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We present the practical step-by-step procedure for constructing canonical gravitational dynamics and
kinematics directly from any previously specified quantizable classical matter dynamics, and then illustrate
the application of this recipe by way of two completely worked case studies. Following the same procedure,
any phenomenological proposal for fundamental matter dynamics must be supplemented with a suitable
gravity theory providing the coefficients and kinematical interpretation of the matter theory, before any of
the two theories can be meaningfully compared to experimental data.
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I. INTRODUCTION

There is no reason to assume, and in general it is plainly
false, that general relativity still provides a consistent
kinematical and dynamical theory of spacetime once the
matter fields inhabiting the spacetime are no longer standard
model fields. The simple reason for this is that the
gravitational dynamics must yield spacetime geometries
to which the matter theories at hand can couple without
violating elementary physical principles. Indeed, even com-
paratively innocent-looking deviations from the dynamics of
standard model matter require an entirely new kinematical
and dynamical theory of the underlying spacetime.
For instance, assume a phenomenologist discovers that

some observed spinorial matter field Ψ must be described
by a classical field equation of motion of the form, say

ðiγa þWaÞDaΨ ¼ 0;

which employs a geometric background that features a
vector fieldW in addition to a metric tensor field g (suitably
restricted such that the spacetime Dirac matrices γ and the
spin covariant derivative D appearing in the field equation
can be constructed). At first sight, such a modification of
the Dirac equation indeed seems innocent enough for one
to be tempted to stipulate that the dynamics governing the
background be still provided by Einstein’s gravitational
field equations for g and maybe some Abelian gauge field
dynamics for the vector field W. However, we will see that
this particular choice of gravitational dynamics would have
solutions that render the above matter theory either non-
predictive (thus not even classically acceptable), nonquan-
tizable, or both. With predictivity being an unconditional
feature of any classical matter theory and quantizability
ensuring relevance beyond the classical domain, this result

is clearly unacceptable. One may thus either reject the
above matter field dynamics as unphysical, or, if our
phenomenologist insists that this equation describes
observable fundamental matter, we must instead provide
another gravity theory whose solutions render the matter
theory predictive and quantizable. Are there such gravita-
tional dynamics that can underpin the viciously modified
Dirac equation above?
This question has an intriguing—and even constructive—

answer. Not only for the above example, but indeed for any
specific linear matter dynamics, one can derive the complete
kinematical and dynamical contents of the underpinning
gravity theory directly from the matter field equations it is
supposed to carry; for the technical derivation see [1,2]. The
only construction principle is that the resulting gravitational
kinematics and dynamics must render the assumed matter
field equations both predictive and quantizable; everything
else follows from mathematical theorems.
Showing that these two basic assumptions already

completely fix the kinematics—such as the distinction of
initial data surfaces, the construction of observer frames
and thus the interpretation of matter field components,
massive and massless dispersion relations, the duality maps
associating momenta and velocities for massive and mass-
less particles, and so forth—requires the employment of an
intricate interplay of real algebraic geometry, convex
analysis and the theory of partial differential equations
[3]. The central result is that in order to enable predictivity,
the principal polynomial of the matter field equations must
be hyperbolic, and in order to enable quantizability, the
associated dual polynomial must be hyperbolic as well.
This bihyperbolicity imposes so severe a constraint on the
coefficients featuring in the matter field equations that the
above kinematical constructions are uniquely fixed.
With the kinematical structure of the theory determined,

the coefficients featuring in the matter field equations must
then follow dynamics whose initial-value formulation
is commensurate with the kinematically determined
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projection of the spacetime geometry to initial data surfa-
ces. In other words, the dynamics must be such that it
evolves geometric initial data between hypersurfaces that
also serve as initial data surfaces for the given matter field
equations. Casting this idea into tractable mathematical
form, one proceeds principally along the same lines that
were laid out four decades ago by geometrodynamicists
[4,5], but with the technical scope vastly extended to any
bihyperbolic spacetime geometry. The final result of this
effort, derived in [2] and explained in great conceptual and
technical detail in [6], are the master equations reproduced
in Sec. II. The master equations are a set of linear
homogeneous partial differential equations, whose coeffi-
cients are constructed directly from the coefficients featur-
ing in the specified matter field equations and whose
solution provides (the collection of coefficients of a series
expansion of) the gravitational Lagrangian.
The present paper is concerned with cutting away the

heavy technical baggage that comes with the derivation of
the above results, and manages to condense their practical
implications into an easily executable recipe, by which one
constructs the master equations from any given linear
matter field dynamics in eight easy steps. The relevance
of the such constructed master equations is that a solution
to the master equations is a gravity theory that can carry
the specified matter dynamics.
Thus the master equations must be practically solved, in

a ninth step, in order to obtain a concrete gravitational
Lagrangian. In cases where such a solution of the master
equations is difficult to obtain, one may inject at this stage,
as a tenth step, additional physical assumptions such as
energy conditions on the matter or (compact) symmetry
assumptions on the spacetime geometry in order to sim-
plify the master equations. Such additional assumptions,
however, are not fundamentally needed and the master
equations are already uniquely determined without them.
Any additional assumptions beyond predictivity and quan-
tizability only serve as a possibly convenient means to the
end of extracting information from the full master equa-
tions, for specific physical situations where the master
equations simplify to a more tractable form.
Two completely worked case studies—namely the com-

paratively simple derivativation of the Einstein-Hilbert
Lagrangian as the unique solution to the master equations
determined by Maxwell electrodynamics in Sec. III, on the
one hand, and the more involved derivation of the gravi-
tational dynamics that underlie some prototypical non-
standard model matter dynamics in Sec. IV on the other
hand—present illustrations of the general ten-step pro-
cedure described in Sec. II. These case studies indeed
illustrate both the technicalities of the recipe and its
significance in three respects. First, they are an instance
of the rule that an example sometimes says more than a
thousand words; having worked through the two case
studies, the reader will have no difficulty in applying the

recipe to the matter model of his interest. Second, the first
case study reveals that the complete kinematics and
dynamics of general relativity are simply a consequence
of having predictive and quantizable Maxwell (or other
standard model) matter dynamics, while the second case
study presents an explicit example of nonstandard model
matter dynamics that are rendered predictive and quantiz-
able if the underlying gravity is the one derived according
to the recipe summarized in this paper.
The relevance of the simple procedure described and

illustrated in this paper—namely for deriving gravitational
Lagrangians directly from the dynamics of matter populat-
ing the spacetime—of course lies beyond the two specific
examples provided here. For it allows one to derive a
suitable gravity theory for any matter theory that one may
be prompted to consider for phenomenological or theo-
retical reasons. But this possibility immediately implies an
imperative: gravitational kinematics and dynamics must
never be postulated, since unless they accidentally coincide
with the results of the procedure described in this paper, any
such postulates would generically be in contradiction to the
quantizability of the matter equations the resulting space-
time geometries must carry. That, conversely, the gravity
can instead be fully and quite easily constructed from this
consistency postulate is, of course, very good news.

II. PRACTICAL GUIDE TO THE DERIVATION
OF GRAVITY ACTIONS

The following ten-step procedure provides the simple
practical recipe for the construction of canonical gravita-
tional dynamics from any previously specified quantizable
classical matter dynamics. These rules follow from the
results obtained in [1] and [2] and can be laid down without
any recourse to the heavy technical machinery that was
needed for their derivation. To see the abstract rules at
work, the reader finds an illustration for each of the steps
described here in the two completely worked case studies
provided in Secs. III and IV.

Step 1: Specify test matter dynamics

Provide classical dynamics for a “matter” field Φ (or a
collection of such) on a smooth manifold M, by specifying
partial differential equations of motion whose coefficients
are completely determined by some “geometry” (described
by a tensor field G of a priori arbitrary type, or a collection
of such), wherein the matter field Φ takes values in some
representation vector space V of the general linear group
GLðdimM;RÞ (or that of a group defined with recourse to
G; see the second case study). Irrespective of any chosen
type of matter field or geometry, general coordinate
covariance of the matter field equations can be ensured
by deriving them from a scalar action functional

Smatter½Φ; G�
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by way of variation with respect to the matter field, which
will result in field equations valued in the dual space V�.
Test matter, in particular, is defined by any equation of

motion (i) which is linear in the matter field, i.e., takes the
form

XN
n¼0

Qa1…an
AB ∂a1 � � � ∂anΦ

B ¼ 0;

where A; B ¼ 1;…; dimV and ΦA are the components of
the matter field with respect to some basis of the repre-
sentation space V—where the linearity ensures that every
solution can be scaled to arbitrarily small amplitudes in
order to reduce backreaction below any desired bound—
and (ii) whose coefficients Qa1…aN

AB of the highest order
derivative term are a function of the geometric tensor field
G (but not of any of its derivatives)—which ensures that the
causal structure of the matter field dynamics is encoded in
the spacetime geometry at each point; see the next step.

Step 2: Calculate the principal tensor field

If the matter field equations feature no gauge
ambiguity—meaning that all components of the tensor
field Φ are uniquely determined by a solution of the field
equations—then the principal tensor associated with these
field equations is the totally symmetric contravariant
tensor field which is constructed from the highest order
coefficients Qa1…aN of the Nth order field equations by
virtue of letting

PðkÞ ≔ �ωdet
A;B

½Qa1…aN
AB ka1 � � � kaN �

ðcancel repeated factorsÞ

for every covector field k, and where the instruction to
cancel repeated factors refers to not further reducible
factors whose product Pð1ÞðkÞ � � �PðfÞðkÞ ¼ PðkÞ. If the
field equations do contain a gauge ambiguity, first fix the
latter by either imposing an explicit gauge condition or
transferring to gauge-independent variables. The rank of
the totally symmetric tensor P that results from polari-
zation from the above definition will appear explicitly in
a number of places and be denoted degP throughout.
The above construction of the principal tensor is unique
up to choice of a scalar density ω of the appropriate
weight in order to render P a tensor and an overall sign
� to be chosen later. The choice of density amounts to a
choice of volume on the spacetime and would have been
used already in the formulation of the matter action if the
field equations have been derived from such.

Step 3: Calculate the dual tensor field

Let Pð1Þ;…; PðfÞ be the mutually distinct irreducible
factors (i.e., tensors that themselves cannot be written as the
tensor product of two tensors of nonvanishing rank) of

the principal tensor field P and consider for each such PðiÞ
the map DPðiÞ that maps every covector field k with
PðiÞðkÞ ¼ 0 to the vector field with components

ðDPðiÞðkÞÞa ≔ ðdegPðiÞÞP
aa2…adegPðiÞ
ðiÞ ka2…kaN ;

where degPðiÞ denotes the rank of the irreducible factor
field PðiÞ. The field P#

ðiÞ dual to the factor field PðiÞ is then
the totally symmetric contravariant tensor field of lowest
rank degP#

ðiÞ (which may differ from degPðiÞ) defined by
the condition to vanish precisely on the images of the PðiÞ-
null covectors,

P#
ðiÞðDPðiÞðkÞÞ ¼ 0 precisely for all k with PðiÞðkÞ ¼ 0:

The dual tensor field is then defined as the product of the
duals of all the irreducible factors,

P#ðXÞ ≔ P#
ð1ÞðXÞ � � �P#

ðfÞðXÞ

for all vector fields X, and thus satisfies the duality
condition P#ðDPðkÞÞ ¼ 0 for all k that are P null. The
dual tensor always exists (if the tensor field P is hyperbolic,
see the next step) and can be constructively obtained by
Buchberger’s algorithm [7], which however quickly
becomes expensive with increasing rank degP of the
principal tensor field.

Step 4: Restrict to bihyperbolic geometries

A necessary condition for the matter equations of
motion to be predictive is that the principal tensor field
P is hyperbolic [8]. This amounts to the simple algebraic
condition that there exists a covector field h such that
(i) PðhÞ is an everywhere nonvanishing function and (ii) for
every covector field q the equation

Pðhþ λqÞ ¼ 0

admits only everywhere real-valued functions λ as solu-
tions. Any covector field h with this property is called a
hyperbolic covector field.
A necessary condition that the matter equations be

canonically quantizable is that the dual tensor field P# is
hyperbolic [3], where hyperbolicity is defined exactly as
above, but now with vector fields H and Q taking the role
previously played by the covectors fields h and q. Any
vector field with that property is called a hyperbolic vector
field. The overall sign of P can then always be chosen such
that every hyperbolic covector field h is P positive, i.e.,
PðhÞ > 0, and we choose to impose this sign convention
for definiteness.
Since both the principal and the dual tensor field are

defined in terms of the tensor field G providing the
spacetime geometry, the hyperbolicity of the former two
tensor fields imposes corresponding algebraic conditions
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on the latter, which immediately exclude certain algebraic
classes of geometries.

Step 5: Determine the geometric degrees of freedom

While suitable initial data surfaces do not need to be
constructed explicitly in order to derive the gravitational
dynamics, we assume that such an embedded initial data
surface has been chosen and gives rise to linearly inde-
pendent vector fields e1;…; edimM−1 along the hypersur-
face that are tangent to it as well as a covector field n along
the hypersurface that annihilates each of the said tangent
vector fields and that is hyperbolic (see the previous step)
and normalized in the sense that PðnÞ ¼ 1.
Then bases for all spacetime tangent and cotangent

spaces along the initial data hypersurface XðΣÞ are
provided by

e0≔
DPðnÞ
degP

; e1;…;edimM−1 and ϵ0≔n;ϵ1;…;ϵdimM−1;

respectively, satisfying the usual duality condition
ϵaðebÞ ¼ δab. Note that the principal tensor field P thus
enters explicitly into the definition of e0 and thus implicitly
into that of the ϵ1;…; ϵdimM−1.
Now consider a collection of hypersurface fields GÂ,

where the hatted index Â runs over all hypersurface index
combinations that are required to reconstruct the geometric
tensor field G everywhere along the initial data hypersur-
face from theGÂ and the above-listed bases. For instance, if
G is a (1,1)-tensor field, then

G ¼ Gðϵa; ebÞea ⊗ ϵb

¼ Gðϵ0; e0Þ|fflfflfflfflffl{zfflfflfflfflffl}
≕G0

0

e0 ⊗ ϵ0 þGðϵ0; eβÞ|fflfflfflfflffl{zfflfflfflfflffl}
≕G0

β

e0 ⊗ ϵβ

þ Gðϵα; e0Þ|fflfflfflfflffl{zfflfflfflfflffl}
≕Gα

0

eα ⊗ ϵ0 þ Gðϵα; eβÞ|fflfflfflfflffl{zfflfflfflfflffl}
≕Gα

β

eα ⊗ ϵβ

and thus GÂ ¼ ðG0
0; G0

β; Gα
0; Gα

βÞ consists of one hyper-
surface scalar, one hypersurface covector, one hypersurface
vector and one hypersurface endomorphism field. The
hatted index Â would thus range, in this case, over the
values

Â ∈ f 0
0; 0

β; α
0; α

βg:

For any other valence of the geometric tensor field G, one
proceeds in exactly analogous fashion.
But now since the hypersurface fields GÂ determine the

geometric tensor field G, which in turn determines the
principal tensor field P, the above duality conditions
between the tangent and cotangent space bases amount
to precisely dimM conditions

Pðϵ0Þ ¼ 1 and ϵα
DPðϵ0Þ
degP

¼ 0

relating the hypersurface fields GÂ.
Thus only an unconstrained subset GA (for a suitable

range of the unhatted index A) of the above hypersurface
fields GÂ, whose choice automatically implements the
above conditions, presents independent geometric degrees
of freedom (see, for instance, the first case study). However,
in some cases it may be convenient or even necessary to
make suitable field redefinitions at this point in order to
find a workable set of unconstrained degrees of freedom
(see, for instance, our second case study).

Step 6: Calculate the coefficients of the
master equations

For each independent geometric hypersurface field GA

that has been obtained directly by projection of the
spacetime geometry G as described in the previous step,
construct the coefficient functions

MAγ ≔

8>>><
>>>:

for each G…0…
… include a summand −G…γ…

…

for each G…
…0… include a summand − ðdegP − 1ÞG…

…α…Pαγ

for each G…α…
… include a summand ðdegP − 1ÞG…0…

…Pαγ

for each G…
…α… include a summand −G…

…0…δγα

where the dots represent indices that are kept unchanged, and similarly,

UAρχ ≔
�
for each G…α…

… include a summand − PχαG…ρ…
…

for each G…
…α… include a summand PχξδραG…

…ξ…

as well as

VAχ ≔ Pχξ∂ξGA þ
�
for each G…α…

… include a summand Pχα∂λG…λ…
…

for each G…
…α… include a summand − Pχλ∂αG…

…λ…

:
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Note that in case some field redefinitions have been
performed after projecting the spacetime geometry G to
the hypersurface, the redefined fields will be some function
of the original projections, and in this case, the coefficients
MAγ , UAρχ and VAχ associated with the redefined fields are
to be calculated from the respective coefficients associated
with the original projected fields by virtue of product and
chain rules (for an illustration, see the second case study).
Finally, in terms of the above coefficient functions

calculate

QA
Bγ ≔ −

∂MBγ

∂GA ;

TA½μν� ≔ −QB
A½μMjBjν� þ UA½μν�;

SAγ ≔ −∂βðQB
A½βMjBjγ�Þ − ∂βUAðβγÞ − VAγ;

which completes the calculation of all coefficients needed
to set up the master equations.

Step 7: Set up the master equations

The coefficient functions calculated in Step 6 already
completely determine the gravitational master equations
displayed on the next page. The master equations are
equations for the weight-one tensor densities

C ¼ CðGA; ∂GA; ∂∂GA; ∂∂∂GAÞ and

CB1…BN
¼ CB1…BN

ðGA; ∂GA; ∂∂GAÞ;

to which we will refer to as the “scalar potential” and the
“tensor potentials,” respectively.

The significance of these potentials is that they com-
pletely define the gravitational Lagrangian density

L½G�ðKÞ ¼
X∞
N¼0

CB1…BN
½G�KB1…KBN

in terms of the geometric hypersurface fields GA and their
velocities KA, such that the Euler-Lagrange equations for
the geometry are

∂
∂t

� ∂LðzÞ
∂KAðzÞ

�
¼

Z
Σ
dx

�
NðxÞ δLðxÞ

δGAðzÞ
�
þ L ~N

� ∂LðzÞ
∂KBðzÞ

�

þ ∂βðNðzÞQA
BβðzÞÞ δLðzÞ

δKBðzÞ ;

where the integral is over the hypersurface, supplemented
by the kinematical relation

_GAðzÞ ¼ NðzÞKAðzÞ þ ∂γNðzÞMAγðzÞ þ L ~NG
AðzÞ;

where N is a freely specifiable lapse function and ~N is a
freely specifiable shift vector field on the initial data
hypersurface. Note that while the scalar density C may
depend on up to third derivatives of the geometric tensor
fields, the tensor densities CB1…BN

depend on at most
second derivatives.
Master equations determining the gravitational

Lagrangian for the weight-one tensor densities C ¼ ðGA;
∂GA; ∂∂GA; ∂∂∂GAÞ and CB1…BN≥1

¼ ðGA; ∂GA; ∂∂GAÞ
are the six equations

0 ¼ ∂CB1

∂∂2
ðβ1β2jG

A M
Ajβ3Þ þ ∂C

∂∂3
β1β2β3

GB1
; ð1Þ

0 ¼ 2CAB1
UAðαβÞ −

∂CB1

∂∂ðβjGA M
AjαÞ − 2

∂CB1

∂∂2
ðβjγG

A ∂γMAjαÞ þ ∂C
∂∂2

αβG
B1

− 3∂γ
∂C

∂∂3
αβγG

B1
; ð2Þ

0 ¼ 2CAB1
ðSAα þ 2∂μTA½μα�Þ þ 2∂μCAB1

TA½μα� −QB1

MαCM þ ∂CB1

∂GA MAα þ ∂CB1

∂∂γGA ∂γMAα

þ ∂CB1

∂∂2
γδG

A ∂2
γδM

Aα þ ∂C
∂∂αGB1

− 2∂γ
∂C

∂∂2
αγGB1

þ 3∂2
βγ

∂C
∂∂3

αβγG
B1
; ð3Þ

0 ¼ 2∂μðCAUAðβμÞÞ þ 2CASAβ þ 2∂νCATA½νβ� þ 2
∂C
∂GAM

Aβ þ 2
∂C

∂∂μGA ∂μMAβ þ 2
∂C

∂∂2
μνGA ∂2

μνMAβ

þ 2
∂C

∂∂3
μνρGA ∂3

μνρMAβ−∂μ

�
2

∂C
∂∂ðμjGAM

AjβÞ þ 4
∂C

∂∂2
ðμjνG

A ∂νMAjβÞ þ 6
∂C

∂∂3
ðμjνρG

A ∂2
νρMAjβÞ

�

þ ∂2
μν

�
3

∂C
∂∂2

ðμνjG
A M

AjβÞ þ 9
∂C

∂∂2
ðμνjρG

A ∂ρMAjβÞ
�
− 4∂3

μνρ

� ∂C
∂∂3

ðμνρjG
A M

AjβÞ
�
; ð4Þ
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0 ¼ ∂α

� ∂C
∂∂2

ðβ1jαG
A M

Ajβ2Þ þ 4
∂C

∂∂3
ðβ1jαγG

A ∂γMAjβ2Þ − 2∂δ

� ∂C
∂∂3

αδðβ1G
A M

Ajβ2Þ
��

; ð5Þ

0 ¼ 2
∂C

∂∂2
ðβ1β2jG

AM
Ajβ3Þ þ 6

∂C
∂∂3

ðβ1β2jγG
A ∂γMAjβ3Þ − 4∂γ

� ∂C
∂∂3

ðβ1β2jγG
A M

Ajβ3Þ
�
; ð6Þ

and five sequences (N ≥ 2)

0 ¼ ∂CB1…BN

∂∂2
ðαβjG

A M
AjγÞ; ð7NÞ

0 ¼ CAB1…BN
TA½μν�; ð8NÞ

0 ¼ ∂CB1… ~Ba…BN

∂∂2
μνGBa

−
∂CB1……BN−1

∂∂2
μνGBN

; ð9NÞ

0 ¼ ðN þ 1Þ!CAB1…BN
UAðαβÞ − N!

∂CB1…BN

∂∂ðβjGA MAjαÞ − 2N!
∂CB1…BN

∂∂2
ðβjγG

A ∂γMAjαÞ − ðN − 2ÞðN − 1Þ! ∂CB1…BN−1

∂∂2
αβG

BN
; ð10NÞ

0 ¼ ðN þ 1Þ!CAB1…BN
ðSAα þ 2∂μTA½μα�Þ þ ðN þ 1Þ!∂μCAB1…BN

TA½μα� − NN!QðB1

MαCB2…BNÞM þ N!
CB1…BN

∂GA MAα

þ N!
∂CB1…BN

∂∂γGA ∂γMAα þ N!
∂CB1…BN

∂∂2
γδG

A ∂2
γδM

Aα þ ðN − 1Þ!
XN
a¼1

∂CB1… ~Ba…BN

∂∂αGBa
− 2ðN − 1Þ!∂γ

∂CB1…BN−1

∂∂2
αγGBN

; ð11NÞ

whose coefficient functions UAμν, VAγ , MAγ , QA
Bγ , TAμν

and SAγ are determined by the matter action S½Φ; G�,
according to Steps 1 to 6.

Step 8: Supplement the master equations
with covariance equations

In order to find the scalar and tensor potentials satisfying
the master equations, it is immensely useful to enforce
the tensor-densital character of these objects by adding
further linear homogeneous partial differential equations.
As it will turn out, the appropriate partial differential
equations contain terms that also appear in the master
equations and may thus be used to great advantage. Most
importantly these additional equations will relieve us
from having to worry about the tensor-densital character
of the potentials when solving the master equations, since
the enforcement of the corresponding transformation
behavior of the potentials under coordinate transforma-
tions will be taken care of precisely by these covariance
equations.
The form of the covariance equations heavily depends on

the index structure of the independent geometric tensor
fields GA, and hence must be derived on a case by case
basis. Conceptually, their derivation is straightforward. The
key idea [9] is to start from the required transformation
behavior of some particular hypersurface field and to derive
it with respect to the highest (and then second highest, and
so on, down to the zeroth) derivative of the Jacobian of an

arbitary coordinate transformation, all to be evaluated at the
identity transformation. The resulting linear homogeneous
differential equations for the hypersurface field then encode
the postulated transformation behavior. This procedure is
most transparently explained by way of a simple example,
which is given in Appendix A.
The partial differential equations encoding the tensor-

densital character of the scalar and tensor potentials are
derived in precisely analogous fashion to the example given
in the appendix, namely starting from the algebraic
covariance equation for the scalar potential

CðTA
MG

M; ∂ðTA
MG

MÞ; ∂∂ðTA
MG

MÞ; ∂∂∂ðTA
MG

MÞÞ
¼ detðTÞCðGA; ∂GA; ∂∂GA; ∂∂∂GAÞ;

where TA
M denotes the representation of the Jacobian

as it acts on the geometric fields GM, and the algebraic
covariance equations for the tensor potentials

CB1…BN
ðTA

MG
M; ∂ðTA

MG
MÞ; ∂∂ðTA

MG
MÞÞ

¼ detðTÞTC1

B1
…TCN

BN
CC1…CN

ðGA; ∂GA; ∂∂GAÞ;

by calculation of the derivatives of the above algebraic
covariance equations for the potentials with respect to all
appearing orders of derivatives of the Jacobian. There are
four sets of covariance equations for the scalar potential C
(since this field depends on up to the third derivative of G)
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and three sets of covariance equations for the tensor
potentials CB1…BN

(since these all depend on at most the
second derivative of G). The combined system of differ-
ential equations provided by these covariance equations
together with the master equations then automatically
selects all solutions that are tensor densities of weight one.

Step 9: Solve the master and covariance equations

The problem of finding gravitational dynamics for the
coefficients of the matter equations we started from amounts
to nothing more, but also nothing less, than finding solutions
to the master equations combined with the covariance
equations for the potentials C and CB1…BN

. Indeed, the
physical question of whether there exist any gravitational
dynamics at all which do not contradict the predictivity and
quantizability of the specified matter equations reduces to
the mathematical question of existence of solutions to the
said linear homogeneous system of partial differential
equations; likewise, the physical question of whether there
are several such gravity theories reduces to the mathematical
question of the uniqueness of solutions; finally the most
interesting physical question, namely what the precise
form of suitable gravitational dynamics are, reduces to the
mathematical problem of finding a concrete solution.
Our first case study shows that the master equations

following from Maxwell electrodynamics feature as their
unique solution the Einstein-Hilbert Lagrangian with
undetermined gravitational and cosmological constants
emerging as integration constants. The second case study
then shows that other (nonstandard model) matter requires
a different gravitational theory.

Step 10: Impose judicious choices of energy
conditions and symmetry reductions

Beyond the physically non-negotiable conditions that the
matter equations be predictive and quantizable, one may
impose further conditions on the matter dynamics, such as
(strong, dominant, …) energy conditions on the Gotay-
Marsden energy-momentum tensor density

Ta
b ≔ JAa

b
δSmatter

δGA ;

where A stands for the indices carried by the spacetime
geometric tensor G and the intertwiners JAa

b are read off
the Lie derivative

ðLξGÞA ¼ JAbξ
b þ JAa

bξ
a
;b

for an arbitrary spacetime vector field ξ. While such addi-
tional conditions can have no bearing on the above form of
themaster equations (since the latter follow already from the
predictivity and quantizability of the matter dynamics), they
may serve to further restrict the geometric degrees of free-
dom, and thus reduce the equations correspondingly.

Another strategy to simplify the master and covariance
equations is to derive actions for spacetimes ðM;GÞ with
Killing vector fields K1;…; Kn,

ðLKi
GÞA ¼ 0 for i ¼ 1;…; n;

whose algebra ½Ki; Kj� ¼ fkijKk gives rise to a negative
definite Killing form

Kij ≔ fmnifnmj;

since in that case the corresponding symmetry group is
compact, which suffices [10] to ensure that the symmetry-
reduced action yields the same equations of motion as
would have been obtained by a symmetry-reduction of the
field equations following from the full, not symmetry-
reduced action. Thus this strategy works for, e.g., spherical
symmetry, but unfortunately not directly for homogeneous
and isotropic spacetimes modeling simple cosmologies.
With the above procedure to derive gravitational actions

fromspecifiedmatter actions in place, we turn to two concrete
case studies in order to illustrate its application in vivo.

III. FIRST CASE STUDY: GRAVITY UNDERLYING
MAXWELL THEORY

The following application of the practical rules laid
down in the previous section, to the case of Maxwell theory
as the prescribed matter inhabiting the spacetime, serves as
a warmup exercise to the more ambitious case study
presented in the next section. But since the result is the
standard textbook Einstein-Hilbert action, with only the
gravitational and cosmological constant left to be deter-
mined by experiment, this simplest possible case already
illustrates the power of the master equations.

Step 1: Test matter

On a smooth four-dimensional manifoldM, we consider
matter described by a covector field A obeying dynamics
encoded in the Maxwell action

SMaxwell½A; g� ≔ −
1

4

Z
d4xð− det gÞ−1=2gacgbdFabFcd;

where some nondegenerate symmetric (2,0)-tensor field g,
employed to construct a scalar density from the field strength
F ¼ dA, provides an additional structure onM. Following the
philosophy of this article, we make no further a priori
assumptions about this tensor field g, neither technically
nor concerning its physical role, since all physically required
properties can be derived and thus must not be stipulated.
According to the general parlance agreed upon inStep 1 of the
general recipe, we refer to g as the “geometry” on M, but
withoutmeaning anythingmoreby this than that thegeometry
completely determines the coefficients of the matter field
equations, as is manifest from the above action.
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Step 2: Principal tensor field

The field equations for the covector field A one derives
from the above action features a gauge ambiguity that we
choose to fix by imposing the gauge

∂að− det gÞ−1=2gabAbÞ ¼ 0;

which yields the gauge-fixed equations of motion

0 ¼ ð− det gÞ1=2gcd∂a1 ½ð− det gÞ−1=2ga1a2∂a2Ad�
¼ gcdga1a2∂a1∂a2Ad þ lower derivative terms:

From the coefficient of the highest derivative term one
reads off the principal tensor

PðkÞ ¼ �ωdet
c;d

½gcdga1a2ka1ka2 �

¼ �ωð− det gÞðga1a2ka1ka2Þ4;

which is dedensitized by letting ω ¼ ð− det gÞ−1, and upon
removal of repeated factors simply becomes

PðkÞ ¼ �ga1a2ka1ka2 :

Step 3: Dual tensor field

Since the principal tensor field is irreducible, we only
need to consider one map

ðDPðkÞÞa ≔ �2gamkm

and observe that

P#ðXÞ ≔ gb1b2X
b1Xb2

satisfies the duality requirement for any covector k with
PðkÞ ¼ 0,

P#ðDPðkÞÞ ¼ 4gb1b2g
b1mgb2nkmkn ¼ 4gmnkmkn

¼ 4PðkÞ ¼ 0:

Obviously, multiplying the above-defined dual tensor field
with a real function on the manifold M again provides a
dual tensor field. This is of course a generic feature of the
dual tensor, independent of the case presently studied, and
all further constructions are independent of this ambiguity.

Step 4: Bihyperbolicity

The principal tensor field P is easily shown to be
hyperbolic and to satisfy the sign convention if and only
if the (2,0)-tensor g has Lorentzian signature ðþ −…−Þ.
This can be seen as follows. If P is hyperbolic, then there

exists a hyperbolic h with PðhÞ > 0, so that the equation

Pðqþ λhÞ ¼ λ2gabhahb þ 2λgabhaqb þ gabqaqb ¼ 0

has only real roots λ. But then bihyperbolicity requires that
the discriminant ðgabhaqbÞ2 − gabhahbgcdqcqd of this
equation is positive. Choosing a cotangent basis with ϵ0 ≔
h such that gabϵ0aϵαb ¼ 0, one sees that gabϵ0aϵ0b > 0 and can

further write the discriminant as qαqβgabϵαaϵ
β
b < 0 for all qα,

which proves that gab has mainly minus Lorentzian
signature. Conversely, if g is of the said signature, it is
immediate that P is hyperbolic, as one quickly sees in any
g-orthonormal cotangent basis.
Hyperbolicity of the dual tensor field is automatic in this

case, since a metric has the same signature as its inverse.

Step 5: Geometric degrees of freedom

We assume to be given a hypersurface in M with an
everywhere hyperbolic covector field n normalized to
PðnÞ ¼ 1 that annihilates any of three linearly independent
tangent vector fields e1; e2; e3, such that we construct
complete spacetime tangent and cotangent space bases

ea0 ≔ gabnb; e1; e2; e3 and ϵ0 ≔ n; ϵ1; ϵ2; ϵ3

dual to each other, giving rise to independent geometric
hypersurface tensor fields

g00 ≔ gðϵ0; ϵ0Þ; g0α ≔ gðϵ0; ϵαÞ; gαβ ¼ gðϵα; ϵβÞ

for α; β ¼ 1; 2; 3, which by the normalization and annihi-
lation properties are however constrained by g00 ¼ 1 and
g0α ¼ 0, so that we identify as the independent geometric
degrees of freedom the symmetric nondegenerate hyper-
surface tensor field

GA ≔ ðgαβÞ:

Step 6: Coefficients

According to the general rules, one calculates the
coefficients

Mα1α2γ ¼ g0α2Pα1γ þ gα10Pα2γ ¼ 0;

Uα1α2ρχ ¼ −Pχα1gρα2 − Pχα2gα1ρ ¼ −2gχðα1gα2Þρ;

Vα1α2χ ¼ Pχλ∂λgα1α2 þ Pχα1∂λgλα2 þ Pχα2∂λgα1λ

¼ gχλ∂λgα1α2 þ 2gχðα1∂λgα2Þλ

and thus obtains the further coefficients

Qα1α2
β1β2γ ¼ 0;

Tα1α2½μν� ¼ −2g½νjðα1gα2Þjμ� ¼ 0;

Sα1α2γ ¼ −gγλ∂λgα1α2 þ 2∂λgγðα1gα2Þλ:
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Step 7: Master equations

With the coefficients calculated above, the first master
equation takes the form

∂C
∂∂3

β1β2β3
gα1α2

¼ 0;

so that we immediately learn that, in the present case, even
the scalar potential C depends only on g, ∂g and ∂∂g, but
not the third derivative ∂∂∂g. Further, the master equa-
tions (5) and (6) are identically satisfied, and so are the two
sequences of master equations (7N) and (8N) for all N ≥ 1.
The remaining equations are

0 ¼ 2∂μðCAUAðβμÞÞ þ 2CASAβ; ð40Þ

0 ¼ ∂CB1… ~Ba…BN

∂∂2
μνGBi

−
∂CB1……BN−1

∂∂2
μνGBN

; ð90NÞ

with the index eBi removed for i ¼ 1;…; N,

0 ¼ ðN þ 1Þ!CAB1…BN
UAðαβÞ

− ðN − 2ÞðN − 1Þ! ∂CB1…BN−1

∂∂2
αβG

BN
; ð100NÞ

0 ¼ ðN þ 1Þ!CAB1…BN
SAα

þ ðN − 1Þ!
XN
a¼1

∂CB1… ~Ba…BN

∂∂αGBa

− 2ðN − 1Þ!∂γ

∂CB1…BN−1

∂∂2
αγGBN

; ð110NÞ

for N ≥ 1. Note that the master equations (2) and (3) are
contained in the last two sequences as the special
case N ¼ 1.

Step 8: Covariance equations

Since in the present case both the scalar and the tensor
potentials depend on at most second derivatives of
the geometric hypersurface tensor field, the covariance
equations take the same form for all N ≥ 0, namely

0 ¼ gαðσ
∂CB1…BN

∂∂2
μνÞg

αρ ; ðCov2Þ

0 ¼ 2gαðμ
∂CB1…BN

∂∂νÞgαρ
− ∂ρgαβ

∂CB1…BN

∂∂2
μνgαβ

þ 4∂σgαðμ
∂CB1…BN

∂∂2
νÞσg

αρ ;

ðCov1Þ

which are obtained from deriving the algebraic trans-
formation law for the weight-one tensor densities
CB1…BN

for N ≥ 0 with respect to the second and first

derivatives of the Jacobian of a coordinate transformation.
The third covariance equation (Cov0) is not displayed since
in the present case it is not required for a solution of the
master equations.

Step 9: Solution of the master and
covariance equations

Now we can solve the master equations step by step.
First, we observe that equation (100N) for N ¼ 2 simply
reads

0 ¼ Cρσα1β1α2β2U
ρσμν;

which may be solved to yield Cρσα1β1α2β2 ¼ 0. Inserting this
result back into equation (100N), first for N ¼ 4 and then
repeating the procedure for all even N, we see that all
potentials with an odd number of index pairs already
vanish, except for the first one, Cαβ. For our next con-
clusion, we temporarily change variables in favor of the
metric gαβ. Changing the partial derivatives of gαβ accord-
ingly, the covariance equation (Cov2) becomes

0 ¼ ∂Cα1β1…αNβN

∂gαðβ;γδÞ ;

where we denote partial derivatives by a comma. Moreover,
the divergence term in equation (110N) implies

0 ¼ ∂2Cα1β1…αNβN

∂gαβ;ðμνj∂gρσ;jγÞδ :

But the last two equations already yield

0 ¼ ∂2Cα1β1…αNβN

∂gαβ;μν∂gρσ;γδ ðwithout symmetrizationÞ;

implying that all remaining potentials Cα1β1…αNβN can only
depend at most linearly on the second derivatives of the
field gαβ and similarly of gαβ. Since, in particular, the scalar
potential C depends only linearly on the second derivatives
of gαβ, we conclude from equation (100N) for N ¼ 1 that the
potential Cα1β1α2β2 must in fact be independent of the
second derivatives of gαβ. Using this result in equation
(100N) for N ¼ 3, and iterating on all odd N, we find that
also all even potentials Cα1β1…αNβN for N ≥ 4 vanish.
Hence, it only remains to determine the potentials C,
Cαβ and Cαβγδ.
As described in Appendix B, we may now perform a

change from the arguments ðgαβ; ∂μgαβ; ∂μ∂νgαβÞ, on which
the tensor and scalar potentials depend, to a set of argu-
ments ðgαβ; RαβγδÞ, where Rαβγδ is the Riemann-Christoffel
tensor of gαβ, such that the covariance equations
are automatically solved if and only if CB1…BN

¼
CB1…BN

ðgαβ; RαβγδÞ for all N ≥ 0. In three dimensions,
we know that the Riemann tensor can be expressed in
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terms of the Ricci tensor Rαβ and the metric gαβ so that,
actually, CB1…BN

¼ CB1…BN
ðgαβ; RαβÞ. The only such sca-

lar density of weight one that is linear in the Ricci tensor
(recall that the at most linear dependence of the potentials
on the Riemann tensor did not follow from the covariance
equations alone, but involved one of the master equations)
is ð− det gÞ−1=2R, with the Ricci scalar R ¼ Rαβgαβ, and the
minus sign under the square root accounts for the fact that
gαβ must be negative definite. Thus we arrive at

C ¼ −ð2κÞ−1ð− det gÞ−1=2ðR − 2λÞ;

with constants κ and λ, as the only scalar potential that
meets all the requirements.
Then we can immediately calculate, from equation (100N)

for N ¼ 1, that

Cαβμν ¼ ð16κÞ−1ð− det gÞ−1=2½gαμgβν þ gβμgαν − 2gαβgμν�:

In terms of the ðgαβ;Γα
βγ; RαβγδÞ, the coefficient Sαβγ can be

rewritten as

Sαβγ ¼ UαβμνΓγ
μν;

which makes it easy to see that equation (40) takes the form

0 ¼ gμρgσν∇νCρσ;

where ∇γ denotes the covariant derivative with respect to
the Levi-Civita connection. Using the well-known theorem
due to Lovelock [11], which also for the case of three
dimensions asserts that the only divergence-free second
rank tensor depending only on the metric and its first and
second derivatives is the Einstein tensor, and the fact that
again Cρσ can only depend linearly on the Ricci tensor, we
immediately conclude that

Cαβ ¼ β1ð− det gÞ−1=2
�
Rαβ −

1

2
gαβR

�
þ β2ð− det gÞ−1=2gαβ:

The remaining master equations (9′N) and (11′N) are then
identically satisfied.
The potentials C, Cαβ and Cαβγδ derived above com-

pletely determine the Lagrangian by virtue of

L ¼ CαβγδKαβKγδ þ CαβKαβ þ C

and thus we have found the gravitational dynamics of the
geometry gαβ. However, one may simplify this result a little
further. We immediately realize that the potential Cρσ can
be written as the functional derivative of the scalar density

Λ ¼ β1ð− det gÞ−1=2R − 2β2ð− det gÞ−1=2

with respect to gαβ. This has severe consequences for the
relevance of this potential in the equations of motion
displayed in the general description of Step 7. The part
of the Lagrangian involving Λ satisfies the equations of
motion identically and is thus dynamically irrelevant [5].
This can be seen as follows. The kinematical relation
supplementing the Lagrangian equations of course remains
untouched because it is independent of the Lagrangian, so
we have that

_gαβðzÞ ¼ NðzÞKαβðzÞ þ ðL ~NgÞαβðzÞ:

The actual Lagrangian equation of motion reads

∂
∂t

� ∂LðzÞ
∂KαβðzÞ

�
¼

Z
Σ
dx

�
NðxÞ δLðxÞ

δgαβðzÞ
�
þ L ~N

� ∂LðzÞ
∂KαβðzÞ

�

in this case, because there is no contribution from the
coefficients QA

Bγ . We may now insert the part LlinðzÞ ≔
δΛðzÞ=δgαβKαβðzÞ of the Lagrangian that is linear in
the velocities Kαβ into the left-hand side of this equation
in order to find, taking into account the kinematical
supplement, that

LlinðzÞ¼
Z
Σ
dx

δ2ΛðzÞ
δgρσðxÞδgαβðzÞðNðxÞKρσðxÞþðL ~NgÞρσðxÞÞ:

It is then straightforward to see that these are terms of
precisely the form as those appearing on the right-hand side
of the previous equation. The respective first terms cancel
because the functional derivatives commute. That also the
second terms cancel, one can see by writing out the Lie
derivative on both sides and using the chain rule and an
integration by parts on the left-hand side of the equation.
It is instructive to convert the thus obtained Lagrangian

to a Hamiltonian, to which end we calculate the canonical
momenta as the Legendre dual variables of the velocities,

παβ ¼
∂L
∂Kαβ ¼ 2CαβγδKγδ þ δΛ

δgαβ
;

where we again included the term Λ discarded above, just
in order to see that it can be discarded in the canonical
picture equally well, since the Poisson brackets on the
geometric phase space spanned by ðgαβ; παβÞ do not change
if we add to the canonical momenta the functional
derivative of a weight-one scalar density with respect to
the configuration variables GA. Thus, we can redefine the
canonical momenta,

παβ → ~παβ ¼ παβ −
δΛ
δgαβ

and invert the second last equation to get the velocities

FREDERIC P. SCHULLER AND CHRISTOF WITTE PHYSICAL REVIEW D 89, 104061 (2014)

104061-10



Kαβ ¼ 1

2
Cαβγδ ~παβ;

where Cαβγδ is the inverse of the potential Cαβγδ and
explicitly reads

Cαβγδ ¼ 4κð− det gÞ1=2ðgαγgβδ þ gβγgαδ − gαβgγδÞ;
which is known as the DeWitt tensor density. The local
super-Hamiltonian then automatically becomes

Hlocal ¼ Kαβ ~παβ − CαβγδKαβKγδ − C

¼ 1

4
Cαβγδ ~παβ ~πγδ þ ð2κÞ−1ð− det gÞ−1=2ðR − 2λÞ;

which is the famous Arnowitt-Deser-Misner Hamiltonian
[12] of Einstein-Hilbert dynamics with a cosmological term,

Sgrav½g� ¼
1

2κ

Z
M
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðR − 2λÞ;

where g is the spacetime metric and R the associated
spacetime Ricci scalar.

Step 10: Additional energy or symmetry conditions

Additional energy or symmetry conditions were not
needed to obtain an analytic solution of the master
equations in this case.

Discussion

In summary, we arrived at the interesting conclusion that
the unique gravitational dynamics for a four-dimensional
metric spacetime ðM; gÞ carrying predictive and quantizable
Maxwell electrodynamics is given by the familiar Einstein-
Hilbert dynamics for a Lorentzian metric, with undetermined
gravitational and cosmological constants appearing as inte-
gration constants when solving the master equations. This
result directly extends to matter dynamics SSM½g;Φ� includ-
ing all fields of the standard model of particle physics,
because their equations of motion all share the same
principal tensor fields, which by deliberate construction of
the standard model (taking particles to be the irreducible
representations of the local Lorentz group) is precisely the
principal tensor field of Maxwell electrodynamics.

IV. SECOND CASE STUDY: GRAVITY
UNDERLYING SOðp; qÞ-VIOLATING

FERMIONIC MATTER

In order to see the machinery to derive gravitational
dynamics underpinning particular matter dynamics working
at full capacity, wewill now consider a vector-tensor geometry
ðM; g;WÞ, constituted by a metric and a vector field W, and
find gravitational dynamics for it such that a SOðp; qÞ-
violating extension of Dirac dynamics is predictive and

quantizable on that geometry. While we are of course not
proposing either this particular geometry nor this particular
typeofmatter equations as amodel for anyobservable physics,
but rather as a deliberately brutal—but nevertheless causally
fully consistent—deviation from standard model physics, this
case well illustrates that even such matter dynamics can be
underpinned by suitable gravitational dynamics.

Step 1: Test matter

As test matter dynamics we now directly stipulate
SOðp; qÞ-violating field equations

ðiγa þWaÞDaΨ ¼ 0

for a spinor fieldΨ on a four-dimensional smooth manifold
equipped with a geometry ðg;WÞ consisting of a spacetime
metric g [of a so far arbitrary but fixed signature ðp; qÞ,
which will be considerably restricted by the bihyperbolicity
condition in Step 4] together with a spacetime vector field
W. The spacetime γ-matrices γa ¼ γIEa

I are constructed
with the help of local frame fields EI satisfying gab ¼
ηIJEa

I E
b
J and the flat spacetime γ-matrices γI satisfying

the Clifford algebra fγI; γJg ¼ 2ηIJ, where ηIJ ¼
diagð1;…; 1;−1;…;−1ÞIJ with the same signature as g.
We assume that the spacetime admits a spin structure
(whose existence is of course still equivalent to the
vanishing of the second Stiefel-Whitney class associated
with the g-orthonormal frame bundle over M) such that the
spin covariant derivative Da is induced from the torsion-
free spin connection by virtue of

SΓI
aJ ¼ −Eb

Jð∂aθ
I
b − Γc

ab; θ
I
cÞ;

where Γc
ab are the Christoffel symbols of the metric gab,

and θIb denote the coframe fields dual to the frame fields Ea
I .

The spin connection is antisymmetric with respect to ηIJ, and

Da ¼ ∂a −
i
4
SΓI

aJηIK½γK; γJ�

if the covariant derivative acts on spinors Ψ. Here and in the
following, we will suppress all spinor indices.

Step 2: Principal tensor field

By acting on the equations of motion with the differential
operatorðiγJEb

J −WbÞDb fromthe left,weobtain theequation

− ðγJγIEb
JE

a
I þWaWb − iγJEb

JW
a þ iγIEa

IW
bÞDbDaΨ

þ iγJEb
JDbWaDaΨ ¼ 0;

fromwhose highest order derivative terms we obtain, using
the Clifford algebra relation fγI; γJg ¼ 2ηIJ and the fact
that partial derivatives commute, the principal tensor field

Pab ¼ ðgab þWaWbÞ:
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Step 3: Dual tensor field

Since the principal tensor has rank two, it is again simple
to calculate a dual tensor field P# in terms of the inverse of
the matrix gab þWaWb. Indeed, one quickly finds the dual
tensor

P#
ab ¼

�
gab −

1

1þWrWsgrs
WmWngmagnb

�

with respect to the principal tensor P.

Step 4: Bihyperbolicity

The hyperbolicity and signature condition on the prin-
cipal tensor now simply amount to the algebraic require-
ment that the matrix gab þWaWb have mainly minus
Lorentzian signature at every point of the manifold.
However, this does of course by no means imply that
the metric g itself has to be of Lorentzian signature. In fact,
the principal tensor is hyperbolic in two different cases:
either the metric g has signature ðþ − −−Þ and the vector
field W is timelike, or null, or of spacelike length
−gðW;WÞ < 1with respect to g, or the metric has signature
ð− − −−Þ and the vector field has length −gðW;WÞ > 1.
Interestingly, the two cases differ in the way hyperbolicity
is encoded in the geometry. In the first case, hyperbolicity is
ensured by the metric, whereas in the second case, it is the
vector field which renders the combination gab þWaWb

hyperbolic.
The hyperbolicity of the dual polynomial is in this case

again equivalent to the hyperbolicity of the principal
polynomial so that, as in the first case study, bihyperbo-
licity does not enforce further algebraic constraints on the
values of g and W beyond what is already enforced by
hyperbolicity.

Step 5: Geometric degrees of freedom

We assume to be given a hypersurface in M with an
everywhere hyperbolic covector field n normalized to
PðnÞ ¼ 1 that annihilates any of three linearly indepen-
dent tangent vector fields e1; e2; e3, such that we
construct complete spacetime tangent and cotangent
space bases

ea0 ≔ ðgab þWaWbÞnb; e1; e2; e3 and ϵ0 ≔ n; ϵ1; ϵ2; ϵ3

dual to each other, giving rise to independent geometric
hypersurface tensor fields

gαβ ≔ gðϵα; ϵβÞ; g0α ≔ gðϵ0; ϵαÞ; g ≔ gðϵ0; ϵ0Þ;
Wα ≔ ϵαðWÞ; W0 ≔ ϵ0ðWÞ:

However, not all of these hypersurface tensors can be
independent since the frame conditions PðnÞ ¼ 1 and
e0ðϵαÞ ¼ 0 can be used to express W and Wα in terms of

the projections g and gα. Thus, the hypersurface tensor
fields g, gα and gαβ already constitute a possible para-
metrization of the spacetime geometry ðg;WÞ. Indeed,
one can check that the completeness relations

gab ¼ gea0e
b
0 þ 2gαeða0 e

bÞ
α þ gαβeaαebβ and

Wa ¼ �ð1 − gÞ1=2ea0∓ 1

ð1 − gÞ1=2 g
αeaα

allow for a reconstruction of the spacetime geometry on
the hypersurface, and in particular of the hypersurface
tensor field

Pαβ ¼ gαβ þ 1

1 − g
gαgβ:

In principle, one could now choose GA ≔ ðgαβ; gα; gÞ
as the independent degrees of freedom and press on to
the next step and determine the coefficients for the
master equations. In particular, one would obtain the
coefficients

Mαβγ ¼ 2gðαgβÞγ þ 2

1 − g
gαgβgγ;

M0αγ ¼ g
1 − g

gαgγ − ð1 − gÞgαγ;

M00γ ¼ −2gγ;

which produce correct, but unnecessarily complicated
master equations. A more advantageous choice of
configuration variables (as we will see when calculating
the associated coefficients in the next step) is obtained
by the field redefinitions

8>>><
>>>:

Pαβ ≔ gαβ þ 1
1−g g

αgβ;

gα ≔ − 1
1−g Pαγgγ;

ϕ ≔ 1 − gþ gαgβgαβ
1−g−gαgβgαβ

9>>>=
>>>; recovering

8>>><
>>>:

gαβ ¼ Pαβ − ϕ
1þPρσgρgσ

PαγgγPβδgδ;

gα ¼ − ϕ
1þPγδgγgδ

Pαρgρ;

g ¼ 1 − 1
2
ϕ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2

4
− ϕ2 Pαβgαgβ

1þPγδgγgδ

r
:

9>>>=
>>>;

We thus choose as the unconstrained geometric hyper-
surface tensor fields

GA
redef ≔ ðPα; gα;ϕÞ:

Step 6. Coefficients

The coefficients associated with the redefined fields
GA

redef , which are now functions of the original hypersurface
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fields GA obtained by projection from spacetime tensors,
must be calculated from the coefficients of the projected
fields according to product and chain rules, as explained in
the general rules in Sec. II. In particular, we obtain

Mredef
αβγ ¼ Mαβγ −

ð−1Þ
ð1 − gÞ2 M

00γgαgβ

þ 2

1 − g
gðαMj0jβÞγ ¼ � � � ¼ 0;

Mredef α
γ ¼ 1

ð1 − gÞ2 M
00γPαδgδ þ

1

1 − g
PασPδρM

σργ
redefg

δ

−
1

1 − g
PαδM0δγ ¼ � � � ¼ Pγμgμgα þ δγα;

Mredef
γ ¼ � � � ¼ 0:

The vanishing of the first and third set of coefficients
and the simple form of the second set were the rationale
behind the field redefinition made in the previous step. Also
according to the product and chain rule, one determines the
coefficients

Uredef
αβρχ ¼ Uαβρχ þ 1

ð1 − gÞ2 U
00ρχ þ 2

1 − g
gðαUj0jβÞρχ

¼ −2PχðαPβÞρ;

Uredefα
ρχ ¼ 1

ð1 − gÞ2U
00ρχPαδgδ þ

1

1 − g
PαμPδνUμνρχgδ

−
1

1 − g
PαδU0δρχ

¼ δραPχμgμ;

Uredef
ρχ ¼ � � � ¼ 0

and the coefficients

Vredef
αβχ ¼ PχγPαβ

;γ þ 2PχðαP̂βÞγ
;γ;

Vredefα
χ ¼ Pγχgα;γ − Pχγgγ;α;

Vredef
χ ¼ Pχγϕ;γ:

From the above nine sets of coefficients one then obtains
directly, as the only nonvanishing coefficients Q,

Qredefρσα
γ ¼ −

∂Mredefα
γ

∂Pρσ ¼ −δγðρgσÞgα

Qredef
ρ
α
γ ¼ −

∂Mredefα
γ

∂gρ ¼ −Pγρgα − Pγμgμδ
ρ
α;

only vanishing coefficients Tredef
A½μν� ¼ 0, and finally the

coefficients

Sredefαβμ ¼ −PμγPαβ
;γ þ 2PγðαPβÞμ

;γ;

Sredef0μ ¼ −Pμγϕ;γ;

Sredefαμ ¼ 2Pμνg½ν;α� − gμ;α:

Step 7: Master equations

We now determine a particular solution of the master
equations, whose linearity admits simplifying assumptions
for the coefficients CB1…BN

, which we point out as we
go along.

1. Properties of the scalar potential C

The master equations defined by the coefficients calcu-
lated above imply that the scalar potentialC only depends on
at most the second partial derivatives of the geometric
degrees of freedom. The simplest way to see this is to trade
in the first and second partial derivatives of the fields Pαβ, ϕ
and gα (which appear in the tensor potentials CB1…BN≥1

) for
covariant derivatives with respect to the Levi-Civita con-
nection Γα

βγ of the inverse metric Pαβ as well as the Riemann
tensor Rμνρσ and the nontensorial quantity Sμνρσ introduced
in Appendix B. The new fields Γα

βγ , Rαβγδ and Sαβγδ are
then given in terms of Pαβ and its partial derivatives by
equations (B3)–(B5) and the corresponding inverse trans-
formations by (B11) and (B12), while the symmetrized first
and second covariant derivatives of the fields ϕ and gα are
given in terms of the respective partial derivatives by
Eqs. (B15)–(B17) and the inverse transformations by
(B20)–(B22).
In order to see that the potential C in the present case

does not depend on the third partial derivatives of the fields
GA, it is sufficient to rewrite the third partial derivatives of
only the field gα in covariant form. The corresponding
transformation formula is given by

gα;ðβγδÞ ¼ gα;βγδ þ gμ;νλð−3δλðδδνγΓμ
βÞα − 3δμαδνðβΓ

λ
γδÞÞ

þ lower order terms;

where, as we will see, it will not be necessary for our
calculation to write out all terms of lower derivative order in
gα. The third partial derivatives of gα can be recovered from
the previous expression by employing the

useful identity

Γα
βμ;ν ¼ Γα

ðβμ;νÞ −
2

3
RαðβμÞν þ

2

3
Γα
ρðβΓ

ρ
μÞν −

2

3
Γα
νρΓ

ρ
βμ:

We can now rewrite the master equations in covariant
form. We begin with the master equations (4)–(6) contain-
ing the potentialC and the potentialCA. Master equation (6)
can be straightforwardly rewritten covariantly, but the chain
rule in the first term in conjunction with the above
expression for the symmetrized third covariant derivatives
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of gα, the derivative of the coefficient Mα
β in the second

term and the divergence in the last term all produce
terms that are proportional to the variable Γϵ

κλ. Since none
of the rewritten terms can depend explicitly on this
variable in the new covariant arguments, we must con-
clude that

0 ¼ 2
∂C

∂gρ;γμðβ1j
Mρ

jβ2δβ3Þϵ δκγδ
λ
μ − 2

∂C
∂gρ;γðβ1β2j

δjβ3Þϵ Mρ
νδðκν δ

λÞ
γ :

Contracting the indices ϵ and κ then leads to the equation

0 ¼ ∂C
∂gρ;λðβ1β2j

Mρ
jβ3Þ −

∂C
∂gρ;β1β2β3

Mρ
λ:

The same logic can now be applied to master equation (5).
This time, however, rewriting this equation using the
chain rule, and the useful identity above, produces terms
which are purely covariant and terms that are proportional
to the noncovariant variables Γα

ðβμ;νÞ as well as terms that are
quadratic in Γα

βγ . Again the latter must vanish individually.
Carefully extracting all information that can be deduced
from the vanishing of these terms one finds that

0 ¼ ∂C
∂gρ;λκðβ1j

Mρ
jβ2Þ:

The last two equations and the fact that the coefficient Mρ
α

is invertible imply that the potential cannot depend
on gρ;αβγ .

2. Simplifying assumptions for the potentials Cμ
B1…BN

To simplify the master equations further, we may take
Cμ ¼ 0. Then master equations (9N) and (1) imply that the
potential C cannot depend on any of the third derivatives of
the fields Pαβ, gα, ϕ. Hence, from here on, we can treat the
potential C and the remaining tensor potentials on the same
footing. Second, we will also set

Cμ
B1…BN

for N ≥ 1;

which simplifies the master equations considerably. In
other words, we consider only the special family of
Lagrangians whose series expansion (see Step 7 of the
general recipe) cannot contain any of the velocities Kα

belonging to the variable gα. Although these two assump-
tions seem to freeze the dynamics of the variable gα by
removing all of the velocities Kα, we will see that this is
actually not the case. Indeed, as we will show in
Appendix C, the dynamical evolution of all degrees of
freedom will be described by the resulting Lagrangian.

3. Potentials do not depend on derivatives of gα
Finally we switch back, for a moment, to the master

equations as expressed in the partial, rather than covariant,

derivatives of the geometric hypersurface fields and show
that the remaining potentials CB1…BN

with Bi
¼ ð αβ; 0Þ and

the potentialC cannot depend on the first and second partial
derivatives of the variable gα at all. Setting BN

¼ ρ in the
symmetry condition (9N), we learn that none of the
potentials CB1…BN

(for N ≥ 1) can depend on gα;βγ . For
the potential C, we already concluded this from the master
equations (5) and (6). Thus, the second partial derivatives of
gα cannot appear in any of the potentials. The same holds true
for the first partial derivatives gα;β. This can be seen from
master equations (11N) and (3) setting B1

¼ ρ, which yields

∂CB2…BN

∂gρ;α ¼ 0 for N ≥ 1:

Finally, we can even show that potentials CB1…BN
for which

at least one of the capital indices is the symmetric pair αβ,
cannot depend on the variable gα at all. Writing out the
divergence inmaster equations (11N) and (3), andusing the fact
that now nothing in both equations depends on gα;γ , we obtain

∂2CB1…BN−1

∂GBN
;αγ∂gμ ¼ 0 for N ≥ 1:

This result can be used right away when taking the derivative
of master equations (10N) and (2) with respect to gσ , noticing
that we can invert the coefficient Uαβμν. This yields

∂CB1…BN

∂gσ ¼ 0 if at least one Bi
¼ αβ

at first for anyN ≥ 2, which however can be extended to hold
for N ≥ 1, as one can see by evaluating the divergence in the
first term in Eq. (4). Thus none of the potentials CB1…BN

(for
N ≥ 1 and some Bi

¼ αβ) depends on gα. It is, however, not
possible to extend this result to all potentials. The potentials
C0…0 (where all capital indices take the value 0) and the
potential C can still depend on gα.

4. Maximally simplified master equations

Taking all of the above findings into account, the
remaining master equations (with all others being identi-
cally satisfied) are

0 ¼ ∇μðCρσUρσβμÞ − C0∇βϕþ ∂C
∂gρ Mρ

β; ð400Þ

∂CB1…BN−1

∂GBN
;γδ

¼ ∂CðB1…BN−1j
∂GjBNÞ

;γδ
; ð900N≥2Þ

0 ¼ ðN þ 1Þ!CμνB1…BN
Uμναβ

− ðN − 2ÞðN − 1Þ! ∂CB1…BN−1

∂GBN
;αβ

; ð1000N≥1Þ
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0¼−ðNþ 1Þ!C0B1…BN
∇βϕþqðN − 1Þ!∂CB1…Bq−1Bqþ1…BN

∂ϕ;β

−ðN −qÞðN − 1Þ!∂CB1…BqðBqþ1…BN−1j
∂ϕ;ρσ

PΓτβ
ρσjBNÞϕ;τ−2ðN − 1Þ!∇γ

∂CB1…BN−1

∂GBN
;γβ

þN!
∂CB1…BN

∂gρ Mρ
β; ð1100N≥1Þ

where the indicator q denotes the number of capital indices
taking the value 0, whereas N − q is the number of capital
indices Bi being symmetric pairs αiβi, and the coefficients
PΓ are defined in (B6). In order to not make the equations
appear too complicated, we have not written out the chain
rule for derivatives with respect to the second partial
derivatives of the fields GA.

Step 8: Covariance equations

Since the scalar potential C can depend on at most
the second partial derivatives of the fields, exactly like
the tensor potentials CB1…BN

, the covariance equations take
the same form for all N ≥ 0. The first covariance equation
(obtained by differentiation with respect to the second
derivatives of the Jacobian) reads

0 ¼ 2Pμðαj ∂CB1…BN

∂Pμρ
;jβγÞ

− gρ
∂CB1…BN

∂gðα;βγÞ ;

while the second one (obtained by differentiation with
respect to the first derivatives of the Jacobian) takes the
form

0 ¼ 2Pμðαj ∂CB1…BN

∂Pμρ
;jβÞ

þ 4Pμðαj
;ν
∂CB1…BN

∂Pμρ
;jβÞν

− Pμν
;ρ
∂CB1…BN

∂Pμν
;αβ

− gρ
∂CB1…BN

∂gðα;βÞ − gμ;ρ
∂CB1…BN

∂gμ;αβ − 2gρ;μ
∂CB1…BN

∂gðα;βÞμ
− ϕ;ρ

∂CB1…BN

∂ϕ;αβ
:

The third covariance equation (obtained by differentiation
with respect to the Jacobian) will not be needed.

Step 9: Solution of the master
and covariance equations

When solving the master equations arrived at in Step 7,
we have to keep in mind that only the potentials C0…0 and
the potential C may depend on the variable gα. In general,
all unknowns CB1…BN

can, in addition, only depend on the
variables ðPαβ; Rαβ;ϕ;ϕ;α;ϕ;αβÞ because of the covariance
equations (B13) and (B14), and we already used the fact
that the Riemann tensor in three dimensions can be
expressed by the Ricci tensor Rαβ.
It is a general result that the potentials CB1…BN

for N ≥ 1
can depend on the second derivatives of the fields GA only
up to cubic order [6], and since here additionally the second

derivative of the scalar field ϕ does not appear in the first
covariance equation obtained in Step 8, we can conclude that
the Ricci tensor Rαβ can only appear linearly. Moreover,
mixed terms, which contain the second derivatives of ϕ and
the Ricci tensor, can only be linear in both, as one observes
by combining the first covariance equation in the original
arguments with the symmetry condition one obtains from
writing out the divergence term in equation (11′′N≥1) as the

symmetry condition
∂2CB1…BN

∂GM
;αðβ∂GN

;γδÞ
for N ≥ 0:

Next, we derive an equation that only involves the
potential C. To this end, we consider the master equation
(10′′N≥1) for N ¼ 1 and q ¼ 1, and solve it for the potential
Cαβ0, which yields

Cαβ0 ¼
1

4
PγðαPβÞδ

∂C
∂ϕ;γδ

:

On the other hand, considering equation (11′′N≥1) for N ¼ 1
and q ¼ 0, we have that

0 ¼ 2Cαβ0∇βϕ −
∂C
∂ϕ;ρσ

PΓτγ
ρσαβϕ;τ − 2∇γ

∂C
∂Pαβ

;μβ
;

because Cαβ does not depend on gρ. Combining both
equations, using the explicit form (B6) of PΓ, we obtain

0¼ ∂C
∂ϕ;ρσ

ðδτðρPσÞðαδ
γ
βÞ−PρðαPβÞσPτγÞ∇τϕ−2∇μ

∂C
∂Pαβ

;μγ
ð�Þ

which constrains the dependence of the potential C on
the second derivatives of the fields P and ϕ. Knowing
the polynomial dependencies of the potentialC on the second
derivatives of ϕ and the Ricci tensor Rαβ, we may now derive
the form of the terms that contain the latter. First, we observe
that because of the symmetry condition displayed further
above, the last term of the previous equation drops out, as one
sees by expanding the divergence

∇μ
∂C

∂Pαβ
;μγ

¼ ∂2C
∂ϕ∂Pαβ

;μγ
∇μϕþ ∂2C

∂ϕ;ρ∂Pαβ
;μγ

∇μ∇ρϕ

þ ∂2C
∂ϕ;ρσ∂Pαβ

;μγ
∇μ∇ρ∇σϕ

and rewriting
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∇μ∇ρ∇σϕ ¼ −
2

3
ðPν½μδ

ðκ
ρ�δ

τÞ
σ − Pσ½μδ

ðκ
ρ�δ

τÞ
ν þ Pν½μδ

ðκ
σ�δ

τÞ
ρ − Pρ½μδ

ðκ
σ�δ

τÞ
ν ÞRκτ∇νϕ

þ 1

3
ðPν½μPρ�σ þ Pν½μPσ�ρÞPκτRκτ∇νϕþ∇ðμ∇ρ∇σÞϕ:

We can then use the resulting equation to compare
the different powers of the second derivatives of ϕ
and the Ricci tensor Rαβ appearing in the potential C.
Note that none of these terms can depend explicitly
on gα, because of the second last equation derived
in paragraph 3 of Step 7 above, which simplifies mat-
ters significantly. It follows, for example, that the
coefficient in the cubic part Cρσμνκϵ

cubic ϕ;ρσϕ;μνϕ;κϵ of C
has to satisfy

0 ¼ Cρσμνκϵ
cubic ðδτðρPσÞðαδ

γ
βÞ − PρðαPβÞσPτγÞ∇τϕ:

However, it is easy to see that the term in brackets can
be inverted, which implies that there cannot be such a
cubic term in C. For the mixed term Cαβγδ

mixedRαβϕ;γδ, only
the last term in ð�Þ is relevant. A brute-force calculation
then shows that also this term has to vanish.
The remaining terms can then be investigated by making

the exhaustive ansatz

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

q
½Cfðϕ;∇αϕ∇αϕ; gα∇αϕ; gαgαÞ þ Rαβða1Pαβ þ a2∇αϕ∇βϕÞ þ∇α∇βϕða3Pαβ þ a4∇αϕ∇βϕÞ

þ∇α∇βϕ∇γ∇δϕða5PαβPγδ þ a6PαγPβδ þ a7Pαβ∇γϕ∇δϕþ a8Pαγ∇βϕ∇δϕþ a9∇αϕ∇βϕ∇γϕ∇δϕÞ�;

where the scalar functions ai may depend on ϕ
and ∇αϕ∇αϕ and the free function Cf depends on
all scalars indicated in brackets. Thus extracting all
information in equation ð�Þ, one is led to a system
of linear differential equations for the functions ai,
which can be solved uniquely to yield the most
general form of the potential C allowed by the master
equations:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

q �
a1ðϕÞR − 2

da1ðϕÞ
dϕ

Pαβϕ;αβ

þ Cfðϕ;∇αϕ∇αϕ; gα∇αϕ; gαgαÞ
�
:

A similar procedure can be applied to determine the
potential Cρσ, which, as we know, cannot depend on gα. We
can even derive two independent equations for Cρσ. The
first of these is given by equation (11′′N≥1) for N ¼ 2 and
q ¼ 0, i.e.,

0 ¼ −
∂Cfρσj
∂ϕ;μν

PΓτβ
μνjϵκg∇τϕ −∇γ

∂Cρσ

∂Pϵκ
;γβ

;

where the symmetrization brackets f…g are to be
understood as symmetrizing the pairs ρσ and ϵκ, but
not the individual indices. Here, we made use of the facts
that Cαβ0 does not depend on gα either, and that, from
equation (10′′N≥1) with N ¼ 2, we may conclude that
CαβB1B2

¼ 0. The second equation can be derived from
equation (11′′N≥1) with N ¼ 2 and q ¼ 1 using the same
reasoning, which leads to

0 ¼ Cρσ

∂ϕ;β
−

∂C0

∂ϕ;μν

PΓτβ
μνρσ∇τϕ −∇γ

∂Cρσ

∂ϕ;γβ
;

where we have already used the master equation (9′′N≥2) in
the last term. The potential C0, which still appears in this
equation, can be eliminated by solving equation (4′′), so
that

C0 ¼
1

∇ρϕ∇ρϕ

�
∇βϕ∇μðCκτUκτβμÞ þ ∂ ~Cf

∂gρ Mρ
β∇βϕ

�

with ~Cf ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

p
Cf. Inserting this back into the

second last equation, the second term in brackets van-
ishes because of the most general form for the scalar
potential obtained above, and hence we obtain

0 ¼ Cρσ

∂ϕ;β
−

1

∇ρϕ∇ρϕ
PΓτβ

μνρσUξδψζ∇τϕ∇ψϕ∇ζCξδ

−∇γ
∂Cρσ

∂ϕ;γβ
:

Using the above two equations for the potential Cρσ,
we can now constrain the form of the latter the same
way we did for the potential C. First of all, writing out
the divergence in equation (4′′), one can conclude that
Cρσ can be at most linear in Rαβ and at most quadratic
in ϕ;αβ. This is the case because the resulting sym-
metry condition also involves the symmetric pair of
indices of Cρσ, and, thus, strengthens the two sym-
metry conditions we already used for the potential C.
There cannot be any terms mixing Rαβ and ϕ;αβ for the
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same reason. Evaluating all information contained in
the two equations for Cρσ, one obtains, as a prelimi-
nary result, that

Cρσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

q �
ðb1ϕþ b2Þ

�
Rρσ −

1

2
PρσR

�
þ b3RPρσ

þ 1

2
b1ðPαβϕ;αβPρσ − ϕ;ρσÞ þ a2ðϕÞPρσ

�
;

with constants b1; b2; b3 and a new unknown function
a2ðϕÞ. From the above expression for the potential C0,
however, we can then directly conclude that b3 ¼ 0,
since this equation cannot contain third partial deriv-
atives of Pαβ; a straightforward calculation yields

C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

q �
−

b1
∇ρϕ∇ρϕ

∇αϕ∇βϕðRαβ − PαβRÞ

− 2
da2ðϕÞ
dϕ

þ 1

∇αϕ∇αϕ

∂Cf

∂gρ Mρ
β∇βϕ

�
:

Now consider equation (11′′N≥1) for N ¼ 2 and q ¼ 2,
which amounts to

0 ¼ −3!C000∇βϕþ 2!
∂C00

∂gρ Mρ
β þ 2

∂C0

∂ϕ;β
:

Since we know that Cαβ00 ¼ 0, the master equation (9′′N≥2)
implies that the potential C000 cannot depend on Rρσ.
Moreover, since ∂C00=∂gρ cannot contain Rρσ either, the
last equation implies that b1 ¼ 0. Thus, we arrive at

Cρσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

q �
b2

�
Rρσ −

1

2
PρσR

�
þ a2ðϕÞPρσ

�
and

C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

q �
−2

da2ðϕÞ
dϕ

þ 1

∇αϕ∇αϕ

∂Cf

∂gρ Mρ
β∇βϕ

�
:

We can now determine the remaining potentials recur-
sively. Using the second equation derived in Step 9, we get

Cαβ0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

q 1

2

da1ðϕÞ
dϕ

Pαβ:

From equation (10′′N≥1) with N ¼ 1 and q ¼ 0, we then
find the potential

Cαβγδ ¼
1

8
½PαγPβδ þ PβγPαδ − 2PαβPγδ�:

It is then clear that all other potentials containing at least
one index pair αβ vanish. This can be seen recursively
from equation (10′′N≥1) and the fact that all potentials with

more than two capital indices do not depend on second
derivatives of the fields.
Thus, only the potentials with 0 indices remain to be

determined. Denoting the potentials

CðNÞ ≔ C 0…0|{z}
Z zeroes

for N ≥ 1

and using equation (11′′N≥1), we get the

recursion CðNþ1Þ ¼
1

∇ρϕ∇ρϕ

N!

ðN þ 1Þ!

×

�∂CðNÞ
∂gγ Mγ

β∇βϕþ ∂CðN−1Þ
∂∇βϕ

∇βϕ

�
:

for all potentials CðNþ1Þ with N ≥ 1.
One thus obtains (omitting two additional summands

linear in the velocities Kαβ and K, which have no impact
on the resulting equations of motion) the most general
gravitational Lagrangian satisfying the maximally simpli-
fied master equations obtained in Step 7 and thus defines
gravitational dynamics that can underlie the SOðp; qÞ-
violating Dirac dynamics,

L¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detPαβ

q �
2
d2a1ðϕÞ
dϕ2

K2 −
1

2

da1ðϕÞ
dϕ

KPαβKαβ

− a1ðϕÞCαβγδKαβKγδ þ a1ðϕÞR− 2
da1ðϕÞ
dϕ

Pαβ∇α∇βϕ

þ
X∞
N¼1

CðNÞKN þCð0Þðϕ;∇αϕ∇αϕ; gα∇αϕ; gαgαÞ
�
;

with a freely specifiable function a1ðϕÞ [mediating the
derivative coupling between the scalar field ϕ and the
metric Pαβ—a nonderivative coupling thus obviously
requires a1ðϕÞ ¼ const] and a freely specifiable func-
tion Cð0Þðϕ;∇αϕ∇αϕ; gα∇αϕ; gαgαÞ, in terms of which,
however, all potentials CðNÞ are determined by virtue
of the

recursion start Cð1Þ ¼
1

∇αϕ∇αϕ

∂Cð0Þ
∂gρ Mρ

β∇βϕ

and the recursion formula further above.
A striking feature of the above dynamics is that while

the field gα appears in the potentials CðNÞ, for N ≥ 0,
the corresponding velocity Kα does not appear in the
Lagrangian at all. But although the geometric field gα thus
does not have its own “dynamical” equations of motion, it
can nevertheless be fully determined by the dynamics of the
other variables Pαβ and ϕ once the recursion is employed.
Indeed, in Appendix C, we will illustrate this mechanism
explicitly, in order to show that the absence of velocity
terms Kα does not imply dynamically undetermined
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geometrical degrees of freedom. Thus the particular sol-
ution of the master equations derived here is indeed a
meaningful solution of the full set of master equations.

Step 10: Additional energy or
symmetry conditions

Additional energy or symmetry conditions were not
needed to obtain an analytic solution of the master
equations in this case.

Discussion

In summary, we found a family of canonical gravita-
tional dynamics for the vector-tensorial spacetime geom-
etry defined by the metric g and the vector field W that can
support the deformed Dirac equation we started from,
and which indeed presented our example for a decidedly
nonstandard model type matter action in the introduction.
We emphasize again that we did not propose these specific
matter equations as phenomenologically relevant matter
dynamics, but as an instructive example that shows how to
proceed for any matter dynamics the reader may wish to
consider for her own phenomenological or theoretical
reasons.
Kinematically, we found that, in this specific case,

predictivity and quantizability of the matter field equa-
tions amount to the condition that depending on the vector
field, the metric part of the tensor-vector geometry may
have either Lorentzian or Riemannian signature, with the
resulting SOð1; 3Þ or SOð4Þ symmetry however being
directly broken by the vector field part of the geometry.
More precisely, if the vector field has g-norm less than −1,
the metric must have Riemannian signature in order to
render the matter theory predictive and quantizable,
whereas a Lorentzian signature of the metric is enforced
in all other cases. While a Riemannian signature for the
metric may appear nonphysical, it should be noted that
this is not the case, since it is the hyperbolicity of the
principal tensor that is physically relevant, and that the
intuition that the metric should have Lorentzian signature
merely stems from the case of Maxwell theory, where the
principal tensor indeed is identical with the (inverse)
metric, and where this intuition is therefore correct. But
only there.
The comparatively high effort required to solve the

master equations for the matter dynamics considered in
this second case study indicates how hard it is, in general, to
construct an appropriate kinematical and dynamical theory
of spacetime that can underpin specific phenomenological
models of matter. But at the same time, we saw that it can
be done. The complexity of the gravitational Lagrangian
obtained in this case further makes it pretty obvious how
hopeless it would be to try to arrive at appropriate
gravitational dynamics by mere guessing, without having
constructed the pertinent master equations.

V. CONCLUSIONS

Any set of matter field equations—whether considered
for phenomenological reasons, theoretical considerations,
or the mere heck of it—must be supplemented by dynamics
for their coefficients in order to be completed into a closed
theory. Physically, we like to call the degrees of freedom
making up the coefficients of matter field equations the
geometry of spacetime, and then refer to the dynamics of
these degrees of freedom as gravitational dynamics. Using
this parlance, in this paper we presented the ten-step recipe
for the practical derivation of gravitational dynamics—
namely the derivation of the gravitational Lagrangian as the
solution of a set of master equations, which in turn are
constructed directly from prescribed matter field
dynamics—which underpin the matter field equations of
choice such that the latter can be both predictive and
quantizable. From this point of view, gravity emerges as a
mere auxiliary science.
The general recipe for the extraction of these master

equations from the matter field dynamics comes as ten
straightforward rules, and presents the remarkably simple
practical essence of a number of combined results, whose
conceptual spirit is that of geometrodynamics developed
more than five decades ago but whose technical derivation
in the broad context considered here required several pieces
of decidedly more modern mathematical machinery. Now
the central point of the present paper is that, once the rules
are derived, their application to concrete matter models no
longer requires any more sophisticated mathematical tech-
niques than those taught in any introductory course on
general relativity.
We then demonstrated the concrete application of this so

properly founded recipe to two completely worked, instruc-
tive case studies. The first one considered Maxwell matter,
but goes through in completely unaltered fashion for any
standard model matter dynamics and yields, as the unique
solution to the master equations, the Einstein-Hilbert action
with a cosmological term. The second case study then
considered a particular example of a matter model beyond
the standard model, for which we also constructed and then
solved the master equations explicitly and thus derived
appropriate gravitational dynamics. By these examples we
were able to show, in technical detail, what is needed on the
gravitational side in order to make a given linear matter
model work. All one has to do is to determine suitable
underlying gravitational dynamics according to the general
rules we provided. Given that only about 4% of the matter
energy in the universe appears to be of standard model
origin, having such a recipe at one’s disposal is hardly a
luxury.
The scope of the recipe given here is not restricted to

field matter. For one may, instead, start from a particular
dispersion relation for massive or massless point matter.
Remarkably, it turns out that in order for such dispersion
relations to arise as a primary constraint from some point
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particle action, they must have a covariant formulation in
terms of an again bihyperbolic tensor which must then
be used in lieu of the principal tensor one derives
for field matter, and which consequently doubles as
both the principal tensor and the fundamental geometric
tensor, at which point the recipe can be applied to
extract the associated master equations; see [2]. Thus by
a different physical mechanism than in the case of field
matter, but with precisely the same physical inevitability
and the same central technical condition of bihyperbo-
licity, any postulated dispersion relation for point
particle matter is suitably constrained and supplemented
with a dynamical law by solving the pertinent master
equations.
A pleasant feature of the presented method to obtain

gravitational dynamics from prescribed matter dynamics is
that the latter contain the entire physical input into the
master equations. In other words, the gravitational theory is
precisely as physically relevant as the matter model it is
extracted from. In case there are various matter fields
whose dynamics do not yield the same principal tensor, the
principal tensor of the entire theory is quickly seen to be the
product of the principal tensors of the individual theories.
Thus the remarkable consequence, and wider lesson, is that
any new discovery about matter immediately translates into
an appropriate gravity theory. Depending on the newly
discovered matter dynamics, this could still be standard
general relativity or not. The observed matter, and only the
observed matter, suffices as an input and will be the judge.
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APPENDIX A: ILLUSTRATION OF THE
DERIVATION OF DIFFERENTIAL

COVARIANCE EQUATIONS

It suffices to describe the method for one case, which is
even simpler than the simplest case that can arise in our
context. Assume that there is only one hypersurface field
Gα and we are aiming at phrasing the condition for some

(0, 2)-tensor field Cμν to be constructed from only ∂G in
terms of a partial differential equation. This of course
amounts to the condition that

Cμ̄ ν̄

�∂yα
∂ȳᾱ

∂
∂yα

�∂yβ
∂ȳβ̄ Gβ

��
¼ ∂yμ

∂ȳμ̄
∂yν
∂ȳν̄ Cμνð∂αGβÞ;

which simply expresses that the tensor components con-
structed from the transformed field components are the
tensorially transformed components constructed from the
untransformed field components.
The first step to convert this algebraic condition on Cμν

into two partial differential equations for Cμν, is to rewrite
the algebraic condition in terms of the Jacobian of the
coordinate transformation and all its derivatives, i.e., in our
example, in terms of

Tα
ᾱ ¼

∂yα
∂ȳᾱ and Tβ

ᾱ β̄ ¼
∂2yβ

∂ȳᾱ∂ȳβ̄ ;

such that it takes the form

Cμ̄ ν̄

�
Tα

ᾱTβ
β̄

∂
∂yα Gβ þ Tβ

ᾱ β̄Gβ

�
¼ Tμ

μ̄Tν
ν̄Cμνð∂αGβÞ:

Note that Tα
ᾱ β̄ is symmetric in its lower indices due to the

Schwarz rule, but only because they refer to the same (the
barred) set of coordinates—if the tensor Cμν depended,
other than in our current example, on the first partial
derivative of a hypersurface vector field Gα, rather than a
covector field Gα, one could however still arrange for the
then appearing derivative of the Jacobian to be with respect
to coordinates from the same (then the unbarred) set of
coordinates, by inserting appropriate factors of the Jacobian
or its inverse; similarly one proceeds where higher than
second derivatives appear.
The second step towards converting the algebraic

covariance condition into partial differential equations is
to derive the former first with respect to the highest
derivative of the Jacobian and to evaluate the result at
the identity transformation, and then to repeat this with
respect to all lower order derivatives of the Jacobian, up to
and including the zeroth derivative, i.e., with respect to the
Jacobian itself. For the present case, the derivative with
respect to Tσ

ρ̄ σ̄ yields

∂ ᾱ β̄Cμνδ
β
σδ

ρ̄
ðᾱδ

σ̄
β̄ÞGβ ¼ 0

and the derivative with respect to Tσ
σ̄ yields

∂ ᾱ β̄Cμ̄ ν̄ðδασδσ̄ᾱδββ̄ þ δαᾱδ
β
σδσ̄β̄Þ

∂
∂yα Gβ ¼ ðδμσδσ̄μ̄δνν̄ þ δμμ̄δ

ν
σδ

σ̄
ν̄ÞCμν

which simplify to
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∂ðᾱ β̄ÞCμ̄ ν̄ ¼ 0 and

∂ σ̄βCμ̄ ν̄Gβ;σ þ ∂ασ̄Cμ̄ ν̄Gσ;α ¼ δσ̄μ̄Cσν̄ þ δσ̄ν̄Cμ̄σ:

These two differential equations encode the entire infor-
mation about Cμν being a second rank covariant tensor
constructed from the first derivatives of a covector field
Gα. (In this case one can solve the covariance equations
all by themselves by first observing that the first
covariance condition implies that Cμν at most depends
on the antisymmetric part ∂ ½αGβ� of ∂αGβ and then
considering the contraction of the second equation with
respect to σ̄ and σ, i.e., ∂ σ̄ τ̄Cμ̄ ν̄Gτ̄;σ̄ ¼ Cμ̄ ν̄ which, using
the insight from the first covariance equation, becomes
∂ ½σ̄ τ̄�Cμ̄ ν̄G½τ̄;σ̄� ¼ Cμ̄ ν̄ which yields the final result that
Cμν must be proportional to ∂ ½μGν�. This is the well-
known result that without further structure, the only
second rank tensor that can be built from the first
derivatives of a covector field is the exterior derivative
of the latter.)

APPENDIX B: FIELD REDEFINITIONS
SUGGESTED BY COVARIANCE EQUATIONS

We now discuss what can be extracted from the
covariance equations for the case where one of the
geometric hypersurface tensor fields GA can be formally
employed as a hypersurface metric. As discussed in
appendix A, covariance equations reflect the tensor-
density nature of the potentials CB1…BN

for N ≥ 1, which
are functions of the form CB1…BN

ðGA; ∂GA; ∂2GAÞ. The
partial derivatives of the tensor fields GA are of course
not tensor fields, and hence the covariance equations
encode how those nontensorial fields have to be com-
bined in order to produce the weight-one tensor den-
sities CB1…BN

.
A fruitful idea is to simplify the covariance equations

by replacing the arguments GA, ∂γGA, ∂2
γδG

A, on which
the scalar and tensor potentials depend, by a set of
arguments that simplifies the covariance equations. In
particular, this is possible if one of the fields GA can be
employed as a hypersurface metric. Thus, let us assume
that the hypersurface geometry is only given by an
inverse metric, so that GA ¼ ðPαβÞ. For simplicity, we
discuss this particular case first, and then generalize it to
all cases where, apart from a hypersurface metric, we
have an arbitrary number of additional hypersurface
tensor fields, GA ¼ ðPαβ;…Þ. The covariance equations
for the simple case are

0 ¼ Pαðσ ∂CB1…BN

∂∂2
μνÞP

αρ ðB1Þ

and

0 ¼ 2Pαðμ ∂CB1…BN

∂∂νÞPαρ − ∂ρPαβ
∂CB1…BN

∂∂2
μνPαβ

þ 4∂σPαðμ ∂CB1…BN

∂∂2
νÞσP

αρ : ðB2Þ

Since the field Pαβ can be employed as a hypersurface
metric, we can now perform a change of arguments
from ðPαβ; ∂γPαβ; ∂2

γδP
αβÞ to a new set of arguments

ðPαβ;Γα
βγ; Rαβγδ; SαβγδÞ, trading the first partial derivatives

of the field Pαβ for the Levi-Civita connection coeffi-
cients Γ of Pαβ, and its second partial derivatives for the
corresponding Riemann-Christoffel tensor R and another
variable S. Explicitly this transformation is given by

Γα
βγ ¼ PΓαρ

βγλκPλκ
;ρ; ðB3Þ

Rαβγδ ¼ R1
μν

κταβγδPκτ
;μν þ R2

στ
μνκϵαβγδPμν

;σPκϵ
;τ; ðB4Þ

Sαβγδ ¼ S1μνκταβγδPκτ
;μν þ S2στμνκϵαβγδPμν

;σPκϵ
;τ; ðB5Þ

where for brevity we used a comma to denote partial
derivatives. The coefficients in the above expressions are

PΓαρ
βγκτ ≔

1

2
PβðκPτÞγPαρ − δαðκPτÞðβδ

ρ
γÞ; ðB6Þ

R1
μν

κταβγδ ≔ 2δðμ½βPα�ðκPτÞ½γδ
νÞ
δ� ; ðB7Þ

R2
στ

μνκϵαβγδ ≔ δτðνPμÞ½αPβ�ðκPϵÞ½δδσγ� þ δτðνPμÞ½δPγ�ðκPϵÞ½αδσβ�

þ δσ½αPβ�ðκPϵÞðμPνÞ½γδτδ� þ 2δσ½αPβ�ðμPνÞðκPϵÞ½γδτδ�

þ 1

2
Pðμj½αPβ�ðκPϵÞjνÞδσ½δδ

τ
γ�

þ 1

2
Pðμj½δPγ�ðκPϵÞjνÞδσ½αδ

τ
β�

þ 1

2
PστPðμj½αPβ�ðκPϵÞ½γPδ�jνÞ; ðB8Þ

S1μνκταβγδ ≔ −PαðκPτÞðβδ
ðμ
γ δ

νÞ
δÞ þ

1

2
Pðκjðβδ

ðμ
γ PδÞjτÞδ

νÞ
α and

ðB9Þ
S2στμνκϵαβγδ ≔ 2PαðμPκÞðβδσγ δτδÞPνϵ − PðβjðμPκÞjγδσδÞPνϵδ

τ
α:

ðB10Þ
The variable Sαβγδ is needed since the Riemann tensor
does not contain all the second partial derivatives of the
field Pαβ. Without this variable, the change of arguments
is not invertible. We note that the variables Sαβγδ are not
components of a tensor and feature the symmetry
Sαβγδ ¼ SαðβγδÞ. In order to express the original covariance
equations now with respect to the new arguments, we
also need the inverse transformation:
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Pαβ
;γ ¼ −2PμðαΓβÞ

μγ; ðB11Þ

Pμν
;γδ ¼

1

3
PμαPνβðRαγβδ þ RβγαδÞ − PμαPνβðSαβγδ þ SβαγδÞ

þ 1

3
PρσPμαPνβðΓρ

βðγΓ
σ
δÞα þ 2Γρ

γδΓσ
αβÞ

þ 2PρðμΓνÞ
σðγΓ

σ
δÞρ þ PρσΓμ

ρðγΓ
ν
δÞσ: ðB12Þ

With the help of the transformation formulas, we can
then cast the first covariance equation (B1) into the form

∂CB1…BN

∂Sαβγδ ¼ 0; ðB13Þ

and the second covariance equation (B2) can be rewritten
in terms of the new arguments as

∂CB1…BN

∂Γα
βγ

¼ 0: ðB14Þ

In other words, the potentials CB1…BN
cannot explicitly

depend on the new nontensorial variables Γα
βγ and Sαβγδ,

but we have that CB1…BN
¼ CB1…BN

ðPαβ; RαβγδÞ. This is
of course what one would expect according to the well-
known theorem that the Riemann tensor is the only tensor
that can be formed from a metric and its first and second
derivatives.
This procedure of changing the arguments on which

the potentials depend can be generalized to all cases
where, in addition to a metric, one has an arbitrary set
of other hypersurface tensor fields GA. The first and
second partial derivatives of the additional fields GA can
then be replaced by the first and the symmetrized
second covariant derivatives of GA using the torsion-
free and metric compatible Levi-Civita connection of the
metric at hand.
For instance, if one has, in addition to Pαβ also scalar and

covector hypersurface fields ϕ and gα, the symmetrized
covariant derivatives of the fields ϕ and gα are given by

ϕ;ρσ ¼ ϕ;ρσ − Γμ
ρσϕ;μ; ðB15Þ

gα;β ¼ gα;β − gμΓ
μ
αβ; ðB16Þ

gα;ðβγÞ ¼ gα;βγ − 2gμ;ðγΓ
μ
βÞα − gα;μΓ

μ
βγ

− gμðΓμ
αðβ;γÞ − Γμ

ανΓν
βγ − Γμ

νðβΓ
ν
γÞαÞ; ðB17Þ

from which the partial derivatives of the variables ϕ and gα
are recovered by virtue of

ϕ;ρσ ¼ ϕ;ρσ þ Γμ
ρσϕ;μ; ðB18Þ

gα;β ¼ gα;β þ Γμ
αβgμ; ðB19Þ

gα;βγ ¼ gα;ðβγÞ þ gμ;ν½2Γν
αðγδ

μ
βÞ þ Γμ

γβδ
ν
α� ðB20Þ

þ 1

6
gμ½Sμαβγ − Rαβμγ − Rαγμβ ðB21Þ

−2PρσðΓρ
βγΓσ

αμ þ Γρ
μβΓσ

γα þ Γρ
μγΓσ

βγÞ�: ðB22Þ

The antisymmetric part of the second covariant deriva-
tives of the fields GA does not have to be considered,
because it can always be expressed by the Riemann tensor
and the undifferentiated fields GA. After rewriting the
respective covariance equations, one again ends up with
equations (B13) and (B14). In particular, this can be done
for all hypersurface point particle geometries of arbitrary
degree by formally employing the particular field
Pαβ ≔ Pðϵα; ϵβ; n;…; nÞ as a metric, and treating all
other tensor fields Pα1…αI ≔ Pðϵα1 ;…; ϵαI ; n…; nÞ, for
I ¼ 3;…; degP, as additional fields. It can also be done
for area metric geometry by employing the tensor field Gαβ

as a metric, with respect to which one defines the Levi-
Civita connection and the Riemann tensor. However,
although we are always guaranteed—by the bihyperbolic-
ity and the energy-distinguishing properties—that the
tensor field Pαβ, which is distinguished by the matter field
equations one employs, can be formally used as a metric
tensor on a given hypersurface in M, it might not be
possible to find an invertible transformation of arguments
from GA; ∂GA; ∂∂GA;… to a new set of arguments, which
contains Pαβ. Nevertheless, if such a transformation exists,
one can proceed to rewrite the master equations with
respect to these new arguments.

APPENDIX C: EXPLICIT MECHANISM
DETERMINING THE FIELDS gα IN THE

SECOND CASE STUDY

The most general gravitational dynamics that can under-
lie the predictive and quantizable SOðp; qÞ-violating Dirac
dynamics considered in the second case study were found
to be unique up to two freely specifiable functions, a1ðϕÞ
and Cð0Þðϕ;∇αϕ∇αϕ; gα∇αϕ; gαgαÞ. While the function
a1ðϕÞ merely mediates the derivative coupling between
the metric Pαβ and the scalar field ϕ, the role of the function
Cð0Þ can only be revealed by an explicit solution of the
recursion relation derived in Step 9 of the second case
study. Since, apart from the specific set of arguments it
depends on, the potential Cð0Þ is completely undetermined
by the master equations, we can freely prescribe any
additional condition that is compatible with the master
equations and at the same time allows one to determine
Cð0Þ. The additional assumption we would like to introduce
here, for definiteness, is that the Lagrangian depends at
most quadratically on the velocities K. Since the most
general solution of the recursion relation can be obtained
rather straightforwardly under this assumption, a sketch of

HOW QUANTIZABLE MATTER GRAVITATES: A … PHYSICAL REVIEW D 89, 104061 (2014)

104061-21



the derivation shall suffice. First of all, we can ignore
the dependence of the functions CðNÞ on the scalar field ϕ
itself. There is no way to constrain this dependence in
any way. We simply need to keep in mind that any
integration constants, which arise when solving the
recursion relations, must be turned into arbitrary functions
of ϕ at the end. Introducing the shorthand notations
Ω ¼ ∇αϕ∇αϕ,Ψ ¼ gα∇αϕ and ξ ¼ gαgα for the arguments
of the functions CðNÞ, the general recursion relation takes
the form

CNþ1 ¼
1

Ω
N!

ðN þ 1Þ!
�∂CðNÞ

∂Ψ ðΩþΨ2Þ

þ 2
∂CðNÞ
∂ξ ðΨþ ξΨÞ þ 2Ω

∂CN−1

∂Ω þΨ
∂CN−1

∂Ψ
�
:

Now, assuming that CðNÞ ¼ 0 for all N ≥ 3, we can
immediately integrate this equation forN ¼ 3, which yields

Cð2Þ ¼ AðξÞΩ2nΨ−n þ BðξÞ

for some constant n and, up to now, freely specifiable
functions AðξÞ and BðξÞ. Reinserting this result into the
same equation for N ¼ 2 determines Cð1Þ, and reinserting
both into the equation for N ¼ 1 yields Cð0Þ. All additional
unknown functions, which arise in this process, can then be
determined by inserting Cð1Þ and Cð0Þ into the formula for
the recursion start. This leads to the condition nðnþ 1Þ ×
ðnþ 2ÞAðξÞ ¼ 0 and we may then determine all possible
solutions for which any of these factors vanish. After a fair
amount of algebra, one observes that the cases AðξÞ ¼ 0,
n ¼ −1 and n ¼ −2 are actually equivalent. Finally, the
most general solution for the second part L2 (determined by
the recursion formula and that for the recursion start) of the
full gravitational Lagrangian, under the condition that it is
at most quadratic in the velocities K, is

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

q �
a3ðϕÞ

1þ gαgα
K2 þ a4ðϕÞ

ð1þ gαgαÞ1=2
K2 þ a5ðϕÞK2 þ 2a3ðϕÞ

1þ gαgα
gβ∇βϕK þ a4ðϕÞ

ð1þ gαgαÞ1=2
gβ∇βϕK

þ a6ðϕÞ
ð1þ gαgαÞ1=2

gβ∇βϕK þ a3ðϕÞ
1þ gαgα

ðgβ∇βϕÞ2 −
a4ðϕÞ

ð1þ gαgαÞ1=2
∇βϕ∇βϕþ a6ðϕÞ

ð1þ gαgαÞ1=2
gβ∇βϕ

þ a5ðϕÞ∇βϕ∇βϕþ a7ðϕÞ
�
:

The last two lines denote the most general form for the
potential Cð0Þ that leads to a Lagrangian that is at most
quadratic in the scalar velocities K. As we have mentioned
already, the free functions a3ðϕÞ;…; a7ðϕÞ cannot be
further constrained, so that there is a sizable class of
possible gravitational theories that can underlie the matter
field equations employed in the second case study.
In order to understand the fate of the geometric variable

gα, we first investigate a special case of such a theory. For
definiteness, we will specialize to a particularly simple
solution for the Lagrangian in order to study the dynamical
properties of the derived gravitational theory. We set
a1ðϕÞ≡ −κ ¼ const, a3ðϕÞ≡ μ ¼ const, and all other
a4;…; a7 ≡ 0. Then the Lagrangian reads

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

q �
κCαβγδKαβKγδ − κRþ μ

K2

1þ gαgα

þ 2μ
K

1þ gαgα
þ μ

ðgβ∇βϕÞ2
1þ gαgα

�
:

It is easy to analyze the dynamics of this theory in the
canonical spacetime picture. To this end, one performs the
inverse Legendre transformation of the above Lagrangian
with respect to the velocities KA. Since the Lagrangian is
singular in the velocity Kα, one picks up additional

Lagrange multipliers Λα in the process. After performing
the Legendre transformation, the complete Hamiltonian for
our particular gravity theory becomes

H ¼
Z
Σ
dy

�
NðyÞ

�
1

4κ
ffiffiffiffiffiffiffi
−P

p Cαβγδπαβπγδ þ κ
ffiffiffiffiffiffiffi
−P

p
R

þ 1

4μ
ffiffiffiffiffiffiffi
−P

p π2ð1þ gαgαÞ − πgα∇αϕ

−
ffiffiffiffiffiffiffi
−P

p ðμ − 1Þ2
μ

ðgβ∇βϕÞ2
ð1þ gαgαÞ

þ Λαπ
α

− ∂γðπγ þ gγgαπαÞ
�
ðyÞ

þ fπαβL ~NP
αβ þ πL ~Nϕþ παL ~NgαgðyÞ

�
;

with the potential Cαβγδ ¼ 4PαðγPδÞβ − 2PαβPγδ, and we
used the shorthand

ffiffiffiffiffiffiffi
−P

p
≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detPαβ

p
. For further analy-

sis, we simplify matters by setting μ ¼ 1. The Lagrange
multiplier Λα enforces παðyÞ≡ 0 as an additional con-
straint. Since παðyÞ≡ 0 has to hold for all values of the
evolution parameter t, this also implies that _παðyÞ ¼ 0.
However, Hamilton’s equations for the variable gα using the
above Hamiltonian yield
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_παðyÞ ≈ −NðyÞ
�

1

2
ffiffiffiffiffiffiffi
−P

p π2gα − π∇αϕ

�
ðyÞ;

where the weak equality ≈means that we already made use
of the constraint πα ¼ 0. Hence, the variable gα is com-
pletely determined by the solutions of the equations of
motion for the scalar field ϕ and the metric Pαβ by

gαðyÞ ¼ 2

� ffiffiffiffiffiffiffi
−P

p ∇αϕ

π

�
ðyÞ:

Hamilton’s equations for the variable πα can be used to
determine the Lagrange multiplier Λα, and to eliminate the
variable gα and the momentum πα altogether. From the
remaining equations of motion, it can then be checked that
the effective Hamiltonian for the dynamics of the scalar
field ϕ and the metric Pαβ is given by

H ¼
Z
Σ
dy

�
N

�
1

4κ
ffiffiffiffi−p
P
Cαβγδπαβπγδ þ κ

ffiffiffiffiffiffiffi
−P

p
R

þ 1

4
ffiffiffiffiffiffiffi
−P

p π2 −
ffiffiffiffiffiffiffi
−P

p ∇αϕ∇αϕ

�

þ fπαβL ~NP
αβ þ πL ~Nϕg

�
ðyÞ;

which is mathematically equivalent to a massless scalar
field nonderivatively coupled to Einstein gravity.
Our considerations show that, although the variable gα is

not dynamical in the sense that it satisfies its own
dynamical equations of motion, it is nevertheless com-
pletely determined by the dynamics of the other degrees of
freedom of the theory.
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