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Abstract: Single cell analysis (SCA) is nowadays recognized as one of the key tools for 

diagnostics and fundamental cell biology studies. The Layer-by-layer (LbL) polyelectrolyte 

assembly is a rather new but powerful technique to produce multilayers. It allows to model 

the extracellular matrix in terms of its chemical and physical properties. Utilization of the 

multilayers for SCA may open new avenues in SCA because of the triple role of the 

multilayer film: (i) high capacity for various biomolecules; (ii) natural mimics of signal 

molecule diffusion to a cell and (iii) cell patterning opportunities. Besides, light-triggered 

release from multilayer films offers a way to deliver biomolecules with high spatio-temporal 

resolution. Here we review recent works showing strong potential to use multilayers for 

SCA and address accordingly the following issues: biomolecule loading, cell patterning, 

and light-triggered release. 
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1. Introduction 

Traditionally, bioanalytical studies have been performed for a rather large group of cells (from 

thousands to millions) yielding an average value of a certain cellular response or of a concentration of 

the cell-expressed analytes. Single cell analysis (SCA) focuses on the level of a single cell. Over the 
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last decade SCA has attracted special attention because it provides an option to analyze the content and 

behavior of individual cells [1]. The SCA is promising from both applied and fundamental aspects. 

From an applied point of view a clinical analysis of a low number of cells is indispensable for rare 

cells such as circulating tumor cells, cell co-cultures, embryonic bodies, etc. At the same time, the 

fundamental interest arises from the heterogeneity of biological cells in their composition and also 

their functions [2,3]. Thus, thanks to SCA new effective diagnostics approaches and new insights in 

cell biology, genomics, proteomics and other biologically relevant fields have been already reported or 

are expected in the near future. A number of modern techniques have been developed for SCA 

including fluorescence methods, capillary electrophoresis, microfluidics, mass spectroscopy, etc. [4,5]. 

Mostly, these techniques are advantageous due to analysis of small volumes and due to increased 

sensitivity of analyte detection (e.g., by microfluidics). 

The LbL polymer deposition [6,7] is nowadays well recognized as a powerful technique to engineer 

surfaces and free-standing films due to the capability of easily tuning the physical and chemical film 

properties basically by a number of deposited layers or deposition conditions [8–11]. Bioapplications 

of the LbL films have attracted special attention because of a fine control over composition and 

mechanical properties of the films. Bioapplications of stimuli-responsive films and capsules have been 

extensively reviewed focusing on cellular response and film biofunctionalization [12–19]. The LbL 

films play the role of reservoirs providing a living organism with the required bioactive molecules such 

as growth factors, drugs, DNA, peptides or other soluble and insoluble signaling factors [15,20–24] The 

reservoir capacity may be extremely high due to the large number of free polymer groups and the 

mobility of polymer molecules in the film [15,25]. The LbL technique can be considered as one of the 

very promising approaches to engineer the artificial extracellular matrix (ECM) [26,27]. The latter is 

an ultimate goal for modeling a real cellular microenvironment that allows the direct comparison of  

in vitro and in vivo cellular behavior [28].  

Besides, LbL films are effective coatings to govern cellular adhesion. The soft nature of highly 

hydrated LbL films such as model films from hyaluronic acid (HA) and polylysin (PLL) [29,30] 

results typically in cellular repellent properties [31–33]. However, the improvement of the mechanical 

properties of soft LbL films leads to a better cellular adhesion. This may be achieved by different 

ways. Chemical crosslinking has been extensively studied [34,35]. Physical crosslinking of the upper 

film part allows maintaining the chemical composition of the main part of the film intact [36]. The 

whole film can be also made stiffer if one uses stiff nanoparticles to produce multilayers [37]. Another 

option is to introduce additional polymer “layers” making the film stiffer due to formation of less 

hydrated capping layers (usually from highly charged synthetic polymers) on the film top [33,38]. 

Patterning of the LbL films by a combination of microfluidics and stamping technique without any 

chemical or physical influence on the film properties has been recently demonstrated [39]. This might 

be a perfect option to establish cellular patterns in unmodified (native) LbL films, as has been  

shown recently. 

The LbL films may not only host biomolecules but also enable their release on demand. Some 

extensive reviews can be found on biological applications of stimuli-sensitive multilayers changing 

their structure as a function of the following stimuli: pH, ionic strength, electrical potential, biologically 

active compounds, temperature, deformation, etc. [9,10,12–14,40]. At the same time, remote stimuli 

such as light, ultrasound, magnetic field have not been widely investigated for biologically relevant 
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LbL films, for instance films made of biopolymers. Among the externally applied stimuli near  

infra-red (IR)-light (650–1000 nm) seems to be the most promising one because of its non-invasive 

character, easy modulation of light power and wavelength, and focusing light with micrometer 

precision. Besides, IR-light can penetrate through soft tissues to the depth of up to several cm due to 

low absorption by tissue constituents [41,42]. With respect to the film release properties, one has to 

emphasize the main advantage of the LbL films made of ECM components if compared to established 

approaches for delivery of signal molecules such as microfluidics [43]. The advantage is that the 

signaling molecules diffusing through such films to a cell (seeded on the film top) are delivered in a 

natural way-by diffusion through the artificial ECM network created by the film. Thus, more reliable 

results with respect to natural cellular behavior could be obtained. 

The use of LbL films for SCA may, according to our opinion, bring new opportunities into the field 

of SCA, because the films may not only provide enough signal molecules to a cell by a natural way but 

also allow many options for the positioning and the selective growth of cells. However, to the best of 

our knowledge the polyelectrolyte LbL films have until now not been widely used for SCA. This area 

is just developing, but relatively high number of recent works highlighted in this review point at the 

high potential of the LbL films for SCA. This motivates us to review recent achievements towards this 

new field. Here we focus on the main features of LbL films necessary to employ them for SCA: 

reservoir properties for bioactive molecules, cell patterning approaches, and externally stimulated 

(light-triggered) biomolecule release. Finally we show future perspectives of the employment of LbL 

assembled films for SCA. 

2. LbL Films as Carriers for Bioactive Substances 

2.1. Control of the Structure and Dynamics of LbL Films 

The ability to uptake and release drugs (e.g., proteins and nanoparticles) depends on the porosity 

and mesh size within the LbL films as well as physicochemical properties of the film such as 

hydrophilic-hydrophobic balance, charge balance, etc. It has also a strong impact on the protein 

folding of embedded proteins. If the mesh size does not fit to the enzyme size the enzyme can be 

converted into its inactive form. The LbL films can be considered as a network that is physically  

cross-linked by polyanion-polycation complexation sites. The mesh sizes are mainly determined by the 

number density of complexation sites. In order to control the uptake and release of drugs or other 

additives, these sites have to be tailored and triggered by external stimuli like pH, ionic strength or 

temperature. By this, the cross-link points can be opened and closed in a controlled way. The big 

advantage of LbL films in comparison to inorganic porous materials is that the pores (or meshes) are 

flexible with certain dynamics. The flexibility can be varied as well. LbL films with a high density of 

complexation sites are more rigid and show a lower ability to respond to outer stimuli than LbL films 

with a lower density. On the other hand the LbL films become unstable if the cross-linker density is 

too low. In order to use them for SCA the LbL films have to be balanced between the two counteracting 

properties of long-term stability and sensitivity to outer stimuli.  

To summarize: in order to get a versatile polymer matrix for SCA, the density and strength of the 

complexation sites have to be controlled. There are many parameters to tune the structure and 
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dynamics of LbL films. Some of them are presented in the following. A more detailed description is 

given in the following reviews [6,11,44–46].  

In general, the number density of complexation sites is high if both polyanion and polycation have a 

high charge density, determined by synthesis and/or pH of the environment. The complexation 

between polyanions and polycations is entropically driven due to a strong gain in entropy during 

counterion release. The charge density plays a crucial role in the film growth regime, which is defined 

by the strength of interpolymer interactions. Intrinsic compensation takes place if the polyelectrolyte 

charges are compensated by the charge of the oppositely charged polyelectrolyte. Poly(styrene sulphonate)/ 

poly(allylamine hydrochloride) (PSS/PAH) is an example for a rigid and immobile system with a 

linear growth [47]. Both PAH and PSS have a high charge density, the polymers do not diffuse in the 

film because of strong interaction. On the other hand, if at least one of the polymers has a low charge 

density the matrix is rather mobile. In this case, extrinsic charge compensation takes place, i.e., charge 

is mostly compensated by counterions. Due to lower number of contacts between polymer, the strength 

of interpolymer interaction is lower than in case of intrinsic compensation. HA/PLL is the most 

popular example for this type of systems with an exponential growth, i.e., the thickness increases 

exponentially with the number of deposition steps [48]. In case of exponential growth at least one of 

the polyelectrolytes is able to diffuse into the polyelectrolyte multilayers (PEM) which is demonstrated 

below in Confocal Laser Scanning Microscopy (CLSM) studies. Recently, the diffusion of one 

polyelectrolyte species was proved by identifying excess polyelectrolyte charges within the LbL film [49].  

The polyanion/polycation interactions compete with interactions of the polyelectrolytes and their 

counterions, especially if an excess is offered by addition of high salt concentration. This might 

destroy some complexes, and extrinsic charge compensation of the polyelectrolyte could take place. 

This is even more pronounced in the presence of counterions with a low charge density like Cs+ or Br−. 

Due to their small hydration shell they easily interact with the oppositely charged groups of 

polyelectrolytes [50]. The consequence is a lower density of complexation sites. This in turn leads to 

thicker films with a more mobile polymer matrix [47] related to an exponential growth with 

endothermic formation of complexes [51]. In case of pronounced extrinsic charge compensation the 

LbL films are denser with fewer voids in the dry state due to stronger screening of the polyelectrolyte 

charges [52]. This gives a higher flexibility of the polymer chains and an easier adjustment of the 

chains to the environment. In contrast, these LbL films swell more strongly in water than the ones built 

up in presence of small ions. Due to the lower density of complexation sites the mesh sizes are larger 

and can take up more water [52]. The same phenomenon was observed for increasing salt concentration 

during film formation.  

Further competing interactions are the solubility of the polyanion-polycation complexes vs. the 

interactions between the complexes with the surface. The different interactions offer a wide field to 

adjust the polyelectrolyte multilayer with respect to the needed purpose. LbL films built-up in presence 

of larger ions are less stable. In the case of a strong decrease in the number of complexation sites due 

to strong polyion-interactions and/or high ionic strength the formation of LbL films might even 

become impossible [53]. 

Besides loading LbL films with additives after preparation, they can also be directly incorporated 

during LbL film formation. Biomolecules like proteins, peptides and DNA replace one of the 

polyelectrolytes, and they can be combined with an oppositely charged polyelectrolyte. A similar 



Polymers 2014, 6 1506 

 

 

approach is possible with charged nanoparticles or objects like vesicles, liposomes, etc. as will be 

shown below. Especially for directed charge transfer a polarity gradient is necessary which can be 

formed by combination of different polyelectrolytes [54]. 

2.2. Loading of Biomolecules 

2.2.1. Loading with Small Molecules 

Firstly, we will focus on the loading with small molecules, either dyes as model drugs or 

pharmaceuticals. Pharmaceuticals can be directly loaded by the post-loading approach (spontaneous 

diffusion into the preformed film) [38,55,56]. Alternatively, a casting deposition method has been  

used [57]. LbL films assembled from HA/PLL have been widely used for drug loading. High 

concentration of drugs in the HA/PLL film (hundreds of micromoles) for paclitaxel and diclofenac can 

be reached and adjusted by the number of deposited layers. The prolonged drug release may take up to 

some days due to slow molecule diffusion out of the film. Antimicrobial LbL films were reported to be 

fabricated by deposition of antibiotic (gentamicin sulfate) by integration of the antibiotic as a component 

of the film using as constituents hydrolytically degradable poly(amino esters) and HA [58]. The film 

properties can be precisely tuned with regard to the antibiotic loading dosage and release profile at 

physiological conditions. The release mechanism is based on a combination of spontaneous diffusion 

out, hydrolytic degradation, and film destruction. For a review on dye-multilayer interactions see [59]. 

2.2.2. Loading with Nanocontainers 

Another option is to load the film with some carriers containing encapsulated molecules. Here we 

focus on loading of the films with liposomes due to their strong applications in medicine. LbL film 

fabrication with nanocarriers such as micelles and nanparticles can be found in the following review [60]. 

Liposomes are widely accepted as such carriers for biomedical applications [61–64] because of their 

well-organized compact shell with tunable properties (lipid bilayer membrane), biocompatibility, and 

size variation over a wide range (from tens of nanometers up to some micrometers for giant vesicles). 

Liposomes can host not only biomacromolecules with molecular weights typically from a few kDa to 

tens of kDa but also small molecules. These can be both lipophilic (encapsulation in the vesicle lumen) 

and hydrophobic (encapsulation into the lipid membrane) small molecules. Surfaces modified with 

immobilized lipid vesicles are promising candidates for drug delivery and other bioapplications [65–67]. 

However, liposome disruption and fusion at interfaces is often observed [68,69] making the 

immobilization in multilayers difficult. It has been demonstrated that highly hydrated polyelectrolyte 

multilayers made from HA and PLL can host polymer-coated (stabilized) vesicles [70–72] adsorbed by 

the LbL approach as shown in Figure 1A,B [73–77]. Detailed analysis of the liposome position within 

the film has shown that they immerse by about half of their size when they come in contact with the 

surface of the film. This behavior is similar to the behavior of latex particles or polymer microcapsules 

being in contact with the HA/PLL multilayers [78,79]. Full immersion of vesicles (about 100 nm in 

diameter) within the film can be achieved just by a few additional LbL coating steps with the same 

polymers. This may be explained by a difference in the LbL film growth on the top of the immersed 

vesicles. Polymer diffusion is sterically restricted by the vesicle, and in between the vesicles the polymers 
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can freely diffuse. The authors have demonstrated that successful embedment of polymer-stabilized 

vesicles can be achieved by a suitable choice of polymers and lipids used to prepare the films and to 

formulate the lipid vesicles [73]. The crucial point is to tune an interaction between PLL, liposome, 

and the outermost polyanion layer of the film. The measured interaction enthalpies between polymers 

and lipids can be used to predict the assembly of the liposome-containing films [73]. 

Figure 1. (A) Schematics of HA/PLL films with embedded liposomes assembled by the 

LbL method. PLL-in blue, HA-in red color; and (B) AFM image of the film with embedded 

vesicles. The film composition is (PLL/HA)12/PLL-Liposome/HA/PLL/HA. Adopted from [73]. 

 

The concept of liposome embedding into the polyelectrolyte multilayers has been used recently to 

show externally triggered (electrochemically) release of the liposome cargo [80]. This stimulus can be 

considered as alternative to IR-light as described in the last section of the main text of this review. 

However, despite high spatial precision (by choosing appropriate electrodes) the electrochemically 

induced release is rather invasive, because its mechanism is based on the local pH change resulting in 

destruction of vesicles. Significant changes of the pH value might limit the electrochemical approach 

for cell biology experiments. 

2.2.3. Loading with Proteins and Nucleic Acids  

In the following part we will focus on the loading of LbL films with proteins. Proteins and peptides 

belong to the most used pharmaceuticals. The understanding of the protein interaction with the film 

constituents will allow controlling the protein release from the film (to a cell). Different bioactive 

macromolecules e.g., proteins, enzymes, peptides, nucleic acids have been integrated into the LbL film 

with preserving its biological activity in many cases, [81–83] but sometimes losing its secondary 

structure if compared to the native structure in solution [84,85]. A large number of studies have been 

performed for investigation of the interaction of proteins and other biomolecules with the LbL films, 

see a review for example [13]. The film works as a reservoir with sometimes very high capacity for 

biomacromolecules. However, there is still no theory describing how the biomacromolecules are 

embedded within the films and how to predict the loading and their availability from the film to a 

living cell. This is mostly due to a lack of experimental tools for precise analysis of distribution and 

behavior (mobility for instance) of the embedded molecules. 
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2.2.4. Analysis of (Bio)molecule Diffusion and Distribution in the Film 

Because of the reason mentioned above, Uhlig and co-workers have developed a method enabling 

the examination of the multilayer film composition and molecular diffusion in the film with high 

precision in space and time [86]. CLSM has been adopted for the monitoring of molecular transport in 

thick (micrometer-sized) multilayer films. A HA/PLL film has been assembled on a cylindrical glass 

fiber with diameter of 100 µm (Figure 2A,B). The lateral resolution of CLSM is much higher than the 

vertical one and the film on the fiber has been scanned perpendicularly to the fiber surface. This gives 

a profile of the film interior (Figure 2B). Not only molecular distribution in the film but also molecular 

diffusion has been analyzed using fluorescence recovery after photobleaching (FRAP). To measure 

protein or polymer mobility in the film the authors have bleached a micrometer-sized line along the  

X-axis and followed the fluorescence recovery from the bleached region.  

Figure 2. (A) Schematics of a glass fiber (in blue) coated with (HA/PLL)24 film (in green); 

(B) CLSM cross-section (x–y scanning) in the middle of a coated fiber (the film in green). 

In grey frame is the area considered for FRAP experiments; (C) Magnified image of  

the grey area in B, contrast enhanced image. In red frame is the photobleached area.  

Scale bars 10 µm; and (D,E) the mean fluorescence intensity profiles along the whole film 

as a function of time for lysozyme and BSA, respectively. The insets show the square 

width at half minimum of the Gaussian w2 at different time intervals. Adopted from [86]. 

 

 

Using this approach the diffusion of different molecules (proteins as model biomolecules, 

dextranes, and also small dyes) has been tested (Figure 3A). Based on this study no consistent 

correlation of diffusion coefficients D with size and charge of tested proteins has been found [86]. 

Proteins are very mobile in the film, however, do not release fully from the film indicating rather low 
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binding enough to keep protein molecules bound to the film matrix. The authors assume that the 

protein association to and dissociation from the film is rather complex and is not reflected just by 

protein size and charge. One could expect that the interaction between these molecules will be 

governed by electrostatics, however, other interactions such as hydrophobic interactions may also play 

a role. Because of size-independent exclusion of almost uncharged dextranes of 10 and 500 kDa, the 

authors suggest that the film does not have a distinct permanent mesh size but rather the proteins move 

inside dynamic pores formed in the immobile matrix of HA and freely diffusing PLL (Figure 3B). This 

is in line with established models of diffusion of solutes in liquids and melts, where fluctuations should 

create a free volume into which the solute can jump during a diffusion step. The dynamic pores should 

have a size in the range of at least 10 nm as it is the size of the largest examined protein (catalase) 

loaded into the film. The approach developed by Uhlig and co-workers is a strong tool for the analysis 

of the LbL film structure and molecular dynamics, which is necessary in order to understand the 

behavior of biomolecules such as proteins in the LbL films in order to control their release and 

presentation to biological cells [86]. The mechanism of protein–film interaction is not yet clear,  

but protein retention in the polyelectrolyte complex assembled by the LbL treatment of protein 

aggregates [87–89] has been demonstrated. This is counterintuitive because inter-polyelectrolyte 

interaction is supposed to be always stronger than protein–polyelectrolyte interaction due to the higher 

charge density of linear polyelectrolytes if compared to proteins. However, if one assumes that the 

multilayers, being non-equilibrium structures should have defects, the protein interactions with free 

charges in the defects might be a reason.  

Figure 3. (A) Table summarizing the main physical-chemical characteristics of (bio)molecules 

used for analysis of their interaction with the HA/PLL film. Diffusion coefficients D 

calculated by FRAP are presented as well; and (B) Schematics of the HA/PLL film made 

of a skeleton of immobile HA (in red) and freely diffusing PLL molecules (in green). The 

loaded (post-loading) proteins move inside dynamic pores in the skeleton formed due to 

PLL movement from one position to another. Adopted from [86].  

Molecule Mw [Da] pI (charge sign) R0 [nm] D [µm2·s-1] 

Papain 23,400 8.8 (+) 4.2 2.2 ± 0.2 

Lysozyme 14,700 11 (+) 1.9 4.4 ± 0.3 

Catalase 250,000 5.4 (−) 5.4 3.9 ± 0.3 

Lactalbumin 14,200 4.2 (−) 1.7 0.04 ± 0.01 

BSA 66,000 5 (−) 3.6 - 

Fluorescein 390 (−)  2.1 ± 0.4 

(A) 
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Figure 3. Cont. 

 
(B) 

2.2.5. Tailored Polymer Matrices 

Composite films containing bioactive molecules (e.g., DNA) and metal nanoparticles may be used 

for the highly sensitive detection of cell-expressed molecules based on Raman spectroscopy. This is a 

very strong perspective for the analysis of tissue development and cell biology studies as well as  

SCA [90–93]. Surface-enhanced Raman spectroscopy (SERS) is developed due to very high signal 

enhancement by more than 9 orders of magnitude. For SERS the nanoparticles enhance the Raman 

signal, as has been shown using spherical inorganic carbonate matrices coated with polyelectrolyte 

multilayers [94]. To understand the loading mechanism and structure of the composite LbL films,  

two kinds of LbL films (or PSS/PAH and HA/PLL) have been tested for interaction with negatively 

charged DNA and gold nanoparticles [25]. A scheme of the interaction is presented in Figure 4. These 

films exhibit low and high mobility of the used polycations-PAH and PLL, respectively.  

The interaction of gold nanoparticles or DNA with the PSS/PAH film leads to their adsorption at 

the surface of the film driven by complex formation with the chains of immobile PAH (outermost 

layer) (Figure 4(B→A, B→D)). However, for HA/PLL films faster diffusing PLL molecules are 

transported from the film internal volume to its surface to make more contacts with the adsorbing 

DNA or the nanoparticles (Figure 4(B→C, B→F)). Diffusion of DNA or gold nanoparticles [25,36] 

into the whole film is, however, restricted due to the strong interaction with PLL. There is an access of 

PLL amino groups in the HA/PLL films, and as found in literature there are two times more free amino 

groups compared to the carboxylic groups of HA [95]. This could cause a high mobility of PLL and 

the described above doping effect. The authors suppose that a high content of free amino groups and a 

high mobility of PLL allows embedding of DNA. For example Srivastava [96] has reported 

accumulation of quantum dots with sizes of a few nanometers in the exponentially growing LbL film. 

The authors in [25] also showed that the PLL doping is responsible for accumulation of high amount 

of negatively charged DNA or nanoparticles, but not for the salting out of DNA molecules due to high 

salt content in the film (high number of counterions). For this the film with pre-adsorbed nanoparticles 

has been brought into contact with PLL molecules or salt and later the new portion of nanoparticles 

has been added. In case of additional PLL doping nanoparticles started to adsorb again. Both 

nanoparticles and DNA form micrometer-sized agglomerates at the film surface that is explained by 

the authors by a charge compensation in agglomerates till the charges on the agglomerate edges do not 
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“fill” each other (no electrostatic repulsion). The agglomerates contain PLL molecules as has been 

proven using fluorescently labeled PLL [25]. 

Figure 4. A scheme representing the interaction of the LbL film (B) made of HA  

(orange network) and PLL (in green) with metal nanoparticles (grey spheres, B→A and  

B→C) and DNA (in blue, B→D and B→F). DNA or the nanoparticles can be accumulated 

in high amount because of interaction with PLL molecules “transported” from the film 

interior to the surface. DNA diffusion into the HA/PLL film is induced by heating (70 °C, 

F→E). (Adapted with permission from [25]. Copyright 2009 American Chemical Society). 

 

The very high loading capacity for DNA and gold nanoparticles for HA/PLL films (about 1%–2% 

and 100% of the mass of PLL in the film, respectively) can be attributed just to the PLL doping to the 

film surface. It has also been shown that the last layer of the film plays a role for nanoparticle–film 

interaction, supporting the doping mechanism described above. In case of like charges of particles and 

the last deposited layer (HA) the amount of adsorbed particles was less, and less aggregation has been 

observed [97]. At the same time the amount of adsorbed particles and DNA was about an order of 

magnitude lower for the film with immobile polymers-PSS/PAH film-if compared to the HA/PLL  

film [25]. 

The knowledge of the interaction between gold nanoparticles within the film is important to control 

the optical properties of the film. The peak intensity of UV/vis spectra (absorption maximum at 520 nm) of 

PSS/PAH films with embedded nanoparticles is much lower than the one for HA/PLL films doped 

with Au-NPs [25]. The HA/PLL film resorbs much more nanoparticles and the absorption spectrum 

shows a long shoulder towards the infra-red (IR) region [25]. This indicates that the inter-particle 

interaction results in an aggregation of Au-NPs and plasmon coupling. This opens perspectives for 

biologically relevant applications, because IR-light is more penetrative to tissues and less harmful  

for cells [41]. 

Thus, the HA/PLL film is a matrix providing a high amount of material due to its reservoir 

properties driven by PLL doping. The diffusion of the embedded molecules is of high importance, 



Polymers 2014, 6 1512 

 

 

because the release or/and the molecular presentation from the film as driven by light exposure would 

be a mechanism of light-triggered treatment. It has been demonstrated that DNA diffusion in the film 

can be stimulated by temperature [25]. An analysis of CLSM stack profiles for distribution of PLL and 

DNA in the film as a function of temperature (heating up to 70 °C) has been done. After heating the 

profiles of DNA and PLL almost coincide. This without doubts indicates temperature-mediated 

diffusion. All DNA molecules stay in the film as shown by consideration of the integral fluorescence 

from the DNA stack profiles. It is of note that the HA/PLL film is stable against heating to rather high 

temperatures (up to 50 °C) [73].  

Thus, the improvement of the molecular mobility in the HA/PLL film triggered by temperature may 

be used to release molecules or present them to the film surface (for instance to biological cells). Light 

has been adopted for external stimulation of complex HA/PLL films containing DNA and nanoparticles 

aiming at light-triggered release. This issue is addressed in the last section of this review. 

3. Cell Patterning by LbL Films 

Formation of a tissue is regulated by a variety of biological factors such as cell–ECM interactions, 

intercellular communication, and presentation of soluble factors. More details on biological aspects of  

cell–matrix interaction including interaction with cell adhesion membrane proteins can be found in the 

following publications [26–28]. Recapitulation of such interactions is a key in tissue engineering 

applications. For this purpose, manipulation the cell microenvironment has been achieved by surface 

patterning with a certain cell-adhesive or cell-repellent molecules or topological features which lead to 

formation of cellular patters [98]. The localization of cells or single cells on a surface is of crucial 

importance to achieve SCA for adherent cells, and the polyelectrolyte multilayers have successfully 

been utilized for control over cellular organization (location) on a solid surface. The main approach of 

the technique-sequential polymer deposition resulting in surface overcharging-has been used to switch 

the surface properties from cell repellent to cell adhesive. For this purpose, two polymers with 

opposite characteristics with respect to cellular adhesion are deposited. The model films made of ionic 

biopolymers such as HA/PLL of HA/collagen films have been shown to be perfect candidates for this 

application [99,100]. Adsorption of a thin layer of HA leads to the cell repulsive surface. Subsequent 

adsorption of PLL results in a switch of the surface properties and cellular adhesion. Thus, by using 

well-established soft lithography approaches a cell co-culture has been formed on a 2D surface (Figure 5).  

The approach described above is shown for coating of a thin surface layer with a monolayer of 

another polymer. The multilayer film reservoir properties are important for loading of substantial 

amounts of bioactive molecules. The reservoir capacity depends on the film thickness, and for thin 

films (usually tens of nanometers or less) the loading capacity is rather low. This is why patterned thin 

multilayers are not attractive for delivery of biomolecules from the film but can be effectively used to 

pattern biological cells. At the same time the LbL films made from biopolymers are growing in many 

cases exponentially and can reach micrometer dimensions rather fast. However, they are hydrated 

(soft) and as a result cell-repellent [22,101]. More details on a relation of physical-chemical properties 

of the LbL films to cellular response one can find in a comprehensive review [22]. To make them  

cell-adhesive the soft films have been either capped with stiffer multilayers [38] or cross-linked 

chemically [32,35,55]. Alternatively, film composition (e.g., polymer length) may be used to tune  
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cell–film interaction [102]. Recently, surface capping of the films with metal nanoparticles has been 

shown as a way to make the soft films cell-friendly but to keep the main part of the film intact  

to keep the reservoir properties of the film [36]. The latter is not the case for covalent chemical 

crosslinking [32,35,55].  

An alternative and more advantageous approach for making the soft LbL films cell-friendly is to 

prepare thick patterned films. In this case, the film properties are not affected neither chemically nor 

physically [12,101,103]. Such a novel method, based on the assembly of soft films using a microfluidic 

platform for selective cell growth, has been recently introduced [39]. As can be seen from Figure 6,  

a microfluidic channel from polydimethylsiloxane (PDMS) with microstructured geometry has been 

used. The polymers PLL and HA were deposited into the microchannels to form multilayers in 

between the defined features of the PDMS stamp (Figure 6A). Peeling off the PDMS stamp from the 

glass under complete immersion in buffer results in patterning of the formed soft film. Afterwards the 

cells have been seeded and grown exclusively in the patterned areas (Figure 6A). 

Figure 5. (I) Schematics of design of the co-culture system by a combination of capillary 

force lithography and the LbL technique. A PDMS mold has been placed onto a  

spin-coated thin HA layer followed by receding of the HA layer under the mold void 

space. Fibronectin has been deposited onto the patterned HA layer followed by selective 

adhesion of cells to the pattern regions. Subsequently, the HA layer has been coated with 

collagen that allows for selective adhesion of a secondary cell type; and (II) (A)–Patterned 

cell culture and co-culture on HA-collagen surface. Fibronectin coated patterns have been 

occupied by primary cells-murine embryonic stem cells (A) and AML12 murine hepatocytes 

(B) after 8 h incubation time. Fluorescently stained co-culture of primary cells and  

NIH-3T3 fibroblasts adheres to the HA-collagen-coated regions between the patterned 

circles (C and D). (Adapted with permission from [99]. Copyright 2006 Elsevier).  

 

(I) 
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Figure 5. Cont. 

 
(II) 

Figure 6. (A) Schematics of the patterning of (HA/PLL)24 soft film in a microfluidic 

channel. (a) The top-view of channel region with spherical structures; (b) Cross-section of 

the region indicated by dotted lines (side view); the glass is at the bottom and PDMS 

pillars on the glass; (c) Multilayer deposition in the empty regions in the channel.  

(d) Deposited patterned LbL film after PDMS stamp removal; (e) Selective cell growth on 

uncoated (patterned) film areas; and (B) Phase-contrast image of the channel before LbL 

deposition; (C) Phase-contrast image of the region after film assembly followed by PDMS 

stamp removal and subsequent seeding of L929 fibroblasts (2 h incubation); (D) Phase-contrast 

image of zoomed region of the channel after 6 h pre-incubation followed by cell rinsing;  

(E) CLSM image showing the pattered film before PDMS removal; and (F,G) Fluorescence 

images of (C) and (D), respectively. The scale bar is 100 µm in all cases. Adopted from [39]. 
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The HA/PLL films deposited at the same conditions by the conventional technique (dipping) and 

the films formed by microfluidics are similar in terms of mechanical properties meaning that material 

properties of the assembled film are preserved during deposition in microchannels and also after 

peeling off the PDMS stamp. Microfluidics, however, significantly improves molecular transport to 

the film interface during deposition, thus stimulating polymer diffusion into the film resulting in 

significantly faster film growth [104]. Patterned regions are free of polymer as can be concluded by 

comparing the fluorescent signal from the patterned regions and from the region outside the channel 

where the film has not been assembled (Figure 6F). By comparison of the phase contrast and 

fluorescence images one can conclude that the sizes of the various (tuned by manufacture conditions) 

stamp features are reproduced relative to each other (Figure 6D,G). Cell (L929 fibroblasts) seeding 

onto the multilayer film after PDMS stamp removal results in highly selective cellular adhesion.  

The cells that sediment onto the non-patterned regions do not spread well and can be easily washed 

away by rinsing (Figure 6C,D). The adherent cells in contrast remain within their confinement for long 

time indicating a high stability of the patterned films.  

An alternative method to pattern LbL films is photolithography when the film is crosslinked by  

UV light irradiation and the non-crosslinked areas are washed away at conditions where the film is 

unstable [105]. Figure 7 shows the approach schematics (Figure 7A) and cell patterns (Figure 7B).  

For the photolithography approach, a change of the chemical composition of the film during the 

crosslinking process and exposure to conditions of the film decomposition are not favorable for 

biological applications, especially if a bioactive molecule is loaded before the film patterning.  

Figure 7. (A) Schematics of fabrication of an LbL film patterned by photolithography: the 

film is deposited on a solid substrate followed by UV-light irradiation through the mask 

(film crosslinking) and washing away of the non-irradiated film areas; and (B) phase contrast 

images of L929 fibroblasts cultured on the patterned (poly(acrylic acid)/polyacrylamide)x 

or (PAA/PAM)x film (x = 5 and 20 for upper and lower rows, respectively). PAA-Az is 

PAA, conjugated with 4-azi-doaniline. Incubation time (days, D) is shown in the left upper 

corner of the images. Scale bar is 50 µm. (Adapted with permission from [105]. Copyright 

2009 Elsevier).  
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The patterned films such as HA/PLL films described above have micrometer thickness, similar to 

the dimensions of adherent cells; the patterned films may thus be perceived as 3D-structures by the 

cells. Therefore, this novel approach for fabricating micropatterned LbL films may serve in future as  

3D coating for advanced cell culturing applications. The patterned micrometer-sized films may work 

as reservoirs for biomolecules of interest as has been described earlier. From a fundamental point of 

view the prepared patterned films with highly selective cell adhesion may be used as artificial niches 

for ECM study and stem cell biology as well as for single-cell manipulations. A combination of 

stimuli-sensitive composite films (such as DNA and nanoparticles containing films as described in the 

previous section) with film patterning may pave a way for applications focusing on the level of a 

single cell. In the next section we will focus on external (IR-light) stimulation of multilayers for 

controlled release as an attractive feature for SCA allowing improving the precision for delivery of the 

released molecules in space and time. 

4. Light-Triggered Delivery 

In this chapter we focus only on light-responsive multilayer films as an “on demand” delivery 

system. Despite a variety of materials responsive to external stimuli have been developed allowing 

various remote stimulation approaches, [106] we consider just one stimulus, light, that has significant 

advantage in focusing, control over intensity as well as non-invasive character from the biological 

point of view (IR-light). The stability of the liposomes trapped in the LbL film (described above) 

should be considered if this composite film is going to be used for localized externally triggered release. 

This localized release can be pursued if liposomes are immobilized in the HA/PLL film [74,107]. 

Vesicle cargos (model dye carboxyfluorescein (CF) or silver nitrate as antibacterial agent) are kept in 

the vesicles if the lipid membrane is in a solid state. This is the case below the phase transition 

temperature which is 41 °C for vesicles made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine,  

1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol), and cholesterol [74,107]. However, the molecules 

are extensively released if the temperature is above 41 °C. The release is induced by an increase in 

permeability of the lipid membrane but not by a response of the film to a temperature increase which 

may lead to a vesicle rupture [74]. At the same time the permeability of the liposome membrane  

can be achieved by local heating above the phase transition temperature induced by light irradiation  

(Figure 8B) [108]. The heating is due to conversion into heat of light energy absorbed by single or 

aggregated gold nanoparticles, which work as “hot spots” (Figure 8A). Thus, light-stimulated release 

from liposome-containing LbL films might be considered for light-triggered delivery providing a 

control over film-mediated delivery of bioactive compounds on demand.  

Let us now consider light-triggered release from the film loaded directly with biomolecules.  

As has been shown in the previous section, film heating can affect the film composition inducing 

enhancement of DNA transport into the film. Adsorption of macromolecules (DNA) at the film surface 

depends on the interaction with the doped PLL and an interruption of this interaction by local heating 

resulting in higher DNA mobility and even in release of DNA molecules from the film as depicted in 

Figure 9B,C [25,109]. DNA is released over a distance (tens of micrometers) far away from the 

heating place showing that most probably the DNA–PLL interaction can be affected over a distance, 

where temperature increase is not high or the temperature is ambient temperature [25]. 
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Figure 8. (A) Scheme of a complex of liposomes with gold nanoparticles (either single or 

nanoparticle aggregates). Liposome cargo is released if the temperature is above the lipid 

phase transition temperature; and (B) CLSM fluorescence images before and after illumination 

of a complex of CF-filed liposome with gold nanoparticles. The scale bar is 10 µm. (Adapted 

with permission from [108]. Copyright 2009 John Wiley and Sons).  

 

Figure 9. Schematics of the proposed mechanism of light-triggered DNA release from 

HA/PLL multilayers. (A,B) loading of the HA/PLL film (HA in orange, PLL in green) 

with gold nanoparticles and DNA (in blue); (B,C) thermal decomposition of the film 

around nanoparticle aggregates upon light irradiation resulting in distortion (weakening) of 

the interaction between DNA and the doped PLL and, as a result, in DNA release from the 

film. CLSM images of nanoparticle coated (poly(diallyldimethylammonium chloride)/PSS)4 

microcapsules loaded into the (PLL/HA)24/PLL film before (D) and after (E) light irradiation 

during 1s. Light power is 20 mW, wavelength is 830 nm. The scale bar is 1 μm; and  

(F) Scheme of light-triggered biomolecule release from microcapsules to a biological cell, 

both located on the film. Adopted from [25].  

 

The authors suggest a mechanism of long-distance activation by IR-light. A decrease in PLL 

fluorescence from the film is evidence of the local heating of the HA/PLL films when absorbed light 

energy is converted to heat in the vicinity of the nanoparticles. PLL molecules most probably get 

pushed out of the film. The film outside the affected area is not decomposed after light irradiation at a 

power above 20 mW (wavelength 830 nm) that could be due to temperature-mediated crosslinking 

between PLL and HA, as has been shown in literature at a temperature above 100 °C [110,111]. 
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However, DNA has been released on a distance of tens of micrometers from the heated aggregates. 

The temperature profile for the light-affected nanoparticle aggregates is rather sharp and the temperature 

close to ambient temperature is already reached at a distance of a few ten nanometers from the 

aggregates [112]. This allows one to guess that DNA molecules are released from the film surface 

because the interaction of DNA with the film (with oppositely charged PLL in the film) becomes 

weaker. In addition, the PLL concentration in the film is reduced due to later PLL diffusion from the 

whole film towards the light affecting area. Thus, long-distance effects might be possible. 

A multilayer film with embedded biomolecule-loaded carriers (capsules) presents an alternative 

delivery carrier where the loaded molecule release is triggered by a change in the permeability of the 

carrier (capsule) shell [25,113,114]. Reservoir properties of the HA/PLL film allow the embedding of 

small and rather large objects, also large carriers such as microcapsules [25,74,78,79,97]. Light-sensitive 

multilayer microcapsules modified with gold nanoparticles have been embedded into the HA/PLL film 

by spontaneous loading [25]. These capsules do not adhere to the PSS/PAH film (can easily be  

washed out) but once adsorbed on the HA/PLL film the capsules are immobilized which is explained 

by the PLL doping mechanism as described above. In addition to the doping effect of PLL, one has 

also to consider polyelectrolyte exchange between the capsule and the film because both are made of 

polyelectrolyte multilayers [115]. Afterwards the capsules were irradiated by the laser beam resulting 

in a local heating of the capsule shell followed by the shell decomposition and subsequent release of 

the encapsulated molecules (fluorescently labeled dextran). Figure 9D shows CLSM images of  

the capsules on the film before and after the light-mediated release. It is of note that the irradiated 

capsule keeps spherical shape after the light influence which demonstrates only local shell 

decomposition (Figure 9D). One drawback of encapsulation into multilayer capsules is that a 

significant amount of encapsulated molecules is absorbed by the capsule shell due to the high capacity 

of the multilayer shell [116]. Another limitation is that the encapsulation is in many cases achieved by 

temperature-mediated (above 50 °C) capsule shrinkage that leads to capture of the biomolecules inside 

the capsule. Alternatively, encapsulation has been achieved by using biologically non-relevant 

compounds, for instance HF or organic solvents [117–119]. These compounds are necessary to eliminate 

a core during an encapsulation process. The improvement of both encapsulation efficiency and 

retention of bioactivity might be achieved by using porous CaCO3 particles allowing loading of large 

amount of proteins by means of physical or chemical crosslinking at mild conditions [120–128].  

5. Conclusions and Perspectives 

An analysis of literature suggests that the LbL-assembled polyelectrolyte multilayers are an 

attractive platform for SCA. The main criteria for their utilization are established. These include cell 

patterning as well as loading and controlled release of bioactive molecules into/from the film. Cell 

patterning by the LbL films has been demonstrated using various approaches. Loading of biomolecules 

into the LbL films has also been demonstrated. Most probably the interaction is of electrostatic origin 

and based on the formation of ion pairs between free groups of the polyelectrolyte backbone and 

protein or other charged biomolecules. Presentation of protein molecules (e.g., growth factors) to a cell 

by a diffusion through multilayers better mimics a natural way of transport of soluble signal molecules 

in the ECM. However, there is still no theory describing protein behavior in polyelectrolyte 
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multilayers. This, to our opinion, should be considered in the near future, but it will be difficult to 

generalize, because each protein has an individual structure and function. Therefore, the best strategy 

appears to be to keep the interactions sufficiently weak not to affect a protein. 

The controlled release of biomolecules from the films at conditions applicable for cellular studies 

(physiological conditions, cell culture medium) has not been well studied. This topic should be considered 

more in future. However, as has been shown, a combination of light-sensitive multilayer capsules with 

the multilayer films is a good candidate for controlled release [129]. At the same time the challenges 

for such composite films concern not only the films but also the carriers for biomolecules-the capsules. 

The low encapsulation of proteins in the capsules due to the large capacity of the capsule polymer shell 

should be overcome [116]. Another aspect in the encapsulation process is the biological activity of the 

encapsulated molecules. The methods used up to now include the utilization of organic solvents, HF, 

or high temperature for the encapsulation into the multilayer capsules. In future more mild encapsulation 

conditions should be employed, e.g., encapsulation based on CaCO3 templating.  
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