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X-ray frequency combs from optically controlled resonance fluorescence
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An x-ray pulse-shaping scheme is put forward for imprinting an optical frequency comb onto the
radiation emitted on a driven x-ray transition, thus producing an x-ray frequency comb. A four-
level system is used to describe the level structure of N ions driven by narrow-bandwidth x rays, an
optical auxiliary laser, and an optical frequency comb. By including many-particle enhancement of
the emitted resonance fluorescence, a spectrum is predicted consisting of equally spaced narrow lines
which are centered on an x-ray transition energy and separated by the same tooth spacing as the
driving optical frequency comb. Given an x-ray reference frequency, our comb could be employed
to determine an unknown x-ray frequency. While relying on the quality of the light fields used to
drive the ensemble of ions, the model has validity at energies from the 100 eV to the keV range.

PACS numbers: 32.50.+d, 32.80.Qk, 42.50.Gy, 42.62.Eh

I. INTRODUCTION

Major advances in metrology and precision spec-
troscopy were led by the introduction [1] and develop-
ment [2] of optical frequency combs [3]. The spectrum
of a frequency comb consists of a series of equally spaced
teeth, i.e., modes of a train of femtosecond pulses spaced
by the repetition frequency of a mode-locked laser. By
counting the number of teeth between an unknown op-
tical frequency and an optical reference line, this comb
is used as a fine ruler to measure an optical frequency
instead of the corresponding wavelength, which can be
determined much less precisely. This allows one to reach
relative accuracies up to 10−18 [4]. By precisely counting
optical oscillations, e.g., in trapped-atom and -ion stan-
dards, optical frequency combs play a crucial role in the
realization of all-optical atomic clocks [5, 6].

In light of the success of optical-frequency-comb
metrology, it is desirable as an ultimate aim to render this
technology available for extreme ultraviolet (XUV) and
x-ray frequencies [7]. X-ray frequency combs promise to
enable precise measurements of high-energy transitions
paralleling the accuracy achieved for optical frequencies,
with an improvement of several orders of magnitude.
This is anticipated to allow, to name but a few exam-
ples, even more stringent experimental tests of quantum
electrodynamics and astrophysical models [8], and the
search for the variability of the fine-structure constant,
to which transitions in highly charged ions are predicted
to be more sensitive [9]. One may also eventually envision
ultraprecise x-ray atomic clocks.

XUV frequency combs have been generated via in-
tracavity high-order harmonic generation (HHG) [10].
While in conventional HHG an optical pulse in a gas
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produces a spectrum of odd harmonics of the optical fre-
quency, in intracavity HHG a train of coherent optical
pulses generates a spectrum which in each harmonic line
is structured into a fine comb. Based on this scheme,
Ref. [11] reported the observation of frequency combs
at wavelengths of ∼ 40 nm (photon energy of ∼ 30 eV).
The required optical peak intensity of ∼ 1014 W/cm2 was
obtained with a femtosecond enhancement cavity. Yet
relativistic effects limit the range in which HHG oper-
ates efficiently [12], i.e., where x-ray frequency combs are
presently advisable with HHG-based methods. Investi-
gations of alternative schemes are, therefore, timely.

Here, we put forward a scheme for coherent x-ray pulse
shaping to imprint the structure of an optical frequency
comb onto the resonance fluorescence spectrum that is
emitted on an x-ray transition. We refer to previous
investigations of many-color schemes of resonance fluo-
rescence in multi-level systems [13, 14] and to examples
of x-ray pulse shaping such as, e.g., studies of electro-
magnetically induced transparency for x rays [15], for
which an optical field is used to control x-ray absorp-
tion. In our scheme, the imprinting of the optical fre-
quency comb onto the x-ray spectrum takes advantage of
a driving x-ray field influencing the precision with which
the position of the peaks in the x-ray frequency comb is
known. This comb is valuable as a relative “ruler,” e.g.,
to bridge an energy difference between an x-ray reference
level and an unknown x-ray frequency at high energies for
which, owing to the inefficiency of HHG at high harmonic
orders, x-ray frequency-comb generation via HHG-based
methods would encounter significant obstacles [12].

The paper is structured as follows. In Sec. II we present
our theory in terms of an ensemble of four-level systems
used to model the driven particles. We analyze the prop-
erties of the coherent and incoherent parts of the spec-
trum of resonance fluorescence related to many-particle
effects and to periodic driving. The four-level scheme is
applied in Sec. III to He-like Be2+ ions to predict a fre-
quency comb in the coherent part of the spectrum cen-
tered on the atomic transition at ∼ 120 eV. Section IV
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concludes the paper. Atomic units are used throughout
unless otherwise stated.

II. THEORETICAL MODEL

A. Four-level model

In this section, we present the four-level model used
throughout the paper. The experimental setup is dis-
played in Fig. 1(a). An x-ray field EX(r, t), an opti-
cal continuous-wave (cw) auxiliary field EL(r, t), and a
periodic train of optical pulses EC(r, t) of an optical-
frequency-comb laser, irradiate an ensemble of ions. The
fields copropagate in the y direction; at time t and po-
sition r, for q ∈ {X, L, C}, the incident fields are given
by

Eq(r, t) = Eq,0(t′) cos [ωqt+ ϕq(t
′) + ϕq,0 − kq · r] êq,

(1)
with envelope Eq,0(t), carrier frequency ωq, phase ϕq(t),
carrier-envelope phase (CEP) ϕq,0, wavevector kq =
(ωq/c) êy, and linear polarization vector êq. The inten-
sity is [16]

Iq =
|Eq,0|2
8πα

, (2)

with the speed of light in vacuum c and the fine-structure
constant α = 1/c. Furthermore, t′ = t − y/vq is the re-
tarded time due to the propagation of the pulses along
the coordinate y, with vq being the group velocity of the
qth field. We assume that the x-ray field EX(r, t) and the
optical cw auxiliary field EL(r, t) are linearly polarized
in the z direction, êX = êL = êz, while the train of pulses
EC(r, t) giving rise to the optical frequency comb is lin-
early polarized in the x direction, êC = êx, where êx,
êy, and êz are unit vectors in the x, y, and z directions.
Finally, for q ∈ {X, L, C} we set the CEPs ϕq,0 = 0 and
we assume a dilute-gas setting, such that the phase ve-
locity of all electric fields, to a very good approximation,
equals c, resulting in good phase matching [17–19].

The bandwidth of EL(r, t) is so small that it can be
entirely neglected. We initially assume that EX(r, t) has
constant amplitude, EX,0(t) = ĒX,0, and phase, ϕX(t) =
0; the effect of the x-ray bandwidth is later taken into
account by a stochastic approach [20]. Finally, the opti-
cal frequency comb has, to a very good approximation,
constant phase ϕC(t) ≡ 0 and a periodic amplitude

EC,0(t) =

+∞
∑

k=−∞

Ak e
−i 2πk

Tp
t
, (3)

with repetition period Tp and Fourier coefficients

Ak =
1

Tp

∫ Tp

0

EC,0(t) e
i 2πk

Tp
t
dt. (4)

Figure 1. (Color online) (a) An ensemble of ions is driven by
narrow-bandwidth x rays (kX, brown), an auxiliary optical
laser (kL, red), both linearly polarized along the z direction,
and an optical frequency comb (kC, green), linearly polarized
along the x direction. All fields propagate in the y direc-
tion. The resonance fluorescence spectrum (kF, blue) exhibits
an induced x-ray frequency-comb structure. (b) Four-level
scheme of He-like ions interacting with the three light fields.

In other words, the envelope can be written as the fol-
lowing sum of identical pulses,

EC,0(t) = EC,max

+∞
∑

n=−∞

G(t − nTp), (5a)

G(t) = cos2
[

π

Td

(

t− Td

2

)

]

R

[

1

Td

(

t− Td

2

)

]

, (5b)

where, from Eq. (2),

EC,max =
√

8παIC,max (6)

is the maximum electric-field strength of the train of opti-
cal pulses, associated with the maximum intensity IC,max,
and the rectangular function R(x) is defined in terms of
the Heaviside step function θ(x) as

R(x) = θ(x + 1/2)− θ(x − 1/2). (7)

The full width at half maximum (FWHM) of G2(t) is [21]

TFWHM = 2Td arccos (
4
√

1/2)/π, (8)

with Td being the interval in which G(t) is different from
0, Td ≪ Tp.

The electric fields EX(r, t), EL(r, t), and EC(r, t),
drive isolated, electric-dipole (E1) transitions in the four-
level system of Fig. 1(b), where level i has energy ωi and
the energy between levels i and j is given by

ωij = ωi − ωj , (9)

with i, j ∈ S = {1, 20,±, 3, 40,±}. The four-level model
is applied to He-like ions, with transition energies in the
optical and x-ray ranges [22]. In this case, |1〉 represents
the ground state 1s2 1S0, with total-angular-momentum
quantum number J = 0 and positive parity. The states
|2−〉, |20〉, and |2+〉, constitute the level 1s2p 3P1, with
J = 1 and negative parity. The quantum number MJ
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associated with the z component of the total-angular-
momentum operator is, in the previous states, respec-
tively equal to −1, 0, and 1. Furthermore, the state |3〉
is associated with the positive-parity level 1s2s 1S0, with
J = 0, whereas the three states |4−〉, |40〉, and |4+〉,
represent the level 1s2p 1P1, with J = 1 and negative
parity [23]. Other levels, such as 1s2s 3S1, 1s2p

3P0, and
1s2p 3P2, are not included in our description because
they do not couple via an E1 interaction to the levels
in Fig. 1(b) and spontaneous-decay times from higher-
energy levels to them are by orders of magnitude larger
than the repetition period Tp of the optical frequency
comb.

All three excited levels, i.e., 2, 3, and 4, are nonau-
toionizing, since, in all configurations, the passive elec-
tron remains in the 1s orbital, implying that the levels are
energetically below the autoionizing threshold [22]. Fur-
thermore, other norm-nonconserving processes such as
single-photon ionization due to EX(r, t) [24] and multi-
photon ionization due to EC(r, t) [25] are safely negligi-
ble for the moderate, near-resonant fields employed here.

B. Hamiltonian and equations of motion

The interaction of the electric fields Eq(r, t) in Eq. (1),
with q ∈ {X, L, C}, and N ions, respectively at positions
rn, with n ∈ {1, . . . , N}, is described by the Hamiltonian

Ĥ = Ĥ0 +
∑

q∈{X,L,C}

ĤE1,q, (10)

where

Ĥ0 =

N
∑

n=1

∑

i∈S

ωi σ̂
n
ii (11)

is the atomic electronic structure Hamiltonian and

ĤE1,q =

N
∑

n=1

Ĥn
E1,q =

N
∑

n=1

d̂n · Eq(rn, t) (12)

are the E1 interaction Hamiltonians [26, 27]. In the pre-
vious equations,

σ̂n
ij = |i〉n n〈j| (13)

are the ladder operators, where i, j ∈ S and n ∈
{1, . . . , N}, while d̂n represents the dipole operator of
an ion at position rn,

d̂n =
∑

i,j∈S

dij,n σ̂
n
ij , (14)

with matrix elements

dij,n = n〈i|d̂n|j〉n. (15)

Since the dipole moment is a property of the ion species,
i.e., of the atomic number and the charge of the ion,

the matrix elements dij,n = dij do not explicitly depend

on n. Furthermore, because d̂n is an irreducible tensor
operator of rank 1 [27], its vector components dij , with
i, j ∈ S, can be written as

dij = d−1
ij êσ− + d 0

ij êz + d 1
ij êσ+

, (16)

where, in addition to the Cartesian unit vectors êx, êy,
and êz, we define the circular-polarization vectors

êσ± = (∓êx + iêy)/
√
2, (17)

with the positive or negative sign for polarizations λ =
±1. These are complex vectors, ê

∗
σ±

= −êσ∓ , sat-
isfying the orthogonality relations êσ± · ê∗σ±

= 1 and
êσ± · ê∗σ∓

= 0. From parity considerations, the compo-

nent d k
ij in Eq. (16), with i, j ∈ S and k ∈ {0,±1}, does

not vanish only if k is equal to the difference MJ,i−MJ,j

between the angular-momentum quantum numbers of the
states i and j [27].

The three driving fields are assumed to be tuned to the
respective transition energies, i.e., ωX = ω21, ωL = |ω32|,
and ωC = ω43. The effect of a field on the transitions to
which it is not tuned is negligible [28] and the relevant
interactions are highlighted in Fig. 1(b). The states |2±〉
and |40〉 are neglected, because they are not driven and
the decay from higher-energy levels to them is orders of
magnitude smaller than to the ground state.

With the previously described assumptions and in
the rotating-wave approximation [26], the Hamiltonian

Ĥn
E1,X [Eq. (12)] describing the interaction of the nth ion

with the x-ray field EX(r, t) in Eq. (1) is given by

Ĥn
E1,X =

d120 ĒX,0

2
σ̂n
120 e

i(ωXt−kX·rn) + H.c. (18)

The cw optical field EL(r, t) interacts with the nth ion
in a completely similar way [29]. Finally, the train of
optical pulses

EC(r, t) = EC,0(t−r ·êy/vC) cos (ωCt− kC · r) êx, (19)

tuned to the transition |3〉 → |4±〉 and linearly polarized

along the êx direction, êx = (ê∗σ−
− ê

∗
σ+

)/
√
2, interacts

with the nth ion via the E1 interaction Hamiltonian

Ĥn
E1,C =

1

2

∑

j∈{±}

σ̂n
34j d34j ·

ê
∗
σ−

− ê
∗
σ+√

2

× EC,0(t− rn · êy/vC) ei(ωCt−kC·rn) + H.c.,
(20)

with d34± = d∓1
34±

êσ∓ . Here, d−1
34+

and d+1
34−

are the ma-
trix elements of the electric-dipole momentum operator

d̂n [Eq. (16)], which are related via the Clebsch-Gordan
coefficients [27]. In this case, the explicit calculation
of the Clebsch-Gordan coefficients allows one to observe
that d−1

34+
/d+1

34−
= 1 and, therefore, to define the constant

d̃34 = d−1
34+

= d+1
34−

, in terms of which we rewrite the E1
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interaction Hamiltonian (20) as

Ĥn
E1,C =

d̃34EC,0(t− rn · êy/vC)
2

×
∑

j∈{−1,+1}

j√
2
σ̂n
34j e

i(ωCt−kC·rn) + H.c.

(21)
The ensemble of ions driven by the external fields is

described via the density operator ρ̂(t), with elements
ρnij(t) = 〈σ̂n

ji(t)〉, where 〈· · · 〉 stands for the expectation
value of a quantum operator. The time evolution of the
density operator is given by the Liouville–von Neumann
equation with system-reservoir interaction, i.e., by the
master equation [14, 26]

dρ̂

dt
= −i [Ĥ, ρ̂] + L[ρ̂], (22)

where Ĥ is the Hamiltonian (10) and the Lindblad op-
erator L[ρ̂] represents the norm-conserving spontaneous
decay of the system,

L[ρ̂] =
∑

i, j∈S
ωi<ωj

N
∑

n=1

−Γji

2
(σ̂n

jiσ̂
n
ij ρ̂ − σ̂n

ij ρ̂σ̂
n
ji) + H.c., (23)

where the decay rates are given by Γji = 4ω3
jiα

3|dij |2/3
[26], with i, j ∈ S. Norm-nonconserving terms such
as those from autoionization or photoionization are
not present in our situation involving moderate, near-
resonant fields. The equations of motion (EOMs) from
Eq. (22), satisfied by the matrix elements ρnij(t) =
〈σ̂n

ji(t)〉 of the density operator ρ̂(t), can be more eas-
ily solved by introducing the slowly varying operators
[26, 30, 31]

ς̂n201(t) = σ̂n
201(t) e

−i(ω21t−kX·rn), (24a)

ς̂n320(t) = σ̂n
320(t) e

−i(ω32t−kL·rn), (24b)

ς̂n31(t) = σ̂n
31(t) e

−i[ω31t−(kX+kL)·rn], (24c)

ς̂n4±3(t) = σ̂n
4±3(t) e

−i(ω43t−kC·rn), (24d)

ς̂n4±20(t) = σ̂n
4±20(t) e

−i[ω42t−(kL+kC)·rn], (24e)

ς̂n4±1(t) = σ̂n
4±1(t) e

−i[ω41t−(kX+kL+kC)·rn], (24f)

and ς̂nij(t) = [ς̂nji(t)]
†. With these operators, we introduce

the slowly varying density operator ˆ̺(t) of elements

̺nij(t) = 〈ς̂nji(t)〉. (25)

From Eqs. (22) and (24), the EOMs satisfied by the ma-
trix elements ̺nij(t) of the slowly varying density opera-
tor ˆ̺(t) are a set of coupled, linear differential equations
with time-dependent coefficients. However, the only co-
efficients in the EOMs which explicitly depend on time
are those associated with the envelope EC,0(t−rn ·êy/vC)
of the pulse train EC(r, t) appearing in Eq. (21). From
Eq. (22) it follows that the matrix elements of two den-

sity operators ˆ̺n(t) and ˆ̺n
′

(t), respectively associated

with two ions at positions rn and rn′ , assume the same
values at different times, i.e.,

̺nij(t) = ̺n
′

ij [t+ (rn′ − rn) · êy/vC], (26)

where the retardation effect displayed in Eq. (26) is due
to the propagation of the train of pulses EC(r, t) through
the ensemble of particles.

Finally, we note that, for the cw driving fields EX(r, t)
and EL(r, t) and the periodic train of optical pulses
EC(r, t), the set of coupled, linear differential equations
from (22) exhibits periodic, time-dependent coefficients,
with the repetition period Tp of the pulse train EC(r, t).
As a result, the master equation (22) admits a periodic
solution, in the following denoted as ˆ̺eq(t) = ˆ̺eq(t+Tp),
which is asymptotically reached after turn-on effects have
ceased.

C. Spectrum of resonance fluorescence

While not coherently driven, the E1-allowed transi-
tion 4 → 1 undergoes spontaneous decay [Fig. 1(b)]:
these photons, decaying from the states |4±〉 with MJ ∈
{+1, −1} to the state |1〉 with MJ = 0, differ in energy
and polarization from those decaying via the 2 → 1 tran-
sition, i.e., they occupy a different region of the spectrum
and can be distinguished via a polarization-dependent
detector. In the following, therefore, we are allowed to
directly focus on the elements of the emitted electric
field and of the ensuing spectrum of resonance fluores-
cence which are associated with photon emission from
the 4 → 1 transition. Furthermore, we show that, by
writing an optical frequency comb onto the driving cw
x-ray field, a scheme connected to four-wave mixing [26]
is developed to imprint a frequency comb onto the coher-
ent part of the spectrum in the forward direction.

In order to calculate the spectrum of resonance fluo-
rescence emitted by a set of driven ions, we introduce the
electric-field operator

Ê(r, t) = Ê
+(r, t) + Ê

−(r, t), (27)

with positive- and negative-frequency components
Ê

+(r, t) and Ê
−(r, t), respectively, where Ê

−(r, t) =

[Ê+(r, t)]†. The driven ions behave like oscillating dipole
moments, emitting waves with a dipole radiation pattern.
In the far-field region, the electric-field operator can be
related to the dipole response of the atomic system via
the following equality [26]:

Ê
+(r, t) =

∑

j∈{4+, 4−}

[

ω2
41

c2 r
[dj1 − êr (dj1 · êr)]

×
N
∑

n=1

σ̂n
1j(t− |r − rn|/c)

]

.

(28)

Here, r = r êr is the detection point with respect to the
ensemble of ions, at distance r and along the observation
direction given by the unit vector êr.
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The power spectrum of resonance fluorescence [26] is
given by

S(r, ω) =
1

4π2α
lim

T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2

×
[〈

Ê
−(r, t1) · Ê+(r, t2)

〉

e−iω(t2−t1)
]

dt1 dt2,
(29)

where S(r, ω) dω r2 dΩ represents the power emitted into
the energy interval [ω, ω + dω] and detected in a solid
angle dΩ centered at the observation point r. Be-
cause of Eqs. (28) and (29), the spectrum depends on

the two-time atomic expectation values 〈σ̂n
j1(t1) σ̂

n′

1j′ (t2)〉
[26], with j, j′ ∈ {4+, 4−}. Two contributions can
thus be distinguished: a coherent spectrum Scoh(r, ω),
depending on the product of single-time expectation
values 〈σ̂n

j1(t1)〉 〈σ̂n′

1j′ (t2)〉, and an incoherent spectrum

Sinc(r, ω), related to 〈δσ̂n
j1(t1) δσ̂

n′

1j′ (t2)〉, where δσ̂n
1j =

σ̂n
1j − 〈σ̂n

1j〉.
In the following, we calculate the coherent part of the

spectrum of resonance fluorescence which is emitted by

the ensemble of ions in the forward direction, with êr ≈
êy. Because of the emitted electric-field operator given
in Eq. (28), the spectrum of resonance fluorescence (29)
exhibits position-dependent prefactors given by

[dj1 − êr (dj1 · êr)] [d1j′ − êr (d1j′ · êr)], (30)

with j, j′ ∈ {4+, 4−}, where the dipole-moment ma-
trix elements dj1 and d1j′ are rank-1 tensors given by
Eq. (16). In particular, a close inspection of the asso-
ciated Clebsch-Gordan coefficients allows one to notice
that

d4+1 = d̃41 êσ+ , d4−1 = d̃41 êσ− , (31a)

d14+ = −d̃∗41 êσ− , d14− = −d̃∗41 êσ+ , (31b)

where d̃41 is the amplitude of the dipole-moment matrix
element and the circular-polarization vectors êσ± were
defined in Eq. (17). For observation directions êr close to
the forward direction êy along which the three incident
fields propagate, Eqs. (28) and (31), together with the
definition of the resonance fluorescence spectrum (29),
lead to

Scoh(r, ω) =
ω4
41 |d̃41|2
8π2c3r2

∑

j, j′∈{4+, 4−}

N
∑

n=1

N
∑

n′=1

lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2

[〈

ς̂nj1(t1 − |r − rn|/c)
〉 〈

ς̂n
′

1j′(t2 − |r − rn′ |/c)
〉

× (−1)δjj′+1 e−i(ω−ω41)(t2−t1) ei[(ω41/c) êr−(kX+kL+kC)]·(rn−rn′)
]

dt1 dt2,

(32)

where δjj′ is the Kronecker δ symbol. The position-dependent exponential function in the second line of Eq. (32)
renders the coherent part of the spectrum Scoh(r, ω) nonvanishing only in a small solid angle centered on êy, as we
discuss in the following [see, e.g., Eq. (36)]. In this region, the space-dependent factors (30) do not display appreciable
modifications and are therefore approximated with the value they exhibit at êr = êy. These factors, calculated by

employing the definition of the complex polarization vectors êσ± from Eq. (17), are responsible for the term (−1)δjj′+1

in the second line of Eq. (32).
In order to proceed with the calculation of the spectrum of resonance fluorescence, we notice that the two states

|4+〉 and |4−〉 are driven with opposite sign by the optical frequency comb. This is apparent from the factor j in the E1
interaction Hamiltonian (21). As a result, the solution of the EOMs (22) can be shown to satisfy ̺14+(t) = −̺14−(t),
which can be employed to simplify the previously calculated spectrum (32) to

Scoh(r, ω) =4
ω4
41 |d̃41|2
8π2c3r2

N
∑

n=1

N
∑

n′=1

lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2

[〈

ς̂n4+1(t1 − |r − rn|/c)
〉 〈

ς̂n
′

14+(t2 − |r − rn′ |/c)
〉

× e−i(ω−ω41)(t2−t1) ei[(ω41/c) êr−(kX+kL+kC)]·(rn−rn′)
]

dt1 dt2.

(33)

The constructive interference among the four “paths” in Eq. (32) leads to a reinforcement of the total spectrum, given
by the factor four in Eq. (33). Similar interference effects in resonance fluorescence were described in Ref. [32].

Although each ion emits independently of the other ones, in the forward direction, i.e., in the êy direction along
which the three driving fields propagate, phase matching of emission from different ions is achieved [17]. This allows
one to assume that kq = ωq/c, for q ∈ {X, L, C}. As a result, for r = r êy, the argument of the second exponential
function in the second line of Eq. (33) vanishes, since (ω41/c) êr − (kX + kL + kC) = 0, and the spectrum reduces to

Scoh(r êy, ω) =
ω4
41 |d̃41|2
2π2c3r2

N
∑

n=1

N
∑

n′=1

lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2

[〈

ς̂n4+1(t1 − |r − rn|/c)
〉 〈

ς̂n
′

14+(t2 − |r − rn′ |/c)
〉

× e−i(ω−ω41)(t2−t1)
]

dt1 dt2.

(34)
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In Eq. (34), the product of two complex conjugate terms can be recognized, which leads to

Scoh(r êy, ω) =
ω4
41 |d̃41|2
2π2c3r2

lim
T→∞

1

T

∣

∣

∣

∣

∣

N
∑

n=1

∫ T/2

−T/2

〈

ς̂n4+1(t1 − |r − rn|/c)
〉

ei(ω−ω41)t1 dt1

∣

∣

∣

∣

∣

2

=
ω4
41 |d̃41|2
2π2c3r2

N2 lim
T→∞

1

T

∣

∣

∣

∣

∣

∫ T/2

−T/2

〈

ς̂4+1(t)
〉

ei(ω−ω41)t dt

∣

∣

∣

∣

∣

2

.

(35)

The just-described many-atom effect is essential to guarantee the directionality of the emitted coherent radiation. In
the following, we describe the properties of the coherent part of the spectrum of resonance fluorescence for observation
directions êr around the forward direction êy along which the three driving fields propagate. As discussed in Ref. [31],
the intensity of the coherent spectrum of resonance fluorescence rapidly falls for êr 6= êy, i.e., in a region for which
the position-dependent factors (30) do not vary significantly and can therefore be assumed constant. From Eq. (33),
this allows one to identify the rapidly varying, position-dependent term

η(êr) =
Scoh(rêr, ω)

Scoh(rêy , ω)
=

∣

∣

∣

1

N

N
∑

n=1

ei[
ω41
c

êr−(kX+kL+kC)]·rn

∣

∣

∣

2

≈
∣

∣

∣

1

L

∫ L/2

−L/2

ei[
ω41
c

(êr−êy)]· (y êy) dy
∣

∣

∣

2

= sinc2
{

ω41L

2c
[cos(φ)− 1]

}

.

(36)

In Eq. (36), φ is the angle that the unit vector êr, asso-
ciated with the direction of observation, forms with the
y axis, i.e., cosφ = êr · êy, and sinc(x) = sin (x)/x. Fur-
thermore, while going from the first to the second line in
Eq. (36), we have approximated the sum over the N ions
with an integral over the coordinate y = rn · êy, assum-
ing a length L of the ion sample and a constant linear
density N/L [31]. For φ = 0, η(êr) is clearly equal to 1.
However, the function η(êr) determines an emission cone
with opening angle φ∗. This is here defined as the angle
corresponding to the first zero of Eq. (36), i.e., satisfying
the identity

ω41L

2c
[cos(φ∗)− 1] =

π

2
. (37)

The resulting opening angle of the emission cone

φ∗ ≈
√

2cπ

ω41L
(38)

and the distance r at which the spectrum is observed
allow one to define the area

∆A = r2
∫

∆Ω

dΩ = π[r sin(φ∗)]2 ≈ 2π2cr2

ω41L
(39)

in the solid angle ∆Ω about the forward direction êy in
which the radiation is emitted.

In contrast to the just-described part of the spectrum
of resonance fluorescence, for which the coherent emis-
sion in the forward direction gives rise to a multipli-
cation factor of N2 in Eq. (35), the incoherent part of
the spectrum Sinc(r êr, ω) is only proportional to N and
completely lacks space-directionality contributions from
many-particle effects [31]. No terms such as η(êr) are

present in the incoherent spectrum and the only position-
dependent contribution is given by the terms in Eq. (30)
[31]. In the forward direction, the incoherent part of the
spectrum is smaller than the coherent spectrum by a fac-
tor N and will hence be neglected in the following.

We conclude this section by focusing on the effects
on the coherent part of the spectrum of resonance flu-
orescence due to the periodicity of the EOMs obtained
from the master equation (22). As we previously men-
tioned, since the linear differential equations determining
the time evolution of the density operators ˆ̺n(t) have
coefficients which are periodic in time, there exists a pe-
riodic solution ˆ̺eq(t) of the EOMs. This solution has
the same period Tp as the repetition time of the train of
pulses EC(r, t) from the optical frequency comb which
drives the ensemble of ions. When turn-on effects have
ceased, any solution ˆ̺n(t) converges to ˆ̺eq(t), indepen-
dent of the initial state of the system. As discussed in
Ref. [30], we can take advantage of this periodic solu-
tion in Eq. (35) to show that the coherent part of the
spectrum emitted on the 4 → 1 transition in the forward
direction consists of an x-ray frequency comb centered
on the frequency ω41 with the same tooth spacing as the
driving optical frequency comb,

Scoh(r êy, ω) =

+∞
∑

m=−∞

Sm δ
(

ω − ω41 −
2πm

Tp

)

, (40a)

Sm =
ω4
41 |d̃41|2
πc3r2

N2
∣

∣

∣

1

Tp

∫ Tp

0

̺eq4+1(t) e
i 2πm

Tp
t
dt
∣

∣

∣

2

.(40b)

Here, δ(x) is the Dirac δ function, ̺eq14+(t) the relevant
matrix element of the periodic, slowly varying density op-
erator ˆ̺eq(t), and d̃41 was defined in Eq. (31). Because
of many-ion effects, the photons emitted in the forward
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direction are focused in a beam whose mean area is given
by Eq. (39) [31]. By recalling that the spectrum of res-
onance fluorescence is defined as the emitted power per
unit area A and unit frequency ω, it follows that

Pm =

∫

∆Ω

∫ ωm+π/Tp

ωm−π/Tp

Scoh(r êr, ω) dω r2 dΩ = Sm ∆A

=
2πω3

41 |d̃41|2
Lc2

N2
∣

∣

∣

1

Tp

∫ Tp

0

̺eq4+1(t) e
i 2πm

Tp
t
dt
∣

∣

∣

2

(41)

describes the power of the mth peak in the spectrum at
frequency ωm = ω41 + 2πm/Tp.

III. RESULTS AND DISCUSSION

In this section, we apply the previously described the-
oretical model to predict a frequency comb at x-ray fre-
quencies. In particular, we aim at generating a comb
with the same number of peaks, i.e., overall width, as the
driving optical frequency comb, and with emitted power
comparable to the power of present-day XUV combs gen-
erated via HHG [11]. In order to bridge an energy differ-
ence between two x-ray levels, a sufficiently wide comb is
needed. Furthermore, powers on the same order of mag-
nitude guarantee that our predicted comb could be sim-
ilarly detected and used as XUV combs from presently
explored methods.

In the following, we describe how we proceed to max-
imize the number and the power Pm of the peaks in the
comb (40). From Eq. (41), the power associated with
the mth peak is proportional to the modulus squared
of the mth Fourier coefficient of the periodic function
̺eq4+1(t). The properties of a Fourier-series expansion [33]
imply that the overall width of the spectrum is inversely
proportional to the duration of ̺eq4+1(t). In order to pro-
duce an x-ray frequency comb with as many teeth as in
the driving optical frequency comb, the matrix element
̺eq4+1(t) needs to consist of pulses closely following the en-

velope EC,0(t) of the pulse train EC(r, t) of the driving
optical-frequency-comb laser.

This can be better understood by introducing the
pulse area of a single pulse in the train Q =
∫ Tp

0
|d34+ | EC,0(t) dt. When the envelope of the driving

pulse satisfies the condition Q = 2nπ, the atomic vari-
ables of the system perform an integer number of Rabi
cycles [26] after which population and coherence of the
highest level are brought back to 0 exactly at the end of
the pulse [34, 35]. Conversely, for Q 6= 2nπ, the atomic
variables are led to nonvanishing values at the end of the
pulse, such that spontaneous decay of the highest level
follows. By choosing the peak intensity IC,max of the
pulse train EC(r, t) to fulfill the condition Q = 2nπ, we
guarantee that, in the absence of an optical pulse, the
population of the states |4±〉 and the off-diagonal terms
̺eq4±1(t) vanish exactly. The emitted spectrum [Eq. (40)]

Figure 2. (Color online) Time evolution of the periodic
density operator ˆ̺eq(t) and spectrum of resonance fluores-
cence for Be2+ ions. Present-day parameters are used to
model the optical frequency comb [Eq. (5)], TFWHM = 120 fs,
Tp = 1 ns, 1/Tp = 1 GHz [11, 36], i.e., 2π/Tp = 4.1×10−6 eV.
The ion sample has N = 106 particles over a length of
L = 1 cm and area 1mm2. The driving fields have intensities
IX = 1.5× 104 W/cm2, IL = 1.7× 108 W/cm2, and IC,max =
3.0×1010 W/cm2, associated with 2π optical-frequency-comb
pulses. The periodic solutions are (a) ̺eq4+1(t) for nTp < t <

nTp + Td, with Td = πTFWHM/[2 arccos ( 4
√

1/2)], and (b)
̺eq31(t) for nTp < t < (n+1)Tp. The power Pm of each peak in
the spectrum of Eq. (40) is displayed (c) for the whole comb,
centered on ω41 = 123.7 eV, and (d) around the maximum.
In panel (d), a1 = 105 nW−1, a2 = 1.86 nW.

consists of peaks whose power, from Eq. (41), is pro-
portional to the Fourier coefficient of a function which
is different from 0 only in the presence of the optical
pulses, i.e., in an interval of duration TFWHM given by
the FWHM duration of the pulses giving rise to the op-
tical frequency comb. As a result of the properties of a
Fourier-series expansion, the overall width of the spec-
trum is thus given by ∼ 2π/TFWHM. Conversely, if the
intensity of the pulse train EC(r, t) is not properly cho-
sen, every pulse from the optical-frequency-comb laser
gives rise to a subsequent long decay of the atomic vari-
ables, ̺eq4+1(t) ∼ e−Γ41t, which affects the amplitude of

the peaks in Eq. (41) and, therefore, results in a spec-
trum of smaller width, Γ41 ≪ 2π/TFWHM, and smaller
number of relevant teeth.

In Fig. 2 we show results obtained by applying our four-
level scheme to model isolated transitions in He-like Be2+

ions. The decay rates Γji are calculated with grasp2K

[37], while the transition energies ω21 = 121.9 eV, ω23 =
0.2699 eV, ω43 = 2.018 eV, and ω41 = 123.7 eV, are
taken from Ref. [22]. We assume a density of Be2+ ions of
108 cm−3, which can be reached with an electron-beam
ion trap [8, 38]. For such a dilute sample, good phase
matching is achieved [17–19]. Alternative experimental
settings, e.g., by gas discharge or photoionization by an
x-ray pre-pulse [39, 40], may allow for higher densities,
but one ought to ensure that a stable environment is
obtained, such that all pulses in the optical frequency
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comb encounter a constant density of ions, atoms, and
free electrons. This is discussed in the appendix.

By using an optical frequency comb composed of 2π
pulses, the matrix elements of the periodic density op-
erator ˆ̺eq(t) related to the states |4±〉 vanish after each
pulse. The time evolution of ̺eq4+1(t) in the presence of an

optical pulse is exhibited in Fig. 2(a), where it is apparent
that the vanishing initial value is reached again at the end
of the interaction. In the interval in between two optical
pulses, when the excited states |4±〉 are completely de-
populated, the remaining states |1〉, |20〉, and |3〉, behave
like a three-level system [13] driven by the two cw fields
EX(r, t) and EL(r, t). These fields stimulate oscillations
of the remaining elements ̺eqij (t) of the density operator,

with i, j ∈ {1, 20, 3}, as shown in Fig. 2(b), and af-
fect the periodic behavior of the entire density operator.
In other words, the intensities IX and IL determine the
amplitude of the oscillating function ̺eq31(t) [Fig. 2(b)],
indirectly influencing also the peak value displayed by
̺eq4+1(t) in Fig. 2(a). Given the relationship appearing in

Eq. (41) between the amplitude of ̺eq4+1(t) and the inten-
sity of the peaks in the emitted x-ray frequency comb, it
is important to properly set the peak intensities IX and
IL in order to maximize the peak value of ̺eq4+1(t) and,
consequently, the emitted photon number.

Having suppressed the post-pulse decay of ̺eq4+1(t) by
choosing a train of 2π-area pulses, the resulting spectrum
of resonance fluorescence [Eq.(40)] is shown in Fig. 2(c);
it is centered on ω41 = 123.7 eV and contains ∼ 104 peaks
with an energy spacing of 2π/Tp = 4.1 × 10−6 eV. Fig-
ure 2(d) highlights the comb structure of the spectrum.
The peak intensity of IC,max = 3.0×1010 W/cm2 is much
lower than those needed for the generation of XUV fre-
quency combs via HHG [36] and the power of each peak
in the emitted spectrum [41] is comparable to the power
which was measured in Ref. [11].

The results presented so far were obtained by assum-
ing cw x rays with a vanishing bandwidth. To incorpo-
rate the effect of a finite bandwidth γc of the x-ray light
source, we adopt the approach from Ref. [20] which in-
cludes the influence of the temporal fluctuations of the
driving field on the spectrum of resonance fluorescence.
In this case, the x-ray field EX(t) is a stochastic vari-
able which varies in the ensemble of all possible realiza-
tions of the stochastic process. Thereby, it is possible to
derive the EOMs for the ensemble-averaged density op-
erator and thus obtain the ensemble-averaged spectrum
of resonance fluorescence. By following this approach,
one obtains an ensemble-averaged spectrum which is a
continuous function still displaying peaks at frequencies
ωm = ω41 + 2πm/Tp, as in Eq. (40). However, be-
cause of the finite bandwidth γc of the driving x-ray
field, the δ peaks exhibited by Eq. (40) are broadened
and each peak in the ensemble-averaged spectrum fea-
tures a spectral FWHM of ∼ 2γc. To preserve also for
γc 6= 0 the frequency-comb structure we predicted in
Eq. (40), we need to ensure that the spectral width of
the teeth in the imprinted comb is lower than their sepa-

ration energy. From the previous considerations, this im-
plies that the x-ray bandwidth ought to be smaller than
the repetition frequency of the optical frequency comb,
i.e., 2γc < 2π/Tp = 4.1×10−6 eV. The many-peak struc-
ture is otherwise washed out and the peaks in the spec-
trum cannot be clearly distinguished. X rays with such
a small bandwidth are not available at present. Yet, by
increasing the repetition frequency 2π/Tp of the optical
frequency comb, a wider x-ray-comb tooth spacing would
result and a larger x-ray bandwidth may be accommo-
dated. With a peak intensity of IC,max = 3×1010W/cm2,
such an increase in the repetition rate of the optical fre-
quency comb is feasible [10, 11, 42]. Furthermore, we no-
tice that the quality and the coherence of x-ray sources
have dramatically improved during the last decades. Al-
though present x-ray sources do not provide the resolving
powers required here [43], new schemes [40, 44–46] show
the strong need for narrower-bandwidth x rays and the
remarkable attempts to reach them.

IV. CONCLUSIONS

In this paper, we present an x-ray pulse-shaping
method to directly access the time evolution of a driven
atomic system and stimulate the periodic emission of
x rays via a three-color scheme in a four-level system.
This is investigated by calculating the coherent part of
the spectrum of resonance fluorescence which is emitted
by an ensemble of ions in the forward direction. The
model is applied to imprint an optical frequency comb
onto cw x rays. We employ He-like Be2+ ions as an
atomic implementation of the model. We show that a fre-
quency comb is generated, which is centered on the x-ray
transition energy at 123.7 eV and which requires peak in-
tensities of the driving optical frequency comb which are
lower by several orders of magnitude than those presently
needed for HHG-based comb-generation methods [11].

Although the four-level model developed in this pa-
per was applied to He-like Be2+ ions, the scheme has
general validity and can be employed to describe dif-
ferent systems with potentially higher x-ray transition
energies. Similar results, for example, can be obtained
from other He-like ions, such as Ne8+. In this case, for
ω41 = 922.0 eV [22], a comb in the keV range can be
predicted, yet for the transition energy ω43 = 6.679 eV
intense optical frequency combs are not available. Our
model can be also applied to different atomic transitions,
e.g., 1s2 → 1s np with n ≥ 3 in heavier ions, for which
experimentally accessible x-ray and optical energies can
be found; or even to nuclear transitions up to the γ range.

Our scheme takes advantage of narrow-bandwidth
x-ray sources. We recognize that the assumption of
a very narrow x-ray bandwidth does not allow an
implementation of our scheme with currently available
x-ray technology. Nevertheless, we are confident that the
advances in x-ray science and the constant improvement
in the quality and coherence of x-ray sources will
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soon provide the experimental conditions necessary to
demonstrate the viability of the scheme. Not only does
the model tackle the problem of x-ray comb generation,
with the advantage of being applicable at energies for
which existing methods would not be adequate, but
it also represents an example of how the resonance
fluorescence spectrum emitted by an ensemble of driven
particles can be manipulated by directly controlling the
time evolution of the atomic system.
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Appendix A: Phase-matching effects on the

spectrum of resonance fluorescence

Here, we discuss the influence of phase matching [17] on
the shape of the spectrum of resonance fluorescence (33).
Depending on the experimental setting used to produce
the plasma of ions in our scheme, phase matching may
have to be taken into account. In the derivation pre-
sented in Sec. II, we have assumed that the presence of
atoms, ions, and free electrons in the plasma does not
influence the phase velocity vq = c/nq of the three driv-
ing fields, where nq is the refractive index of the medium
at the frequency of the qth field. At the very low atom
number densities considered in Sec. III, this is a valid ap-
proximation. However, one needs to quantify how phase-
matching effects modify the predicted spectrum of res-
onance fluorescence, in case this represents an issue at
higher densities than those assumed here.

As done in Sec. II C, we consider here the coherent part
of the spectrum of resonance fluorescence on the |4±〉 →
|1〉 transition in the forward direction. By introducing
[17]

∆k =
ω41

c
− (|kX|+ |kL|+ |kC|)

=
1

c
(ω41 − ω21nX − ω32nL − ω43nC),

(A1)

the following spectrum can be obtained from Eq. (33),

Scoh(rêy , ω)

=
ω4
41|d̃41|2
2π2c3r2

lim
T→∞

1

T

∣

∣

∣

∣

N
∑

n=1

∫ T/2

−T/2

〈

ς̂n4+1(t1 − |r − rn|/c)
〉

× ei(ω−ω41)t1 ei ∆k êy·rn dt1

∣

∣

∣

∣

2

,

(A2)
where the same steps were followed which we described
in Sec. II C while proceeding from Eq. (33) to Eq. (35).
We note in particular that, for ∆k = 0, Eq. (A2) leads
exactly to Eq. (35).

The additional exponential function ei ∆k êy ·rn appear-
ing in Eq. (A2) implies that, in the forward direction, the
factor N2 in Eq. (35) is now replaced by

∣

∣

∣

N
∑

n=1

ei ∆k êy ·rn

∣

∣

∣

2

≈ N2 sinc2
(

∆kL

2

)

. (A3)

As done in Eq. (36), the sum was approximated with
an integral over the length L, having assumed a con-
stant linear density N/L. For the densities assumed here,
∆kL/2 ≈ 10−8, such that the factor sinc2(∆kL/2) is so
close to 1 that it can be completely neglected [17–19], as
we did in Eqs. (34) and (35). Its presence, however, might
have to be taken into account if a different experimental
setting were considered.
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