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Ekpyrotic perturbations with small non-Gaussian corrections
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The entropic mechanism for producing nearly scale-invariant density perturbations in a contracting
ekpyrotic universe relies on having an unstable scalar potential. Here we develop a variant of this
mechanism (recently proposed by Qiu, Gao and Saridakis, and by Li), in which there exists a nontrivial
coupling between adiabatic and entropic fields, and where an unstable potential is not required. In the
model nearly scale-invariant entropy perturbations are generated first. Remarkably, we find that the
bispectrum of these perturbations vanishes, with the values of the non-Gaussianity parameters of local,
equilateral and orthogonal type all exactly zero. Subsequently, the entropy perturbations can be converted
into curvature perturbations by a variety of mechanisms. The bispectrum of the curvature perturbations
depends on the nonlinearity of the conversion process and is thus more model-dependent—however, for an
efficient conversion process the final bispectrum remains small. The only distinguishing feature compared
to single-field slow-roll inflationary models is that the ekpyrotic phase does not generate significant
primordial gravitational waves. Thus the present model provides a perfect match to current data from the

PLANCK satellite.
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I. INTRODUCTION

Recent measurements by the PLANCK satellite show the
early universe to have been extraordinarily simple [1-3]:
not only approximately flat, homogeneous and isotropic,
but also containing nearly scale-invariant and Gaussian
density fluctuations. A major goal of cosmology is to find a
convincing explanation for this initial state. The most
popular current model is that of single-scalar-field inflation
with a flat plateaulike potential, and the predictions of such
a model are indeed in good agreement with observations.
However, from a theoretical point of view, plateau models
of inflation present significant challenges (see e.g. [4]), the
most important one being perhaps that they typically lead to
the runaway behavior of eternal inflation [5]: the implied
infinity of disconnected and physically different universes
causes the theory to lose all its predictive power and renders
its naive predictions questionable.

This situation suggests two complementary approaches.
The first is to try to resolve the inflationary challenges, and
the second is to look for alternative theories which might be
able to explain the same cosmological data without how-
ever presenting us with conceptual conundrums. In the
present paper we will be concerned with the second
approach.

An attractive alternative to inflation are ekpyrotic or
cyclic models of the Universe [6-8]. In these models the
Universe alternates between contracting and expanding
phases, with the Big Bang corresponding to the reversal
from contraction to expansion. The cosmological flatness
problem can be solved during the contracting phase so long
as the equation of state of the Universe, w = p/p (with p
being the pressure and p the energy density), is larger
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than 1. This can be achieved by having a scalar field ¢ with
a steep and negative potential. Here we will consider
potentials that are of exponential form,

V(g) = —Voe . (1)

and the requirement w > 1 is then equivalent to ¢ > /6. In
the presence of a second scalar field y with a canonical
kinetic term and an unstable direction in the potential
V <0, nearly scale-invariant (quantum) entropy fluctu-
ations get amplified to become classical perturbations,
which can then be converted into curvature perturbations
before the Big Bang [9-12]. In this “entropic mechanism”
the spectrum is predicted to be close to scale invariant,
while the local bispectrum can take on a range of values
[13-15], including the values favored by PLANCK [3,16].
The fact that an unstable potential is required (the conse-
quences of which are discussed in [17]) is perceived by
many as the weakest point of the model [18].

II. THE MODEL

In the present paper we are interested in a new
mechanism for generating ekpyrotic density perturbations.
This mechanism was proposed by Qiu, Gao and Saridakis
[24] as well as by Li [28], and it has the advantage that it
does not require an unstable potential. In fact, in this
new model, which we will refer to as the “nonminimal
entropic mechanism,” the potential does not depend on the
second scalar y at all, but one introduces a nonminimal
coupling between the scalars ¢ and y in the kinetic term
for y, by considering the Lagrangian (in natural units
872G = M2 = 1)
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L= \/— ,44)3”47 - e‘h‘f’aﬂ)(a”)( + Voe?

(2)

where for now we assume b, ¢ to be constants. In a flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) universe,
with metric ds? = —d#*> + a(t)25 dx'dx’/, where a(t) is the

scale factor and with - = d, the equations of motion are

given by
¢ +3Hp + Vet = —%be"’d’ - 3)
+ (3H = )i + "V, =0, “
H? — é (¢2 + e PPy —2Ve 7). (5)

Since the potential V(¢) does not depend on y, it is clear
that y = constant is a solution. The remaining equations
then reduce to those for a single scalar in an ekpyrotic
potential, and they admit the scaling solution [6]

[ o

where 7 is negative and runs from large negative towards
small negative values. Here €= ¢2 /(2H?) is directly
related to the equation of state w = 2¢/3 — 1 and hence
€ > 3. A standard analysis shows that in order to solve the
flatness problem |aH| has to grow by at least 60 e-folds
over the course of the ekpyrotic phase. Using Eq. (3), this
implies a minimum field range |A¢| > 60v/2¢/(e — 1). Itis
over this field range that the potential must take the form
expressed in Eq. (1). As is intuitively clear, the steeper the
potential, the shorter the required field range.

III. ENTROPY PERTURBATIONS

Having discussed the background, we now turn our
attention to the fluctuations. The main source of perturba-
tions in the nonminimal entropic model are the entropy
fluctuations. These correspond to fluctuations that are trans-
verse (in scalar field space) to the background trajectory. A
useful definition for the entropy perturbation is given by the
gauge-invariant quantity Js = e‘g'f’ﬁ;(, whose linearized
equation of motion in Fourier space is given by [29]

o, b
85 + 3Hés + ———¢ ~3Vy|ds=0. (D)

where k denotes the wavenumber of the fluctuation mode.
Switching to conformal time, defined via d¢ = adr, with
/= %, and defining the canonically normalized entropy
perturbation v, = ads, we obtain
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, a b?
, |/
vy + { PR

b
¢ - zan’(/,} v, = 0. (8)
Imposing the usual boundary condition that in the far past or
on small scales the mode function is that of a fluctuation in
Minkowski space, limy,_,_. v, = \/Lz—ke"’“, up to an irrel-
evant phase the solution is

by ﬁmzw—m, )

where H ,(,1) denotes a Hankel function of the first kind. At
late times or on large scales, the entropy perturbations then
scale as

vy & k7Y (=1) 27 (Jkt| < 1). (10)
Defining a parameter A =2 — 1, the spectral index comes
out as [28]
=4-2v=1-2A—— 11
ng V= (6 —7y (11)

where we did not have to make any approximations (this was
overlooked in [28]). When the two exponents b and c in the
original Lagrangian (2) are equal, we obtain an exactly scale-
invariant spectrum, n, = 1. However, when b and ¢ differ
sightly, we obtain deviations from scale invariance. Since we
have € > 3, the deviation from scale-invariance is always
between —3A and —2A. Thus, if b is larger than ¢ by about
two percent, we obtain the central value n, = 0.96 reported
by the PLANCK team [1].

Using the large-scale expression for the mode functions
(10), with v given in (11), we can find the time dependence
of the original scalar field fluctuation 9y :

1
5y = e (—az)é(—7)r™ = = constant. (12)
a a

Thus Jy tends to a constant on large scales, irrespective of
the values of b and c, implying that this solution is stable
for any values of the spectrum. The fact that §y is precisely
constant (in the large-scale limit) will also have implica-
tions for the non-Gaussian corrections.

IV. (NO) NON-GAUSSIANITY DURING THE
EKPYROTIC PHASE

In recent years, non-Gaussian corrections have become
accessible to experiments and are playing an increasingly
important role in discriminating between different cosmo-
logical scenarios. In the present paper, we will limit
ourselves to calculating the bispectrum of the perturbations,
leaving a calculation of higher n-point functions to
future work.
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Since our model does not contain kinetic terms with
more than two derivatives, it is immediately clear that non-
Gaussianities of “equilateral” and “orthogonal” type are not
going to get generated [30]. Thus we can focus on
evaluating the three-point function of “local” shape, which
amounts to calculating the second order term in a Taylor
series expansion (in real space) of the perturbations. We
first evaluate the local bispectrum of the entropy perturba-
tions. To this end, we expand the equation of motion for y,
Eq. (4), to second order. In doing so, one has to keep in
mind the definitions of the perturbed scalar fields at second
order. In comoving gauge, which is the gauge we will work
in from now on, they are given by [31]

55 <5s(1>’ b

Sh® = - Z
¢ ¢/ +2

5 5s(l)>, Sy = 2055,

(13)

where we have indicated the perturbative order by a
superscript. Since the potential does not depend on y,
and since the background satisfies y = 0, it is then clear
that the perturbed equation of motion will be identical to
that at first order, Eq. (7). There arises no source term
for the second-order entropy perturbation 6s?), and we
have the solution

55 =0. (14)

Hence no intrinsic non-Gaussianity is generated for the
entropy perturbations! This is in contrast with the standard
entropic mechanism, where the entropy perturbations
develop significant local non-Gaussian corrections
[13,16,25,32-34].

The non-Gaussianities that are constrained by CMB
measurements are those of the curvature perturbations ¢,
defined as local perturbations in the scale factor,

ds? = —dP? + a(1)2e*()dxidx;. (15)

During the ekpyrotic phase, curvature perturbations at
linear order are not amplified [12,35], nor are they sourced
by the entropy perturbations. However, at second order
curvature perturbations can be sourced by the entropy
fluctuations [13]. To evaluate this contribution, we have to
study the evolution equation for the curvature perturba-
tions. A useful expression is provided by the following
equation (which can be obtained by a trivial extension of
known derivations [33,36,37] to the case of having a
nonflat metric in field space), valid on large scales and
expressed in comoving gauge (op = 0),

. 2HSV
¢=-

@ -28V° (16)

This remarkably simple equation is valid to all orders in
perturbation theory. During the ekpyrotic phase, at second
order and in conformal time, Eq. (16) becomes
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'Han‘(p 5s(1)/ b
cor =T a0 (254 Do),

Using the late-time or large-scale expression for the entropy
mode functions (10), we obtain

5s(l)/
¢/

b 1[v,, Hv, b
Zsel) — 2|2 1M 7 _
s Lb’ 5 +21)x] 0. (18)

Thus, amazingly enough, at second-order there is also no
curvature perturbation generated during the ekpyrotic
phase. This can be understood heuristically from the fact
that the linearized solution is given by dy!!) = constant: if
one thinks of the perturbation in the potential 6V at
second order (in Eq. (16) as a linear perturbation around the
linearized solution, then it is clear that this vanishes in the
same way as the linear perturbation vanishes around
the constant y background solution.

V. TIME-VARYING EQUATION OF STATE

In order to have a successful model of the early universe,
at some point the ekpyrotic phase must come to an end,
which is most easily achieved if ¢ diminishes during the
ekpyrotic phase. Thus, we are led to extend our model by
allowing e to be a slowly-varying function of time.
Expressing the change in € in terms of scale-factor “time”
dN =dlna, with { = H ﬁ, we can derive the following
relations, valid in the large e limit (see also [11])

2 1 e 1
TS+ 2 — 1
s i geo(z)

1 2 e 1
2y w2 (2-2432 Y12 0= ). (20
a*V,~t m( €—|— €2+ " (20)

The spectral index can then be approximated by

1 7€N 1
=1 ==2A14+—-) —=—= — . 21
s ( + €> 3 ¢? + O<€2> (21)

As N decreases during the ekpyrotic phase, a decreasing ¢
implies €y > 0, which shifts the spectrum of the pertur-
bations slightly to the red. For the most symmetric case
where originally b = ¢, such a correction can naturally
induce the observed small red tilt [1].

The calculation of non-Gaussianities also changes some-
what, as we now obtain

ssp lov, [e[e 1
Tell)y — __7s [E[EN _
¢ +26s 6a 2<€2 +O(62>>' (22)
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Then there exists a small source term for the second-order
curvature perturbation during the ekpyrotic phase,

, 102 1 [e 1
=g (Frola) @

If we approximate the time dependence of the fluctuation
modes v,/a « 1/7 then we can easily perform the integral,
obtaining

2 1 €N 1
Z:o(ek?end == ﬁ (5Sek—end)2 (? +0 (?) ) s (24)

where the subscript ek-end refers to the end of the ekpyrotic
phase. We can see that the coefficient of (§seenq)” is tiny,
of O(1072) at most for realistic cases. Thus, even with a
time-varying equation of state, the nonminimal entropic
mechanism generates perfectly Gaussian entropy perturba-
tions and essentially vanishing curvature perturbations over
the course of the ekpyrotic phase.

VI. THE FINAL CURVATURE PERTURBATIONS

What we observe in the cosmic background radiation are
not entropy perturbations, but rather the observed temper-
ature fluctuations stem directly from curvature perturba-
tions. Thus, for our model to be viable, we must ensure that
the entropy perturbations can get converted into curvature
fluctuations. Several possibilities for such a conversion
process have already been discussed in the literature.

The first is most easily explained by rewriting Eq. (16) in
terms of @ = V /¢, which represents the rate of change of
the angle of the trajectory in scalar field space [38]. At
linear order one obtains

C = —00s = —955, (25)
¢ €c

where €. denotes the value of e during the conversion
process. This equation illustrates that whenever the back-
ground trajectory bends, curvature perturbations are gen-
erated. Since there is no k dependence in Eq. (25), their
spectrum will be identical to that of the entropy perturba-
tions that source them, and thus will be given by Eq. (11) or
(21). A bending could either occur at the end of the
ekpyrotic phase [26,39], or during the subsequent kinetic
phase where the ekpyrotic potential has become unim-
portant [11]. For these two possibilities, we can estimate the
amplitude of the curvature perturbation by approximating
€. and &s as constants over the time of the conversion, and
assuming a total bending angle of about 1 radian, A0 = 1,
giving {hpa & %ések_end and leading to a power spectrum

K -1)2vVv
(2 , <C%inal> ~ (6 _) ek-enzd ,
) e.(e—=3) (2x)

P, = (26)
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where V_.,q corresponds to the energy scale of the deepest
point in the potential. Unless the fast-roll parameter e
during the ekpyrotic phase is very close to 3, this implies
that (just as for the standard entropic mechanism) the
potential has to reach the grand unified scale Vg _.q ~
(1072Mp,)* in order for the curvature perturbations to have
an amplitude in agreement with the observed value of about
2x 107 [1].

Another possibility, of a somewhat different character, is
that conversion can occur at the bounce itself via the
process of modulated (p)reheating [40]. The idea here is
that at the bounce massive matter particles can be copiously
produced, with their subsequent decay into ordinary
fermions being modulated by a coupling function %(8s).
As shown in [40], the amplitude of the resulting perturba-
tions is proportional to h/h, and thus all predictions
depend on the ability to derive the precise form of 4(8s) in a
realistic setting. This conversion model has the property
that no bending of the trajectory need to occur before the
bounce.

The final non-Gaussianity in the curvature perturbation
will depend on the nonlinearity of the conversion process,
and thus the final answer will be model-dependent.
Nevertheless, we can get a general idea of the magnitude
of the resulting non-Gaussianities by re-writing Eq. (16) up
to second order in yet another form,

20V 26V 2

¢ ¢
We may expect the conversion process to occur over about
one e-fold of evolution of the Universe. If the conversion
process is efficient, i.e. if 6V / ¢2 does not vary much and in

particular does not change sign over this e-fold of con-
version, then we will have ¢® ~ (¢(1)? and

§(2)
(c™)z”

In this case the primordial local non-Gaussianity is of the
same order of magnitude as the nonlinear evolution that
takes place between the surface of last scattering and now
[41,42]. Moreover, the contribution from the ekpyrotic
phase in the case of nonconstant ¢, given in Eq. (24), is then
completely negligible. We can compare these expectations
with the observations from the PLANCK satellite, which
measured f1o¢d = 2.7 + 5.8 at the 16 level [3]. Thus, in this
case our model is in perfect agreement with observations.

Interesting questions for future research are to investigate
under what conditions the conversion process is indeed
efficient and how the conversion process may best fit
together with the bounce dynamics. What the nonminimal
entropic mechanism ensures is that the starting point is
ideal in that the perturbations coming out of the ekpyrotic
phase have an essentially vanishing bispectrum.

local
NL

Eg o(1). (28)
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It is important to note that we have simply assumed the
Lagrangian (2) from the outset. But to the extent that it
leads to interesting cosmological dynamics and predictions,
our analysis motivates looking for a derivation of this
Lagrangian from a more fundamental theory. This quest
goes well beyond the scope of the present paper, but we
find it encouraging that nonlinear sigma model couplings
of the form assumed in (2) are rather common in super-
gravity and string theory. Nevertheless, as with all cosmo-
logical models, it will be of importance not only to find a
derivation of this specific combination of nonminimal
coupling and potential, but also to combine the model
with realistic particle physics. This is a difficult unresolved

problem to which unfortunately we have nothing new
to add.

VII. DISCUSSION

As a model of the early universe, an ekpyrotic phase
employing the nonminimal entropic mechanism has many
compelling features. Contrasting with the standard entropic
mechanism, we note that (i) the initial conditions problem
is markedly improved here, since the potential is every-
where stable, (ii) the equation of state can be small € = 3,
since the near scale invariance of the spectrum results from
b = ¢, regardless of the value of ¢, and (iii) the entropy
perturbations generated during the ekpyrotic phase have an
exactly vanishing bispectrum.

Contrasting with single-field plateau models of inflation,
we note that (iv) there is no runaway as in eternal inflation
(i.e. rare, but large, quantum fluctuations do not come to
dominate the dynamics), since the ekpyrotic smoothing
phase proceeds almost entirely at a very small Hubble rate
[43,44], (v) if the process of converting entropic into
curvature perturbations is efficient, the resulting curvature

PHYSICAL REVIEW D 89, 103537 (2014)

perturbations will have a small bispectrum, with non-
Gaussianity parameters practically indistinguishable from
those in single-field inflation, fsa"' = fotho — (0 and
fieal = O(1), and (vi) in contrast to inflation, but just as
in other ekpyrotic models, no large-amplitude primordial
gravitational waves are produced during the ekpyrotic
phase [45,46]. In this regard, it is important to address
the recent claim by the BICEP2 team to have measured
primordial gravitational waves with a tensor-to-scalar ratio
~0.2 [47]. We would like to stress two aspects. First, the
BICEP2 result is still preliminary, and due to many possible
sources of systematic errors it needs to be confirmed by an
independent experiment. Second, gravitational waves may
be produced at other times during ekpyrotic/cyclic models,
in particular during the bounce. This last possibility has in
fact not been explored much in the literature yet and may
provide interesting avenues for future research.

Thus we find that rather than adding an infinity of
universes that are all physically different from each other,
like eternal inflation does, the present model explains the
currently established cosmological data with the addition of
one scalar field and more involved dynamics. This appears
to us to be a compelling alternative to the standard
inflationary framework.
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