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Abstract.

This work is dedicated to the study of radiation reactiomatgres in the framework of classical and
guantum electrodynamics. Since there has been no distipetrinental validation of radiation reaction
and its underlying equations so far and its impact is expeittde substantial for the construction of new
experimental devices, e.g., quantum x-free electrondaseprofound understanding of radiation reaction
effects is of special interest. Here, we describe how thkigimn of quantum radiation reaction effects
changes the dynamics of ultra-relativistic electron beaaikding with intense laser pulses significantly.
Thereafter, the angular distribution of emitted radiatisnrdemonstrated to be strongly altered in the
quantum framework, if in addition to single photon emissaleo higher order photon emissions are
considered. Furthermore, stimulated Raman scatteringnotilaa-intense laser pulse in plasmas is
examined and forward Raman scattering is found to be signifiigincreased by the inclusion of radiation
reaction effects in the classical regime. The numericaliktions in this work show the feasibility of an
experimental verification of the predicted effects withganatly available lasers and electron accelerators.

1. Introduction

If a charged particle, an electron for definiteness, is exggde an electromagnetic background field,
it will be accelerated and subsequently emit radiation. hédigh this process is fundamental in
electrodynamics, the usual classical treatment is inseifficsince it does not take into account radiation
reaction (RR), i.e., the back reaction of the emitted rémhiabn the charged particle itself [1, 2]. In
this work high intensity plane wave laser fields of electr@diamplitudes, central angular frequency
wq, central wavelength, and propagation direction, are investigated, in order to theoretically probe
the parameter regime relevant for RR. The study of eledaser interactions in classical as well as
quantum electrodynamics (QED) is of special interest, ag #re expected to have impact on various
fields like accelerators, quantum x-free electron laserd [3] or the production of multi-GeV photon
beams [6]. However, RR effects are also of pure theoretntatest, as even in the framework of classical
electrodynamics theoretical methods such as renormializate necessary to describe the self-coupled
dynamics [7].

Recently it has been reported, that the so-called Landfalnitz (LL) equation is in theory the
accurate equation of motion for an electron of masand charge: < 0 in the framework of classical
electrodynamics [1, 2, 7, 8, 9, 10, 11]. (Units with= ¢ = 1 are used.) In case of an electromagnetic
plane wave the LL equation allows for an analytical solutjib®] and it was demonstrated that if the
parameterR. = axo&o is of order of unity, the dynamics of an electron with initi@omentump!’
colliding with a plane wave laser field is significantly aéidrby RR effects. Here, we introduced
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the classical and quantum nonlinearity parametgrs= |e|&y/mwo and xo = ((nop:)/m)E/ Eer,
respectively, and defined}, = &/ /wy = (1, o), where we made use of the abbreviatiah) = a,,b"
denoting the product of two four-vectorg' andb*. Furthermoreq = e? is the fine structure constant
andE,.. = m?/le| = 1.3 x 10'V /cm is the critical field of QED. In addition, in a bichromatiser
pulse the RR force was shown to modify the trajectory of anteda also in the case at. <« 1 [13]
(see also [14]). The head-on collision of a laser field withulira-relativistic electron of initial energy
g; yields R, = 3.2¢;[GeV|Ip[10%® Wicn?]/woleV], wherely = &2 /4r is the laser peak intensity.
Thus, the experimental challenges in observing RR effemtsbe understood, since this expression is
usually very small. Nevertheless, an alternative methaleen proposed to measure RR effects also
at moderate laser intensities and larger pulse duratidsjs IHowever, for upcoming ultra-high intensity
laser facilities it was calculated that for laser intemsitexceedind, > 2 x 10?3 W/cm? RR effects have

to be taken into account and fég > 4 x 10%* W/cn? quantum effects will become important [16] and
lead to a strong alteration of the particle’s dynamics [17].

In addition, the consistency of QED and the diverse claksigproaches was examined [18]. In the
quantum description a laser field is depicted as a streamaibps and the scattering process with an
electron leads to the absorption of many photons from the &ietl to the subsequent emission of one or
more photons. In fact, the emission of a single photon by actn in strong laser pulses (nonlinear
single Compton scattering (NSCS)) has been studied thbohpy#9, 20, 21, 22, 23] and the classical
spectra without RR [24] were shown to coincide with the NS@&ctra fory, <« 1. Hence, in the
ultra-relativistic regime and for negligible pair creatithe quantum analogue of RR can be understood
as the emission of a higher number of photons [25]. Providmyfirst results for such higher order
photon emission, the emission of two photons by an electrampiane wave (nonlinear double Compton
scattering (NDCS)) was considered recently [26, 27, 28, 29]

The influence of the RR force on the collective particle dymanof a system can be considerably
different from the single particle dynamics as the coliec&nergy loss of the particles due to RR can
give rise to unexpected physical phenomena in a medium. ereltssical electrodynamics regime, an
analysis of the influence of the Landau-Lifshitz RR force ¢i]the collective plasma dynamics of the
particles has been carried out recently, where it was fohatithe inclusion of RR counterintuitively
strongly enhances the forward Raman scattering (FRS) ofager radiation in plasmas [30]. This
growth enhancement is attributed to the nonlinear mixintheftwo Raman sidebands mediated by the
RR force.

In the sections concerning quantum RR (sections 2 and 3), iwemploy light-cone coordinates,
which for a four-vectora* = (a°,a) are defined ag* = (a*,a”,a"), wherea®™ = a° + all, with
a” =k - (1/0.}0 anda’ =a — a”ko/wo.

2. Kinetic approach to quantum radiation reaction
In this section, we investigate RR effects in the collisibamintense laser pulse with an ultra-relativistic
electron beam. In classical electrodynamics RR was showediaoce the energy width of electron [31]
and ion [32, 33, 34, 35] bunches. However, in the quantunmregie find that RR has the opposite
tendency and leads to a broadening in the width of the eneigyibadition describing the electron
beam. The difference between the classical and the quargime can be explained by the increasing
importance of the stochastic nature of photon emissiondmytlantum regime. The classical LL equation
ignores the stochasticity of photon emission and even fallsgy a correct treatment of RR requires
an additional stochastic term. In fact, a Langevin-likean can be employed for not too largg’s,
though in the full quantum regime gt ~ 1 this approximated description is not valid anymore. The
broadening in the energy distribution of the electron beasplayed by our numerical simulations is
expected to be detectable with nowadays available eleatoalerators and strong laser fields.

An exact treatment of RR in the realm of strong-field QED woiddprincipal result in the
determination of the fullS-matrix, taking into account multiple photon emission,iaile corrections
and pair creation following photon emission [1, 25]. HoweWR mainly stems from incoherent multi-



photon emission in the so-called “nonlinear moderatelgrum” regimesy > 1, xo < 1 [25], where
nonlinear effects in the laser field are considered to beelargl quantum effects are already important
but pair production can still be neglected. In order to itigage RR in this regime we apply a kinetic
approach [36, 37, 38] and in turn characterize electronspdadons by distribution functions. Due
to the neglect of pair production the distribution functiohpositrons is considered to vanish and the
kinetic equation of the electrons is decoupled from thathef photons [36, 37, 38]. If the average
energy of the electron beasat fulfills the constrainte* > mé&,, the transverse momentum of the
electrons can be disregarded, since throughout the whigleagtion it will remain much smaller than the
longitudinal momentum [7]. Assuming the collision of pretlg available opticaly, = 1.55 eV) laser
fields of intensity10%2 W/cm? [39] with electron bunches with typical energiesef= 1 GeV yields
mé&y = 25 MeV and allows us to treat the present problem as an one-@iowal one. Considering a
linearly polarized plane wave propagating along the pasijidirection, we introduce the electric field
of the laser field bye(n) = £g(n)2 depending on the laser phage= wy(t — y) via a pulse-shape
function with |g(n)|max < 1. Since the ultra-relativistic regim& > 1 is investigated, the emission
in a plane wave field of a photon with four-momentu = (w, k) by an electron with initial four-
momentump” = (e,p) can be characterized by adopting the well-known single grhaiifferential
emission probability/P,- per unit phase and per unit= k= /(p~ — k™) [40]

<l—l—u+ 14%) K (;—Z) _/gi dx K%(w)] , 1)

where K, (-) is the modified Bessel function oth order. The quantum nonlinearity parameter is given
by x = x(n,p™) = (p~/m)|E(n)|/Eer and is now depending on the laser phase due to the oscillating
electric field€(n) = &g(n). The fact that Eq. (1) only depends on the variabjesdp~ allows us to
employ an electron distributiofi. (n, p~) for the description of an electron beam and its phase ewoluti

is determined by the kinetic equation (see Ref. [36])
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Eg. (2) is non-local in the momentupt since it is an integro-differential equation. Hence, arctetn
with initial momentump,, is coupled to the electron with momentum — &£~, where the momentum of
the emitted photok ™ varies betweef andpj . In turn, the evolution of.(n, p~) is not only influenced
by the neighborhood qf~ but by all possible values @f ~. In order to study the classical limit of RR,
we expand Eq. (2) up to the ordergt(n,p~)
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which is a Fokker-Planck-like equation [38, 41, 42]. Heres imtroduced the “drift” coefficient
A(n,p~) = —2§$2X2(n,p‘)[1 — 33\ (n,p)] and the “diffusion” coefficientB(n,p~) =

am? %p‘x?’(n,p‘). Eg. (5) is no longer an integro-differential equation amelévolution off.(n, p~)
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Figure 1. (color online) Phase evolution of the electron distribatfor a 7-cyclesin?-like laser pulse
according to Eqg. (2) (part a)), to the classical kinetic eigmawithout (part b)) and with the replacement
Iq(n,p~) — I4(n,p~) (part c)). The laser and the initial electron distributicargmeters are given in
the text.

is determined by the momenga™ close top—, due to the locality irp~. If also higher-order corrections
in x(n,p~) are considered, the expansion of Eq. (2) leads to terms vgtiehderivatives off.(n, p~)
with respect tq .

By expanding the kinetic equation (2) we obtain two quantwnrextions to the classical kinetic
equationdf./on = —0/0p~ (fedp™/dn), with dp~ /dn = —I,(n,p~)/wo and the classical radiation
intensity I;(n, p~) = (2/3)am?x?(n, p~). The first correction modifies the drift coefficieA(n, p~),
but does not affect the analytical structure of the clas®qgaation. Therefore the phase evolution is
purely deterministic [43] and this correction coincideshathe well-known leading-order correction to
the total intensity of radiation [36, 40]. As the correctitamm is negative, we expect the reduction of
the energy width to be smaller than in classical electrodyos. However, if the classical radiation
intensity I;(n, p~) is substituted by the corresponding quantum dpe),p~) (see, e.g., [40]), the
corresponding Liouville equation still predicts a deceeas the energy width, due to the fact that
electrons with higher energy on average will emit more tamlia On the other hand, the second
quantum correction introduces the diffusion coefficiéhi), p~) and transforms the classical kinetic
equation into a Fokker-Planck-like equation, which is ggl@nt to the single-particle stochastic equation
dp~ = —A(n,p~)dn + /B(n,p~)dW, with dW an infinitesimal stochastic function [41]. Reflecting
the stochasticity of photon emission, this equation is mgés deterministic and the stochastic evolution
of the system causes the broadening of the energy distib{#3].

We solved Eq. (2) numerically by employing a finite differenmethod and we ensured that for
X" = (p~~/m)&/Ee < 1, wherep™~ is the average momentum, our numerical simulations coéncid
with classical results, as well as with the results in thentra regime [25]. We now consider a laser
pulse with shape functiog(n) = sin?(n/2Ny ) sin(n), whereNy, is the number of laser cycles and with
wp = 1.55 eV, to collide head-on with an initial Gaussian electrortrdigtion that is normalized to
unity. Further, we assume the laser peak intengjty= 2.5 x 10?2 W/cn?, the average momentum
p~~ = 1.8 GeV " ~ 900 MeV) and the initial width of the electron distributian,- = 0.18 GeV
corresponding to¢* = 0.8, and Ny, = 7 corresponding to abol fs. The results of our humerical
simulations are shown in Fig. 1. As expected, Fig. 1a) digptabroadening of the electron distribution
in the quantum regime. However, if the full kinetic Eq. (2)nist applied but the quantum intensity
I,(n,p™) (see, e.g., [36, 40]) is set into the classical kinetic equathe photon emission still reduces
the energy spread of the electron distribution (Fig. 1c)pabke classical case (Fig. 1b)). This clearly
indicates that the broadening of the electron distribuiiainduced by the importance of the stochasticity
of photon emission in the full quantum regime.

3. Nonlinear double Compton scattering
In this section, we are going to demonstrate how in the wélativistic quantum regime, distinguished
by the conditiong, > 1, xo 2 1, the NDCS signal can be spatially separated from the dorN8CS



signal. The investigation of the given parameter regimarigly as it is about to come into experimental
reach. To clearly interpret the results of this analysis tanestablish an intuitive understanding of the
underlying physics we are going to work out a semi-clasgigeture of two smoothly joined classical
electron trajectories from which the two separate photeasansecutively emitted. These trajectories
are found to feature a discontinuity only in the electromsrgy, which can be attributed to the emission
of a photon of finite energy. We are going to connect this pictof a discontinuous change of the
trajectory to the classical account of RR which leads to acddmohange of the electron’s trajectory [25].
Finally, we are going to demonstrate that the discussedtefdikely to be observable with already
available lasers, featuring intensities beyaditd? W/cm? [39], and electron acceleration technology
either from conventional accelerators [44] or modern pk$rased laser accelerators [45, 46].

As in the regimemé, < ¢;, with the electron’s initial energy;, the radius of the laser’s focal
volume routinely exceeds the electron’s perpendiculauesian, which is on the order ofy(mé&y/<;)
it is justified to approximate the laser field by a plane wawve.thle present study we are thus going
to model the laser pulse by a plane wave field of arbitrary mmalpshapeAf(n) = (Ey/wo)eh(n)
depending on the space-time coordinates only via the Ewaghase) = k{/z,. Heree/, is the wave’s
polarization four-vector and the shape functiofy) describes the laser pulse’s arbitrary temporal shape.
Since in the regimé&, > 1 nonlinear effects have to be taken into account exactly Wlepetrform our
calculations in the so-called Furry picture of quantum dyrta [47, 48]. The essence of this procedure
is to attribute terms in the QED Lagrangian describing thengt background field, i.e. the laser pulse in
this case, to the free Lagrangian and to subsequently geaht charged fermionic fields in the presence
of this strong background. Technically this amounts to damagnent of the vacuum wave function of
an electron with momentup¥ and spin quantum numberby a solution of the Dirac equation in the
presence of the strong plane wave background, known as Walkwe functionV,, ,(x) [49]. Itis then
straightforward to obtain an expression for the scattenvagrix elementSy; of an electron with initial
(final) four-momentunp!’ = (&;, p;) (p‘; = (es,py)) and spin quantum number, (o ;) emitting two
photons with wave vectors,’ andks, and polarization four-vectorg, , ande, , , respectively. The

resulting expression can be Written&%) + Sﬁ) with

SW = e [dlady Ty, o, (y) £, 2, €5 Gly,2) 6, 5, €57 Uy, 0 () (6)

and S(? = Sﬁ)(l < 2). Hereg = ~"a, is the common Feynman slash notation with the four-
vector of the Dirac matriceg*. Furthermore, we introduced the Dirac conjugate wave fanct

U, (z) = \I’;U(az)yo and made use of the laser dressed electron propagdtarz) [40]. Due to
symmetry reasons it is sufficient to only compute the qu;aﬁtﬁ), whence the cross-channel amplitude

S(? can be obtained by the exchange of indi¢es— 2) in the final expression. According to earlier
work [28, 29] this partial amplitude naturally splits upartivo contributions in the following way

2
SY = @) N (@ fybrs + brsfrs)dpi — ki — ky —p7)8P (P — ki — k3 —pf). (7)

r,s=0

The matrix coefficients,. andb, ; are rather involved but not needed here and thus not giveicidyp
Anyway, the important information on the dynamics of the q@wton emission process is encoded in
the dynamic integrals [28, 29]

fr = / Ay () exp{—i [S.(n) + S, ()]}, (82)

Fro = / Ao, © 1y — 1) ¥° (1) " (1) €XP{—1 [ (1) + Sy (1]}, (8b)



where S/, (1) = [ A [aw)y b(0) + Bupy V() + vapyl, With o = —mé[(pieo)/(kopi) —
(pe€o)/ (kope)], Be = —m>E*(kok1)/2(kopt)(kopi), 72 = —(kipi)/(kop:). The parametersy,, f,
and-y, are obtained frona;, 3, andv;, respectively, substituting,’ — p’, pi’ — p" andky’ — k5. In
these expressions we defined the transitional electron mkoime)’, distinguished by the four conditions
p; =p; — ki, pi = p;j — ki andp? = m2. From the above expressions one can read off that the
integrals fo, fos and f,o are divergent. These divergences, however, can be aradlytregularized

by an integration by parts technique [28, 29]. Carrying tet tesulting replacements in the scattering
matrix element, taking the modulus square and summing beediscrete and continuous phase spaces
of all particles involved in the scattering the final reswoit the differential energy spectrum is found to
be

_wi + w2 d?’pf (2
=" (2m)3 11 Z ‘Sfl 5y

(9)

where {0, \} = 0,0, A1,A2. The é-functions contained irﬂﬁ’z) serve to fix the final electron

momenturrp? whence we only have to integrate over the phase spaces ahiltea photons.

As a next step we wish to give an exemplary numerical studygo{® to demonstrate its tractability
as well as to highlight the aforementioned spatial sepgaratf the NSCS and the NDCS emission signals.
For the numerical evaluation we assume the laser's shamgidarto bevy(n) = sin*(n/4) sin(n) for
n € [0,47] and zero elsewhere with a central frequengy = 1.55 eV, corresponding to an optical
laser pulse of approximatelyfs duration. We consider the case of an ultra-intense lagse f peak
intensity I, = 10%2W/cm? corresponding tg, ~ 48, as is already available at nowadays working laser
facilities such as the Hercules laser [39]. Furthermorestudy the case of an ultra-relativistic electron
of initial energye; = 5 GeV colliding head on with the specified laser pulse, resglinh a quantum
nonlinearity parametey, = 2.8, indicating the importance of quantum effects. Next, wevitsrecall
several properties of the NSCS signal, that are to be exgpéatehe given experimental setup [50]: At
& > 1 the single photon signal is limited to a polar angular range 8 < 1 6y, where the typical
opening angle of the single photon emission cone is giveflyby: m&y/e;. The maximum value of
the shape function specified above/is = | max(¢)(n))| = 0.8. Any emission predicted towards polar
angles outside this emission cone will be clearly separfated the dominant NSCS signal.

As our reference frame we choose the coordinate frame inhathie laser pulse is polarized along
the z-direction and propagates towards the positivexis. This axis we also choose as polar axis, i.e.
# = m corresponds to the electron’s initial propagation dimttopposite to the laser’'s propagation
direction atd = 0. To stress that two-photon emission will be important fa #iectron’s radiation
pattern given the specified experimental parameters wa&stithe average number of emitted photons
to be N yscs = 1.6 [40].

In the given reference frame we consider an experiment wbeeephoton detector observes any
photon emitted towards the directiod;(= = — 6y/2,¢1 = ) and a second detector to trace
photons emitted towards the two different directiofs & = — 6y/2,¢92 = 0) (see fig. 2a)) and
(02 = m— 0o, 2 = 0) (see fig. 2b)). While the first detector is positioned inglteNSCS emission cone
the choice for the second observation direction correspemghoton detection inside (see fig. 2a)) and
outside (see fig. 2b)) this cone, respectively. The azinmath@lesy, » = 0,  are chosen for observation
of the emitted photons within the laser’s plane of polargtwhere most radiation is emitted.

In fig. 2a) we wish to highlight that the cutoff for the emittptioton’s frequencies (white line in
fig. 2a)), set by energy-momentum-conservation, is clogpfgroached, whence we infer that quantum
effects indeed are non-negligible. Comparing now this &gtor Fig. 2b), which is plotted in the
same color-scale, we immediately conclude that there isnaiderable amount of radiation emitted
to directions outside the NSCS emission cone (recall thatlditter figure corresponds to the detection
of a photon outside this cone). We can thus conclude a cledrabgeparation between the NSCS
signal, confined exclusively to the angular range- 8 < 0.8 46y, and the NDCS signal, which is also
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Figure 2. (color online) Two-photon energy emission spectfgyl?_, dw;d(2;[eV~! sr2] atxo ~ 2.8
observed af; = 7 — 60y/2, and aiy = 0, (part a)) and afly = 7 — 6 (part b)), withdy = 5 x 1073 rad.
Other numerical parameters are given in the text. The sdiiiedines correspond to the cutoff-energy
w1 + we = ¢; (part a)) and the threshold frequeney (part b)), respectively. Part c): Two classical
electron trajectories with initial electron momentym(solid line) andp; (dashed line). In color-code:
Actual electron trajectory for a photon with energy = 2 GeV emitted afj, ; towards(6;, ¢1).

detectable underr — & = 6y. The classical analog of this quantum result is an effecibated to
RR changing the angular distribution of the radiation esditby an electron [14]. For a qualitative
interpretation of the presented separation of the singtetan photon signals we take advantage of a
stationary-phase analysis that was recently developethéomnalysis of NDCS spectra [29]. It was
shown that it was only necessary to analyze the part of thtesicay matrix element proportional to the
bivariate dynamic integrals.  as this partial amplitude largely dominates the scattesimglitude. The
corresponding dynamic integrals were approximated asf29% Em O My — M) ¥ () FE (1)

with £/ = Jdny(n) exp—iS,, (n)] with the exponential phases, , (1) defined above. The sum
over the indiceg andn is a sum over all stationary points in whose vicinities thé/ amon-negligible
contributions to the dynamic integrals are formed. Theataostary points are found as solutions of the
equationsy (’F}xJ) = —1/2 andw(ﬁym) = Ay — wl/ei (1/2 + AQ?Q) with Ay = (7‘1’ — 92)/90. In
these expressions the fixed valuegof$, andg, were already inserted and oy was left variable.
The given equations formally correspond to the stationafgtgonditions of two separate single photon
emissions, where first a photon with wave vedipris emitted by an electron with initial momentqﬁﬁ,
whereas the second photon with wave veétpis emitted by an electron with initial momentusfi. We
can consequently interpret two-photon emission in themegp >> 1 as the sequential emission of the
first and second photon emitted from the classical trajgcarelectron would take if it entered the laser
field with an initial four-momentunp!’ andp;’, respectively. For the sake of continuity these trajeeori
naturally have to be joined at the emission point of the firgttpnk/|'. However, the energies a classical
electron will have when following these two separate triages will be discontinuous at the connection
point, reflecting the finite loss of energy and momentum duéecquantum photon emission. We note
that, of course, there are several solutions for the si@tjopointsi),.; and hence several combinations
of classical trajectories for each choice of observatioadions for the emitted photons. One exemplary
combination of two such classical trajectories computedafoelectron scattered from a laser pulse of
the given parameters is shown in fig. 2c). An electron witidhmomentunp!" would follow the solid
trajectory, whereas, on the other hand, an electron oélr@tectron momentump;’ would take the dashed
trajectory. In the case shown here the transitional monmemptliis computed fronp!' by assuming the
emission of a photon of energy, = 2 GeV into the direction{, ¢1). Since this corresponds to the loss
of a significant portion of its initial energy by the electribie momentunp)’ significantly differs fromp!’
and thus the two corresponding trajectories are clearlyndisishable. This feature then also explains



the considerable spatial separation of the NSCS and the NHgp@l in the regimey ~ 1. We note,
however, that the tangent vectors of the two shown trajexta@re parallel at the junction, as they have
to be for an ultra-relativistic electron emits photons adtnexclusively into its instantaneous direction
of propagation and thus can lose momentum only in this dmecfThe aforementioned loss of energy,
however, can be read off from the color-coding of the twoettijries and is clearly discontinuous at
the point of emission of the first photon. It is also this sigmaintly decreased energy of the electron
that leads to a stronger deflection of the second trajectwiglé the laser field. To find an analytical
prediction of the energy threshold the first photon has toycaway to render this deflection strong
enough to facilitate emission towards the chosen observairectiond, = 7 — 6, we solve the defining
equation of the stationary poin, ,, for the first emitted photon’s frequenay;. From this procedure
we find the threshold} = ¢;(1 — 0.8)/(1 + 1/2) ~ 660 MeV, which is well confirmed in fig. 2b).
Furthermore, we have to stress that in the overall scagi@mnmplitude we also have to include the cross-
channel terrrS(f) where the photons’ wave vectat§ andk} are exchanged. The interpretation for this
cross—channelfis in terms of classical trajectories isaguls to the above given arguments, however,
with the order of the emission of the two photons exchangesieds

4. Influence of RR on the parametric instabilities in plasmas

Parametric instabilities of a laser pulse in a plasma areoitapt due to their applications in the
area of laser-driven fusion, laser wakefield acceleratiang have been investigated for decades
[51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. The FRS—a extadt process belonging to the
general Stimulated Raman scattering (SRS) processessmata—is one of the prominent examples
of parametric instabilities in plasmas. In the FRS, thedant pump laser decays into two forward
moving daughter electromagnetic waves, and a plasma wéeeddughter waves have their frequencies
upshifted (anti-Stokes waves) and downshifted (Stokesjvlrem the pump laser by the magnitude
which equals the excited plasma wave frequency.

Though, at high laser intensitidg > 10" W/cm?, the growth rate of the parametric instabilities
becomes smaller due to the relativistic Lorentz factor [87@ role of RR force becomes also important
especially at ultra-high laser intensitidg, > 10?2 W/cm?[1, 33, 34, 14, 63, 64, 65]. Such ultra-intense
laser systems are expected to be available in a near futieretlad commissioning of the Extreme Light
Infrastructure (ELI) project in Europe [66]. Due to the RRde, the laser pulse suffers damping while
propagating in a plasma. As the laser loses energy due to RR fofacilitates, apart from the usual
parametric decay processes, the availability of an additisource of free energy for perturbations to
grow in the plasma. Its effective intensity also decreaskihvlowers the relativistic Lorentz factor.
Moreover, the phase shift, caused by the RR force, in thamean current densities causes polarization
rotations of the scattered daughter electromagnetic walMgs necessitates to include the effect of RR
force in the theoretical formalism of the parametric inditis in the plasma.

We study the FRS of an ultra-intense laser pulse in a plaswladimg the RR force effects in
the classical electrodynamics regime where quantum sffeising due to photon recoil and spin are
negligible [1]. This approach is valid if the wavelength andgnitude of the external electromagnetic
field in the instantaneous rest frame of the electron sakisfy \c, £ < E¢r, wherehc = 3.9 x 10711
cm is the Compton wavelength aiidl,. is the critical field of the quantum electrodynamics [1]. Hue
laser intensities planned in the ELI projdgt~ 10%2~23 W/cn? [66], these two criteria can be fulfilled.
In the classical electrodynamics regime, the Landau-it€ésRR force [7] correctly accounts for the
radiation emitted by a relativistic charged particle [1priSider the propagation of a circularly polarized
(CP) pump laser along th& direction in an underdense plasma with uniform plasma meatensity
ne. lons are assumed to be at rest. Eq. of motion for an eleati@ading the leading order term of the
Landau-Lifshitz RR force in the laser field is

Op 4

2e 2 2
E+U-Vp:—e(E+va)—Wyzv[(E—l—va) - (v-E)°, (10)



wherey = 1/v/1 —v? and the velocity of the light in vacuum = 1. The other terms of the
Landau-Lifshitz RR force are ignored as they dréy times smaller than the leading order term
[7]. We first ignore the RR term and express the electric andnmtéc fields in potentials ab& =
—V¢—0A/0t, B =V x A. Ina 1D approximation valid wher > X\, (wherery is the spot-size and
g is the wavelength of the pump laser pulse), the transverggentum and-component of motion are
pL =eA, and 0v./ot = eVp/(myy) — e2V|A]2/(2m?+2), where A = Age™ /2 + c.c, Ag =
gAy, 0 = (T +i9)/vV2,7 = (1 +&2/2)1/% & = eAg/m,ng = koz — wot, andwy, ko are the carrier
frequency and wavevector of the pump laser respectively 3. A plane monochromatic CP light
doesn't cause any charge separation since f&fity|> = 0 and consequently there is no component
of velocity in the Z direction. This solution is known as the Akhiezer-Polovoiusion for a purely
transverse monochromatic CP light in plasmas [57, 68, 68¢ Scattering of the laser pulse results into
the total vector potential of the form = [Age™ + § A, e* L TLe+ £ §A* e~ FLTLe™M2] /2 4 c.c,
whered A, = odAy, dA* = 0dA*, A, anddA_ represent the anti-Stokes and the Stokes waves
respectivelyy = (k. +ko)z— (w+wo)t, n* = (ky —ko)z— (w* —wp)t [57, 67]. Beating of the Stokes
and the anti-Stokes waves with the pump laser leads to teenplavave excitationn /n., which can be
estimated from the equation of continuity, Poisson equatad the:-component of equation of motion,
yielding 67 = (e2k2/2m*y2D,) (Aj6A4 + AgSA_), whereD, = w? — w? w? = wl/y, w2 =
4rnee?/m, dn/n. = dneeRLTL /2 4 c.coandny =0y — 19 =1 + 19 = k.2 — wt [57, 67]. Plasma
wave oscillation causes an axial component of velocity anchentumv, < 1,p, < p,.

On using the above solutions for transverse and longitldiomponents of momenta to simplify
the RR term in Eq.(10), the full equation of motion after exqming the CP laser pulse &b =
A (x1,2,t)e" /2 + c.c., with its amplitude varying slowly i.60A | /0t| < |woA |, |0AL/0z] <
koA L[, and|¢| < |A|,w2/ywi < 1, andy = (1 + €| AJ*/m?)'/?, yields,

0

g (pL — eA) = —epwoAvy|A*(1 — 2v,), (11)

whereu = 2etwq/3m3, v, = (w/k,) 07 eFL-T1e™ /2 + c.c., and we have assuméaty| A|?| < 1, valid

for laser intensityly < 103 W/cm?. Since|¢| < |A| and the RR effects in the case of the collinear
movement of plasma electrons and the plasma wave are rigligre don’t consider the effect of RR
on plasma oscillations. One can solve Eq.(11) by expresﬂ;lagransverse component of the quiver
momentum ag.g. p; = [poe™ + piekLTLeint 4 p* emikL L= /9 4 ¢ e wherep, andp_
have similar polarizations as the anti-Stokes and the Stokades. The wave equation for the vector
potential after the density perturbatian= n. + én reads as

2 A 2
V2A—a—2:ﬁ<1+5—">’£. (12)
ot y ne) e

The dispersion relation for the equilibrium vector potehtian be obtained after collecting the terms
containinge™, and it reads as = k& + w,2 (1 — iu|Ao|*y0/2), implying that the RR term causes
damping of the pump laser field. We mcorporate this dampindddining a frequency or a wavenumber
shift in the pump laset. On writingwy = wo, — 6wy, dwy <K wo, We get the frequency shify as
dwo = w;}gradfyogg /2wor, Whereeg = 7ewor /3, re = €2/m is the classical radius of the electron and
without the loss of generality we have assunggd= &;. For the SRS growth to occur, this frequency
shift must be less than the growth rate. On collecting thesesontaining:""+¢**+ =1 in Eq.(12), we get
D 0AL = Ry (0A4 +6A_)andD_0A_ = R_ (6A+ + 6A_) which yields the dispersion relation

Ry R\
(D—+ + E) —1, (13)

1 One can also incorporate the RR term by appropriately mgjfihe plasma frequency, which essentially implies change
the laser pump wavevector arising due to the it's dispersidhe plasma.



where

- 2
Zf'?radg(ﬂowo
w = wo

R wﬁ&% kz 1= ie g2 4 2i5rad§g’YO wwo 1= ie 52 w o+ die 3 W
= = 7 — 7 ) .
+ 4’78 D, + 2€rad$pY0 k. w T w + €rad 0’70w ¥ wo rad’Yow T wo
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The RR term modifies the coupling between the Stokes and th€takes mode$R, # R_), and the
form of dispersion relation from the dispersion relatiomiged before [51, 53, 57, 67].

For the estimation of the FRS growth rate in a Iow—densitysrpia,w; < woy, both the Stokes and the
anti-Stokes modes have to be taken into account [30]. Sutistj the pump laser frequency shitbg
and ignoring the finité: | gives Dy = (w %+ wo,)? — w;? — (k. % ko)%. On expressing = w;) +iTss,
whereT'ys is the growth rate of the FRS instability, yields. ~ 2iTs(w, & wo,), De & 2iw,Tis. ON
assuming? ~ w?, w2 — w3, ~ —w3,, we get, in the weakly-coupled reginigs < w,,, the growth
rate of the FRS as

2 2 2 2
woeradsy . wy&oC0g60/2) , eradZowor
s = ——2 + P (1+2e2 2982 + | &),
s 2w0r \/g’YgUJOr rads0 /0 .

[ —eradtBro(wor /w,)
targ — ( e ) . (14)

Without the RR force,q = 0, one recovers the relativistic growth rate of the FRS irktalas derived
before [57, 67]. Fig.3 shows the growth rate ratio of the FR® \{['s — dwg) and without(I'y) RR
force. It is evident that the RR force strongly enhances tiogvth rate of the FRS at lower plasma
densitieau;,/wm < 1 and higher laser amplitudg > 1, which is also apparent from Eq.(14). The
strong growth enhancement due to the RR force is countéiigtias the later is generally considered
as a damping force similar to collisions in plasmas. One thitbate this enhancement in the growth
rate of the FRS due to the mixing between the Stokes and th&tikes modes mediated by the RR
force. Without the RR force, nonlinear currents driving ®ikes and the anti-Stokes modes have
opposite polarizations. Since the phase shift induced byRR force is polarization dependent, it is
opposite for the Stokes and the anti-Stokes modes. The ibpmbgmse shifts, consequently, lead to the
interaction between the nonlinear current terms and phaifis accumulation in Eqg.(13). This phase
shift accumulation is termed as the manifestation of thdinear mixing of the two modes, and it is
responsible for the enhanced growth rate of the FRS ingtabiituitively this growth enhancement can
be imagined to occur due to the availability of an additicctfennel of the laser energy decay due to the
RR force induced damping and its subsequent utilizationdily the Stokes and the anti-Stokes modes.
Since, the resonant excitation of both the Stokes and th&trkes modes is the essential condition
for the growth enhancement of the FRS, let us estimate thditomms under which both the modes
are excited. Resonant excitation of the Stokes mddes = 0) is always possible due to kinematical
considerations. However, the simultaneous resonantatixeitof both the modes is only possible in a
tenuous plasm(acu; < wor). The resonant excitation of the Stokes mode leads to freguamsmatch
for the anti-Stokes mode defined Asv,, = w, + wor — [w,? + (k, + ko)? + D4]'/2, and it reads
asAwp, = —w?/wd, + 9w, /4wd,. As shown in Ref. [30], this frequency mismatch is smallemth
the actual growth rat€ss — dwg of the FRS instability. This makes the inclusion of both thedes
important while deriving the growth rate of the FRS. The RR&oonly marginally enhances the growth
rate of the FRS, if only the Stokes mode is resonantly exdiidtie plasma. This can be understood
easily as the nonlinear mixing of the two Raman sidebandsssra in this case. The phase shift caused
by the RR force maintains the laser energy transfer to thikeStmode for a longer time causing minor
enhancement in the growth rate of the FRS.
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Figure 3. (Color online) Growth rate ratigl'ss — dwp)/Iy of the FRS in the presend@'ss — dwy),
and in the absence of the RR forCg as a function of the normalized plasma densly= w,,/wo, and
normalized pump laser amplitudge = eAy/m. The normalized growth rate is plotted on Jggcale.

These results are important for the ultra-intense lasespé interaction as the onset of parametric
instabilities appears again, changing the frequency spactd shapes of extremely intense short laser
pulses. Moreover, enhanced FRS of the laser pulse providakeanative way to detect the RR effects
on the spectra of low-energy optical photons. This is in@&sitto the scheme of the nonlinear Compton
scattering of a counter-propagating relativistic elettroa strong laser field, which aims to discern the
signatures of the RR force on the spectra of high-energy ganamphotons [1].

5. Conclusions

To summarize, we have investigated RR effects for the omili®f an ultra-intense laser pulse with
ultra-relativistic electrons in the quantum regime as vasliwith a plasma in the classical regime. In
contrast to the classically predicted narrowing of the gyeavidth of particle beams, we have shown
by employing a kinetic approach that the stochastic natéifghoton emission spreads up the energy
distribution of the electrons, if quantum effects are sasal. Further, the quantum computation
including two-photon emission indicates an extensive deoing of the predicted angular range of the
emitted radiation. In the quantum regime this can be assati@ith the discontinuous energy loss of the
electron and the following modification of its trajectoryh&reas in classical electrodynamics RR effects
alter an electron’s trajectory smoothly. Moreover, theMard Raman scattering in plasmas is shown to
be significantly amplified by the inclusion of classical RRedo the induced nonlinear mixing of the
anti-Stokes and the Stokes modes. Finally, our numericahgles indicate that all the discussed effects
should be detectable with laser-based electron acceleraith presently available and next-generation
lasers.

[1] DiPiazza A, Milller C, Hatsagortsyan K Z and Keitel C H 20Rev. Mod. Phys34 1177

[2] Rohrlich F 2002 Phys. Lett. 803307

[3] Bonifacio R and Casagrande F 1984 Opt. Corbth251

[4] Bonifacio R and Casagrande F 1985 Nucl. Instr. Meth. PRes. A237 168

[5] Moshammer R and Ullrich J 2009 J. Phys. B: At. Mol. Opt. B2 130201

[6] Apyan A et al. 2005 Nucl. Instr. and Meth. B34 128

[7] Landau L D and Lifshitz E M 1973 he classical theory of field©xford: Butterworth-Heinemann)

[8] Spohn H 2000 Europhys. Le0 287

[9] Spohn H 2004ynamics of Charged Particles and Their Radiation Figlthmbridge: Cambridge University Press)
[10] Rohrlich F 2007Classical Charged Particle§Singapore: World Scientific)
[11] Bulanov SV, Esirkepov T Zh, Kando M, Koga J K and Bulano8 2011 Phys. Rev. B4 056605
[12] DiPiazza A 2008 Lett. Math. Phy83 305



(13]

(14]
(15]

(16]
(17]

(18]

(19]
(20]
(21]
[22]
(23]
(24]
[25]
(26]
[27]
(28]
(29]
(30]
(31]
(32]

(33]
(34]
(35]

(36]

(37]
(38]
(39]
[40]
[41]
[42]
(43]
(44]

(45]

[46]
[47]
(48]
[49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]
[57]
(58]
[59]
[60]
(61]
(62]

Tamburini M, Keitel C H and Di Piazza A 2013 Electron dymas controlled via self-interactiofPreprint
arXiv:1306.3328

Di Piazza A, Hatsagortsyan K Z and Keitel C H 2009 Phys.. Rett. 102254802

Heinzl T, Harvey C, llderton A, Marklund M, Bulanov S Sykbvanov S, Schroeder C B, Esarey E and Leemans W P
2013 Detecting radiation reaction at moderate laser iittea®reprint arXiv:1310.0352

Bulanov S V et al. 2011 Nucl. Instr. Meth. Phys. Res68031

Zhidkov A, Masuda S, Bulanov S S, Hosokai T, Koga J and Bdana 2013 Radiation Reaction Effects in Cascade
Scattering of Intense, Tightly Focused Laser Pulses bytRistic ElectronsPreprint arXiv:1308.1608

llderton A and Torgrimsson G 2013 Radiation reactioonir QED: lightfront perturbation theory in a plane wave
backgroundPreprint arXiv:1304.6842

Boca M and Florescu V 2009 Phys. Rev88053403

Mackenroth F and Di Piazza A 2011 Phys. Re\82032106

Seipt D and Kampfer B 2011 Phys. Rev88022101

Krajewska K and Kamihski J Z 2012 Phys. Rev8B.062102

Harvey C, Heinzl T, llderton A and Marklund M 2012 Phys\RLett.109100402

Jackson J D 1978lassical ElectrodynamiddNew York: Wiley)

Di Piazza A, Hatsagortsyan K Z and Keitel C H 2010 Phys.. Rett. 105220403

Lotstedt E and Jentschura U D 2009 Phys. Re80053419

Lotstedt E and Jentschura U D 2009 Phys. Rev. 168110404

Seipt D and Kampfer B 2012 Phys. Rev85101701

Mackenroth F and Di Piazza A 2013 Phys. Rev. 11610070402

Kumar N, Hatsagortsyan K Z and Keitel C H 2013 Phys. Reit.[111105001

Zhidkov A, Koga J, Sasaki A and Uesaka M 2002 Phys. Rett. B8 185002

Naumova N M, Schlegel T, Tikhonchuk V T, Labaune C, Sokol V and Mourou G A 2009 Phys. Rev. Lett02
025002

Chen M, Pukhov A, Yu T P and Sheng Z M 2011 Plasma Phys.rGled Fusion53 014004

Tamburini M, Pegoraro F, Di Piazza A, Keitel C H and Maic&i2010 New J. Phys12 123005

Tamburini M, Pegoraro F, Di Piazza A, Keitel C H, Lisegki T V and Macchi A 2011, Nucl. Instr. Meth. Phys. Res.
653181

Baier V N, Katkov V M and Strakhovenko V M 199&|ectromagnetic processes at high energies in orienteglein
crystals(Singapore: World Scientific)

Khokonov M Kh 2004 Soviet Phys. JETH 690

Sokolov I V, Naumova N M, Nees J A and Mourou G A 2010 Physv.R.ett.105 195005

Yanovsky Vet al. 2008 Opt. Expres$6 2109

Ritus V 11985 J. Sov. Laser Re5497

Gardiner C 200%tochastic Methods: A Handbook for the Natural and Socigr&es(Berlin: Springer)

Lifshitz E M and Pitaevskii L P 198Physical Kinetic§Oxford: Pergamon Press)

Neitz N and Di Piazza A 2013 Phys. Rev. L€t1.1054802

Bazarov | V, Bilderback D H, Gruner S M, Padamsee H S, iR, Tigner M, Krafft G A, Merminga L and Sinclair
C K 2001Proc. Particle Accelerator Conference 20230

Leemans W P, Nagler B, Gonsalves A J, Toth Cs, Nakamyri@dtides C G R, Esarey E, Schroeder C B and Hooker
S M 2006 Nature Phy® 696

Clayton C E et al. 2010 Phys. Rev. Let05105003

Furry W H 1951 Phys. Re®1115

Fradkin E S, Gitman D M and Shvartsman S M 1¥dantum Electrodynamid8erlin: Springer)

Berstetskii V B, Lifshitz E M and Pitaevskii L P 198uantum Electrodynamid®©xford: Elsevier)

Mackenroth F, Di Piazza A and Keitel C H 2010 Phys. Re\t.L05063903

Kruer W 2003,The Physics of Laser Plasma InteractipRgontiers in Physics (Boulder, CO: Westview)

Brueckner K A and Jorna S 1974 Rev. Mod. PH&325

Drake JF, Kaw P K, Lee Y C, Schmid G, Liu C S and RosenblutN 974 Phys. Fluid47 778

Tripathi V K and Liu C S 1991 Phys. Fluids. 8468

McKinstrie C J and Bingham R 1992 Phys. Fluids4 B626

Sakharov A S and Kirsanov V | 1994 Phys. Revi$¥3274

Decker C D, Mori W B, Tzeng K C and Katsouleas T 1996 Phyasias3 2047

Barr H C, Mason P and Parr D M 1999 Phys. Rev. L1606

Antonsen J T M and Mora P 1993 Phys. Fluids5 B440

Guerin S, Laval G, Mora P, Adam J C, Heron A and Bendib A3LB9iys. Plasmaz 2807

Quensel B, Mora P, Adam J C, Guerin S, Heron A and Laval &71Bhys. Rev. Let78 2132

Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Bh{229 and references therein



[63] Schlegel T and Tikhonchuk V T 2012 New. J. Ph{4073034

[64] Sokolov IV, Nees J A, Yanovsky V P, Naumova N M and MouroA@010 Phys. Rev. B1036412

[65] Keitel C H, Szymanowski C, Knight P L and Maquet A 1998 ly®. B31L75

[66] http://www.extreme-light-infrastructure.eu

[67] Gibbon P 2005Short Pulse Laser Matter Interaction with Matter:An Intweation (Singapore: World Scientific)
[68] Akhiezer Al and Polovin R 1956 Sov. Phys. JEZB96

[69] Bulanov S Vet al.2001Reviews of Modern Physitl.22 edited by Shafranov V D (New York: Kluwer/Plenum)



