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Abstract. The interaction Hamiltonian of an electron and a quasi-nshramatic pulse of
a strong quantized electromagnetic field is examined. Jeabtransformations of the field
variables are found that allow the division of the systemantitonian in two parts. The
first one describes the interaction between an electron aime collective mode of the field.
The properties of this mode are defined by the superposifitteanodes corresponding to the
pulse wave packet. The second part describes the field flicniaaelatively to the collective
mode. The field intensity, pulse duration and transversaagbare estimated for which a
single-mode approximation can be used for the system'sigésa.
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1. Introduction

The quantum electrodynamical (QED) processes in the pcesaa strong electromagnetic
field are commonly described in the Furry representationwith scattering amplitudes
calculated via the “dressed” external electron stetes][#:giead of the free plane waves
in vacuum QED. These states are defined by the exact solatidths Dirac equation with an
external electromagnetic field that can be classidal [7Juamgized[[8]. In the classical case,
these exact solutions can be obtained when the externaidigéscribed by a monochromatic
plane wavel[[7] or by a function which depends only on the fiélds®p, corresponding to the
propagation of a free electromagnetic weve [9]. In the quantase, they are determined for
a quantized external field (single-mode approximation).

The Furry approach was successfully employed for the thieatelescription of many
QED processes, such as multi-photon (non-linear) Comptattesing [10=19], electron—
positron pair creation_[20-24], sequential and non-setigledouble ionization of atoms
[25] and other problems [26, 27]. At the same time one shoalke tinto account that
experimentally available laser pulses (external field)ehavinite duration and a transversal
spread, corresponding to a multi-mode wave packet with azeoo spectral width and
an angular divergence. As a consequence, the wave packet @escribed by the exact
solutions [7], [8]. Therefore, it is of great importance torhulate the accurate conditions
of the applicability of the single-mode approximation irder to compare theoretical and
experimental results.

An analogous problem in quantum optics is the analysis ofetr@ution of an atom
interacting with a resonant field in a cavity. This system imégally described by Jaynes and
Cummings|([28] who considered the interaction between artreimagnetic field and a two-
level atom inside an ideal cavity. Although a lot of variogpects of the atom-field interaction
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were discussed through this model (for examplel, [29] aneresices therein), in most works
the external field was the single-mode cavity eigenstate: édensions to the model were
proposed. One of them is based on the inclusion of the losd#geaksonant mode through
a lossy cavity[[30—=40]. Another one is the generalizatiarthe case of few discrete modes
interacting with an atoni [41-45]. However, models takingiaccount a superposition of
modes in the vicinity of a resonant one have been discusdgdemently [46:-51].

In the present paper the mathematical background of thdesingde (plane wave)
approximation for the description of a relativistic electrin a quantized field of a quasi-
monochromatic laser pulse is investigated for the first tiri@e canonical transformation
of the field variables is found that allows one to separateHamiltonian of this system in
two parts. The first term defines the interaction between ectrein and a single collective
mode. The parameters of this mode are related to the exfegltalvave packet. The second
part describes the field fluctuations with respect to theectile mode. Then the integral
field intensity is determined for which these field fluctua@an be neglected, leading to the
applicability conditions of the single-mode approximatio

The paper is organized as follows. In Sgc. 2, the Hamiltoofdhe system is considered
and the qualitative characteristic parameters of the laskse are discussed. In Ség. 3, the
canonical transformations of the field variables are peréat and two the most relevant parts
in the system’s Hamiltonian are identified. In Sdd. 4, theearions to the single-mode
Hamiltonian are discussed and the field intensity is deteedhifor which the single-mode
approximation is valid.

2. Dirac equation for an electron in a multi-mode external fidd and characteristics of a
laser pulse

Let us start with the equation for the state vector of theesysivhich includes a relativistic
electron and a multi-mode transversal quantized field ¢ = 1)

ik g :
|E= Zk:wkakak+a-(p—eA)+,8m Y, (1)
with the vector potential
e(k) ik T ik
A= a€™" +al e'® ). 2
; oo (@ e ) (2)

Equation[(1) includes Dirac matricesandg, a normalization volum¥, a photon wave
vectork, a frequencyw, and a polarization vectat(k), k - e(k) = 0, photon annihilation
and creation operatogs, anda,Tc of the modek, an electron chargeand massn. Equation

(@) can be written in covariant form if the transformati#n= e Z» ‘”kta;akw is used, thus
obtaining the covariant form of the Dirac equation:

(iv"0, - v'eA -m)y =0, 3)

with the four product defined ak (x) = kK%t — k - 2, k® = wg, , = 9/0%, the metric tensor
g = diag(1 -1, -1, -1), the four potential of the field

€(k)
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and summations over repeated indices. With the transfiomat = € Zx*k¥aae ) the
electron coordinates can be excluded from the field opesats a result, the operators are
transformed as follows:

iy, — iy, - Z ykal a,
k

ay, — a,e®»), aL R a;;e—i(kx),
and equatior{(3) leads to
(ié - Z kal ay, - Z b(k)(ay +a}) —m|x =0, 4)
k k

whereby, (k) = eg,(k)/ V2Vwg, e(k) = 0 andf = ¥*1, for any four-vectorf. With the
transformationy = €@y, the coordinate dependence is separated from the field amd sp
degrees of freedom

(q—m—H)¢=[q—ZRaLak—ZB(k)(ak+aL)—m]so=o, (5)
k k

where the four vectog can be considered as the total momentum of the system [8]fiffdle
form of equation[(b) will be used below.

Experimentally available laser pulses, can be describedduasi-monochromatic wave
packet with the central frequeneay and the wave vectdey = won (n is a unit vector) with
corresponding spreads in a solid angie:

1 1
ow ~ - 6kozwc2)AQ~ s (6)

characterizing by the duratiom and spacial widthS of the laser pulse. The non-
monochromaticity will be characterized via two dimensasd parameters

ow 1 Sko 1
o = — ~ —, 0'12—227. (7)
wo  wWoT ks wgS

For high intensity pulses, as those considering in the fiofig all modes within the
volumeA = §wdky in the k-space are highly populated and correspond to the largeguan
numbers, of the field state vector.

When only one mode is included in equatidn (5), the singlelenapproximation is
recovered that leads to the Berson’s solution [8] in the ads® quantized field or to the
Volkov's solution [7] in the case of a classical field. Thiduitive conclusion will be
thoroughly justified by using the Hamiltoniahl (5) to consigty derive the single-mode
approximation with correcting terms, appearing due to titeraction of the field modes
between each other.

3. Approximating single-mode Hamiltonian and canonical tansformation for its
diagonalization

In this section we employ the method of approximating Haonithin described in detail in
referencel[52]. Since the non vanishing modes of the quedhtexternal field are inside a
small volumeA in k-space the total Hamiltonian can be written as:

Ha = Z[Roazak + bo(ay, +a)] + Z kal a, (8)
k<A k>A
H = Ha+ H;+ Ho.
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where constant four vectoks, by and a small voluma in k-space neaky are the variational
parameters of the approximating Hamiltonian and will berdfilater. The sumg,;,.., and
>k-A Mean summation inside and outside the voluimeespectively and the operatdts »
are determined identically from equatidn (5)

Hy = Z [(ﬁ — ko)al ay, + (b(k) — bo)(ay, + a’L)] , (9)
k<A

Hy= " b(k)(ax + ). (10)
k>A

By the definition in ref.[[52], the approximating Hamiltoni&l, should quantitatively
describe the system, be accurately diagonalizable andetterpations due to the operators
Hi» need to be small. For the diagonalizationHy let us utilize the method of canonical
transformations, which was introduced by Bogolubov andblikav for the polaron problem
in the strong field limit[[53]. For this purpose we go back te ttoordinate representation in

@):

koZ(pk+qk)+bo\/§Z Ok + Y ka2, (11)
k<A k<A k>A
a +a d ag—a
= , = —i— =i .
Qe N Pr = o NG

Following Bogolubov[[58], we introduce the collective \ale Q in which all field modes
are added coherently and the “relative” field variabjgsvhich define quantum fluctuations
relative to the collective mode

1 1
Q=ZQk, Yk=Qk_NQ, Qk=Yk+NQ,
k<A (12)
Dye=0, N=>'1,
k<A k<A

whereN > 1 is equal to the number of modes in the volumeThe transformation of the
momentum operators is calculated according to its defm[&&)]:

9 0Q & oy
= —]— = —_— /. 13
Pe = {aqk 70" 270 ayl} (13)

Calculation of the derivatives with the help 6f{12) gives tfeneralized momenta:

9 w0 (14)
=i— =y —.
= o TN %: ayt

Insertion of [I2) and{14) into the Hamiltonidn {11) leadgte separation of the collective
coordinates, the fluctuation operatggsand the “external” variables, anda’ , corresponding
to k outside theA volume:

A= :—LRO[iQ2+NP2 +60\/§Q

+ 5 kOZ(pykwi) + > kaj . (15)

k<A k>A
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We can now quantize the collective and “relative” variadgsntroducing the new set
of creation and annihilation operators

Q= \/_\E(AJ’ A", P= —i%(A— Ah),
[AAT]=1,

Vi = i(ék+r:*) Pyk = —ii(ék—ef) (16)
V2 kT V2 kT

) 1
Ce=aw— g DA [aa),] = .

<A

[ék,é};l] = 5kk1 + N
With the accuracy of 1/N the Hamiltonian[(Ib) transforms into
Ha = koATA+ by VN(A + AT

+ko > 88 + > kala (17)
k<A k>A
= Hsm+ Hf + He,
Hsm = koATA + b VN(A + AT, (18)
Hi =ko ) €& He= ) kaja. (19)
k<A k>A

where the operators are written in the normal form and thegynaf “vacuum oscillations”
is not taken into account. In this representation the opetd,, which corresponds to the
single-mode approximation is completely separated froendbintributions defined by the
fluctuation operatoH; and by the external modes operalkty: Therefore the state vector of
the system in the zeroth approximation is represented gz titict:

[¥@) = [FanelineD,

& &kiny) = niiny), (20)

a agInt) = ntInt),
Whereln;> defines the state of the “fluctuation#i? ) is the state of the “external” modes of
the electromagnetic field, which does not interact with aattebn, andW¥,) describes the

state of the electron interacting with a collective modehaf field. V) is determined as a
solution of the equation:

{6 — m— Ha}jwa) = 0 (1)
Ha = {2+ [ko(A"A + f) + bo VN(A + A} [a), (22)
aﬂ=Zk,,nZ, f =Zn;.

k>A k<A

The HamiltonianHa up to the constant four vectosg and f, = kg, f coincides with
the Dirac equation with the only one mode of the field and cadibgonilized. Solutions
of equation[(ZlL) in Bargmann representation for the creatiod annihilation operators were
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found by Berson[8] and their operator form were obtaine®#]|

kO O\/_ t )
22 ko) 56 1y A+A) S UP)IN), (23)

S = AN 3(R-A%)  ATAINY = njny,

=z-ko 2N, n+1/2)-1/2
pn-—(\/ e+ 1/2)-

Wa(n,a ) = Cy (1

_(z:bo)’N 1
+ (2 ko)? 1—2Nbc2)/(2'ko))’
_(z-bo) VN 1

(z ko) 1-2NBZ/(z ko)’

coshq:%(\/fm %= !

A
V)’ T
(zko)
wherez, = qflo) - a,, C1 is a normalization constant angp,) is a bispinor which coincides
with a free Dirac bispinor.

In the general case parameterand f in the quasi-momentum, depend on the form
of the laser pulse (see below equations[(3R-38)). can be considered as the analog of
the dressed momentum introduced in refs. [10] 20, 21] anérmtipon the intensity and
polarizationby of the collective mode. Let us note, that in the case of madddialane
waves, i. e., waves with few Fourier components the canbiriaasformation[(I2) need
to be modified for few collective modes and is not investidatethe present work.

The solutions[{Z23) form a full and orthogonal basis in thebklit space and can be
normalized in a relativistically invariant walyl[6, 8].

4. Perturbation theory on the operatorsH; »

It is supposed that the approximating eigenvectors (23nedfie main contribution to the
solution of the initial equatiori {5). In accordance with thethod defined in ref[[53] one
should now consider the corrections to this solution givethie operatorsi; » from (9) and

(I0), thereby determining the optimal parameterg, by) of the approximating Hamiltonian

®.
In order to build the corresponding perturbation theorykeinsert a formal parametér
into equation[(b)

{G—m—Ha}¥) = A(H1 + H2)|¥), (24)
and represent a solution in a form of a series:

) = POy + Dy + ..., q=q@+aqP +.... (25)
From equation[(25) the first two orders of the perturbationlvafound:

@@ - m-Ha) ¥ =0, (26)

GO + (@@ — m= Ha)¥D) = (H1 + Hy) ¥ O). (27)

Equation [(2B) coincides with equatidn{21) and has the seigefinvectord{23) which
form a full and orthogonal basis in a Hilbert space. As waswhio [8], solution of equation
(28) leads to the Volkov’s solution for an electron in a cleakfield [7] if one uses the
coherent state representation instead of the Fock repiegisanfor the eigenvectors (23). In
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order to do this in our case we suppose that the electromiadiedd is described by a set of
coherent states:

=) = Cexp{Z[ukaL - u};ak]} 10),  al0) =0, (28)
k

with the amplitudesi, associated with a field wave packet. This wave packet isiloahin k-
space near the momentuty. The amplitudesl, are modeled with the Gaussian distribution:

k2 (w-wg)?
5272 T 527 k
U, =€ ¥10e 22 | kzkl+w—0, k, -ko=0, (29)

wo
whereo, ando; are defined by equatioh](7) and determine a frequency andartaarspread
in the laser pulse respectively. The Gaussian wave packetites qualitative characteristics
of the finite laser pulse and is convenient for the analytieddulations. The other choice of
the wave packet form can change the obtained results on thbenof the order of one.
The constan€ in (28) for a pulse of intensity, transversal widtls and duratiorr can
be obtained from the normalization on the full pulse enékgy

W = IS7 = (8| )" wajax/=)
k

=C2%fda)dkuw|uk|2

\Y
=C? a3 a)gns/ 20’%0'2, (30)

8r13/2|St
C=,l———.
VO’%O’za)A'
The state[(28) can be expanded in a series over the full sttet{2B):
E) = > Cala H)¥a(n.a 1)), (31)

na,f

with codticientsCy(a, f), which depend not only on the collective mode quantum numpe
but also on the “fluctuating” and the “external” modes quantwmbers anda respectively.
This linear combination can be used for the description ofDQitocesses (non-linear
Compton scattering, electron-positron pair creation)urry picture, taking into account the
realistic duration and angular spread of the laser pulsehérfollowing we show that the
dependencies ofi anda can be neglected if the-space volume is chosen in a consistent
way.

We can estimate the contribution of the various terms in tamittonianHa (22) using
the state[(2B):

(ElwoATAZ) ~ (@] ) woal akl=)
k<A
a)oCZV 2
= dk|ug|” =
(271')3 k<A

2 A
873215728 ( (7 o) (7% )
o >re dtet f due
@) Uo 0

= 1ST®3(5), (32)
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where we assumed that the volumén k-space can be written a@s = A2A; = 63020w3.

Heresd is a dimensionless parameter that will be defined belowd®(zyl= 2/ \/%foz etdtis
the error function. Other terms s (22) are calculated in a similar way:

Vv
N = @630'50'%)8, (33)
ey = N KRy e v 1 T 1 -
(EIfE) = (8l ) Q8D = @l ) |a] ~ & a}} %= ) al} =)
k<A k<A <A <A
2 * 1 * 1
=CZuk—NZul uk—NZul
k<A <A I<A

)

= 02% (fdk|uk|2— ﬁ']dkuk

2371':2s Q)G(\/i_)
— 3 _ 2
= IST0%(9) [1- = 20) | (34)
(ElalE) < (ElaolE) = (B ) woayaklE) = 1S7(1- 9%(s)), (35)
k>A

The contribution to the HamiltonialAd, due to the “fluctuating” modes is defined by the
value(E|f|Z) and is equal to zero if the parameéas chosen as the solution of the equation
608
237'[% o (ﬁ)
-—————=0, §~354 36
3 @3(5) (36)
It is evident that the actual value of this parameter dependbe laser pulse form butin any
case it can be calculated in a similar way.
The contributions of the “external” pulse moded+tg can be neglected because they are
defined by the value
ElaglE 1-0%@9)
(ElRl2) ( ) ~164-10°°, (37)
(ElwoATAIE) 3(5)
whens is found from [[36).
A similar estimation(l— ®3(6)) ~ 1075, defines the dierence between the energy
accumulated in the collective mode132) and the total enefdlye laser pulsé(30). It means
that if the parametek is chosen as

A = (3.54P050w3, (38)

the valuesa and f can be omitted in the operatét, that corresponds to the vacuum of the
“fluctuating” and “external” modes. In this casé, can be considered as the single-mode
Hamiltonian in the zeroth orddr (P6). The solution of thisiatipn and its application for the
analysis of the quantum corrections to the electromagpeticesses in the strong field were
considered recently in our papéer [54].

Now we determine the paramet&r)sf)o, wo of this Hamiltonian. Let us consider the first
order equatiori{27). Using its projection on the state we&d)| (we pay attention to the fact,
that for the correct perturbation theory for the Dirac etprathe eigenvalué¢¥®©) of a zero-
order is not a hermitian conjugate|®) but is the Dirac conjugate i. 9| = (|‘P(°)))I Y0):

PGP = (POI(Hy + Hp) PO, (39)
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According to BogoluboVi[53] the stable solution of the iaitequation[{(b) exists if the
first-order correction to the eigenvalue is equal to zerotargicondition allows one to find
the unknown parameteks, by, we. In our case it leads to two equations

FPOH POy = 0;  (POHyPO) =0, (40)

because the operatdrs andH, refer to diferent variables. The details of the calculations of
the expectation values of the Hamiltonidia can be found in appendix A. The result reads

<H1>—no(%+ )(Zﬁ—ko) Pn

k<A
2axng + a(% + ;) No [

VN(z- ko)

~ ng(% + /%)% + ng(% -

(bo - pr) D (k- ko) = (ko pr) D (K- bo)]

k<A k<A

1/%)%
P > BA(k - ko)(ko - pn)

(2 ko)* k<A
+%[;Ab(k>—Nbo]-pn
(j”ﬂz)([Nb% ;A(bo b(k»](ko pn) + (bo - pn);(;(b(k) ko))
12(‘2%2)‘2/_ ICCREICR (1)

The calculation of the average value of the Hamiltortignis performed in exactly the
same way

(Ha) = (O"KnE KWalHAPAINE)O") = > (WaIB(R)WaNEl (3 + af)IE)

k>A
- 3 (209 po+ 200 ot
k>A
o (kYo Pr) ~ s 030(R) - oo pn)< (ae+a)®.  (42)

As was stated above, according to réf./[53] the first coroastito the approximating
Hamiltonian Ha are equal to zero. This gives a condition for the determimatf the
variational parameters, by, kg of the HamiltoniarHa. Therefore, if we choose

Z W, ko Z k bo== Z b(k), (43)

k:<A k<A k<A

the expectation value of the Hamiltoni&h turns into zero. The average of the Hamiltonian
H, vanishes according to symmetry consideration as it is tiogair over polarization vectors
> k- b(k). The physical meaning of this choice is that the collectimgle-mode corresponds
to an average over the modes of a quasi-monochromatic wakeipa

We have determined the variational parameters of the appating Hamiltonian and
consequently can proceed with the estimation of the fielehisity for which the single-mode
approximation is valid. For this purpose, the second-ocdetection

@ _ [{EolH1|Equ)I?
e -y KEdHlEa)?

S
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to the system’s energy needs to be calculated. Heris the perturbation operatdr (A.1).
As can be seen from equatidn (A.1) only the last two termsrimrte to E((f). The state
|Eq.) is the wave function

“\;p_’smo»on, (a4)

2¢
wheree is the electron’s energyy is the number of quanta in the “collective” mod@y) is
the state of the field fluctuations and for simplicity we netgel the term proportional tich.
Let us rewrite the HamiltoniaHl; in the variable®\, A" of the “collective” mode and, 6,1
of the fluctuations respectively

|0tng) =

H: = (k- ko) (—%(A— A~ 8)) + (A A“‘)%]
+V2(b(k) - bo) (6’“ ;;L + AJ% ] (45)
Now we can calculate the transition matrix elem@hing|H4|ns n):
(OfnoH4Inn) = %\/%)”(m<no|s"A"'S|n>6h,nf
. U(p)(B(k:; - ko)u(p) [ 51, G+ % (rolS'(A+ AYSIVGom | (46)

The use of the transformatiof (A.4) of the creation and aflatibn operators of the
“collective” mode by the operat® and the calculation of the averages in a spin space yields

((p-K) = (p-ko))o1rn [ 1 1
(OfnolHaIngn) = VN - > («/% + 7;) VRO~
1 1 b(k) - p) — (bo-
+§ (\/;_ W) Vo + 16n0+1,n] + (blk) p)E (bo - p) [61f,nf5no,n
+ ‘/7_‘( VNo + 10ng+1n + \/n_O(sno—l,n) Son | (47)
VN
Consequently we can write down the second-order corretditime system’s energy
@ I(v-K) = (v-ko)2 [ #2ng  %2(ng+1)
By’ ~ Z -
EoA 4N wo — Wg Wk + Wo
: _weboR (L -
- 3 b - - b - - ) (48)

k<A

wherex, = Vx+1/Vx,x_ = \x—1/ %, v, = p,/€ = (1, v) andwv is an electron’s velocity:
v =(v.,0,Vv).

Equation[(48) has four terms but only two are important. Enmtinversely proportional
to the frequency dierencewy — wi describes a resonance and defines the frequency
renormalization and the lifetime of the collective mode.eTthrm inversely proportional to
wy, defines the fluctuations arising due to the interaction betven electron and an external
field. The remaining two terms can be neglected as the seaqmmis mot a resonance and the
fourth one is inversely proportional to the normalizatiaiumeV (N ~ V andb ~ 1/ VWV).

In order to perform a summation krspace we firstly fix a coordinate system. Let the
z-axis be directed alongy, the x-axis alongv, - the velocity component perpendicular to
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thekp. The details of the summations overcan be found in appendix B. The second-order
correction to the system’s energy reads

2 ; A, A>1
NowomV' _ 1 in
E@ = 20 Dtamt4a - = + = .
0 4 2772 % 1<1
°0Foawo (03 (V2 = V2) 2 + 1603v3 v2)

+e 96(20)2 :

(49)

whered = o/(60°2).

The first term in[(4DB) is proportional to the same quantum nemgas the energy of the
“collective” mode. Its real part defines the shifbg and the imaginary part defines the width
I'/2 of the resonant collective mode. One can rely on the singlde approximation if these
values are small in comparison wid:

A V2 1

29 _ TV tamtal- S| <« 1, (50)
wo 4 4

r 7T2Vi A, A>1

— = . < 1 51
wo 4 % 1<1 D)

As was stated above, the single-mode approximation is wilih the change iEgz) due
to the fluctuations of the quantum field are small with cormgaarito the ground state energy
of the “collective” mode[(3R). These fluctuations are defibgthe last term in equatioh (49).
This leads to the additional parameter
e2550€0'2w0 (0'5 (V2 - V%) 2+ 160-§va§)

H= 96(2r)321ST03(5)
which defines the lowest pulse intensity for which the sirglede approximation can be used
(see alsa [54]) .

Modern lasers can reach nowadays high intensities [55+53 iG> W/cn? with a
pulse duration of about 30fs. Let us estimate the param@&)s (51) and[(52) for an
intensityl = 10?2 W/cn?, photon frequency = 7.8- 10* cm™ (a corresponding wavelength
of 800 nm), pulse duratiom = 8.7 - 10°* cm! (corresponding to 30 fs) and focusing
S=10%cn?.

The physical parametets; ando, are connected with the characteristics of the laser
pulse by equatiori{7), and their numerical value for the athp8, 7 is equal to

o1 = 0.127, 02 = 0.014 (53)

An electron beam always has angular divergefandv, ~ A ~ 1/y, wherey is the
electron’s gamma factor. Therefore, for the moderateltigstic electrons we can consider
thatv, < o1.

By plugging the numerical values in equations! (50)] (51) @&&) one obtains

< 1, (52)

A

1~ 1028, w—‘;) ~6-107%, (54)
r

o ~00L (55)

and we can conclude that the single-mode approximatiorpcable.
As can be seen from equatidn{54) the parametand frequency shift are very small
values for the intensities in the strong field QED range, ,i.16' — 10?2 W/cn? and pulse
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duration of 30 fs. This means that the electron mainly irgesravith the collective single-
mode. The influence of the fluctuations is suppressed.

However, the most important parameter, which can limit ghyliaability of the single-
mode approximation is indeed independent on the interitydepends on the pulse duration.
It determines the width of the collective moHgéw,, equation[(5b). The decrease of the pulse
duration from 30 fs to 3 fs, will increase its value by one ordde physical meaning of this
result, corresponds to the situation that for the reallyrtslaser pulses, the collective field
mode does not have icient time for its formation.

Concluding we can state, that the applicability of the saglode approximation is
mainly limited not by the pulse intensity, but rather by itaration and focusing size.
Therefore, for a particular spectral distribution of théegral laser pulse one should estimate
o1 and o, then insert their values together with the transversaiteda velocityv, into
equations [(50-32) and make the conclusion about the apjitgaof the single-mode
approximation.

5. Conclusion

In this paper we have studied the applicability of the singlede approximation for a
relativistic electron interacting with a laser pulse of @émuration and transversal width. The
relations between parameters of the single-mode Hamétosaad the form of the wave packet
are found. In particular, the frequency of the collectivedaaorresponds to the average
frequency of the wave packet’'s modes.

The three parameters which determine the applicabilithefsingle-mode approxima-
tion are frequency shift and width of the collective mode] dmmensional parametgr which
is defined as the relation of the energy of the fluctuationke@tound state energy of the col-
lective mode. These parameters are determined by the phpsiameters of the laser pulse,
namely the field intensity, pulse duration and focusing.sk@ suficiently long laser pulses
and for experimentally available intensities the singlede approximation is proven to be
valid, however for the very short laser pulses the colledii®ld mode does not havefaient
time to form.

The proposed approach can also be used for the analysis oiftéaction between an
atom and a field placed in a hon-ideal cavity.
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Appendix A

We start with the calculation of the average of the Hamilworkil;. For this purpose we need
to rewrite it in the variables of a “collective” mode A" and “fluctuations’cy, CL.

Hi = " (k- ko)aj,ay, + (b(k) — bo)(a + a,)

k<A

= Dk k)55 + ) + VZB(R) - o

k<A
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_ g;(k ko)= (P2 + 2Ppy+ PRt YR+ ka N %)
- 3 V2b() - Bo) [+ )
k<A
- 5k-io P+ —) ) - R (B + D) (A1)
k:<A k<

+Z(k kO)(Ppyk+Q_) %ﬁ(ﬁ(k)—ﬁo)(yk+%)_

k<A

The expectation value ¢i;, computed with respect to the ground state of fluctuatiompi€l
equal to

(H1) = (O"KnE KPalH1[¥a)INEHI0")

k - (AT+A)[ . ]
= (PAATA| Y — - b(k) — Nbg | [¥a). A2
(¥l [kZAN k°]+m,§() o |1¥a) (A-2)
By exploiting the definition of¥,) in equation[(A.2), one obtains

_ ko -
(Hy) = <n|u(pn)ST(ATA(Z N ko]

k

boko X5 K f f o 2 kkobo

DO Lk D (AT 4 AATA+ ATA(A + AT) =00
VNG kg TR AR AR A )
~ VN(A+ ADATAL &~ ko s koo

2 k) Rkt T e

- T(A+A*)[ o ] boko(3: B(k) — Nbo)
+<n|u(pn)S( e zk:b(k) Nbyo | + TR
, (S b(k) — Nbo)kobo
2(z- ko)
4 YNBoko(3:, Bk) ~ NBo)kobo
4(z- ko)?

whereS = e/ -Ae-3(A*-A") Next we calculate the average of the field variables, takitw
account the transformation law afandA' by operatoS:

(A+ AHATAA + A"'))S Wpn)In) +

(A+ A +

(A+ A")?

A+ A“‘)S)s (PN, A3)

STAS = :—ZL(\/;?+ i)A+ :—L(\/;?— i)AT+a/,

Vx 2 Vx
STATS = %(«/;? + %)AT + %(\/2 - %)m a. (A.4)

Parametex was defined in equatiof (R3). Therefore, we can find how thebamation of A
andA" in equation[(A.B) transforms, for example:
1 1

ATA_>%(%4_%)-}-2(%—;)(A2+AT2)+Q\/;(A+AT)+B, (A.5)

2
whereB = (a2+ %(\/E— ‘/i;) )
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According to the definition, the collective mode has a higlensity, i. e. it is highly
populated, with the quantum numlree ng being a large value. Therefore, the averages with
respect to the field variables are

(NIST(A+ ANSINg) = 20, (MoIS™(A+ A")?SIng) = (2N + 1) + 4a?,
(NolST(A + AN3S|ng) = Bax(2ng + 1) + 8a>,  (ng|STATASINg) = % (% + %) +5,
(nolS" (A + ANATASING) = (nolSTATA(A + A")S|ng)

1
=ax(2ng+ 1)+ a(% + ;) No + 2a,

(nolST(A+ ADATA(A + AN)S|ng) = g (% + ;) (2n2 + 1o + 1)

+’Z‘ (% - %) (2n2 + 2n) + (Bx + Aa)(2n + 1)
+207 (% + :;L) No + 4a°B. (A.6)

The last step is to calculate the averages in the Dirac s@oespFor this purpose we will
employ the electron’s density matnxp) ® u(p) = p = 1/2(p + m)(1 — y°4), with p anda
being its four momentum and polarization, respectively.€&@mple,

uﬂ(pn)aa(pn)[ﬁ k- Ro] - pﬂa[ﬁ k- &o] - Sp[p[ﬁ k- ko)) (A7)

k<A k<A k<A
Inserting [[A.6) and{Al7) intd (Al3) we find the average vatii¢ghe Hamiltonian

<H1>=no(%+%)(2£—ko)' P

k<A
2axng + a(% + %) No (

VN(z- ko)

N2 + 1/2)x + N3 — 1/2)% . .
- 2 W) ;A b3(k - ko)(ko - ) (A.8)

4a
+W(Z b(k)—Nbo]' Pn

k<A

+ 4xng ([Nb% - Z(bo . b(k))] (ko - pn) + (bo - pn) Z(b(k) . ko))

(Z. kO) k<A k<A

12000 W 2 S (k) - ko - o)

@l

where only the leading terms i are left.

(B - Pr) ) (k- ko) = (ko - Pr) Y (k- bo)]

k<A k<A
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Appendix B

Then the first term in equation (48) is
— —_— —_— . 2
Z (i = wo) = (k = ko) - vI” _ _V fdk((wo ~ wr)

- 3
k<A wo — W (Zﬂ)

(k — ko) - v|? (k — ko) - v|?
+2(k — ko) - v + 0l Y ) (Zﬂ)sfdk 0/° Y (B.1)

wo — Wk wo — w

The first two integrals in equatiop (B.1) are equal to zeragegirals of an odd function over
a symmetric interval. Now, we change a variabl& ko + g. After expansion of the scalar
product in [B.1), the terms linear i will also not contribute as they are the odd functions.
For this reason, one obtains

\ fdkl(k—ko)’vlz_ \ qu(q~v)2(w0+wk)

@) w-wk @ G-

_ 2woV f (g-v)? _ 2wV f Vig5 + Vog (8.2)

~ (2n)3 W2-w?  (20)3 2wo + @2 + GZ + G '
The denominator of equation (B.2) is equal to zerodpr = —2wo, 022 = —(02 + qy)/2wo
and needs to be regularized via[60]

1 1 .
—=P-- ins(u), (B.3)

with the symbolP being the principal value. Insertion ¢f(B.3) info (B.2) g#
~ 2wpV f o VEGE+VEGE
(2r)3 (% — A21)(0z — Gz2)

ZI(Z)L:OI dg(v2 5 + V262)5((G — 021)(0z — G2))

V\& qx |7TVV2 2 qx qy
R ©g @ f 9990\ % + 50 (B4)

While obtaining[(B.4) we took into account that - g,1)(0; — 0z2) = 2wo(0; — gz2) and the
terms proportional te? can be neglected, as the integration takes place near eacing to
@2 ~ g*. The integration in the first term is performed in a polar coate system, yielding:

2
_ Vvi qu q)(2 2 _ fd d d¢qJ_CO§¢
(27T)3 A 0. + Ox+Cy (27T)3
z 2wo

Zwo

Vi (AiAZ‘”O Adwg art 4Aza)o] (B.5)

@3l 8 2 A2
The integration of the second term with respectgtoyields a Heaviside function
0(woAz — 0% — G7) asa, = —(0% + o)/ 2wo > —Az/2. Therefore,

VA +
inVve f dqo?s (qz+ qx2 qy]

(2r)3 wo
2
v [, e,
= L. B.6)
(271-)3 A4 ’ (

Zl, VwolAz > Aq
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Combining togethef (Bl5) anf {B.6) one obtains

\ I(k — ko) - v[?
Y[ qrlEfol vl
(2n)3 j; wo — Wk

ﬂV\&wgéz 60'%0'2 o-% an’lﬂ
(2r)3 8 2 So2

2 2 g2
in2VV2 Wi 002 Vs =t
+ — .
(er)® 4 5o 1/2 >0

1 5 1

At last, we come to the calculation of the remaining cormttn equation[(48) from the
fluctuations:

(B.7)

l(b(k) - bo)? € v - (exa/ VK — €04/ Vo)
Z‘Z Ty sz: o . (B.8)

In order to calculate the integral in equati@n (B.8), weadtice the polarization vectors

koxwv eo2 X ko (koxwv) Xk 'UCU(Z) — ko(ko - v)
€02 = , €p1= = 2 = >
woV wo wyV WV
kxv e2xk (kxv)xk vwi-k(k-v)
ex2 = , ek1= = . =—k > . (B.9)
wrV Wi ka a)kV

Here we pay attention to the fact that ex» = v - eg2 = 0. Insertion of equatiod (Bl9) into
equation[(B.B) gives

_e L1\ 1P (koow)
2(2ﬂ)3a)ofdklv(\/w_k \/(,(To) v[ wZ/Z wg/z ]

The change of variable to ko + g and the decomposition of theffirences in brackets up to
the first order in Taylor series i bring us to the final result

& \% 5(k0 : ’0)2 2ko - v
3 dq |- 52+ oo |ko-a-
2(2r)3wo 2a)0 Vwy

650'50'2a)o (0'5 (V2 - Vf) 24 160'%Vivg)

96(2r)3v2 '

2

(B.10)

v-q

_ & (B.11)
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