Thereafter, the angular distribution of emitted radiationis demonstrated to be strongly altered in the
quantum framework, if in addition to single photon emissionalso higher order photon emissions are
considered. Furthermore, stimulated Raman scattering of an ultra-intense laser pulse in plasmas is
examined and forward Raman scattering is found to be significantly increased by the inclusion of radiation
reaction effects in the classical regime. The numerical simulations in this work show the feasibility of an
experimental verification of the predicted effects with presently available lasers and electron accelerators.

1. Introduction
If a charged particle, an electron for definiteness, is exposed to an electromagnetic background field,
it will be accelerated and subsequently emit radiation. Although this process is fundamental in
electrodynamics, the usual classical treatment is insufficient, since it does not take into account radiation
reaction (RR), i.e., the back reaction of the emitted radiation on the charged particle itself [1, 2]. In
this work high intensity plane wave laser fields of electric field amplitudeE0, central angular frequency
ω0, central wavelengthλ0 and propagation directionn0 are investigated, in order to theoretically probe
the parameter regime relevant for RR. The study of electron-laser interactions in classical as well as
quantum electrodynamics (QED) is of special interest, as they are expected to have impact on various
fields like accelerators, quantum x-free electron lasers [3, 4, 5] or the production of multi-GeV photon
beams [6]. However, RR effects are also of pure theoretical interest, as even in the framework of classical
electrodynamics theoretical methods such as renormalization are necessary to describe the self-coupled
dynamics [7].

Recently it has been reported, that the so-called Landau-Lifshitz (LL) equation is in theory the
accurate equation of motion for an electron of massm and chargee < 0 in the framework of classical
electrodynamics [1, 2, 7, 8, 9, 10, 11]. (Units with~ = c = 1 are used.) In case of an electromagnetic
plane wave the LL equation allows for an analytical solution[12] and it was demonstrated that if the
parameterRc = αχ0ξ0 is of order of unity, the dynamics of an electron with initialmomentumpµi
colliding with a plane wave laser field is significantly altered by RR effects. Here, we introduced
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the classical and quantum nonlinearity parametersξ0 = |e|E0/mω0 and χ0 = ((n0pi)/m)E0/Ecr,
respectively, and definednµ0 = kµ0 /ω0 = (1,n0), where we made use of the abbreviation(ab) = aµb

µ

denoting the product of two four-vectorsaµ andbµ. Furthermore,α = e2 is the fine structure constant
andEcr = m2/|e| = 1.3 × 1016 V/cm is the critical field of QED. In addition, in a bichromatic laser
pulse the RR force was shown to modify the trajectory of an electron also in the case ofRc ≪ 1 [13]
(see also [14]). The head-on collision of a laser field with anultra-relativistic electron of initial energy
εi yields Rc = 3.2 εi[GeV]I0[1023 W/cm2]/ω0[eV], whereI0 = E2

0/4π is the laser peak intensity.
Thus, the experimental challenges in observing RR effects can be understood, since this expression is
usually very small. Nevertheless, an alternative method has been proposed to measure RR effects also
at moderate laser intensities and larger pulse durations [15]. However, for upcoming ultra-high intensity
laser facilities it was calculated that for laser intensities exceedingI0 > 2×1023 W/cm2 RR effects have
to be taken into account and forI0 > 4× 1024 W/cm2 quantum effects will become important [16] and
lead to a strong alteration of the particle’s dynamics [17].

In addition, the consistency of QED and the diverse classical approaches was examined [18]. In the
quantum description a laser field is depicted as a stream of photons and the scattering process with an
electron leads to the absorption of many photons from the field and to the subsequent emission of one or
more photons. In fact, the emission of a single photon by an electron in strong laser pulses (nonlinear
single Compton scattering (NSCS)) has been studied thoroughly [19, 20, 21, 22, 23] and the classical
spectra without RR [24] were shown to coincide with the NSCS spectra forχ0 ≪ 1. Hence, in the
ultra-relativistic regime and for negligible pair creation the quantum analogue of RR can be understood
as the emission of a higher number of photons [25]. Providingthe first results for such higher order
photon emission, the emission of two photons by an electron in a plane wave (nonlinear double Compton
scattering (NDCS)) was considered recently [26, 27, 28, 29].

The influence of the RR force on the collective particle dynamics of a system can be considerably
different from the single particle dynamics as the collective energy loss of the particles due to RR can
give rise to unexpected physical phenomena in a medium. In the classical electrodynamics regime, an
analysis of the influence of the Landau-Lifshitz RR force [7]on the collective plasma dynamics of the
particles has been carried out recently, where it was found that the inclusion of RR counterintuitively
strongly enhances the forward Raman scattering (FRS) of thelaser radiation in plasmas [30]. This
growth enhancement is attributed to the nonlinear mixing ofthe two Raman sidebands mediated by the
RR force.

In the sections concerning quantum RR (sections 2 and 3), we will employ light-cone coordinates,
which for a four-vectoraµ = (a0,a) are defined asaµ = (a+, a−,a⊥), wherea± = a0 ± a‖, with
a‖ = k0 · a/ω0 anda⊥ = a− a‖k0/ω0.

2. Kinetic approach to quantum radiation reaction
In this section, we investigate RR effects in the collision of an intense laser pulse with an ultra-relativistic
electron beam. In classical electrodynamics RR was shown toreduce the energy width of electron [31]
and ion [32, 33, 34, 35] bunches. However, in the quantum regime we find that RR has the opposite
tendency and leads to a broadening in the width of the energy distribution describing the electron
beam. The difference between the classical and the quantum regime can be explained by the increasing
importance of the stochastic nature of photon emission in the quantum regime. The classical LL equation
ignores the stochasticity of photon emission and even for small χ0 a correct treatment of RR requires
an additional stochastic term. In fact, a Langevin-like equation can be employed for not too largeχ0’s,
though in the full quantum regime atχ0 ∼ 1 this approximated description is not valid anymore. The
broadening in the energy distribution of the electron beam displayed by our numerical simulations is
expected to be detectable with nowadays available electronaccelerators and strong laser fields.

An exact treatment of RR in the realm of strong-field QED wouldin principal result in the
determination of the fullS-matrix, taking into account multiple photon emission, radiative corrections
and pair creation following photon emission [1, 25]. However, RR mainly stems from incoherent multi-



photon emission in the so-called “nonlinear moderately-quantum” regimeξ0 ≫ 1, χ0 . 1 [25], where
nonlinear effects in the laser field are considered to be large and quantum effects are already important
but pair production can still be neglected. In order to investigate RR in this regime we apply a kinetic
approach [36, 37, 38] and in turn characterize electrons andphotons by distribution functions. Due
to the neglect of pair production the distribution functionof positrons is considered to vanish and the
kinetic equation of the electrons is decoupled from that of the photons [36, 37, 38]. If the average
energy of the electron beamε∗ fulfills the constraintε∗ ≫ mξ0, the transverse momentum of the
electrons can be disregarded, since throughout the whole interaction it will remain much smaller than the
longitudinal momentum [7]. Assuming the collision of presently available optical (ω0 = 1.55 eV) laser
fields of intensity1022 W/cm2 [39] with electron bunches with typical energies ofε∗ = 1 GeV yields
mξ0 = 25 MeV and allows us to treat the present problem as an one-dimensional one. Considering a
linearly polarized plane wave propagating along the positive y direction, we introduce the electric field
of the laser field byE(η) = E0g(η)ẑ depending on the laser phaseη = ω0(t − y) via a pulse-shape
function with |g(η)|max ≤ 1. Since the ultra-relativistic regimeξ0 ≫ 1 is investigated, the emission
in a plane wave field of a photon with four-momentumkµ = (ω,k) by an electron with initial four-
momentumpµ = (ε,p) can be characterized by adopting the well-known single photon differential
emission probabilitydPp− per unit phase and per unitu = k−/(p− − k−) [40]

dPp−

dηdu
=

α√
3π

m2
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1
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[

(
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1
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)

K 2
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(
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−
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3χ

dxK 1

3
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]

, (1)

where Kν(·) is the modified Bessel function ofνth order. The quantum nonlinearity parameter is given
by χ ≡ χ(η, p−) = (p−/m)|E(η)|/Ecr and is now depending on the laser phase due to the oscillating
electric fieldE(η) = E0g(η). The fact that Eq. (1) only depends on the variablesη andp− allows us to
employ an electron distributionfe(η, p−) for the description of an electron beam and its phase evolution
is determined by the kinetic equation (see Ref. [36])
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∣
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. (4)

Eq. (2) is non-local in the momentump− since it is an integro-differential equation. Hence, an electron
with initial momentump−0 is coupled to the electron with momentump−0 − k−, where the momentum of
the emitted photonk− varies between0 andp−0 . In turn, the evolution offe(η, p−) is not only influenced
by the neighborhood ofp− but by all possible values ofp′−. In order to study the classical limit of RR,
we expand Eq. (2) up to the order ofχ3(η, p−)

∂fe
∂η

= − ∂

∂p−
[A(η, p−)fe] +

1

2

∂2

∂(p−)2
[

B(η, p−)fe
]

, (5)

which is a Fokker-Planck-like equation [38, 41, 42]. Here, we introduced the “drift” coefficient
A(η, p−) = −2αm2

3ω0
χ2(η, p−)[1 − 55

√
3

16 χ(η, p−)] and the “diffusion” coefficientB(η, p−) =
αm2

3ω0

55
8
√
3
p−χ3(η, p−). Eq. (5) is no longer an integro-differential equation and the evolution offe(η, p−)



Figure 1. (color online) Phase evolution of the electron distribution for a 7-cyclesin2-like laser pulse
according to Eq. (2) (part a)), to the classical kinetic equation without (part b)) and with the replacement
Icl(η, p

−) → Iq(η, p
−) (part c)). The laser and the initial electron distribution parameters are given in

the text.

is determined by the momentap′− close top−, due to the locality inp−. If also higher-order corrections
in χ(η, p−) are considered, the expansion of Eq. (2) leads to terms with higher derivatives offe(η, p−)
with respect top−.

By expanding the kinetic equation (2) we obtain two quantum corrections to the classical kinetic
equation∂fe/∂η = −∂/∂p− (fedp

−/dη), with dp−/dη = −Icl(η, p−)/ω0 and the classical radiation
intensityIcl(η, p−) = (2/3)αm2χ2(η, p−). The first correction modifies the drift coefficientA(η, p−),
but does not affect the analytical structure of the classical equation. Therefore the phase evolution is
purely deterministic [43] and this correction coincides with the well-known leading-order correction to
the total intensity of radiation [36, 40]. As the correctionterm is negative, we expect the reduction of
the energy width to be smaller than in classical electrodynamics. However, if the classical radiation
intensity Icl(η, p−) is substituted by the corresponding quantum oneIq(η, p

−) (see, e.g., [40]), the
corresponding Liouville equation still predicts a decrease in the energy width, due to the fact that
electrons with higher energy on average will emit more radiation. On the other hand, the second
quantum correction introduces the diffusion coefficientB(η, p−) and transforms the classical kinetic
equation into a Fokker-Planck-like equation, which is equivalent to the single-particle stochastic equation
dp− = −A(η, p−)dη +

√

B(η, p−)dW , with dW an infinitesimal stochastic function [41]. Reflecting
the stochasticity of photon emission, this equation is no longer deterministic and the stochastic evolution
of the system causes the broadening of the energy distribution [43].

We solved Eq. (2) numerically by employing a finite difference method and we ensured that for
χ∗ = (p∗,−/m)E0/Ecr ≪ 1, wherep∗,− is the average momentum, our numerical simulations coincide
with classical results, as well as with the results in the quantum regime [25]. We now consider a laser
pulse with shape functiong(η) = sin2(η/2NL) sin(η), whereNL is the number of laser cycles and with
ω0 = 1.55 eV, to collide head-on with an initial Gaussian electron distribution that is normalized to
unity. Further, we assume the laser peak intensityI0 = 2.5 × 1022 W/cm2, the average momentum
p∗,− = 1.8 GeV (ε∗ ≈ 900 MeV) and the initial width of the electron distributionσp− = 0.18 GeV
corresponding toχ∗ = 0.8, andNL = 7 corresponding to about21 fs. The results of our numerical
simulations are shown in Fig. 1. As expected, Fig. 1a) displays a broadening of the electron distribution
in the quantum regime. However, if the full kinetic Eq. (2) isnot applied but the quantum intensity
Iq(η, p

−) (see, e.g., [36, 40]) is set into the classical kinetic equation, the photon emission still reduces
the energy spread of the electron distribution (Fig. 1c)) asin the classical case (Fig. 1b)). This clearly
indicates that the broadening of the electron distributionis induced by the importance of the stochasticity
of photon emission in the full quantum regime.

3. Nonlinear double Compton scattering
In this section, we are going to demonstrate how in the ultra-relativistic quantum regime, distinguished
by the conditionsξ0 ≫ 1, χ0 & 1, the NDCS signal can be spatially separated from the dominant NSCS



signal. The investigation of the given parameter regime is timely as it is about to come into experimental
reach. To clearly interpret the results of this analysis andto establish an intuitive understanding of the
underlying physics we are going to work out a semi-classicalpicture of two smoothly joined classical
electron trajectories from which the two separate photons are consecutively emitted. These trajectories
are found to feature a discontinuity only in the electron’s energy, which can be attributed to the emission
of a photon of finite energy. We are going to connect this picture of a discontinuous change of the
trajectory to the classical account of RR which leads to a smooth change of the electron’s trajectory [25].
Finally, we are going to demonstrate that the discussed effect is likely to be observable with already
available lasers, featuring intensities beyond1022 W/cm2 [39], and electron acceleration technology
either from conventional accelerators [44] or modern plasma-based laser accelerators [45, 46].

As in the regimemξ0 ≪ εi, with the electron’s initial energyεi, the radius of the laser’s focal
volume routinely exceeds the electron’s perpendicular excursion, which is on the order ofλ0(mξ0/εi)
it is justified to approximate the laser field by a plane wave. In the present study we are thus going
to model the laser pulse by a plane wave field of arbitrary temporal shapeAµ

0 (η) = (E0/ω0)ǫ
µ
0ψ(η)

depending on the space-time coordinates only via the invariant phaseη = kµ0xµ. Hereǫµ0 is the wave’s
polarization four-vector and the shape functionψ(η) describes the laser pulse’s arbitrary temporal shape.
Since in the regimeξ0 ≫ 1 nonlinear effects have to be taken into account exactly we will perform our
calculations in the so-called Furry picture of quantum dynamics [47, 48]. The essence of this procedure
is to attribute terms in the QED Lagrangian describing the strong background field, i.e. the laser pulse in
this case, to the free Lagrangian and to subsequently quantize the charged fermionic fields in the presence
of this strong background. Technically this amounts to a replacement of the vacuum wave function of
an electron with momentumpµ and spin quantum numberσ by a solution of the Dirac equation in the
presence of the strong plane wave background, known as Volkov wave functionΨp,σ(x) [49]. It is then
straightforward to obtain an expression for the scatteringmatrix elementSfi of an electron with initial
(final) four-momentumpµi = (εi,pi) (pµf = (εf ,pf )) and spin quantum numberσi (σf ) emitting two
photons with wave vectorskµ1 andkµ2 and polarization four-vectorsǫµk1,λ1

andǫµk2,λ2
, respectively. The

resulting expression can be written asS(1)
fi + S

(2)
fi with

S
(1)
fi = −e2

∫

d4xd4y Ψpf ,σf
(y) /ǫ∗k2,λ2

eik2y G(y, x) /ǫ∗k1,λ1
eik1xΨpi,σi

(x) (6)

andS(2)
fi = S

(1)
fi (1 ↔ 2). Here/a = γµaµ is the common Feynman slash notation with the four-

vector of the Dirac matricesγµ. Furthermore, we introduced the Dirac conjugate wave function
Ψp,σ(x) = Ψ†

p,σ(x)γ0 and made use of the laser dressed electron propagatorG(y, x) [40]. Due to

symmetry reasons it is sufficient to only compute the quantity S(1)
fi , whence the cross-channel amplitude

S
(2)
fi can be obtained by the exchange of indices(1 ↔ 2) in the final expression. According to earlier

work [28, 29] this partial amplitude naturally splits up into two contributions in the following way

S
(1)
fi = (2π)3

2
∑

r,s=0

(arfrδr,s + br,sfr,s)δ(p
−
i − k−1 − k−2 − p−f )δ

(2)(p⊥
i − k⊥

1 − k⊥
2 − p⊥

f ). (7)

The matrix coefficientsar andbr,s are rather involved but not needed here and thus not given explicitly.
Anyway, the important information on the dynamics of the two-photon emission process is encoded in
the dynamic integrals [28, 29]

fr =

∫

dηψr(η) exp{−i [Sx(η) + Sy(η)]}, (8a)

fr,s =

∫

dηxdηyΘ(ηy − ηx) ψ
s(ηx)ψ

r(ηy)exp{−i [Sx(ηx) + Sy(ηy)]}, (8b)



where Sx/y(η) =
∫ η
0 dη′[αx/y ψ(η

′) + βx/y ψ
2(η′) + γx/y], with αx = −mξ[(piǫ0)/(k0pi) −

(ptǫ0)/(k0pt)], βx = −m2ξ2(k0k1)/2(k0pt)(k0pi), γx = −(k1pi)/(k0pt). The parametersαy, βy
andγy are obtained fromαx, βx andγx, respectively, substitutingpµt → pµf , pµi → pµt andkµ1 → kµ2 . In
these expressions we defined the transitional electron momentumpµt , distinguished by the four conditions
p−t = p−i − k−1 , p⊥

t = p⊥
i − k⊥

1 andp2t = m2. From the above expressions one can read off that the
integralsf0, f0,s andfr,0 are divergent. These divergences, however, can be analytically regularized
by an integration by parts technique [28, 29]. Carrying out the resulting replacements in the scattering
matrix element, taking the modulus square and summing over the discrete and continuous phase spaces
of all particles involved in the scattering the final result for the differential energy spectrum is found to
be

dE =
ω1 + ω2

2

d3pf

(2π)3

2
∏

i=1

d3ki

(2π)3

∑

{σ,λ}

∣

∣

∣
S
(1)
fi + S

(2)
fi

∣

∣

∣

2
, (9)

where {σ, λ} ≡ σi, σf , λ1, λ2. The δ-functions contained inS(1,2)
fi serve to fix the final electron

momentumpµf whence we only have to integrate over the phase spaces of the emitted photons.
As a next step we wish to give an exemplary numerical study of Eq. (9) to demonstrate its tractability

as well as to highlight the aforementioned spatial separation of the NSCS and the NDCS emission signals.
For the numerical evaluation we assume the laser’s shape function to beψ(η) = sin4(η/4) sin(η) for
η ∈ [0, 4π] and zero elsewhere with a central frequencyω0 = 1.55 eV, corresponding to an optical
laser pulse of approximately5 fs duration. We consider the case of an ultra-intense laser pulse of peak
intensityI0 = 1022W/cm2 corresponding toξ0 ≈ 48, as is already available at nowadays working laser
facilities such as the Hercules laser [39]. Furthermore, westudy the case of an ultra-relativistic electron
of initial energyεi = 5 GeV colliding head on with the specified laser pulse, resulting in a quantum
nonlinearity parameterχ0 = 2.8, indicating the importance of quantum effects. Next, we wish to recall
several properties of the NSCS signal, that are to be expected for the given experimental setup [50]: At
ξ0 ≫ 1 the single photon signal is limited to a polar angular rangeπ − θ ≤ ψ0 θ0, where the typical
opening angle of the single photon emission cone is given byθ0 = mξ0/εi. The maximum value of
the shape function specified above isψ0 = |max(ψ(η))| = 0.8. Any emission predicted towards polar
angles outside this emission cone will be clearly separatedfrom the dominant NSCS signal.

As our reference frame we choose the coordinate frame in which the laser pulse is polarized along
thex-direction and propagates towards the positivez-axis. This axis we also choose as polar axis, i.e.
θ = π corresponds to the electron’s initial propagation direction opposite to the laser’s propagation
direction atθ = 0. To stress that two-photon emission will be important for the electron’s radiation
pattern given the specified experimental parameters we estimate the average number of emitted photons
to beNNSCS = 1.6 [40].

In the given reference frame we consider an experiment whereone photon detector observes any
photon emitted towards the direction (θ1 = π − θ0/2, φ1 = π) and a second detector to trace
photons emitted towards the two different directions (θ2 = π − θ0/2, φ2 = 0) (see fig. 2a)) and
(θ2 = π−θ0, φ2 = 0) (see fig. 2b)). While the first detector is positioned insidethe NSCS emission cone
the choice for the second observation direction corresponds to photon detection inside (see fig. 2a)) and
outside (see fig. 2b)) this cone, respectively. The azimuthal anglesφ1,2 = 0, π are chosen for observation
of the emitted photons within the laser’s plane of polarization, where most radiation is emitted.

In fig. 2a) we wish to highlight that the cutoff for the emittedphoton’s frequencies (white line in
fig. 2a)), set by energy-momentum-conservation, is closelyapproached, whence we infer that quantum
effects indeed are non-negligible. Comparing now this figure to Fig. 2b), which is plotted in the
same color-scale, we immediately conclude that there is a considerable amount of radiation emitted
to directions outside the NSCS emission cone (recall that this latter figure corresponds to the detection
of a photon outside this cone). We can thus conclude a clear spatial separation between the NSCS
signal, confined exclusively to the angular rangeπ − θ ≤ 0.8 θ0, and the NDCS signal, which is also



Figure 2. (color online) Two-photon energy emission spectra dE/Π2
i=1dωidΩi[eV−1 sr−2] atχ0 ≈ 2.8

observed atθ1 = π− θ0/2, and atθ2 = θ1 (part a)) and atθ2 = π− θ0 (part b)), withθ0 = 5×10−3 rad.
Other numerical parameters are given in the text. The solid white lines correspond to the cutoff-energy
ω1 + ω2 = εi (part a)) and the threshold frequencyω∗

1 (part b)), respectively. Part c): Two classical
electron trajectories with initial electron momentumpi (solid line) andpt (dashed line). In color-code:
Actual electron trajectory for a photon with energyω1 = 2 GeV emitted at̄ηx,1 towards(θ1, φ1).

detectable underπ − θ = θ0. The classical analog of this quantum result is an effect attributed to
RR changing the angular distribution of the radiation emitted by an electron [14]. For a qualitative
interpretation of the presented separation of the single and two photon signals we take advantage of a
stationary-phase analysis that was recently developed forthe analysis of NDCS spectra [29]. It was
shown that it was only necessary to analyze the part of the scattering matrix element proportional to the
bivariate dynamic integralsfr,s as this partial amplitude largely dominates the scatteringamplitude. The
corresponding dynamic integrals were approximated as [29]fr,s ≈

∑

l,nΘ(η̄y,n− η̄x,l)f yr (η̄y,n)fxs (η̄x,l)
with fx/yr =

∫

dηψr(η) exp[−iSx/y(η)] with the exponential phasesSx/y(η) defined above. The sum
over the indicesl andn is a sum over all stationary points in whose vicinities the only non-negligible
contributions to the dynamic integrals are formed. These stationary points are found as solutions of the
equationsψ (η̄x,l) = −1/2 andψ(η̄y,n) = ∆ϑ2 − ω1/εi (1/2 + ∆ϑ2) with ∆ϑ2 = (π − θ2)/θ0. In
these expressions the fixed values ofθ1, φ1 andφ2 were already inserted and onlyθ2 was left variable.
The given equations formally correspond to the stationary point conditions of two separate single photon
emissions, where first a photon with wave vectorkµ1 is emitted by an electron with initial momentumpµi ,
whereas the second photon with wave vectorkµ2 is emitted by an electron with initial momentumpµt . We
can consequently interpret two-photon emission in the regimeξ0 ≫ 1 as the sequential emission of the
first and second photon emitted from the classical trajectory an electron would take if it entered the laser
field with an initial four-momentumpµi andpµt , respectively. For the sake of continuity these trajectories
naturally have to be joined at the emission point of the first photonkµ1 . However, the energies a classical
electron will have when following these two separate trajectories will be discontinuous at the connection
point, reflecting the finite loss of energy and momentum due tothe quantum photon emission. We note
that, of course, there are several solutions for the stationary pointsη̄x,l and hence several combinations
of classical trajectories for each choice of observation directions for the emitted photons. One exemplary
combination of two such classical trajectories computed for an electron scattered from a laser pulse of
the given parameters is shown in fig. 2c). An electron with initial momentumpµi would follow the solid
trajectory, whereas, on the other hand, an electron of initial electron momentumpµt would take the dashed
trajectory. In the case shown here the transitional momentum pµt is computed frompµi by assuming the
emission of a photon of energyω1 = 2 GeV into the direction (θ1, φ1). Since this corresponds to the loss
of a significant portion of its initial energy by the electronthe momentumpµt significantly differs frompµi
and thus the two corresponding trajectories are clearly distinguishable. This feature then also explains



the considerable spatial separation of the NSCS and the NDCSsignal in the regimeχ0 ∼ 1. We note,
however, that the tangent vectors of the two shown trajectories are parallel at the junction, as they have
to be for an ultra-relativistic electron emits photons almost exclusively into its instantaneous direction
of propagation and thus can lose momentum only in this direction. The aforementioned loss of energy,
however, can be read off from the color-coding of the two trajectories and is clearly discontinuous at
the point of emission of the first photon. It is also this significantly decreased energy of the electron
that leads to a stronger deflection of the second trajectory inside the laser field. To find an analytical
prediction of the energy threshold the first photon has to carry away to render this deflection strong
enough to facilitate emission towards the chosen observation directionθ2 = π−θ0 we solve the defining
equation of the stationary point̄ηy,n for the first emitted photon’s frequencyω1. From this procedure
we find the thresholdω∗

1 = εi(1 − 0.8)/(1 + 1/2) ≈ 660 MeV, which is well confirmed in fig. 2b).
Furthermore, we have to stress that in the overall scattering amplitude we also have to include the cross-
channel termS(2)

fi where the photons’ wave vectorskµ1 andkµ2 are exchanged. The interpretation for this
cross-channel is in terms of classical trajectories is analogous to the above given arguments, however,
with the order of the emission of the two photons exchanged aswell.

4. Influence of RR on the parametric instabilities in plasmas
Parametric instabilities of a laser pulse in a plasma are important due to their applications in the
area of laser-driven fusion, laser wakefield acceleration,and have been investigated for decades
[51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. The FRS—a scattering process belonging to the
general Stimulated Raman scattering (SRS) processes in plasmas—is one of the prominent examples
of parametric instabilities in plasmas. In the FRS, the incident pump laser decays into two forward
moving daughter electromagnetic waves, and a plasma wave. The daughter waves have their frequencies
upshifted (anti-Stokes waves) and downshifted (Stokes wave) from the pump laser by the magnitude
which equals the excited plasma wave frequency.

Though, at high laser intensitiesI0 ≥ 1019 W/cm2, the growth rate of the parametric instabilities
becomes smaller due to the relativistic Lorentz factor [57], the role of RR force becomes also important
especially at ultra-high laser intensities,I0 ≥ 1022 W/cm2[1, 33, 34, 14, 63, 64, 65]. Such ultra-intense
laser systems are expected to be available in a near future after the commissioning of the Extreme Light
Infrastructure (ELI) project in Europe [66]. Due to the RR force, the laser pulse suffers damping while
propagating in a plasma. As the laser loses energy due to RR force it facilitates, apart from the usual
parametric decay processes, the availability of an additional source of free energy for perturbations to
grow in the plasma. Its effective intensity also decreases which lowers the relativistic Lorentz factor.
Moreover, the phase shift, caused by the RR force, in the nonlinear current densities causes polarization
rotations of the scattered daughter electromagnetic waves. This necessitates to include the effect of RR
force in the theoretical formalism of the parametric instabilities in the plasma.

We study the FRS of an ultra-intense laser pulse in a plasma including the RR force effects in
the classical electrodynamics regime where quantum effects arising due to photon recoil and spin are
negligible [1]. This approach is valid if the wavelength andmagnitude of the external electromagnetic
field in the instantaneous rest frame of the electron satisfyλ≫ λC , E ≪ Ecr, whereλC = 3.9 × 10−11

cm is the Compton wavelength andEcr is the critical field of the quantum electrodynamics [1]. Forthe
laser intensities planned in the ELI projectI0 ∼ 1022−23 W/cm2 [66], these two criteria can be fulfilled.
In the classical electrodynamics regime, the Landau-Lifshitz RR force [7] correctly accounts for the
radiation emitted by a relativistic charged particle [1]. Consider the propagation of a circularly polarized
(CP) pump laser along thêz direction in an underdense plasma with uniform plasma electron density
ne. Ions are assumed to be at rest. Eq. of motion for an electron including the leading order term of the
Landau-Lifshitz RR force in the laser field is

∂p

∂t
+ υ · ∇p = −e

(

E + υ ×B
)

− 2e4

3m2
γ2υ

[

(

E + υ ×B
)2 −

(

υ ·E
)2
]

, (10)



where γ = 1/
√
1− υ2 and the velocity of the light in vacuumc = 1. The other terms of the

Landau-Lifshitz RR force are ignored as they are1/γ times smaller than the leading order term
[7]. We first ignore the RR term and express the electric and magnetic fields in potentials asE =
−∇φ−∂A/∂t, B = ∇×A. In a 1D approximation valid whenr0 ≫ λ0 (wherer0 is the spot-size and
λ0 is the wavelength of the pump laser pulse), the transverse momentum andz-component of motion are
p⊥ = eA, and ∂υz/∂t = e∇φ/(mγ0) − e2∇|A|2/(2m2γ20), whereA = A0e

iη0/2 + c.c, A0 =
σA0,σ = (x̂+ iŷ)/

√
2, γ0 = (1 + ξ20/2)

1/2, ξ0 = eA0/m, η0 = k0z − ω0t, andω0, k0 are the carrier
frequency and wavevector of the pump laser respectively [57, 67]. A plane monochromatic CP light
doesn’t cause any charge separation since for it∇|A0|2 = 0 and consequently there is no component
of velocity in the ẑ direction. This solution is known as the Akhiezer-Polovin solution for a purely
transverse monochromatic CP light in plasmas [57, 68, 69]. The scattering of the laser pulse results into
the total vector potential of the formA = [A0e

iη0 + δA+e
ik⊥.x⊥eiη+ + δA∗

−e
−ik⊥.x⊥e−iη∗

− ]/2 + c.c.,
whereδA+ = σδA+, δA∗

− = σδA∗
−, δA+ andδA− represent the anti-Stokes and the Stokes waves

respectively,η+ = (kz+k0)z−(ω+ω0)t, η
∗
− = (kz−k0)z−(ω∗−ω0)t [57, 67]. Beating of the Stokes

and the anti-Stokes waves with the pump laser leads to the plasma wave excitationδn/ne, which can be
estimated from the equation of continuity, Poisson equation, and thez-component of equation of motion,
yielding δñ =

(

e2k2z/2m
2γ20De

)

(A∗
0δA+ +A0δA−), whereDe = ω2 − ω

′2
p , ω

′2
p = ω2

p/γ0, ω
2
p =

4πnee
2/m, δn/ne = δñeiηeik⊥.x⊥/2 + c.c, andη ≡ η+ − η0 ≡ η− + η0 = kzz − ωt [57, 67]. Plasma

wave oscillation causes an axial component of velocity and momentumυz ≪ 1, pz ≪ p⊥.
On using the above solutions for transverse and longitudinal components of momenta to simplify

the RR term in Eq.(10), the full equation of motion after expressing the CP laser pulse asA =
A⊥(x⊥, z, t)eiη0/2 + c.c., with its amplitude varying slowly i.e.|∂A⊥/∂t| ≪ |ω0A⊥| , |∂A⊥/∂z| ≪
|k0A⊥|, and|φ| ≪ |A|, ω2

p/γω
2
0 ≪ 1, andγ = (1 + e2|A|2/m2)1/2, yields,

∂

∂t
(p⊥ − eA) = −eµω0Aγ|A|2(1− 2υz), (11)

whereµ = 2e4ω0/3m
3, υz = (ω/kz) δñ e

ik⊥.x⊥eiη/2+c.c., and we have assumed|µγ|A|2| ≪ 1, valid
for laser intensityI0 ≤ 1023 W/cm2. Since|φ| ≪ |A| and the RR effects in the case of the collinear
movement of plasma electrons and the plasma wave are negligible, we don’t consider the effect of RR
on plasma oscillations. One can solve Eq.(11) by expressingthe transverse component of the quiver
momentum ase.g. p⊥ = [p0e

iη0 + p+e
ik⊥.x⊥eiη+ + p∗

−e
−ik⊥.x⊥e−iη∗

− ]/2 + c.c., wherep+ andp−
have similar polarizations as the anti-Stokes and the Stokes modes. The wave equation for the vector
potential after the density perturbationn = ne + δn reads as

∇2A− ∂2A

∂t2
=
ω2
p

γ

(

1 +
δn

ne

)

p⊥
e
. (12)

The dispersion relation for the equilibrium vector potential can be obtained after collecting the terms
containingeiη0 , and it reads asω2

0 = k20 + ω
′2
p

(

1− iµ|A0|2γ0/2
)

, implying that the RR term causes
damping of the pump laser field. We incorporate this damping by defining a frequency or a wavenumber
shift in the pump laser1. On writingω0 = ω0r − iδω0, δω0 ≪ ω0r we get the frequency shiftδω0 as
δω0 = ω

′2
p εradγ0ξ

2
0/2ω0r, whereεrad = reω0r/3, re = e2/m is the classical radius of the electron and

without the loss of generality we have assumedξ0 = ξ∗0 . For the SRS growth to occur, this frequency
shift must be less than the growth rate. On collecting the terms containingeiη±eik⊥.x⊥ in Eq.(12), we get
D+δA+ = R+ (δA+ + δA−) andD−δA− = R− (δA+ + δA−) which yields the dispersion relation

(

R+

D+
+
R−
D−

)

= 1, (13)

1 One can also incorporate the RR term by appropriately modifying the plasma frequency, which essentially implies changein
the laser pump wavevector arising due to the it’s dispersionin the plasma.



where

D± = (ω ± ω0)
2 − ω

′2
p

(

1− iεradξ
2
0γ0ω0

ω ± ω0

)

− [(kz ± k0)
2 + k2⊥],

R± =
ω2
pξ

2
0

4γ30

[

k2z
De

(

1∓ iεradξ
2
0γ0 +

2iεradξ
2
0γ0

kz

ωω0

ω ± ω0

)

−
(

1∓ iεradξ
2
0γ0

ω

ω ± ω0
+ 4iεradγ

3
0

ω0

ω ± ω0

)

]

.

The RR term modifies the coupling between the Stokes and the anti-Stokes modes(R+ 6= R−), and the
form of dispersion relation from the dispersion relation derived before [51, 53, 57, 67].

For the estimation of the FRS growth rate in a low-density plasma,ω
′

p ≪ ω0r, both the Stokes and the
anti-Stokes modes have to be taken into account [30]. Substituting the pump laser frequency shiftδω0

and ignoring the finitek⊥ givesD± = (ω ± ω0r)
2 − ω

′2
p − (kz ± k0)

2. On expressingω = ω
′

p + iΓfrs,

whereΓfrs is the growth rate of the FRS instability, yieldsD± ≈ 2iΓfrs(ω
′

p ± ω0r), De ≈ 2iω
′

pΓfrs. On

assumingk2z ≈ ω
′2
p , ω

′2
p − ω2

0r ≈ −ω2
0r, we get, in the weakly-coupled regimeΓfrs ≪ ω

′

p, the growth
rate of the FRS as

Γfrs = −
ω2
pεradξ

2
0

2ω0r
±
ω2
pξ0cos(θ/2)√

8γ20ω0r

4

√

(1 + 2ε2radξ
2
0γ

4
0)

2 +

(

εradξ
2
0γ0ω0r

ω′

p

)2

,

tanθ =

(

−εradξ
2
0γ0(ω0r/ω

′

p)

(1 + 2ε2radξ
2
0γ

4
0)

)

. (14)

Without the RR forceεrad = 0, one recovers the relativistic growth rate of the FRS instability as derived
before [57, 67]. Fig.3 shows the growth rate ratio of the FRS with (Γfrs − δω0) and without(Γ0) RR
force. It is evident that the RR force strongly enhances the growth rate of the FRS at lower plasma
densitiesω

′

p/ω0r ≪ 1 and higher laser amplitudeξ0 ≫ 1, which is also apparent from Eq.(14). The
strong growth enhancement due to the RR force is counterintuitive as the later is generally considered
as a damping force similar to collisions in plasmas. One can attribute this enhancement in the growth
rate of the FRS due to the mixing between the Stokes and the anti-Stokes modes mediated by the RR
force. Without the RR force, nonlinear currents driving theStokes and the anti-Stokes modes have
opposite polarizations. Since the phase shift induced by the RR force is polarization dependent, it is
opposite for the Stokes and the anti-Stokes modes. The opposite phase shifts, consequently, lead to the
interaction between the nonlinear current terms and phase shifts accumulation in Eq.(13). This phase
shift accumulation is termed as the manifestation of the nonlinear mixing of the two modes, and it is
responsible for the enhanced growth rate of the FRS instability. Intuitively this growth enhancement can
be imagined to occur due to the availability of an additionalchannel of the laser energy decay due to the
RR force induced damping and its subsequent utilization by both the Stokes and the anti-Stokes modes.

Since, the resonant excitation of both the Stokes and the anti-Stokes modes is the essential condition
for the growth enhancement of the FRS, let us estimate the conditions under which both the modes
are excited. Resonant excitation of the Stokes modes(D− = 0) is always possible due to kinematical
considerations. However, the simultaneous resonant excitation of both the modes is only possible in a
tenuous plasma(ω

′

p ≪ ω0r). The resonant excitation of the Stokes mode leads to frequency mismatch

for the anti-Stokes mode defined as∆ωm = ω
′

p + ω0r − [ω
′2
p + (k

′

p + k0)
2 + D+]

1/2, and it reads

as∆ωm = −ω′3
p /ω

2
0r + 9ω

′4
p /4ω

3
0r. As shown in Ref. [30], this frequency mismatch is smaller than

the actual growth rateΓfrs − δω0 of the FRS instability. This makes the inclusion of both the modes
important while deriving the growth rate of the FRS. The RR force only marginally enhances the growth
rate of the FRS, if only the Stokes mode is resonantly excitedin the plasma. This can be understood
easily as the nonlinear mixing of the two Raman sidebands is absent in this case. The phase shift caused
by the RR force maintains the laser energy transfer to the Stokes mode for a longer time causing minor
enhancement in the growth rate of the FRS.



Figure 3. (Color online) Growth rate ratio(Γfrs − δω0)/Γ0 of the FRS in the presence(Γfrs − δω0),
and in the absence of the RR forceΓ0 as a function of the normalized plasma densityΩp ≡ ωp/ω0r and
normalized pump laser amplitudeξ0 = eA0/m. The normalized growth rate is plotted on log10 scale.

These results are important for the ultra-intense laser-plasma interaction as the onset of parametric
instabilities appears again, changing the frequency spectra and shapes of extremely intense short laser
pulses. Moreover, enhanced FRS of the laser pulse provides an alternative way to detect the RR effects
on the spectra of low-energy optical photons. This is in contrast to the scheme of the nonlinear Compton
scattering of a counter-propagating relativistic electron in a strong laser field, which aims to discern the
signatures of the RR force on the spectra of high-energy gamma-ray photons [1].

5. Conclusions
To summarize, we have investigated RR effects for the collision of an ultra-intense laser pulse with
ultra-relativistic electrons in the quantum regime as wellas with a plasma in the classical regime. In
contrast to the classically predicted narrowing of the energy width of particle beams, we have shown
by employing a kinetic approach that the stochastic nature of photon emission spreads up the energy
distribution of the electrons, if quantum effects are substantial. Further, the quantum computation
including two-photon emission indicates an extensive broadening of the predicted angular range of the
emitted radiation. In the quantum regime this can be associated with the discontinuous energy loss of the
electron and the following modification of its trajectory, whereas in classical electrodynamics RR effects
alter an electron’s trajectory smoothly. Moreover, the forward Raman scattering in plasmas is shown to
be significantly amplified by the inclusion of classical RR, due to the induced nonlinear mixing of the
anti-Stokes and the Stokes modes. Finally, our numerical examples indicate that all the discussed effects
should be detectable with laser-based electron accelerators with presently available and next-generation
lasers.
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[21] Seipt D and Kämpfer B 2011 Phys. Rev. A83022101
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