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How quantizable matter gravitates: A practitioner’s guide
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We present the practical step-by-step procedure for constructing canonical gravitational dynamics and
kinematics directly from any previously specified quantizable classical matter dynamics, and then illustrate
the application of this recipe by way of two completely worked case studies. Following the same procedure,
any phenomenological proposal for fundamental matter dynamics must be supplemented with a suitable
gravity theory providing the coefficients and kinematical interpretation of the matter theory, before any of

the two theories can be meaningfully compared to experimental data.
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I. INTRODUCTION

There is no reason to assume, and in general it is plainly
false, that general relativity still provides a consistent
kinematical and dynamical theory of spacetime once the
matter fields inhabiting the spacetime are no longer standard
model fields. The simple reason for this is that the
gravitational dynamics must yield spacetime geometries
to which the matter theories at hand can couple without
violating elementary physical principles. Indeed, even com-
paratively innocent-looking deviations from the dynamics of
standard model matter require an entirely new kinematical
and dynamical theory of the underlying spacetime.

For instance, assume a phenomenologist discovers that
some observed spinorial matter field ¥ must be described
by a classical field equation of motion of the form, say

(iy* + WD, ¥ = 0,

which employs a geometric background that features a
vector field W in addition to a metric tensor field g (suitably
restricted such that the spacetime Dirac matrices y and the
spin covariant derivative D appearing in the field equation
can be constructed). At first sight, such a modification of
the Dirac equation indeed seems innocent enough for one
to be tempted to stipulate that the dynamics governing the
background be still provided by Einstein’s gravitational
field equations for g and maybe some Abelian gauge field
dynamics for the vector field W. However, we will see that
this particular choice of gravitational dynamics would have
solutions that render the above matter theory either non-
predictive (thus not even classically acceptable), nonquan-
tizable, or both. With predictivity being an unconditional
feature of any classical matter theory and quantizability
ensuring relevance beyond the classical domain, this result
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is clearly unacceptable. One may thus either reject the
above matter field dynamics as unphysical, or, if our
phenomenologist insists that this equation describes
observable fundamental matter, we must instead provide
another gravity theory whose solutions render the matter
theory predictive and quantizable. Are there such gravita-
tional dynamics that can underpin the viciously modified
Dirac equation above?

This question has an intriguing—and even constructive—
answer. Not only for the above example, but indeed for any
specific linear matter dynamics, one can derive the complete
kinematical and dynamical contents of the underpinning
gravity theory directly from the matter field equations it is
supposed to carry; for the technical derivation see [1,2]. The
only construction principle is that the resulting gravitational
kinematics and dynamics must render the assumed matter
field equations both predictive and quantizable; everything
else follows from mathematical theorems.

Showing that these two basic assumptions already
completely fix the kinematics—such as the distinction of
initial data surfaces, the construction of observer frames
and thus the interpretation of matter field components,
massive and massless dispersion relations, the duality maps
associating momenta and velocities for massive and mass-
less particles, and so forth—requires the employment of an
intricate interplay of real algebraic geometry, convex
analysis and the theory of partial differential equations
[3]. The central result is that in order to enable predictivity,
the principal polynomial of the matter field equations must
be hyperbolic, and in order to enable quantizability, the
associated dual polynomial must be hyperbolic as well.
This bihyperbolicity imposes so severe a constraint on the
coefficients featuring in the matter field equations that the
above kinematical constructions are uniquely fixed.

With the kinematical structure of the theory determined,
the coefficients featuring in the matter field equations must
then follow dynamics whose initial-value formulation
is commensurate with the kinematically determined
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projection of the spacetime geometry to initial data surfa-
ces. In other words, the dynamics must be such that it
evolves geometric initial data between hypersurfaces that
also serve as initial data surfaces for the given matter field
equations. Casting this idea into tractable mathematical
form, one proceeds principally along the same lines that
were laid out four decades ago by geometrodynamicists
[4,5], but with the technical scope vastly extended to any
bihyperbolic spacetime geometry. The final result of this
effort, derived in [2] and explained in great conceptual and
technical detail in [6], are the master equations reproduced
in Sec. II. The master equations are a set of linear
homogeneous partial differential equations, whose coeffi-
cients are constructed directly from the coefficients featur-
ing in the specified matter field equations and whose
solution provides (the collection of coefficients of a series
expansion of) the gravitational Lagrangian.

The present paper is concerned with cutting away the
heavy technical baggage that comes with the derivation of
the above results, and manages to condense their practical
implications into an easily executable recipe, by which one
constructs the master equations from any given linear
matter field dynamics in eight easy steps. The relevance
of the such constructed master equations is that a solution
to the master equations is a gravity theory that can carry
the specified matter dynamics.

Thus the master equations must be practically solved, in
a ninth step, in order to obtain a concrete gravitational
Lagrangian. In cases where such a solution of the master
equations is difficult to obtain, one may inject at this stage,
as a tenth step, additional physical assumptions such as
energy conditions on the matter or (compact) symmetry
assumptions on the spacetime geometry in order to sim-
plify the master equations. Such additional assumptions,
however, are not fundamentally needed and the master
equations are already uniquely determined without them.
Any additional assumptions beyond predictivity and quan-
tizability only serve as a possibly convenient means to the
end of extracting information from the full master equa-
tions, for specific physical situations where the master
equations simplify to a more tractable form.

Two completely worked case studies—namely the com-
paratively simple derivativation of the Einstein-Hilbert
Lagrangian as the unique solution to the master equations
determined by Maxwell electrodynamics in Sec. III, on the
one hand, and the more involved derivation of the gravi-
tational dynamics that underlie some prototypical non-
standard model matter dynamics in Sec. IV on the other
hand—present illustrations of the general ten-step pro-
cedure described in Sec. II. These case studies indeed
illustrate both the technicalities of the recipe and its
significance in three respects. First, they are an instance
of the rule that an example sometimes says more than a
thousand words; having worked through the two case
studies, the reader will have no difficulty in applying the
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recipe to the matter model of his interest. Second, the first
case study reveals that the complete kinematics and
dynamics of general relativity are simply a consequence
of having predictive and quantizable Maxwell (or other
standard model) matter dynamics, while the second case
study presents an explicit example of nonstandard model
matter dynamics that are rendered predictive and quantiz-
able if the underlying gravity is the one derived according
to the recipe summarized in this paper.

The relevance of the simple procedure described and
illustrated in this paper—namely for deriving gravitational
Lagrangians directly from the dynamics of matter populat-
ing the spacetime—of course lies beyond the two specific
examples provided here. For it allows one to derive a
suitable gravity theory for any matter theory that one may
be prompted to consider for phenomenological or theo-
retical reasons. But this possibility immediately implies an
imperative: gravitational kinematics and dynamics must
never be postulated, since unless they accidentally coincide
with the results of the procedure described in this paper, any
such postulates would generically be in contradiction to the
quantizability of the matter equations the resulting space-
time geometries must carry. That, conversely, the gravity
can instead be fully and quite easily constructed from this
consistency postulate is, of course, very good news.

II. PRACTICAL GUIDE TO THE DERIVATION
OF GRAVITY ACTIONS

The following ten-step procedure provides the simple
practical recipe for the construction of canonical gravita-
tional dynamics from any previously specified quantizable
classical matter dynamics. These rules follow from the
results obtained in [1] and [2] and can be laid down without
any recourse to the heavy technical machinery that was
needed for their derivation. To see the abstract rules at
work, the reader finds an illustration for each of the steps
described here in the two completely worked case studies
provided in Secs. III and IV.

Step 1: Specify test matter dynamics

Provide classical dynamics for a “matter” field ® (or a
collection of such) on a smooth manifold M, by specifying
partial differential equations of motion whose coefficients
are completely determined by some “geometry” (described
by atensor field G of a priori arbitrary type, or a collection
of such), wherein the matter field ® takes values in some
representation vector space V of the general linear group
GL(dim M, R) (or that of a group defined with recourse to
G; see the second case study). Irrespective of any chosen
type of matter field or geometry, general coordinate
covariance of the matter field equations can be ensured
by deriving them from a scalar action functional
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by way of variation with respect to the matter field, which
will result in field equations valued in the dual space V*.

Test matter, in particular, is defined by any equation of
motion (i) which is linear in the matter field, i.e., takes the
form

N
D QU 0y, 0,9 =0,
n=0

where A,B=1,...,dimV and ®* are the components of
the matter field with respect to some basis of the repre-
sentation space V—where the linearity ensures that every
solution can be scaled to arbitrarily small amplitudes in
order to reduce backreaction below any desired bound—
and (ii) whose coefficients Q4% ¥ of the highest order
derivative term are a function of the geometric tensor field
G (but not of any of its derivatives)—which ensures that the
causal structure of the matter field dynamics is encoded in
the spacetime geometry at each point; see the next step.

Step 2: Calculate the principal tensor field

If the matter field equations feature no gauge
ambiguity—meaning that all components of the tensor
field @ are uniquely determined by a solution of the field
equations—then the principal tensor associated with these
field equations is the totally symmetric contravariant
tensor field which is constructed from the highest order
coefficients Q“~“v of the Nth order field equations by
virtue of letting

P(k) s= det| Q35" ky, -+ ks,
(cancel repeated factors)

for every covector field k, and where the instruction to
cancel repeated factors refers to not further reducible
factors whose product Pyy(k)--- P (k) = P(k). If the
field equations do contain a gauge ambiguity, first fix the
latter by either imposing an explicit gauge condition or
transferring to gauge-independent variables. The rank of
the totally symmetric tensor P that results from polari-
zation from the above definition will appear explicitly in
a number of places and be denoted deg P throughout.
The above construction of the principal tensor is unique
up to choice of a scalar density @ of the appropriate
weight in order to render P a tensor and an overall sign
=+ to be chosen later. The choice of density amounts to a
choice of volume on the spacetime and would have been
used already in the formulation of the matter action if the
field equations have been derived from such.

Step 3: Calculate the dual tensor field

Let P(l), ...,P(f) be the mutually distinct irreducible
factors (i.e., tensors that themselves cannot be written as the
tensor product of two tensors of nonvanishing rank) of
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the principal tensor field P and consider for each such Py;
the map DP(; that maps every covector field k with
P(;(k) = 0 to the vector field with components

(DP (k) = (deg PPy k. Ky
where deg P;) denotes the rank of the irreducible factor
field P ;). The field P?i) dual to the factor field Py, is then
the totally symmetric contravariant tensor field of lowest
rank deg PZ) (which may differ from deg P;)) defined by
the condition to vanish precisely on the images of the P ;-
null covectors,

it
igh

(DP;(k)) =0 precisely for all k with P;(k) = 0.
The dual tensor field is then defined as the product of the
duals of all the irreducible factors,

for all vector fields X, and thus satisfies the duality
condition P#(DP(k)) =0 for all k that are P null. The
dual tensor always exists (if the tensor field P is hyperbolic,
see the next step) and can be constructively obtained by
Buchberger’s algorithm [7], which however quickly
becomes expensive with increasing rank degP of the
principal tensor field.

Step 4: Restrict to bihyperbolic geometries

A necessary condition for the matter equations of
motion to be predictive is that the principal tensor field
P is hyperbolic [8]. This amounts to the simple algebraic
condition that there exists a covector field & such that
(i) P(h) is an everywhere nonvanishing function and (ii) for
every covector field ¢ the equation

P(h+4q) =0

admits only everywhere real-valued functions 4 as solu-
tions. Any covector field 4 with this property is called a
hyperbolic covector field.

A necessary condition that the matter equations be
canonically quantizable is that the dual tensor field P¥ is
hyperbolic [3], where hyperbolicity is defined exactly as
above, but now with vector fields H and Q taking the role
previously played by the covectors fields 2 and g. Any
vector field with that property is called a hyperbolic vector
field. The overall sign of P can then always be chosen such
that every hyperbolic covector field / is P positive, i.e.,
P(h) > 0, and we choose to impose this sign convention
for definiteness.

Since both the principal and the dual tensor field are
defined in terms of the tensor field G providing the
spacetime geometry, the hyperbolicity of the former two
tensor fields imposes corresponding algebraic conditions
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on the latter, which immediately exclude certain algebraic
classes of geometries.

Step 5: Determine the geometric degrees of freedom

While suitable initial data surfaces do not need to be
constructed explicitly in order to derive the gravitational
dynamics, we assume that such an embedded initial data
surface has been chosen and gives rise to linearly inde-
pendent vector fields ey, ..., egmu—; along the hypersur-
face that are tangent to it as well as a covector field n along
the hypersurface that annihilates each of the said tangent
vector fields and that is hyperbolic (see the previous step)
and normalized in the sense that P(n) = 1.

Then bases for all spacetime tangent and cotangent
spaces along the initial data hypersurface X(X) are
provided by

DP(n) A
egi=——=, eq,...,eq- 1y and €’ :=n e, ... edimM-1
0= Geg P 1 dimM—1
respectively, satisfying the wusual duality condition

€“(e,) = 6%. Note that the principal tensor field P thus
enters explicitly into the definition of e, and thus implicitly
into that of the ¢!, ..., edimM-1 A

Now consider a collection of hypersurface fields G*,
where the hatted index A runs over all hypersurface index
combinations that are required to reconstruct the geometric
tensor field G everywhere along the initial data hypersur-
face from the G* and the above-listed bases. For instance, if
G is a (1,1)-tensor field, then

G =G(e" ep)e, ® b
=G(e ep)eg ® €* + G(% ep)ey @ €
—_——

——
::GUU ::GO/,»
+ G(e% ep)e, ® € + G(e%, eg)e, Q €
—— ———
=G, =G,

for each G0

for each G*

for each G- include a summand — (degP —1)G~
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and thus G* = (G, G%, G%, G%) consists of one hyper-
surface scalar, one hypersurface covector, one hypersurface
vector and one hypersurface endomorphism field. The
hatted index A would thus range, in this case, over the
values

A c {00’ 0/}’ ao’ aﬁ}'

For any other valence of the geometric tensor field G, one
proceeds in exactly analogous fashion.

But now since the hypersurface fields G* determine the
geometric tensor field G, which in turn determines the
principal tensor field P, the above duality conditions
between the tangent and cotangent space bases amount
to precisely dim M conditions

P(ey) =1

relating the hypersurface fields G*.

Thus only an unconstrained subset G* (for a suitable
range of the unhatted index A) of the above hypersurface
fields G*, whose choice automatically implements the
above conditions, presents independent geometric degrees
of freedom (see, for instance, the first case study). However,
in some cases it may be convenient or even necessary to
make suitable field redefinitions at this point in order to
find a workable set of unconstrained degrees of freedom
(see, for instance, our second case study).

Step 6: Calculate the coefficients of the
master equations

For each independent geometric hypersurface field G*
that has been obtained directly by projection of the
spacetime geometry G as described in the previous step,
construct the coefficient functions

include a summand — G-

include a summand (deg P — l)G“'O“'__,P"”

for each G , include a summand — G , &,

where the dots represent indices that are kept unchanged, and similarly,

{ for each G-%
UA/’)( —

for each G, include a summand P*§,G_;

as well as

VA = PrEQ,GA + {

for each G--%

for each G-,

include a summand — P¥*G/

include a summand P*%9,G %

include a summand — P*9,G
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Note that in case some field redefinitions have been
performed after projecting the spacetime geometry G to
the hypersurface, the redefined fields will be some function
of the original projections, and in this case, the coefficients
MAY, U2 and VA associated with the redefined fields are
to be calculated from the respective coefficients associated
with the original projected fields by virtue of product and
chain rules (for an illustration, see the second case study).

Finally, in terms of the above coefficient functions
calculate

OMPBY
By — _ "
QA 8GA )

TAW = —Q Al MBIV 4 Al
SAY = _aﬂ(QBAIﬁM\BM) - aﬁUA(ﬁy) — VA7,

which completes the calculation of all coefficients needed
to set up the master equations.

Step 7: Set up the master equations

The coefficient functions calculated in Step 6 already
completely determine the gravitational master equations
displayed on the next page. The master equations are
equations for the weight-one tensor densities

C = C(G*,0G*,00G*, 000G*)
Cp, 3, = Cp,_p,(G* 0G*, 00G*),

and
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The significance of these potentials is that they com-
pletely define the gravitational Lagrangian density

L[G|(K) = iCBI_“BN[G]KBI ...KBv
N=0

in terms of the geometric hypersurface fields G* and their
velocities K4, such that the Euler-Lagrange equations for

the geometry are
o) = Lo rorsgig] + s (wo)

where the integral is over the hypersurface, supplemented
by the kinematical relation

G'(z) = N(2)KA(2) + 0,N(2)M* (z) + L3GA(2).

where N is a freely specifiable lapse function and Nisa
freely specifiable shift vector field on the initial data
hypersurface. Note that while the scalar density C may
depend on up to third derivatives of the geometric tensor
fields, the tensor densities Cp, . depend on at most
second derivatives.

Master equations determining the gravitational
Lagrangian for the weight-one tensor densities C = (G4,
0G*,00G*,000G*) and Cp = (GA,0G*, 00G*)

to which we will refer to as the “scalar potential” and the ..Bysi
“tensor potentials,” respectively. are the six equations
|
0Cp ocC

0=— 2t _MAB) 77 (1)

2 A 3 B’

88(ﬁ1ﬂ2| G aaﬂlﬂzﬂs G
" 0C, a 0C, . aC oC
0= 26 U = g M = e, r MM gz om =30 g, G- )
@l Plr af apy
oC ocC
0= 2CAB] (SAa + zaﬂTA[/m]) + 2aﬂCABITA[;m] _ QB]M(XCM 4 aGil MA + 59 ZA ayMAa
v
ICB, sy ocC oC s oC
T oan,6n M T Ga,6m ™ 2 g om0 g, 6B 3)
) ocC ocC ocC
0 =20,(CAUAPW) 4+ 2C4S4 +20,C,TAM + ZWMA/’ +25 5.G" 0,M* 42 P0G 2,MY
ocC 3 g ocC . ocC . ocC 5 g
wp (u] (ulv (ulvp

ocC ocC ocC
s (3 " g 8/,MA|/})> 48, (aa?GA MAW) , @

v uvlp 7
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oC oC oC
0=20, <882 MA|ﬁz) + 4883787MAW2) — 285{663—(;AMA/j2) }>’ (5)
|a (p \a}/ ad(p
ocC oC ocC
0= 7MA\/33) 6——— 9. MAIB) — 49 <7 MM%)) (6)
2 3 A Yy 3 ’
88 ﬂlﬂz| 90 ﬂlﬂz\}’G 90 ﬂ]ﬂz\}’
and five sequences (N > 2)
0= BBy MA\;/) (7 )
a2 A N
86‘ a/}\
0= CABI...BNTA[””], (8v)
0= aCBIH'En"-BN _ aCBl ------ By_i (9N)
2 ~B 2 ~By °
00,,G" 00,,G"~
JCp, .5, JCp, .3, ICp, .3y,
0= (N+1)!Cyp, 5, U — NI WMA‘“) —2N! W@M’*"’) —(N=2)(N-1)! D02, (10y)
V4 Q
Cpg,
0= (N+ 1)!Cyp, _p, (54 +20,TArI) + (N + 1)!aﬂcABIWBNTAW — NN!QMCp, gy + N!—=0 Y2 By ppha
ICp, .. o ICp, .. o ..B,..B ICp, .3,

N g an M+ N g G M (N - 1) Z aaaGB “o0,68 W=D 5 Gy (1)

whose coefficient functions U, VAT MAY Q,Br TAw
and SV are determined by the matter action S[®,G],
according to Steps 1 to 6.

Step 8: Supplement the master equations
with covariance equations

In order to find the scalar and tensor potentials satisfying
the master equations, it is immensely useful to enforce
the tensor-densital character of these objects by adding
further linear homogeneous partial differential equations.
As it will turn out, the appropriate partial differential
equations contain terms that also appear in the master
equations and may thus be used to great advantage. Most
importantly these additional equations will relieve us
from having to worry about the tensor-densital character
of the potentials when solving the master equations, since
the enforcement of the corresponding transformation
behavior of the potentials under coordinate transforma-
tions will be taken care of precisely by these covariance
equations.

The form of the covariance equations heavily depends on
the index structure of the independent geometric tensor
fields G, and hence must be derived on a case by case
basis. Conceptually, their derivation is straightforward. The
key idea [9] is to start from the required transformation
behavior of some particular hypersurface field and to derive
it with respect to the highest (and then second highest, and
so on, down to the zeroth) derivative of the Jacobian of an

|

arbitary coordinate transformation, all to be evaluated at the
identity transformation. The resulting linear homogeneous
differential equations for the hypersurface field then encode
the postulated transformation behavior. This procedure is
most transparently explained by way of a simple example,
which is given in Appendix A.

The partial differential equations encoding the tensor-
densital character of the scalar and tensor potentials are
derived in precisely analogous fashion to the example given
in the appendix, namely starting from the algebraic
covariance equation for the scalar potential

C(T4,GM, d(TAGM)., dO(T4,GM), D9A(T4,GM))
= det(T)C(G*, 9G*, DIGH, DIIGH),

where T4,, denotes the representation of the Jacobian
as it acts on the geometric fields G, and the algebraic
covariance equations for the tensor potentials

Cs, .5, (T G". O(TyGY), 00(Ty,GM))
= det(T)T'...T5" Ce, ¢, (G*.0G*, 00G*),

by calculation of the derivatives of the above algebraic
covariance equations for the potentials with respect to all
appearing orders of derivatives of the Jacobian. There are
four sets of covariance equations for the scalar potential C
(since this field depends on up to the third derivative of G)

104061-6



HOW QUANTIZABLE MATTER GRAVITATES: A ...

and three sets of covariance equations for the tensor
potentials Cp p  (since these all depend on at most the
second derivative of G). The combined system of differ-
ential equations provided by these covariance equations
together with the master equations then automatically
selects all solutions that are tensor densities of weight one.

Step 9: Solve the master and covariance equations

The problem of finding gravitational dynamics for the
coefficients of the matter equations we started from amounts
to nothing more, but also nothing less, than finding solutions
to the master equations combined with the covariance
equations for the potentials C and Cp  p, . Indeed, the
physical question of whether there exist any gravitational
dynamics at all which do not contradict the predictivity and
quantizability of the specified matter equations reduces to
the mathematical question of existence of solutions to the
said linear homogeneous system of partial differential
equations; likewise, the physical question of whether there
are several such gravity theories reduces to the mathematical
question of the uniqueness of solutions; finally the most
interesting physical question, namely what the precise
form of suitable gravitational dynamics are, reduces to the
mathematical problem of finding a concrete solution.

Our first case study shows that the master equations
following from Maxwell electrodynamics feature as their
unique solution the Einstein-Hilbert Lagrangian with
undetermined gravitational and cosmological constants
emerging as integration constants. The second case study
then shows that other (nonstandard model) matter requires
a different gravitational theory.

Step 10: Impose judicious choices of energy
conditions and symmetry reductions

Beyond the physically non-negotiable conditions that the
matter equations be predictive and quantizable, one may
impose further conditions on the matter dynamics, such as
(strong, dominant, ...) energy conditions on the Gotay-
Marsden energy-momentum tensor density

55 matter

T¢, := JAa
b b 5G'A

where A stands for the indices carried by the spacetime
geometric tensor G and the intertwiners J4¢, are read off
the Lie derivative

(LG)A = JAED + JAa g0,

for an arbitrary spacetime vector field £. While such addi-
tional conditions can have no bearing on the above form of
the master equations (since the latter follow already from the
predictivity and quantizability of the matter dynamics), they
may serve to further restrict the geometric degrees of free-
dom, and thus reduce the equations correspondingly.
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Another strategy to simplify the master and covariance
equations is to derive actions for spacetimes (M, G) with
Killing vector fields K, ..., K,,

(LxgG)A =0 fori=1,....n,

whose algebra [K;, K;] = f*;;K; gives rise to a negative
definite Killing form

]Cij = fmnifnmj»

since in that case the corresponding symmetry group is
compact, which suffices [10] to ensure that the symmetry-
reduced action yields the same equations of motion as
would have been obtained by a symmetry-reduction of the
field equations following from the full, not symmetry-
reduced action. Thus this strategy works for, e.g., spherical
symmetry, but unfortunately not directly for homogeneous
and isotropic spacetimes modeling simple cosmologies.
With the above procedure to derive gravitational actions
from specified matter actions in place, we turn to two concrete
case studies in order to illustrate its application in vivo.

III. FIRST CASE STUDY: GRAVITY UNDERLYING
MAXWELL THEORY

The following application of the practical rules laid
down in the previous section, to the case of Maxwell theory
as the prescribed matter inhabiting the spacetime, serves as
a warmup exercise to the more ambitious case study
presented in the next section. But since the result is the
standard textbook Einstein-Hilbert action, with only the
gravitational and cosmological constant left to be deter-
mined by experiment, this simplest possible case already
illustrates the power of the master equations.

Step 1: Test matter

On a smooth four-dimensional manifold M, we consider
matter described by a covector field A obeying dynamics
encoded in the Maxwell action

1 .
SMaxwell [A’ g] = _Z/d4x(_ detg)_l/zgacghdFuchdv

where some nondegenerate symmetric (2,0)-tensor field g,
employed to construct a scalar density from the field strength
F = dA, provides an additional structure on M. Following the
philosophy of this article, we make no further a priori
assumptions about this tensor field g, neither technically
nor concerning its physical role, since all physically required
properties can be derived and thus must not be stipulated.
According to the general parlance agreed upon in Step 1 of the
general recipe, we refer to g as the “geometry” on M, but
without meaning anything more by this than that the geometry
completely determines the coefficients of the matter field
equations, as is manifest from the above action.
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Step 2: Principal tensor field

The field equations for the covector field A one derives
from the above action features a gauge ambiguity that we
choose to fix by imposing the gauge

0y(—detg)™'/2g"A,) = 0,
which yields the gauge-fixed equations of motion

0 = (—det g)l/ngdagl [(— detg)_l/zg“l"zaazAd]

= ¢“g"9,, 0, Aq + lower derivative terms.

From the coefficient of the highest derivative term one
reads off the principal tensor

P(K) = Sadellg gk, k)
= (- detg)(g" kg kq,)*,

which is dedensitized by letting @ = (—det g)~!, and upon
removal of repeated factors simply becomes

P(k) = £g"k, k,,.

Step 3: Dual tensor field

Since the principal tensor field is irreducible, we only
need to consider one map

(DP(k))" = £2¢""k,,
and observe that
PH(X) = gblbsz‘xbz

satisfies the duality requirement for any covector k with
P(k) =0,

P#(DP<k)> = 4gb1bnglmgb2nkmkn = 4gmnkmkn
— 4P (k) = 0.

Obviously, multiplying the above-defined dual tensor field
with a real function on the manifold M again provides a
dual tensor field. This is of course a generic feature of the
dual tensor, independent of the case presently studied, and
all further constructions are independent of this ambiguity.

Step 4: Bihyperbolicity
The principal tensor field P is easily shown to be
hyperbolic and to satisfy the sign convention if and only
if the (2,0)-tensor ¢ has Lorentzian signature (+ — ...—).
This can be seen as follows. If P is hyperbolic, then there
exists a hyperbolic & with P(h) > 0, so that the equation
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P(q + Ah) = 2g*’h,hy, + 229" haqy, + 9°°quq, = 0

has only real roots 4. But then bihyperbolicity requires that
the discriminant (g*°h,q;)* — g°*h,h,g°q.q, of this
equation is positive. Choosing a cotangent basis with €° :=

h such that g"?¢%e% = 0, one sees that g*?¢J¢Y) > 0 and can

further write the discriminant as q,q, g e‘;‘eg < Oforall g,,
which proves that ¢*» has mainly minus Lorentzian
signature. Conversely, if ¢ is of the said signature, it is
immediate that P is hyperbolic, as one quickly sees in any
g-orthonormal cotangent basis.

Hyperbolicity of the dual tensor field is automatic in this
case, since a metric has the same signature as its inverse.

Step 5: Geometric degrees of freedom

We assume to be given a hypersurface in M with an
everywhere hyperbolic covector field n normalized to
P(n) = 1 that annihilates any of three linearly independent
tangent vector fields e, e,, e3, such that we construct
complete spacetime tangent and cotangent space bases

0, 12 .3

ef=g""ny, e, 065 and " =n.el e

dual to each other, giving rise to independent geometric
hypersurface tensor fields

00

g 0 .0

i=g(e% ), " =g(? "), g7 =g(e® )

for a, p = 1,2,3, which by the normalization and annihi-
lation properties are however constrained by ¢ = 1 and
g** = 0, so that we identify as the independent geometric
degrees of freedom the symmetric nondegenerate hyper-
surface tensor field

G" = (g7).

Step 6: Coefficients

According to the general rules, one calculates the
coefficients
M*@r = gdnpay 4 qu0par — (),
Unrt = —prei gpta — prea gip — 2 gt(o g,
Vanr = prig,gn® 4 PraQ, gt% 4 Prag, gnt
— 9“8/19“1“2 + zgﬁ((alalgaz)i

and thus obtains the further coefficients

0, a2/31/32}’ =0,
Taxp] — _2g[u\(a,ga2)|y] =0,
Snar — _grtQ, gn% 4 26‘,197(“19“2”.
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Step 7: Master equations

With the coefficients calculated above, the first master
equation takes the form

oC
By "
PrB2b3

so that we immediately learn that, in the present case, even
the scalar potential C depends only on g, dg and 00g, but
not the third derivative 900g. Further, the master equa-
tions (5) and (6) are identically satisfied, and so are the two
sequences of master equations (7y) and (8y) for all N > 1.
The remaining equations are

0 =20, (C,UAPW) +2C, 54, 4)
0— aCBI...B"H...BN _ 6CBI ...... By_1 (9;\’)
88,%,,GB" 88ﬁDGBN
with the index g,- removed for i =1, ..., N,

0= (N+1)!Cyp, 5, UMD

)! aCBl...BN_l

—(N=2)(N—1)! L (10y)
002,GPv N
0= (N—l— 1)!CAB] BNSAa
N oCyp, . .B,..By
N-1) 'Z 90,GP
8CBI-~BN—1 /
—2<N—1)'ayw, (11/\7)

for N > 1. Note that the master equations (2) and (3) are
contained in the last two sequences as the special
case N = 1.

Step 8: Covariance equations

Since in the present case both the scalar and the tensor
potentials depend on at most second derivatives of
the geometric hypersurface tensor field, the covariance
equations take the same form for all N > 0, namely

ac
0= g (Cov2)
3CB B 8 B,...B aC‘B B
0= 2 “by...By Z 51BN 4y Zby...By
00,4 09" o2, g 408 883)69‘)‘”’
(Covl)

which are obtained from deriving the algebraic trans-
formation law for the weight-one tensor densities
Cg,. ., for N >0 with respect to the second and first

PHYSICAL REVIEW D 89, 104061 (2014)

derivatives of the Jacobian of a coordinate transformation.
The third covariance equation (Cov0) is not displayed since
in the present case it is not required for a solution of the
master equations.

Step 9: Solution of the master and
covariance equations

Now we can solve the master equations step by step.
First, we observe that equation (10)) for N =2 simply
reads

0= Cﬂtmlﬁlazﬂz uror,
which may be solved to yield C ;4 4,4,5, = 0. Inserting this

result back into equation (10}), first for N =4 and then
repeating the procedure for all even N, we see that all
potentials with an odd number of index pairs already
vanish, except for the first one, C,4. For our next con-
clusion, we temporarily change variables in favor of the
metric g,;. Changing the partial derivatives of g accord-
ingly, the covariance equation (Cov2) becomes
0— acalﬂlmaNﬁN
)
where we denote partial derivatives by a comma. Moreover,
the divergence term in equation (11},) implies

2
0 Calﬂl-»ﬂNﬂN

0 P—
09ap (1109po, )5

But the last two equations already yield

o 82Ca,/3] .

LayPy

(without symmetrization),
89(1/}.;w agpo‘,y&

implying that all remaining potentials C, 5 4.4, can only
depend at most linearly on the second derivatives of the
field g,4 and similarly of ¢*”. Since, in particular, the scalar
potential C depends only linearly on the second derivatives
of g, we conclude from equation (10}) for N = 1 that the
potential C, 4 ,,5, must in fact be independent of the
second derivatives of ¢g*. Using this result in equation
(10y) for N = 3, and iterating on all odd N, we find that
also all even potentials Cy 43, 4,5, for N >4 vanish.
Hence, it only remains to determine the potentials C,
Caﬂ and Caﬁyé'

As described in Appendix B, we may now perform a
change from the arguments (¢*, 8,¢*, 8,0,9*), on which
the tensor and scalar potentials depend, to a set of argu-
ments (g%, R,5), where R, is the Riemann-Christoffel
tensor of ¢* /’] such that the covariance equations
are automatically solved if and only if Cp 5 =
Cp,.. By (Gaps Rapys) for all N >0. In three dimensions,
we know that the Riemann tensor can be expressed in
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terms of the Ricci tensor R, and the metric g,z so that,
actually, Cp g = Cp  p (9", Ryp). The only such sca-
lar density of weight one that is linear in the Ricci tensor
(recall that the at most linear dependence of the potentials
on the Riemann tensor did not follow from the covariance
equations alone, but involved one of the master equations)
is (—det g)~'/2R, with the Ricci scalar R = R3¢, and the
minus sign under the square root accounts for the fact that
g must be negative definite. Thus we arrive at

C = —(2«)~"(=detg)""2(R - 24),

with constants « and A, as the only scalar potential that
meets all the requirements.

Then we can immediately calculate, from equation (10},)
for N = 1, that

Ca/i/,w = (16K)_1 (_ det g)_l/z[g(mgﬂy + g/iygay - zg(lﬂg;w]'

In terms of the (g%, % Rapys), the coefficient S can be
rewritten as

S(z[)’y — Ua/}uvrzy’
which makes it easy to see that equation (4) takes the form
0= gﬂpg(wvuc/)m

where V, denotes the covariant derivative with respect to
the Levi-Civita connection. Using the well-known theorem
due to Lovelock [11], which also for the case of three
dimensions asserts that the only divergence-free second
rank tensor depending only on the metric and its first and
second derivatives is the Einstein tensor, and the fact that
again C,, can only depend linearly on the Ricci tensor, we
immediately conclude that

1
Ca/} = ﬁl (_ det g)—l/Z <Raﬁ - zgaﬁR>
+ o~ detg) ™ gyy.

The remaining master equations (9y) and (114) are then
identically satisfied.

The potentials C, Cps and C,p,s derived above com-
pletely determine the Lagrangian by virtue of

L = CppsKPK” + CoyK% + C

and thus we have found the gravitational dynamics of the
geometry g*”. However, one may simplify this result a little
further. We immediately realize that the potential C,, can
be written as the functional derivative of the scalar density

A = pi(—detg)~" /2R — 23, (— det g) '/

PHYSICAL REVIEW D 89, 104061 (2014)

with respect to ¢*’. This has severe consequences for the
relevance of this potential in the equations of motion
displayed in the general description of Step 7. The part
of the Lagrangian involving A satisfies the equations of
motion identically and is thus dynamically irrelevant [5].
This can be seen as follows. The kinematical relation
supplementing the Lagrangian equations of course remains
untouched because it is independent of the Lagrangian, so
we have that

J7(z) = N(2)K?(z) + (L;9) (2).

The actual Lagrangian equation of motion reads

0 ( OL(z) 5L(x)] < OL(z) )
R g d N L"

ot (8K"‘ﬂ(z)> L x[ () 59 (z) Ty 0K (2)

in this case, because there is no contribution from the
coefficients Q,%7. We may now insert the part Ly, (z) :=
SA(z2)/8g K% (z) of the Lagrangian that is linear in
the velocities K into the left-hand side of this equation
in order to find, taking into account the kinematical
supplement, that

_ 52A(Z) po L 4\po
Lin(z) = / s s V() + (£50)7()

It is then straightforward to see that these are terms of
precisely the form as those appearing on the right-hand side
of the previous equation. The respective first terms cancel
because the functional derivatives commute. That also the
second terms cancel, one can see by writing out the Lie
derivative on both sides and using the chain rule and an
integration by parts on the left-hand side of the equation.

It is instructive to convert the thus obtained Lagrangian
to a Hamiltonian, to which end we calculate the canonical
momenta as the Legendre dual variables of the velocities,

oL _8A
Tap = DK = 2C(l/”75Ky + 6ga/} ’

where we again included the term A discarded above, just
in order to see that it can be discarded in the canonical
picture equally well, since the Poisson brackets on the
geometric phase space spanned by (g, 7,45) do not change
if we add to the canonical momenta the functional
derivative of a weight-one scalar density with respect to
the configuration variables GA. Thus, we can redefine the
canonical momenta,

~ SA
”aﬂ b d ﬂaﬂ = ﬂaﬂ - —59(1[),

and invert the second last equation to get the velocities
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1 -
K(l/} — E C(l/)’yﬁ Taps

where C%7° is the inverse of the potential C,4,s and
explicitly reads

€10 — (= detg) (g + 1t = 7).

which is known as the DeWitt tensor density. The local
super-Hamiltonian then automatically becomes

Hlocal = Ka/)’ﬁ-a/i - Cnt/)’y&I(alﬁl(ﬂs -C

1
= Z Caﬂyéﬁ'aﬂ;[y(; + (2](')_1 (— det g>_1/2 (R - 2/1),

which is the famous Arnowitt-Deser-Misner Hamiltonian
[12] of Einstein-Hilbert dynamics with a cosmological term,

1
Sgrav[g] = ZA dx V _detg(R - 2/1)’

where g is the spacetime metric and R the associated
spacetime Ricci scalar.

Step 10: Additional energy or symmetry conditions

Additional energy or symmetry conditions were not
needed to obtain an analytic solution of the master
equations in this case.

Discussion

In summary, we arrived at the interesting conclusion that
the unique gravitational dynamics for a four-dimensional
metric spacetime (M, g) carrying predictive and quantizable
Maxwell electrodynamics is given by the familiar Einstein-
Hilbert dynamics for a Lorentzian metric, with undetermined
gravitational and cosmological constants appearing as inte-
gration constants when solving the master equations. This
result directly extends to matter dynamics Sgy[g, @] includ-
ing all fields of the standard model of particle physics,
because their equations of motion all share the same
principal tensor fields, which by deliberate construction of
the standard model (taking particles to be the irreducible
representations of the local Lorentz group) is precisely the
principal tensor field of Maxwell electrodynamics.

IV. SECOND CASE STUDY: GRAVITY
UNDERLYING SO(p, q)-VIOLATING
FERMIONIC MATTER

In order to see the machinery to derive gravitational
dynamics underpinning particular matter dynamics working
at full capacity, we will now consider a vector-tensor geometry
(M, g, W), constituted by a metric and a vector field W, and
find gravitational dynamics for it such that a SO(p, q)-
violating extension of Dirac dynamics is predictive and

PHYSICAL REVIEW D 89, 104061 (2014)

quantizable on that geometry. While we are of course not
proposing either this particular geometry nor this particular
type of matter equations as amodel for any observable physics,
but rather as a deliberately brutal—but nevertheless causally
fully consistent—deviation from standard model physics, this
case well illustrates that even such matter dynamics can be
underpinned by suitable gravitational dynamics.

Step 1: Test matter

As test matter dynamics we now directly stipulate
SO(p, q)-violating field equations

(iy" + WD, ¥ = 0

for a spinor field ¥ on a four-dimensional smooth manifold
equipped with a geometry (g, W) consisting of a spacetime
metric g [of a so far arbitrary but fixed signature (p,q),
which will be considerably restricted by the bihyperbolicity
condition in Step 4] together with a spacetime vector field
W. The spacetime y-matrices y* = y/E¢ are constructed
with the help of local frame fields E, satisfying g% =
" EYES and the flat spacetime y-matrices y/ satisfying
the Clifford algebra {y/,y’} =24, where 5 =
diag(1,...,1,—1,...,—1)" with the same signature as g.
We assume that the spacetime admits a spin structure
(whose existence is of course still equivalent to the
vanishing of the second Stiefel-Whitney class associated
with the g-orthonormal frame bundle over M) such that the
spin covariant derivative D, is induced from the torsion-
free spin connection by virtue of

Ty = —Ej(040} = T4y, 00),

where T¢, are the Christoffel symbols of the metric g,
and ¢/ denote the coframe fields dual to the frame fields EY.
The spin connection is antisymmetric with respect to 7/, and

i
-7 SFZ;J”]IK [}’K, 14 J]

D,=0
a (14

if the covariant derivative acts on spinors W. Here and in the
following, we will suppress all spinor indices.

Step 2: Principal tensor field

By acting on the equations of motion with the differential
operator (iy’ E} — W?) D, from the left, we obtain the equation

— (Y/Y'ESES + WeW?b — iy ESWe + iy ESWP)D,D ¥
+ iy EY\D,W*D ¥ = 0,

from whose highest order derivative terms we obtain, using
the Clifford algebra relation {y/,y’} = 25" and the fact
that partial derivatives commute, the principal tensor field

Pab — (gab + Wawb)'
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Step 3: Dual tensor field

Since the principal tensor has rank two, it is again simple
to calculate a dual tensor field P* in terms of the inverse of
the matrix g*> + W*W?. Indeed, one quickly finds the dual
tensor

1
Py, = (gab TR WWeg, wr anmagnb>
rs
with respect to the principal tensor P.

Step 4: Bihyperbolicity

The hyperbolicity and signature condition on the prin-
cipal tensor now simply amount to the algebraic require-
ment that the matrix ¢* + W*W? have mainly minus
Lorentzian signature at every point of the manifold.
However, this does of course by no means imply that
the metric g itself has to be of Lorentzian signature. In fact,
the principal tensor is hyperbolic in two different cases:
either the metric g has signature (+ — ——) and the vector
field W is timelike, or null, or of spacelike length
—g(W, W) < 1 with respect to g, or the metric has signature
(— — ——) and the vector field has length —g(W, W) > 1.
Interestingly, the two cases differ in the way hyperbolicity
is encoded in the geometry. In the first case, hyperbolicity is
ensured by the metric, whereas in the second case, it is the
vector field which renders the combination ¢* + W*W?
hyperbolic.

The hyperbolicity of the dual polynomial is in this case
again equivalent to the hyperbolicity of the principal
polynomial so that, as in the first case study, bihyperbo-
licity does not enforce further algebraic constraints on the
values of g and W beyond what is already enforced by
hyperbolicity.

Step 5: Geometric degrees of freedom

We assume to be given a hypersurface in M with an
everywhere hyperbolic covector field n normalized to
P(n) = 1 that annihilates any of three linearly indepen-
dent tangent vector fields ej,e,, e3, such that we
construct complete spacetime tangent and cotangent
space bases

0.=p el €2, e

4= (g + WiWP)n,, e;,e5,e5 and ¢
dual to each other, giving rise to independent geometric
hypersurface tensor fields

g(l/)’ = g(ea’ (:‘ﬂ), 90(1 = g(€0’ 6‘”), gi= 9(60, €0)’
(

W= ¢*(W), WO = O(W).
However, not all of these hypersurface tensors can be

independent since the frame conditions P(n) =1 and
eo(€%) = 0 can be used to express W and W in terms of
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the projections g and g*. Thus, the hypersurface tensor
fields g, ¢* and g% already constitute a possible para-
metrization of the spacetime geometry (g, W). Indeed,
one can check that the completeness relations

g’ = geoeo + 29“60 e(, —|—g“ﬁeaeﬂ and

1
a
=g ¥
allow for a reconstruction of the spacetime geometry on
the hypersurface, and in particular of the hypersurface
tensor field

W =4(1- 9)1/268:':

P = g +—1 P
l-g

In principle, one could now choose G := (¢, ¢*, g)
as the independent degrees of freedom and press on to
the next step and determine the coefficients for the
master equations. In particular, one would obtain the
coefficients

2
Maﬂ}/ = 2‘g<agﬂ)7 +1—gagﬂgy’
)

[0} g a
Moyzl—_gg g —(1=9)g",

MOO;/ — —29},,

which produce correct, but unnecessarily complicated
master equations. A more advantageous choice of
configuration variables (as we will see when calculating
the associated coefficients in the next step) is obtained
by the field redefinitions

P =g + 1L g
Ja = P a9 recovering
$=1-g+ I_Z_g.;j];fga/i
gaﬂ:Paﬁ_HPﬂ“gg Pygpﬁéga,
g = _HP’L%P “9ps
PN ey

We thus choose as the unconstrained geometric hyper-
surface tensor fields

(Pa g(l’ ¢)'

Gredef

Step 6. Coefficients

The coefficients associated with the redefined fields
GA ;s> Which are now functions of the original hypersurface
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fields G* obtained by projection from spacetime tensors,
must be calculated from the coefficients of the projected
fields according to product and chain rules, as explained in
the general rules in Sec. II. In particular, we obtain

(=1

Mredefaﬁy — Maﬂy — (] — g)z MOO}’gag/f
2
+———glemloPr = ... =,
l—yg
1
Mredefay = (1 _ g) MOO PaégIS + gP‘XD'P‘SPM;Zg,efg
1
_ 1—_gPa5M06y = =Plg,qg,+ ok,
Meges” = -+ = 0.

The vanishing of the first and third set of coefficients
and the simple form of the second set were the rationale
behind the field redefinition made in the previous step. Also
according to the product and chain rule, one determines the
coefficients

Uredefaﬂp)( = ybex + (1 )2 Uz + 1—g<aU\0lﬂ)pﬂr
-9 -9
— _2P;(((1P/})p ,
Uredgetd™ = (1 _ 9)2 UOOP)(Pa5g§ + TpayP(SUU”"/’Zg5
1
— 1__g Pa5 UO(Sp;(
= oL P s
Ureget™ =+ =0

and the coefficients

Vredefaﬁ)( = P)(ypaﬂ + ZPX(QP/})Y.}M
Vredefa P”g - P){ygy,a’
redef)( = P)ﬂgﬁ,},.

From the above nine sets of coefficients one then obtains
directly, as the only nonvanishing coefficients Q,

_ OM eges
Qredefpaa = a}_ipi—l = _6}(//)90)9&
oM
Oretet’ s’ = _ M redeta” = —Prrg, — P”‘gﬂéﬁ,
dg,

only vanishing coefficients T4} = 0, and finally the
coefficients
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= _Pwpaﬁ 4 2p7(apﬁ)
——pHg,,

S redef
S redef

Sredeta = 2P”yg[y,a] - gﬂ,a-

Step 7: Master equations

We now determine a particular solution of the master
equations, whose linearity admits simplifying assumptions
for the coefficients Cg, g, , which we point out as we
go along.

1. Properties of the scalar potential C

The master equations defined by the coefficients calcu-
lated above imply that the scalar potential C only depends on
at most the second partial derivatives of the geometric
degrees of freedom. The simplest way to see this is to trade
in the first and second partial derivatives of the fields P%, ¢
and g, (which appear in the tensor potentials Cp, 5, ) for
covariant derivatives with respect to the Levi-Civita con-
nection I'% of the inverse metric P% as well as the Riemann
tensor R,,,,, and the nontensorial quantity S,,,, introduced
in Appendix B. The new fields 1% Rapys and S5, are
then given in terms of P and 1ts pamal derivatives by
equations (B3)—(B5) and the corresponding inverse trans-
formations by (B11) and (B12), while the symmetrized first
and second covariant derivatives of the fields ¢ and g, are
given in terms of the respective partial derivatives by
Egs. (B15)-(B17) and the inverse transformations by
(B20)-(B22).

In order to see that the potential C in the present case
does not depend on the third partial derivatives of the fields
G4, it is sufficient to rewrite the third partial derivatives of
only the field g, in covariant form. The corresponding
transformation formula is given by
= Gapys T gﬂ,l//l(_36/1 5yrﬂ

ga;(ﬂyﬁ) 35”5” F’l ))

-+ lower order terms,

where, as we will see, it will not be necessary for our
calculation to write out all terms of lower derivative order in
g The third partial derivatives of g, can be recovered from
the previous expression by employing the

useful identity

2 2 2
=I7 R + 5 FO‘ I —=rer

y (Buv) — 3 3 By T 3 e

Puv

We can now rewrite the master equations in covariant
form. We begin with the master equations (4)—(6) contain-
ing the potential C and the potential C,. Master equation (6)
can be straightforwardly rewritten covariantly, but the chain
rule in the first term in conjunction with the above
expression for the symmetrized third covariant derivatives
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of g,, the derivative of the coefficient M,? in the second
term and the divergence in the last term all produce
terms that are proportional to the variable I'¢,. Since none
of the rewritten terms can depend explicitly on this
variable in the new covariant arguments, we must con-
clude that

ocC
O pyu(py|

ocC

M )P§) 558k — 2
! ! (5

_ 185) pg vslk gD
0=2 A s M 8.5

Contracting the indices ¢ and « then leads to the equation

_ac
8910;1(,51,52\

ocC
Mp|ﬂ3) — —Mpﬁ.

0
agPZﬁ 15253

The same logic can now be applied to master equation (5).
This time, however, rewriting this equation using the
chain rule, and the useful identity above, produces terms
which are purely covariant and terms that are proportional
to the noncovariant variables I'? ) 3 well as terms that are
quadratic in I'; . Again the latter must vanish individually.
Carefully extracting all information that can be deduced
from the vanishing of these terms one finds that

0= aichlﬂz)_

G piin(py|

The last two equations and the fact that the coefficient M ,*
is invertible imply that the potential cannot depend

on 9papy-

2. Simplifying assumptions for the potentials C*g g

To simplify the master equations further, we may take
C* = 0. Then master equations (9y) and (1) imply that the
potential C cannot depend on any of the third derivatives of
the fields P%, g,, ¢. Hence, from here on, we can treat the
potential C and the remaining tensor potentials on the same
footing. Second, we will also set

C'g, ., for N>1,

which simplifies the master equations considerably. In
other words, we consider only the special family of
Lagrangians whose series expansion (see Step 7 of the
general recipe) cannot contain any of the velocities K,
belonging to the variable g,. Although these two assump-
tions seem to freeze the dynamics of the variable g, by
removing all of the velocities K,, we will see that this is
actually not the case. Indeed, as we will show in
Appendix C, the dynamical evolution of all degrees of
freedom will be described by the resulting Lagrangian.

3. Potentials do not depend on derivatives of g,

Finally we switch back, for a moment, to the master
equations as expressed in the partial, rather than covariant,
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derivatives of the geometric hypersurface fields and show
that the remaining potentials Cg, 5 Wwith 5 = (4. ¢) and
the potential C cannot depend on the first and second partial
derivatives of the variable g, at all. Setting p = 7 in the
symmetry condition (9y), we learn that none of the
potentials Cp, p, (for N > 1) can depend on g, g, For
the potential C, we already concluded this from the master
equations (5) and (6). Thus, the second partial derivatives of
g, cannot appear in any of the potentials. The same holds true
for the first partial derivatives g, 4. This can be seen from
master equations (11y) and (3) setting p, = 7, which yields

ICs, .8,

=0 forN>1.
99p.a

Finally, we can even show that potentials Cp g for which
at least one of the capital indices is the symmetric pair a3,
cannot depend on the variable g, at all. Writing out the
divergence in master equations (11y) and (3), and using the fact
that now nothing in both equations depends on g,, ,,, we obtain

o? Cg,..By,

—— " =0 for N >1.
OG*v 09,

This result can be used right away when taking the derivative
of master equations (10y) and (2) with respect to g, noticing
that we can invert the coefficient U%**. This yields

9Cp, .. B,

=0 if atleast one 5 =
ago_ BL aﬂ

at first for any N > 2, which however can be extended to hold
for N > 1, as one can see by evaluating the divergence in the
first term in Eq. (4). Thus none of the potentials Cp g, (for
N > 1 and some 5 = ,5) depends on g,,. It is, however, not
possible to extend this result to all potentials. The potentials
Cy o (where all capital indices take the value 0) and the
potential C can still depend on g,.

4. Maximally simplified master equations

Taking all of the above findings into account, the
remaining master equations (with all others being identi-
cally satisfied) are

oc

0=V,(C,,Ur) — CVPgp + a—gpMp/’ . (4
ICp,..y, _ 9Cia,..8,.,| ’ (90.)
aGBv_, aGIBY) s N>2
0=(N+1)!Cyp, 5, U™
(V-2
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0Cp, ...By_By.1...By

0.y
aCBl By(Bgii-- BNl\pFT/}

~(V =N =

where the indicator ¢ denotes the number of capital indices
taking the value 0, whereas N — ¢ is the number of capital
indices B; being symmetric pairs a;f;, and the coefficients
PT" are defined in (B6). In order to not make the equations
appear too complicated, we have not written out the chain
rule for derivatives with respect to the second partial
derivatives of the fields GA.

Step 8: Covariance equations

Since the scalar potential C can depend on at most
the second partial derivatives of the fields, exactly like
the tensor potentials Cp, g, , the covariance equations take
the same form for all N > 0. The first covariance equation
(obtained by differentiation with respect to the second
derivatives of the Jacobian) reads

0 — 2 pula aCB1 By d9Cg, . g,
opw 99 ’
ABr) Y(a.py)

while the second one (obtained by differentiation with
respect to the first derivatives of the Jacobian) takes the
form

0= 2Pﬂ((z\ a Ny 4P/4(a\ aCB|-~BN _ pw aCBIA--BI\/
apﬂﬂ v opw P
,|/3)I/ ap
8CBI..BN 0Cp, .. B, d9Cg, . g,
- g/} - g/,t./) - 2 /) u-oa._
ag(a,/}) agu.(l/} ag (a.p)u
0Cg, ),
— ¢,p # .
¢,(lﬂ

The third covariance equation (obtained by differentiation
with respect to the Jacobian) will not be needed.

Step 9: Solution of the master
and covariance equations

When solving the master equations arrived at in Step 7,
we have to keep in mind that only the potentials C, ( and
the potential C may depend on the variable g,. In general,
all unknowns Cp g can, in addition, only depend on the
variables (P, Rys. ¢, .. §.o5) because of the covariance
equations (B13) and (B14), and we already used the fact
that the Riemann tensor in three dimensions can be
expressed by the Ricci tensor R4

It is a general result that the potentials Cp, g for N > 1
can depend on the second derivatives of the fields G* only
up to cubic order [6], and since here additionally the second

/)O’lBN)¢;‘[—2(N -
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(9CBI_..BN,l LN 8CB, ...By M/)ﬂ,

1)V
r QGBN 7P (99/,

(1x>1)

|
derivative of the scalar field ¢p does not appear in the first
covariance equation obtained in Step 8, we can conclude that
the Ricci tensor R,s can only appear linearly. Moreover,
mixed terms, which contain the second derivatives of ¢ and
the Ricci tensor, can only be linear in both, as one observes
by combining the first covariance equation in the original
arguments with the symmetry condition one obtains from
writing out the divergence term in equation (11%;) as the

*Cy, .5,

———"7  for N >0.
oOGM _(,(,,,aGN 76)

symmetry condition

Next, we derive an equation that only involves the
potential C. To this end, we consider the master equation
(10%s;) for N = 1 and ¢ = 1, and solve it for the potential
Copo» Which yields

1 oC
Capo = = PyaPp)
ap0 4 7(a /}56455

On the other hand, considering equation (11%;) for N =1
and ¢ = 0, we have that

8C oC
r  poapc = 2V, PP p”
H

0 = 2C 50V’ -

ipo

because C,4 does not depend on g,. Combining both
equations, using the explicit form (B6) of *T’, we obtain

ocC ocC
0= 5’ 5y Py 2V
a¢ ( B) ( B)o ) T¢ H aPaﬁ’m/

(%)
which constrains the dependence of the potential C on
the second derivatives of the fields P and ¢. Knowing
the polynomial dependencies of the potential C on the second
derivatives of ¢ and the Ricci tensor R, we may now derive
the form of the terms that contain the latter. First, we observe
that because of the symmetry condition displayed further
above, the last term of the previous equation drops out, as one
sees by expanding the divergence

oC 0*C 0*C
\% = \% —V,V
”aPaﬂM 0¢3P“ﬂw ”¢+8¢;p8P“ﬂM wVod
0*C
+4av V.V,
8(]5;,),;8P ﬂw e

and rewriting
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_ (k o) (k
V.V, Vo = =2 (P8587 — Py

+

W = W

We can then use the resulting equation to compare
the different powers of the second derivatives of ¢
and the Ricci tensor R,; appearing in the potential C.
Note that none of these terms can depend explicitly
on g, because of the second last equation derived
in paragraph 3 of Step 7 above, which simplifies mat-
ters significantly. It follows, for example, that the
coefficient in the cubic part Clopi” @, of C
has to satisfy

PHYSICAL REVIEW D 89, 104061 (2014)

57 + P88y — Poudlssy )R VY

] ]

(PI/Uth]a + PD[IIPG]p)PKTRKTVDQﬁ + V(ﬂVpV[;)(,/).

0 = L (8 Py )

cubic B P/)((IP/})(SPT}/)VT¢'

However, it is easy to see that the term in brackets can
be inverted, which implies that there cannot be such a
cubic term in C. For the mixed term Cﬁﬁi‘zdRaﬁqb;y,;, only
the last term in (x) is relevant. A brute-force calculation
then shows that also this term has to vanish.

The remaining terms can then be investigated by making
the exhaustive ansatz

C = /= det Pos[Cs(, VaVh, "V otp. §*Ga) + Rap(a1 PP + a; VeV ) + V,Vyp(as PP + a, Vi VP )
+ Vo VsV, Vs (asPP P + agP PP + a; PPN §NO + agPNPGNO P + agVepVP N §V° )],

where the scalar functions «@; may depend on ¢
and V,¢pV% and the free function C, depends on
all scalars indicated in brackets. Thus extracting all
information in equation (x), one is led to a system
of linear differential equations for the functions a;,
which can be solved uniquely to yield the most
general form of the potential C allowed by the master
equations:

C=,/—detPy {al(qﬁ)R - Zd%;(ﬁ)paﬂ%ﬂ

+ Cf(gb’ va¢v(l¢v g(lva¢1 gaga) .

A similar procedure can be applied to determine the
potential C,,, which, as we know, cannot depend on g,. We
can even derive two independent equations for C,,. The
first of these is given by equation (11%;) for N = 2 and

q=0,1ie.,

aC,,

IC o] prey
0= —__wolpp /””yle,c}v,qb -V, T

a¢;;w

where the symmetrization brackets {...} are to be
understood as symmetrizing the pairs po and ek, but
not the individual indices. Here, we made use of the facts
that C,p does not depend on g, either, and that, from
equation (10%s,) with N =2, we may conclude that
Cops,8, = 0. The second equation can be derived from
equation (11%s;) with N =2 and ¢ = 1 using the same
reasoning, which leads to

where we have already used the master equation (9%,) in
the last term. The potential C, which still appears in this
equation, can be eliminated by solving equation (4”), so
that

)
VoV, (CoeUSPH) + ——L M PV 4p
dg,

1

Co=oc—c—

V0V

with C = w/—del:tPaﬂCf. Inserting thi§ back into the

second last equation, the second term in brackets van-

ishes because of the most general form for the scalar
potential obtained above, and hence we obtain

C
0=-22
8¢;l3

-V

1
vp¢w¢
GC,,U
! a¢;yﬁ '

- L, USVEN N,V Cs

Hvpo

Using the above two equations for the potential C,,,
we can now constrain the form of the latter the same
way we did for the potential C. First of all, writing out
the divergence in equation (4”), one can conclude that
C,, can be at most linear in R,; and at most quadratic
in ¢.,5. This is the case because the resulting sym-
metry condition also involves the symmetric pair of
indices of C,;, and, thus, strengthens the two sym-
metry conditions we already used for the potential C.

There cannot be any terms mixing R,z and ¢.,4 for the
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same reason. Evaluating all information contained in
the two equations for C,,, one obtains, as a prelimi-
nary result, that

1
Cpa = \/ _detPaﬂ |:<b1¢+ bZ) <Rpa _EP/MR> + b3RPP0

1
+ ibl (Pa/}(p;aﬁP/m - ¢;/)O’) + a2(¢)P/)O':| ’

with constants by, by, b3 and a new unknown function
a,(¢). From the above expression for the potential Cy,
however, we can then directly conclude that b3 =0,
since this equation cannot contain third partial deriv-
atives of P?; a straightforward calculation yields

CO =/ —det P(1/1|: (/’)V/’qb v(l¢v ¢( af — (lf)’R)
P

da, (o) 1 ocC oCy
d¢ VepV,p 09,

-2 M, PNl

Now consider equation (11%s,) for N =2 and ¢ =2,
which amounts to

0 = —31Copo V¥ + 2!
000 ¢ 8gp a¢ﬂ

Since we know that C,4y) = 0, the master equation (97s,)
implies that the potential Cpy cannot depend on R,
Moreover, since 0Cy/0dg, cannot contain R, either, the
last equation implies that b; = 0. Thus, we arrive at

Cpo‘ Y, _detpaﬁ |:b2 <Rpa - %PPGR> + a2(¢)PPG:| and
B day(¢) 1 8Cf
Co=\/~det Py [‘2 Vg ag, V0|

We can now determine the remaining potentials recur-
sively. Using the second equation derived in Step 9, we get

/ lda,(¢)
- —detPaﬂE d¢ Paﬂ‘

From equation (10%;) with N =1 and g =0, we then
find the potential

CaﬂO =

1
Coprs = 3 [PoyPps + Py, Pos — 2P 5P ).

It is then clear that all other potentials containing at least
one index pair aff vanish. This can be seen recursively
from equation (10%s;) and the fact that all potentials with
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more than two capital indices do not depend on second
derivatives of the fields.

Thus, only the potentials with O indices remain to be
determined. Denoting the potentials

C(N) = Co___() for N > 1

Z zeroes
and using equation (11%s,), we get the

1 N!
V¢V (N +1)!

recursion  Cyyp) =

aC ) Cyy
99 M Ny + ——=—= V,,gb

) 8V¢

for all potentials Cy, 1) with N > 1.

One thus obtains (omitting two additional summands
linear in the velocities K% and K, which have no impact
on the resulting equations of motion) the most general
gravitational Lagrangian satisfying the maximally simpli-
fied master equations obtained in Step 7 and thus defines
gravitational dynamics that can underlie the SO(p,q)-
violating Dirac dynamics,

d2
L=/—detP, {2 3;5(2"5) K-

— () CopsKPK" + ay(p)R —2———-

1d611(¢)
2 d¢

———KP, K“ﬂ

Cll (¢) Paﬂvavﬂ(ﬁ

(s

+ > Con KN + Co) (. VpV op. 5"V oh. us”) |

N=1

with a freely specifiable function a,(¢) [mediating the
derivative coupling between the scalar field ¢ and the
metric P%—a nonderivative coupling thus obviously
requires a;(¢) = const] and a freely specifiable func-
tion Cg)(¢. V¢V b, g°V . g,9%). in terms of which,
however all potentials Cy, are determined by virtue
of the

19,
AR

recursion start  C(j) = ) M SV

and the recursion formula further above.

A striking feature of the above dynamics is that while
the field g, appears in the potentials Cy), for N >0,
the corresponding velocity K, does not appear in the
Lagrangian at all. But although the geometric field g, thus
does not have its own “dynamical” equations of motion, it
can nevertheless be fully determined by the dynamics of the
other variables P% and ¢ once the recursion is employed.
Indeed, in Appendix C, we will illustrate this mechanism
explicitly, in order to show that the absence of velocity
terms K“® does not imply dynamically undetermined
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geometrical degrees of freedom. Thus the particular sol-
ution of the master equations derived here is indeed a
meaningful solution of the full set of master equations.

Step 10: Additional energy or
symmetry conditions

Additional energy or symmetry conditions were not
needed to obtain an analytic solution of the master
equations in this case.

Discussion

In summary, we found a family of canonical gravita-
tional dynamics for the vector-tensorial spacetime geom-
etry defined by the metric g and the vector field W that can
support the deformed Dirac equation we started from,
and which indeed presented our example for a decidedly
nonstandard model type matter action in the introduction.
We emphasize again that we did not propose these specific
matter equations as phenomenologically relevant matter
dynamics, but as an instructive example that shows how to
proceed for any matter dynamics the reader may wish to
consider for her own phenomenological or theoretical
reasons.

Kinematically, we found that, in this specific case,
predictivity and quantizability of the matter field equa-
tions amount to the condition that depending on the vector
field, the metric part of the tensor-vector geometry may
have either Lorentzian or Riemannian signature, with the
resulting SO(1,3) or SO(4) symmetry however being
directly broken by the vector field part of the geometry.
More precisely, if the vector field has g-norm less than —1,
the metric must have Riemannian signature in order to
render the matter theory predictive and quantizable,
whereas a Lorentzian signature of the metric is enforced
in all other cases. While a Riemannian signature for the
metric may appear nonphysical, it should be noted that
this is not the case, since it is the hyperbolicity of the
principal tensor that is physically relevant, and that the
intuition that the metric should have Lorentzian signature
merely stems from the case of Maxwell theory, where the
principal tensor indeed is identical with the (inverse)
metric, and where this intuition is therefore correct. But
only there.

The comparatively high effort required to solve the
master equations for the matter dynamics considered in
this second case study indicates how hard it is, in general, to
construct an appropriate kinematical and dynamical theory
of spacetime that can underpin specific phenomenological
models of matter. But at the same time, we saw that it can
be done. The complexity of the gravitational Lagrangian
obtained in this case further makes it pretty obvious how
hopeless it would be to try to arrive at appropriate
gravitational dynamics by mere guessing, without having
constructed the pertinent master equations.

PHYSICAL REVIEW D 89, 104061 (2014)
V. CONCLUSIONS

Any set of matter field equations—whether considered
for phenomenological reasons, theoretical considerations,
or the mere heck of it—must be supplemented by dynamics
for their coefficients in order to be completed into a closed
theory. Physically, we like to call the degrees of freedom
making up the coefficients of matter field equations the
geometry of spacetime, and then refer to the dynamics of
these degrees of freedom as gravitational dynamics. Using
this parlance, in this paper we presented the ten-step recipe
for the practical derivation of gravitational dynamics—
namely the derivation of the gravitational Lagrangian as the
solution of a set of master equations, which in turn are
constructed directly from prescribed matter field
dynamics—which underpin the matter field equations of
choice such that the latter can be both predictive and
quantizable. From this point of view, gravity emerges as a
mere auxiliary science.

The general recipe for the extraction of these master
equations from the matter field dynamics comes as ten
straightforward rules, and presents the remarkably simple
practical essence of a number of combined results, whose
conceptual spirit is that of geometrodynamics developed
more than five decades ago but whose technical derivation
in the broad context considered here required several pieces
of decidedly more modern mathematical machinery. Now
the central point of the present paper is that, once the rules
are derived, their application to concrete matter models no
longer requires any more sophisticated mathematical tech-
niques than those taught in any introductory course on
general relativity.

We then demonstrated the concrete application of this so
properly founded recipe to two completely worked, instruc-
tive case studies. The first one considered Maxwell matter,
but goes through in completely unaltered fashion for any
standard model matter dynamics and yields, as the unique
solution to the master equations, the Einstein-Hilbert action
with a cosmological term. The second case study then
considered a particular example of a matter model beyond
the standard model, for which we also constructed and then
solved the master equations explicitly and thus derived
appropriate gravitational dynamics. By these examples we
were able to show, in technical detail, what is needed on the
gravitational side in order to make a given linear matter
model work. All one has to do is to determine suitable
underlying gravitational dynamics according to the general
rules we provided. Given that only about 4% of the matter
energy in the universe appears to be of standard model
origin, having such a recipe at one’s disposal is hardly a
luxury.

The scope of the recipe given here is not restricted to
field matter. For one may, instead, start from a particular
dispersion relation for massive or massless point matter.
Remarkably, it turns out that in order for such dispersion
relations to arise as a primary constraint from some point
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particle action, they must have a covariant formulation in
terms of an again bihyperbolic tensor which must then
be used in lieu of the principal tensor one derives
for field matter, and which consequently doubles as
both the principal tensor and the fundamental geometric
tensor, at which point the recipe can be applied to
extract the associated master equations; see [2]. Thus by
a different physical mechanism than in the case of field
matter, but with precisely the same physical inevitability
and the same central technical condition of bihyperbo-
licity, any postulated dispersion relation for point
particle matter is suitably constrained and supplemented
with a dynamical law by solving the pertinent master
equations.

A pleasant feature of the presented method to obtain
gravitational dynamics from prescribed matter dynamics is
that the latter contain the entire physical input into the
master equations. In other words, the gravitational theory is
precisely as physically relevant as the matter model it is
extracted from. In case there are various matter fields
whose dynamics do not yield the same principal tensor, the
principal tensor of the entire theory is quickly seen to be the
product of the principal tensors of the individual theories.
Thus the remarkable consequence, and wider lesson, is that
any new discovery about matter immediately translates into
an appropriate gravity theory. Depending on the newly
discovered matter dynamics, this could still be standard
general relativity or not. The observed matter, and only the
observed matter, suffices as an input and will be the judge.
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APPENDIX A: ILLUSTRATION OF THE
DERIVATION OF DIFFERENTIAL
COVARIANCE EQUATIONS

It suffices to describe the method for one case, which is
even simpler than the simplest case that can arise in our
context. Assume that there is only one hypersurface field
G, and we are aiming at phrasing the condition for some

PHYSICAL REVIEW D 89, 104061 (2014)

(0, 2)-tensor field C,, to be constructed from only JG in
terms of a partial differential equation. This of course
amounts to the condition that

o 0 (v \\ oy oy
C’D (a)—}(‘z aya <a)_)/;, Gﬂ - 8)7’7 a)_il_/ Cﬂb(aaGﬁ),

which simply expresses that the tensor components con-
structed from the transformed field components are the
tensorially transformed components constructed from the
untransformed field components.

The first step to convert this algebraic condition on C,,
into two partial differential equations for C,,, is to rewrite
the algebraic condition in terms of the Jacobian of the
coordinate transformation and all its derivatives, i.e., in our

example, in terms of

_»
-5

2y
and Tﬁ&/_} :8—y

T% ——
‘ 055"

such that it takes the form

Civ (T“&Tﬁ[-,aiyaGﬁ + 17, ,—,Gﬂ) = T";T";C,(9,Gp).
Note that 7 5 is symmetric in its lower indices due to the
Schwarz rule, but only because they refer to the same (the
barred) set of coordinates—if the tensor C,, depended,
other than in our current example, on the first partial
derivative of a hypersurface vector field G%, rather than a
covector field G,, one could however still arrange for the
then appearing derivative of the Jacobian to be with respect
to coordinates from the same (then the unbarred) set of
coordinates, by inserting appropriate factors of the Jacobian
or its inverse; similarly one proceeds where higher than
second derivatives appear.

The second step towards converting the algebraic
covariance condition into partial differential equations is
to derive the former first with respect to the highest
derivative of the Jacobian and to evaluate the result at
the identity transformation, and then to repeat this with
respect to all lower order derivatives of the Jacobian, up to
and including the zeroth derivative, i.e., with respect to the
Jacobian itself. For the present case, the derivative with
respect to 77,5 yields

@ 3 f 5 _
0 ﬂc,waoa(&aﬁ Gﬁ =0

)
and the derivative with respect to 7°; yields

a a S a 5P <6 9 5 SU U S5
O ﬁcﬁf/(@s‘sa&g + 5a5€5/}) 8_y“Gﬂ = (850505 + 8;0467)C,,

which simplify to
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8@ C,; =0 and
a(_’ﬁCﬁ DG[)).U + aaa.Cﬁ DGU a 66C + 56C

v jic
These two differential equations encode the entire infor-
mation about C,, being a second rank covariant tensor
constructed from the first derivatives of a covector field
G,. (In this case one can solve the covariance equations
all by themselves by first observing that the first
covariance condition implies that C,, at most depends
on the antisymmetric part J;,Gz of 9,G; and then
considering the contraction of the second equation with
respect to 6 and o, i.e., 0°°C;;G;; = C;; which, using
the insight from the first covariance equation, becomes
977C, ;G 5 = Cpp which yields the final result that
C,, must be proportional to 9,G,). This is the well-
known result that without further structure, the only
second rank tensor that can be built from the first
derivatives of a covector field is the exterior derivative

of the latter.)

APPENDIX B: FIELD REDEFINITIONS
SUGGESTED BY COVARIANCE EQUATIONS

We now discuss what can be extracted from the
covariance equations for the case where one of the
geometric hypersurface tensor fields G* can be formally
employed as a hypersurface metric. As discussed in
appendix A, covariance equations reflect the tensor-
density nature of the potentials Cg, g for N > 1, which
are functions of the form Cp 5, (G‘{] 0G4, 82GA) The
partial derivatives of the tensor flelds G* are of course
not tensor fields, and hence the covariance equations
encode how those nontensorial fields have to be com-
bined in order to produce the weight-one tensor den-
sities Cp, g, -

A fruitful idea is to simplify the covariance equations
by replacing the arguments G*, 9,G*, 97;G*, on which
the scalar and tensor potentials depend, by a set of
arguments that simplifies the covariance equations. In
particular, this is possible if one of the fields G* can be
employed as a hypersurface metric. Thus, let us assume
that the hypersurface geometry is only given by an
inverse metric, so that G4 = (P*). For simplicity, we
discuss this particular case first, and then generalize it to
all cases where, apart from a hypersurface metric, we
have an arbitrary number of additional hypersurface
tensor fields, G* = (P*,...). The covariance equations
for the simple case are

Cg,..By

0 = pale LBy
2 a
88”D)P 4

(B1)

and
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oC oC
B,. 8 pap PEB1- By

0 = 2Pk
00,,P% P 952, P

40, pan 2.8y
T S, P

(B2)
Since the field P% can be employed as a hypersurface
metric, we can now perform a change of arguments
from (P,9,P%,0;,P) to a new set of arguments
(P, Fﬂy,Raﬂﬁ, Saﬂ},(;) trading the first partial derivatives
of the field P* for the Levi-Civita connection coeffi-
cients I' of P?, and its second partial derivatives for the
corresponding Riemann-Christoffel tensor R and another
variable S. Explicitly this transformation is given by

g, =PIy, P« . (B3)
R(l/i}/(i = Rlﬂymaﬂy(spkr,uy + R261ﬂpke(1ﬂyﬁpﬂb.ﬁpke.fﬁ (B4)
Saﬁy& = Slﬂykraﬁyﬁpkr,ﬂv + SZGTﬂL/KeaﬂyépﬂyﬁPKG,T’ (BS)

where for brevity we used a comma to denote partial
derivatives. The coefficients in the above expressions are

1 (04
T e = 5 PPy P = 5Py (B6)
Rlﬂbkmﬂyé = 25([;;Pa](KP7)[y5;])7 (B7)
Ro% yuncapys = 0, Py aP picPe) %)) + 01, Puy Py Pe) oS
+ 0 LpPe) Pyl + 200, L gyl Py
1
2Pl gl e 99
1
5 PutoP P 55,
1
+5 PPyl pPe Po): (BS)
1 s = —Po P s8] + L Py Py and
1 weaprs = Pl (30 05) T 5 Lxl(p0r Lo)0a AN
(B9)
2% wreapys = 2P auPr) (59705 Pre = Pp)(uPr)ly05) PucOi-
(B10)

The variable S,4,5 is needed since the Riemann tensor
does not contain all the second partial derivatives of the
field P%. Without this variable, the change of arguments
is not invertible. We note that the variables S,,5 are not
components of a tensor and feature the symmetry
Saprs = Sa(pys)- In order to express the original covariance
equations now with respect to the new arguments, we
also need the inverse transformation:
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po#  — —2pulary), (B11)
Py — L puapi(R, st Ry s) — PRPP (S + Spers)
70 3 aypo Prad afyd Payd
1
x puf
+ 3 Pp PP (T TG+ 207,T5)

) (2} o
+2PT TG+ T (B12)

a(y o) J’Fg

(

)o*

With the help of the transformation formulas, we can
then cast the first covariance equation (B1) into the form

0Cp, . B,

=0,
N apfyd

(B13)

and the second covariance equation (B2) can be rewritten
in terms of the new arguments as

LCB‘;BN =0. (B14)

arﬁr
In other words, the potentials Cp, g, cannot explicitly
depend on the new nontensorial variables I'f and S,4,5,
but we have that Cy g = Cp g (P* R,ss). This is
of course what one would expect according to the well-
known theorem that the Riemann tensor is the only tensor
that can be formed from a metric and its first and second
derivatives.

This procedure of changing the arguments on which
the potentials depend can be generalized to all cases
where, in addition to a metric, one has an arbitrary set
of other hypersurface tensor fields GA. The first and
second partial derivatives of the additional fields G* can
then be replaced by the first and the symmetrized
second covariant derivatives of G* using the torsion-
free and metric compatible Levi-Civita connection of the
metric at hand.

For instance, if one has, in addition to P? also scalar and
covector hypersurface fields ¢ and g,, the symmetrized
covariant derivatives of the fields ¢ and g, are given by

¢;/m = ¢./m - Fg5¢,;u (B15)
Gap = Gap — gﬂrﬁ[;, (B16)
. = -2 Fﬂ — l"/‘
9a(pr) = apy — “9ur! pya ~ ' py
- gﬂ (Fﬁ(ﬂsy) - ngrl//”i’ - F}lf(ﬂr;)a)’ (B 17)

from which the partial derivatives of the variables ¢ and g,
are recovered by virtue of
b po = Prps + poos (B18)

Gap = Gap + Fgﬂg/u (Blg)
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Yapr = Jas(pr) T Juw [21—‘10/((;/5;) + T 0] (B20)
1

+ gw[sﬂaﬂy = Ropuy = Rayup (B21)

—2P (T}, Ta + T pl5 + T 15)]. (B22)

The antisymmetric part of the second covariant deriva-
tives of the fields G* does not have to be considered,
because it can always be expressed by the Riemann tensor
and the undifferentiated fields GA. After rewriting the
respective covariance equations, one again ends up with
equations (B13) and (B14). In particular, this can be done
for all hypersurface point particle geometries of arbitrary
degree by formally employing the particular field
P% = P(¢*, €, n,...,n) as a metric, and treating all
other tensor fields P* % := P(e™,...,e%,n...,n), for
I =3,...,deg P, as additional fields. It can also be done
for area metric geometry by employing the tensor field G*
as a metric, with respect to which one defines the Levi-
Civita connection and the Riemann tensor. However,
although we are always guaranteed—by the bihyperbolic-
ity and the energy-distinguishing properties—that the
tensor field P%/, which is distinguished by the matter field
equations one employs, can be formally used as a metric
tensor on a given hypersurface in M, it might not be
possible to find an invertible transformation of arguments
from G#, 0G#, D0G*, ... to a new set of arguments, which
contains P%. Nevertheless, if such a transformation exists,
one can proceed to rewrite the master equations with
respect to these new arguments.

APPENDIX C: EXPLICIT MECHANISM
DETERMINING THE FIELDS g, IN THE
SECOND CASE STUDY

The most general gravitational dynamics that can under-
lie the predictive and quantizable SO(p, ¢)-violating Dirac
dynamics considered in the second case study were found
to be unique up to two freely specifiable functions, a;(¢)
and Cg) (¢, VPV oo, "V b, gog”). While the function
a,(¢) merely mediates the derivative coupling between
the metric P% and the scalar field ¢, the role of the function
C(p) can only be revealed by an explicit solution of the
recursion relation derived in Step 9 of the second case
study. Since, apart from the specific set of arguments it
depends on, the potential C(g) is completely undetermined
by the master equations, we can freely prescribe any
additional condition that is compatible with the master
equations and at the same time allows one to determine
C(0)- The additional assumption we would like to introduce
here, for definiteness, is that the Lagrangian depends at
most quadratically on the velocities K. Since the most
general solution of the recursion relation can be obtained
rather straightforwardly under this assumption, a sketch of
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the derivation shall suffice. First of all, we can ignore
the dependence of the functions C(y) on the scalar field ¢
itself. There is no way to constrain this dependence in
any way. We simply need to keep in mind that any
integration constants, which arise when solving the
recursion relations, must be turned into arbitrary functions
of ¢ at the end. Introducing the shorthand notations
Q=V%V,p, ¥ = g,V and & = g,¢* for the arguments
of the functions Cy), the general recursion relation takes
the form

1 N [0Cy ,
MIT QN+ 1) 6\1/ @+ )

9Cw) ICy-i ICy-;

e (Y HEN+20—nm + ¥y

Now, assuming that C(N) =0 for all N >3, we can
immediately integrate this equation for N = 3, which yields

|
L2 = 4 /—detPaﬂ |:]j?(g¢)gaK2 +

ag() az(¢)
(14 gog™)'? 1+ g.9"

+ as(p) VPPV s + a7(¢)] .

as(¢)

(1)1/2

K* +
(14 ga9

PV K +

The last two lines denote the most general form for the
potential Cg) that leads to a Lagrangian that is at most
quadratic in the scalar velocities K. As we have mentioned
already, the free functions az(¢),...,a;(¢p) cannot be
further constrained, so that there is a sizable class of
possible gravitational theories that can underlie the matter
field equations employed in the second case study.

In order to understand the fate of the geometric variable
gu» We first investigate a special case of such a theory. For
definiteness, we will specialize to a particularly simple
solution for the Lagrangian in order to study the dynamical
properties of the derived gravitational theory. We set
a,(¢) = —k = const, az(¢p) =u = const, and all other
ay, ...,a7; = 0. Then the Lagrangian reads

K2
L = A/~ det Pa/} [Kc(lﬁng(l/}Ky(s — kR + ﬂT‘gag{l
K n (gﬂvﬁ@z] .

+ ZM X 4
1 + go9° 1 + gq9

It is easy to analyze the dynamics of this theory in the
canonical spacetime picture. To this end, one performs the
inverse Legendre transformation of the above Lagrangian
with respect to the velocities K. Since the Lagrangian is
singular in the velocity K, one picks up additional

(gﬂv/i¢)2 -
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Cy = A(E)Q™ U™ + B(¢&)

for some constant n and, up to now, freely specifiable
functions A(&) and B(£). Reinserting this result into the
same equation for N = 2 determines C(j), and reinserting
both into the equation for N = 1 yields C ;). All additional
unknown functions, which arise in this process, can then be
determined by inserting C(;) and Cg) into the formula for
the recursion start. This leads to the condition n(n + 1) x
(n+2)A(¢) =0 and we may then determine all possible
solutions for which any of these factors vanish. After a fair
amount of algebra, one observes that the cases A(¢) =0,
n =—1 and n = -2 are actually equivalent. Finally, the
most general solution for the second part L, (determined by
the recursion formula and that for the recursion start) of the
full gravitational Lagrangian, under the condition that it is
at most quadratic in the velocities K, is

as(¢)

2 2613((1))
a5(¢)K + 1 +g(lg(zgﬂvﬂ¢K+ (1 +gaga)l/2d}vﬁ¢K
¢ ag(¢
T O T

Lagrange multipliers A, in the process. After performing
the Legendre transformation, the complete Hamiltonian for
our particular gravity theory becomes

ol
4ﬂ \/— 7 (1 + gug”) = 1g"Votp
_\/3 M— (gﬁvﬁfﬁ)z

o (1+9.9%)

=0, (2" + gygafr")}(y)

Caﬂ}/&ﬂ'aﬂﬂ'},{; + KV - PR

+ A

+ {ﬂaﬁ‘cﬁpaﬁ + ”‘Cﬂ/(ﬁ + ﬂa‘cﬁga}(y) ’

with the potential C%7% = 4prpd)F —2p?Pprd  and we
used the shorthand v/—P := /= det P 4. For further analy-
sis, we simplify matters by setting 4 = 1. The Lagrange
multiplier A, enforces z%(y) =0 as an additional con-
straint. Since 7%(y) =0 has to hold for all values of the
evolution parameter ¢, this also implies that z%(y) = 0.
However, Hamilton’s equations for the variable g, using the
above Hamiltonian yield
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#(3) ~ ~N() L -

where the weak equality ~ means that we already made use
of the constraint z* = 0. Hence, the variable g, is com-
pletely determined by the solutions of the equations of
motion for the scalar field ¢ and the metric P% by

Py — nvw} o).

9a(y) =2 [\/:5 V;gb] (v)-

Hamilton’s equations for the variable z* can be used to
determine the Lagrange multiplier A,, and to eliminate the
variable g, and the momentum z* altogether. From the
remaining equations of motion, it can then be checked that
the effective Hamiltonian for the dynamics of the scalar
field ¢ and the metric P* is given by

PHYSICAL REVIEW D 89, 104061 (2014)

1
H= [ dy|N cabro vV—PR
foor gz emema

- ﬁva(pvaqa}

1
+
4y/—P

T {r L P+ zzﬁw}] o).

which is mathematically equivalent to a massless scalar
field nonderivatively coupled to Einstein gravity.

Our considerations show that, although the variable g, is
not dynamical in the sense that it satisfies its own
dynamical equations of motion, it is nevertheless com-
pletely determined by the dynamics of the other degrees of
freedom of the theory.
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