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Abstract.

We consider a family of cosmological models in which all mass is confined to a

regular lattice of identical black holes. By exploiting the reflection symmetry about

planes that bisect these lattices into identical halves, we are able to consider the

evolution of a number of geometrically distinguished surfaces that exist within each of

them. We find that the evolution equations for the reflection symmetric surfaces can

be written as a simple set of Friedmann-like equations, with source terms that behave

like a set of interacting effective fluids. We then show that gravitational waves are

effectively trapped within small chambers for all time, and are not free to propagate

throughout the space-time. Each chamber therefore evolves as if it were in isolation

from the rest of the universe. We call this phenomenon “piecewise silence”.

1. Introduction

Since its birth, classical general relativity has been applied to the construction of

cosmological models. This is usually done by specifying the symmetries that are

expected to exist on large scales, and then looking for solutions of Einstein’s field

equations that exhibit those symmetries. The Cosmological Principle, that the Universe

is spatially homogeneous and isotropic on large scales, then leads one to the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) solutions. Taken as a model for the Universe, the

FLRW solutions of Einstein’s equations have been shown to be remarkably consistent

with a wide array of observations, ranging from the cosmic microwave background [1],

all the way through to the Hubble diagrams constructed using nearby supernovae [2, 3].

This consistency, however, is only allowed at the expense of including new and exotic

“dark” components that must dominate over all other forms of matter in the Universe.

On the other hand, we know that the visible matter in the late Universe is highly

inhomogeneous on small scales, being condensed largely into stars that only occupy
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about 10−30 of the total volume of space‡. The rest is an almost perfect vacuum. This

strongly suggests the need to relax our assumptions about homogeneity, at least at some

level. Bound up with this is the “backreaction” problem, that averaging and evolution

do not commute in Einstein’s theory [4]. This means that even if the Universe is close

to being homogeneous and isotropic on large scales, there is no guarantee that it will

evolve anything like the FLRW solutions of Einstein’s equations (unless one adds some

otherwise undetectable exotic matter fields, in order to force it to).

The problem that then needs to be addressed, in order to trust the results of the

standard approach to cosmology, is to determine the large-scale evolution that emerges

in space-times that are close to statistically homogeneous and isotropic on large scales,

but very highly inhomogeneous on small scales. This problem has been approached in

many different ways in the literature, including using cosmological perturbation theory

[5], spatial averaging [6], space-time averaging [7], shortwave approximations [8], exact

solutions [9], and approximate solutions [10], to name but a few. Our approach is to

develop a family of cosmological models that contains a regular array of identical black

holes only. These models have the great benefit of admitting a time-symmetric initial

value problem that can be solved exactly [11], as well as allowing for the exact evolution

of some high-symmetry curves to be found [12].

Early work in this spirit includes that of McCrea [13], Coxeter & Whitrow [14]

and Lindquist & Wheeler [15, 16]. These latter authors suggested a Wigner-Seitz-type

approach in which 3-dimensional space is tiled with regular polyhedra, and a mass is

put at the centre of each cell. The geometry of space-time within each cell is then

approximated as being Schwarzschild, and approximate junction conditions are used to

obtain a large-scale evolution. The optical properties of these models have been studied

in [17, 18, 19]. More recently numerical solutions to Einstein’s equations have been

found for these configurations in both the hyper-spherical case [20] and the flat case

[21, 22, 23]. Even taking into account their simplified nature, these lattice models are

still more realistic in many aspects than the FLRW models: Firstly, they are locally

inhomogeneous in a realistic non-perturbative manner; secondly, the matter content is

discrete, rather than a fluid; and thirdly, they are vacuum models, as is the real Universe

at almost all points.

The focus of the present work will be on the surfaces in these models that exhibit

reflection symmetry. These include the faces of the cells that constitute the original

tiling, as well as a number of the planes that pass through the cell centres. While the

geometry of these surfaces is a more complicated problem than those studied previously,

it will also enable us to consider more general models, such as the tiling of flat space with

an infinite array of cubes, as well as any other initial 2-surface that exhibits reflection

symmetry, including models that are not necessarily of the regular lattice type. Our

basic requirement will only be that there is an initial 2-surface with reflection symmetry.

This immediately implies, in particular, that the symmetry surface itself, as well as its

‡ Based on a typical stellar density of ∼ 1g/cm3, a baryon fraction of ∼ 0.05, and a critical density of

∼ 10−29g/cm3.
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evolution, will be totally geodesic subspaces of the full space-time.

One feature of particular interest for relativistic cosmological models is the presence

(or otherwise) of gravitational radiation. To determine whether a space-time is radiative

is not straightforward in general. For our purposes, we exploit the well-known manifestly

covariant and non-perturbative electromagnetic analogy for gravity [24], and say that the

flux of gravitational radiation vanishes if the super-Poynting vector vanishes [25, 44, 45].

We present an argument that this condition implies that the energy carried between cells

by the radiation also vanishes, despite the dimensionality of the super-Poynting vector

being different from that of an energy flux. Due to the existence of a number of chambers

that are entirely enclosed by these reflection symmetric surfaces, we say that our lattice

models are “piecewise silent”.

To implement this program we begin by identifying the geometric quantities that

must vanish on reflection symmetric surfaces. We derive the complete (1+2)-dimensional

Einstein system along their evolution. Our basic variables for this are the expansion

and shear of a set of reference time-like curves, together with the non-vanishing parts

of the Weyl tensor. We then evaluate the super-Poynting vector on these surfaces, and

consider what this means for the propagation of gravitational waves. Unless otherwise

stated, we use Greek letters µ, ν, ρ ... to denote coordinate indices, and Latin letters a,

b, c ... to denote tetrad indices.

2. Reflection Symmetric Planes in a Lattice Universe

In this section we will introduce the regular lattice models that we have previously

studied in [11, 12]. We will then identify the surfaces within them that exhibit reflection

symmetry. It will be these surfaces that we consider for the remainder of this paper.

2.1. A regular lattice of black holes

The first step in creating a regular lattice model of the Universe is to consider the regular

tiling of an abstract 3-dimensional space of constant curvature. If one insists that the

cells that constitutes this tiling are a set of indentical, regular polyhedra, then there is

a finite number of possibilities [26]. These are listed in Table 1, below.

If the curvature of the initial reference space is positive, so that it is a hyper-

sphere, then there are six possible tilings. These have 5, 8, 16, 24, 120 and 600 cells,

which are either tetrahedra, cubes, dodecahedra or octahedra. If the initial space is flat

Euclidean 3-space then the only possible regular tiling is with cubic lattice cells. For a

negatively curved initial reference space there are four possible tilings, with either cubes,

dodecahedra or icosahedra. In both the flat and negatively curved cases the number of

cells required to tile the space is inifinite, as we are considering trivial topologies only.

The next step in these constructions is then to place a point-like mass at the

centre of each cell§. To maintain the symmetries of the cells, and in order to have a

§ Alternatively one could place masses on every corner of every cell, but this leads to an identical set
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Number of

Cells

Background

Curvature

Cell

Shape

Lattice

Structure

5 + Tetrahedron {333}
8 + Cube {433}
16 + Tetrahedron {334}
24 + Octahedron {343}
120 + Dodecahedron {533}
600 + Tetrahedron {335}
∞ 0 Cube {434}
∞ - Cube {435}
∞ - Dodecahedron {534}
∞ - Dodecahedron {535}
∞ - Icosahedron {353}

Table 1. The regular tilings possible on 3-dimensional spaces of constant positive (+),

negative (-) and flat (0) curvature. The lattice structures {p, q, r} denote the edges to

a cell face, p, the number of cell faces that meet at the corner of a cell, q, and the

number of cells that meet along a cell edge, r.

vacuum space-time, these masses are chosen to be non-rotating and uncharged. One

is then in a position to attempt to solve Einstein’s equations. No exact solutions for

the global geometry of space-time are known for any of the configurations resulting

from the tilings in Table 1. However, for the six lattices on positively curved spaces it

is possible to solve the initial value problem under the assumption of time-symmetry.

This has been investigated in some detail in [11], and even considered for arbitrarily

large numbers of irregularly distributed masses in [27]. The initial value problem in the

flat and negatively curved spaces has not been solved exactly, but has been investigated

numerically in [21, 22, 28]. The exact evolution of some preferred curves has been

studied in [12], and numerical solutions for the evolution of the space-time have been

studied in [21, 23].

2.2. Reflection symmetric planes

There are a number of planes in each of the lattices discussed above that exhibit a

reflection symmetry. We will classify these planes by considering individual polyhedral

cells. Clearly every face of every cell exhibits a reflection symmetry, due to the regularity

of these lattices. In addition, however, we can also identify a number of surfaces within

each cell that exhibit a reflection symmetry. The precise structure of these internal

symmetry surfaces depends on the shape of the cell being considered, but in every case

of mass distributions.
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they always pass through the cell centre. We choose to classify these internal surfaces

according to whether any cell edges lie within them, or not. In some cases, such as the

lattice constructed for icosahedra, the internal symmetry planes all have cell edges lying

within them. But in other cases, such as the lattices constructed from cubes, both types

of surface exist. We will refer to the symmetry planes containing a cell face as “f”, the

internal planes with cell edges lying in them as “d”, and the internal planes without

edges lying in them as “p” ‖.
These reflection symmetric surfaces divide the lattice cells into a number of identical

sub-cells, which are called chambers [29]. We illustrate these chambers, using the

example of a cubic lattice cell, in Fig. 1. In this figure, the chamber vertices are

denoted “V” if they correspond to cell vertex, “E” if they are at the mid-point of a cell

edge, and “F” if they are at the centre of a cell face. The fourth vertex of each chamber

is at the centre of the cell, and is denoted as “C”. Each cubic cell can be seen to consist

of 48 chambers, meaning there is a total of 384 chambers in the entire 8-cell lattice.

The number of chambers in each lattice cell, and the total number of chambers in each

lattice, is given in Table 2 for each of the lattice constructed in S3. There are also 48

chambers in each of the cubic lattice cells that exist in E3 and H3, and 120 chambers

in each dodecahedral and icosahedral lattice cell in H3.

Finally, let us consider the symmetries that exist around the curves that constitute

the edges of each of the chambers discussed above. These curves are always at the

intersection of multiple symmetry surfaces, and so can be classified according to the

types of reflection symmetry that they admit. To illustrate this, let us consider the

lattice constructed from cubes in E3. In this case there are 6 different distinct chamber

edges, which are listed in Table 3, together with their relative length, and the number

and type of symmetries that exist around them. If a symmetry is present for an

individual cell we refer to its symmetry range as existing for a “cell”, otherwise, if the

whole lattice is required to see the symmetry, we refer to it as existing for a “lattice”.

For the curves in Table 3 it can be seen that there exist chamber edges with 2-fold,

3-fold and 4-fold rotational symmetry. This is sufficient to solve for the evolution of

each of these curves exactly, using the methods described in [12].

3. Implementing a Reflection Symmetry

A reflection isometry R can be formally defined as follows (see Sec. 9.5 of [30]): Let

G be a geodesic congruence that is orthogonal to a hypersurface M . For a given point

P , lying on a geodesic γ ∈ G, define RP to be the point on the other side of M that

lies on the same geodesic γ, and such that the distance between P and M is the same

‖ It should be noted that the surfaces containing cell faces do not necessarily correspond to global

symmetry surfaces that contain only cell faces, unless the cell edges are contiguous (as described in

[12]). For lattices with non-contiguous edges, such as the 8-cell, the extension of a face surface into any

neighbouring cell will coincide with an internal symmetry surface that contains a cell edge. We will

still label these reflection surfaces as “f”, although the reader should keep in mind that globally they

may coincide with surfaces labelled “d”.
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Figure 1. An illustration of the tetrahedral chambers that exist within a cubic lattice

cell. The diagram on the left shows the triangular faces of the chambers that coincide

with the faces of the cell, and the diagram on the right shows one example chamber

within the cell. For all chambers, the fourth vertex is the center, C, of the cube. So,

for example, the points V, E and F together with C form the vertices of one chamber.

as the distance between RP and M . If R, defined in this way, is an isometry, then we

say that R is a reflection isometry. It follows that M is fixed under the action of the

isometry, such that RM 7→ M . We refer to M as a symmetry surface. Also, we may

assume that G is affinely parametrized in such a way that γ(0) ∈ M for all γ ∈ G. A

symmetry surface has the useful property of being totally geodesic [30]. An example of

a reflection symmetry occurs in space-times possessing a moment of time symmetry. In

this case the symmetry surface is a spatial hypersurface that has vanishing expansion

and shear (i.e. has zero extrinsic curvature).

As an example of a spatial reflection symmetry we can consider the cell faces in

the 8-cell lattice. The locations of the masses at the centre of each lattice cell can then

be specified as in Table 3 of [11]. In this case it can be seen that the surface defined by

the polar coordinate φ = π
4

contains four vertices¶, located at the following positions in

Cartesian coordinates in a 4-dimensional Euclidean embedding space:

V̄1 =

(
1

2
,

1

2
,

1

2
,

1

2

)
V̄2 =

(
−1

2
,

1

2
,

1

2
,

1

2

)
V̄3 =

(
1

2
, −1

2
,

1

2
,

1

2

)
V̄4 =

(
−1

2
, −1

2
,

1

2
,

1

2

)
. (1)

The spatial metric of the system at the moment of time symmetry is then given by Eq.

(14) of [11], which we can write as

h0 = Φ4(χ, θ, η)
(
dχ2 + sin2 χ dθ2 + sin2 χ sin2 θ dη2

)
, (2)

¶ See [11] for an explanation of the φ coordinate.
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Number of Cells

in Lattice

Number of

Chambers per Cell

Total Number

of Chambers

5 24 120

8 48 384

16 24 384

24 48 1152

120 120 14400

600 24 14400

Table 2. The number of chambers per cell, and total number of chambers, for each

of the lattices constructed in S3.

where η = φ − π
4
, and where Φ(χ, θ, η) is given by Eq. (15) of [11]. As Φ(χ, θ, η) is an

even function of η, such that Φ(χ, θ, η) = Φ(χ, θ,−η), the transformation η → −η can be

seen to be a reflection symmetry. This argument can be straightforwardly generalized

to prove that all cell faces in every regular lattice configuration are invariant under

reflection, as are the other surfaces identified in Section 2.2.

Now let R0 be a reflection isometry acting on an initial spatial surface S0, with

symmetry surface M0. Development by the vacuum Einstein equations guarantees that

this isometry is preserved along the evolution [30], and that it extends to a reflection

isometry R acting on a globally hyperbolic neighborhood O of S0 [31, 32]. In particular,

for a geodesic slicing, each surface of constant time St will be invariant under a reflection

symmetry Rt with symmetry surface Mt ⊂ O, and there will exist a time-like symmetry

surface, M = ∪Mt, consisting of fixed points of R. Moreover, the development of M0

can be shown to define a geodesic congruence on M . Intuitively, in a neighbourhood of

the symmetry surface, the space-time consists of two identical parts, one on each side

of the surface, with identical evolution histories.

3.1. Constructing a coordinate system, and a tetrad

We will now explicitly construct a tetrad and a coordinate system that can be used to

exploit the reflection symmetry. We start by choosing a coordinate system (t, x, y, z) that

is adapted to the reflection symmetry in such a way that gµν(t, x, y, z) = gµν(t,−x, y, z).

The reflection isometry is then realized as the transformation x 7→ −x, where x can be

considered as a (non-unique) reflection parameter, not necessarily along a geodesic. We

can then write the metric in terms of functions that are either even or odd with respect

to the transformation x→ −x.

For further specification of the coordinates we take the geodesic slicing St to

be synchronous, without loss of generality. The symmetry hypersurface M is then

orthogonal to St. We also consider a comoving (time-like) slicing Cx that is adapted to

the reflection symmetry so that C0 = M and RCx = C−x. Now let Bt,x = St∩Cx denote
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Chamber

Edge

Edge

Length
Symmetry

Order

Reflection Surface

Type and Number
Symmetry

Range

EF 1 2 1f, 1p lattice

VE 1 3 3f lattice

FC 1 4 2p, 2d cell

VF
√

2 2 1f, 1d lattice

EC
√

2 2 1p, 1d cell

VC
√

3 3 3d cell

Table 3. Properties of the chamber edges for the lattice constructed from cubes in S3.

The shortest edge lengths are normalized to unity, and the symmetry order corresponds

to the number of reflection symmetric surfaces that intersect an edge. See the text

for the notation used for the different types of reflection symmetric surfaces, and an

explanation of the symmetry range.

the spatial 2-surfaces formed by the intersections of the St and Cx surfaces, and let (y, z)

be coordinates that parametrize these surfaces. This completely specifies the coordinate

system (t, x, y, z), up to a re-foliation t→ t′ + f(x, y, z), and up to the transformations

x→ x′(x), y → y′(x, y, z) and z → z′(x, y, z).

Let us now construct an orthonormal coframe that is adapted to the reflection

symmetry. To do this we define nµ = F−1x,µ to be the normalized gradients of the Cx
hypersurfaces. The normals nµ are then, by construction, perpendicular to the geodesic

congruence associated with St. The two foliations St and Cx, that are surfaces of

constant t and x, then give rise to the orthonormal 1-forms ω0 := dt and ω1 := F−1dx.

A coframe can be completed by adding two further normalized 1-forms, which can

be written as ωA := PAdx + ωAKdxK , where we have used the restricted indices

(A,B . . . = 2, 3) for frame components and (K,L . . . = 2, 3) for coordinate components.

These final two 1-forms have no t component, as we have chosen our coordinate system

to be synchronous. The complete orthonormal coframe ωa = ωaµdx
µ is then given by

ω0 = dt (3)

ω1 =
1

F
dx (4)

ωA = PAdx+ ωAKdxK , (5)

where we can take F and ωAK to be even functions of the coordinate x = x1, while the

PA are odd.

From the coframe, we can now construct a set of orthonormal frame vectors that

are adapted to the symmetry. These are given by

e0 = ∂t (6)

e1 = F∂x +QK∂K (7)

eA = eA
K∂K , (8)
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where (eA
K) = (ωAK)−T , and where QK is given by

Q2 =
(−P 2ω3

3 + P 3ω2
3)F

det(ωAK)
and Q3 =

(P 2ω3
2 − P 3ω2

2)F

det(ωAK)
.

The eA
K in Eq. (8) are even functions of x, while the functions QK in Eq. (7) are odd.

This completes our specification of the tetrad, which is now uniquely defined up to a

rotation of the vectors e2 and e3.

3.2. Tetrad commutation functions

The tetrad vectors in Eqs. (6)-(8) can be used to define a set of commutation function,

γabc, via

[ea, eb] = γcab ec . (9)

It follows immediately from Eq. (8) that

γ1AB = 0 . (10)

Furthermore, as the vector e0 is geodesic and hyper-surface orthogonal we immediately

know that it must be irrotational, so that

γ0A1 = 0 = γ001 . (11)

These relations are a consequence of the choice of frame, and apply to any frame that

is adapted to hypersurfaces in the way we have specified. They do not depend on any

symmetry properties about those hypersurfaces.

A commutator on which the reflection symmetry does have an effect is

[e1 , eA] = FeA
K
,x ∂K +QLeA

K
,L ∂K − eALF,L ∂x − eALQK

,L ∂K .

Evaluating this expression on the symmetry surface we see that only the third term can

be non-zero. This implies that on the symmetry surface we have

γA1B = 0 . (12)

Similarly, if we consider the commutators

[e1 , e0] = −F,t∂x −QK
,t∂K and [e0 , eA] = e K

A ,t∂K ,

then we see that the second term in the right hand side of the first equation vanishes.

This implies that on the symmetry surface we also have

γA10 = 0 = γ10A . (13)

Eqns. (10)-(13) can be summarized as follows: Commutation functions with an odd

number of indices equal to 1 are identically zero on the reflection surface. The same

result then follows for the Ricci rotation coefficients, which can be defined by

Γabc =
1

2
(γacb + γbac − γcba) . (14)
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If, following Ellis & MacCallum [34], we define nαβ := 1
2
γ
(α
γδε

β)γδ and aβ := 1
2
γαβα, then

it can be seen that Eqs. (10) and (12) imply

n11 = n22 = n33 = n23 = a1 = 0. (15)

The only independent non-zero parts of nαβ and aα on the symmetry surface are therefore

n12, n13, a2 and a3. This is a significant simplification.

3.3. Kinematic quantities

Let us use the notation uµ = e µ
0 . We can then define a projection tensor hµν =

gµν + uµuν , and perform an irreducible decomposition of uµ such that

uµ;ν = −uν u̇µ + σµν +
1

3
Θhµν + ωµν , (16)

where the over-dot denotes differentiation along uµ, such that Ẋ = uµX;µ. The tensors

σµν and ωµν are the symmetric and anti-symmetric parts of the projected trace-free

part of uµ;ν , respectively. The remaining variables are the expansion scalar Θ = uµ;µ,

and the acceleration vector u̇µ. Collectively, these variables are known as the kinematic

quantities associated with uµ.

We have already chosen St to be a geodesic slicing, which means that u̇µ = 0.

We have also defined uµ as being orthogonal to a set of spatial hypersurfaces, which

automatically means ωµν = 0. Again, these results are true by construction, and

not because of the reflection symmetry. We can see from Eq. (13), however, that

the reflection symmetry does imply that on the symmetric surface we have in tetrad

components that

σ12 = σ13 = Ω2 = Ω3 = 0 , (17)

where Ωα = 1
2
ηαβγ ėγ · eβ is the angular velocity of the triad vectors eα in the rest-frame

of an observer with 4-velocity uµ. The only independent non-zero kinematic quantities

on the reflection symmetric surface are therefore σ22, σ23, σ33 and Θ. The remaining

angular velocity component, Ω1, can be chosen freely, and may be used to set either γ302
or γ203 to zero (but not both).

3.4. Weyl tensor

The remaining quantities that need to be considered in our system are the components

of the Weyl tensor, which in vacuum are given by [35]

Ca
bcd = Ra

bcd = ec(Γ
a
bd)− ed(Γabc) + ΓaecΓ

e
bd − ΓaedΓ

e
bc − Γabeγ

e
cd , (18)

where the Γabc are the Ricci rotation coefficients defined in Eq. (14). This tensor can

be decomposed with respect to ua into electric and magnetic parts, as follows [36]:

Eac := Cabcdu
bud , (19)

Hac :=
1

2
ηab

efCefcdu
bud . (20)
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Inserting into these definitions the simplifications obtained from Eqs. (10) and (12) then

implies that on the symmetry surface we have

E12 ≡ 0 , E13 ≡ 0 , H11 ≡ 0 , (21)

H22 ≡ 0 , H23 ≡ 0 , H33 ≡ 0 . (22)

The only non-zero parts of the Weyl tensor on the symmetry boundary are therefore

E11, E22, E33, E23, H12 and H13. This immediately implies that

EabH
ab ≡ 0 . (23)

The scalar EabH
ab is an observer independent quantity, unlike Eab and Hab themselves,

and therefore has a special physical significance. That it vanishes is the first physically

important implication of the reflection symmetry that we have been investigating.

If we now define the projection tensor

Na
b := hab − nanb = δab + uaub − nanb , (24)

where na = e a
1 is the normal to the reflection surface, then the scalar, vector and

projected symmetric trace-free spatial 2-tensorial components of a spatial symmetric

trace-free tensor ψab can be written as [37]

◦ψ := nanbψab (25)
†ψa := Na

bncψbc (26)

‡ψab ≡ ψ{ab} := (N(a
cNb)

d − 1

2
NabN

cd)ψcd . (27)

In this notation the results above can be expressed in the following way:

†E2 ≡ 0 , †E3 ≡ 0 (28)
◦H ≡ 0 , ‡H22 ≡ 0 , ‡H33 ≡ 0 . (29)

For reference, we note the well-known decomposition of ψab in [33]

ψ+ := −3

2
ψ11 =

3

2
(ψ22 + ψ33) , ψ− :=

√
3

2
(ψ22 − ψ33) (30)

ψ1 :=
√

3ψ23 , ψ2 :=
√

3ψ31 , ψ3 :=
√

3ψ12 , (31)

leading to the relations

◦ψ = −2

3
ψ+ , (32)

†ψ2 =
1√
3
ψ3 ,

†ψ3 =
1√
3
ψ2 , (33)

ψ{22} =
1√
3
ψ− , ψ{23} =

1√
3
ψ1 . (34)

The only non-zero components of Hab are then given by

†H2 =
1√
3
H3 ,

†H3 =
1√
3
H2 , (35)

which, defined in the way they have been, lie in the reflection symmetric surface. The

electric part of the Weyl tensor, on the other hand, has no vector components in the

reflection symmetric surface.
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4. Evolution of Reflection Symmetric Surfaces

Let us now consider the geometry of the 2 + 1-dimensional symmetry hypersurface M .

The metric tensor of this space is

γµν := gµν − nµnν , (36)

where nµ is the space-like unit vector orthogonal to M that we considered above. Now,

the time-like vector field uµ is, by construction, orthogonal to nµ, and so is already

projected (i.e. uµ = γµνu
ν). The projected covariant derivative of uµ is

Dµu
ν := γρµγ

ν
σ∇ρu

σ = γρµ∇ρu
ν − nνuρKµρ , (37)

where Kµν = −γρµγσν∇ρnσ is the extrinsic curvature of M . This expression can be

irreducibly decomposed as

Dµuν = −uµu̇ν + ςµν +
1

2
θγµν +$µν , (38)

where ςµν = ς(µν) and $µν = $[µν] are the shear and vorticity tensors in M , defined such

that ςµνu
ν = 0 = $µνu

ν and ςµµ = 0. They measure the volume preserving deformation

and the rotation of uµ in the hypersurface M , respectively. The expansion of uµ in this

space is given by the scalar θ = Dµu
µ.

Similarly, the projected second covariant derivative of uµ is given by

DµDνu
ρ := γσµγ

τ
νγ

ρ
φ∇σ

(
γχτγ

φ
ψ∇χu

ψ
)

(39)

= γσµγ
τ
νγ

ρ
φ∇σ∇τu

φ +K ρ
µ u

φKνφ + γρτKµνn
φ∇φu

τ . (40)

This can be used to write down the following expression for Riemann tensor of the

1 + 2-dimensional space:

Rµν
ρσuµ := 2D[σDρ]u

ν (41)

= 2γτσγ
φ
ργ

ν
χ∇[τ∇φ]u

χ + 2Kν
[σKρ]τu

τ . (42)

Seeing that the first term in this expression contains the definition of the Riemann tensor

of the 4-dimensional space-time, and recognising that this expression must be true for

any vector that lies in M , gives the Gauss embedding equation for M :

Rµνρσ +KµσKνρ −KµρKνσ = γτµγ
φ
νγ

χ
ργ

ψ
σRτφχψ . (43)

As the hypersurface M is reflection symmetric, we must have symmetry under nµ →
−nµ. This means that Kµν = 0, and the Riemann tensor of M is simply given as the

projection of the Riemann tensor of the space-time:

Rµνρσ = γτµγ
φ
νγ

χ
ργ

ψ
σRτφχψ . (44)

We can use this expression to calculate the constraint and evolution equations for the

kinematic quantities defined in Eq. (38).
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4.1. Effective fluid description

Contracting Eq. (44), and using the fact that the full space-time is a vacuum solution

of Einstein’s equations, so that Rab = 0, gives the following expressions for the tetrad

components of the Ricci tensor of M :

R00 = −E11 , R02 = H13 ,

R03 = −H12 , R22 = E33 ,

R23 = −E23 , R33 = E22 ,

where we have used Eqs. (18), (19) and (20) to write Rabcd in terms of Eab and Hab. It

can immediately be seen that R := γabRab = 0.

These equations can be seen to satisfy a lower-dimensional version of Einstein’s

equations, Rab − 1
2
γabR = Tab, with an effective energy-momentum given by

Tab = (ρ̃+ p̃)uaub + p̃γab + π̃ab + q̃aub + uaq̃b, (45)

where

p̃ =
1

2
ρ̃ = −1

2
E11 , q̃a = (0,−H13, H12) ,

π̃ab =


0 0 0

0 −1
2
(E22 − E33) −E23

0 −E23
1
2
(E22 − E33)

 .

This effective fluid can be seen to have an effective equation of state w := p̃/ρ̃ = 1/2,

and an effective heat flow, q̃a, that is non-zero if and only if Hab is non-zero on M . The

effective anisotropic pressure, π̃ab, is non-zero at any points where Eab is not symmetric

under a local spatial rotation in M .

We emphasize that in no way does the effective fluid we have defined above

constitute an actual matter field in the space-time. The space-time is vacuum, but in

the dimensionally reduced system the intrinsic geometry behaves as though it satisfies

Einstein’s equations with a matter source. This effective matter source is completely

determined by the Weyl tensor of the 4-dimensional space-time.

4.2. Expansion of the reflection symmetric surfaces

We can now perform a 1+2-dimensional covariant decomposition of the lower

dimensional gravitational system, in order to find the equations that govern the

expansion of our reflection symmetric surfaces. Covariant studies of lower-dimensional

systems such as this have been performed in the past [38], but as far as we are aware

they have not been performed with a general fluid content (including heat flow and

anisotropic pressure). The full set of covariant equations are therefore presented in the

appendix.

In order to discuss the evolution of our reflection symmetric surfaces, we define

their areal scale factor a via

θ = 2
ȧ

a
. (46)
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The first and second time derivatives of this scale factor can then be deduced from the

equations in the appendix, and are given in our case by

ȧ2

a2
= ρ̃+ ς2 −K , (47)

ä

a
= − ρ̃

2
− ς2 , (48)

where ς2 = 1
2
ςµνς

µν , and K is the Gaussian curvature+ of the 2-dimensional surfaces

orthogonal to uµ. The evolution equations for ρ̃, ς2 and K are then given by

˙̃ρ+ 3
ȧ

a
ρ̃ = −Q1 −Q2 , (49)

(ς2)̇ + 4
ȧ

a
ς2 = Q1 , (50)

(−K)̇ + 2
ȧ

a
(−K) = Q2 , (51)

and where we have defined Q1 := ςµν π̃µν and Q2 := Dµq̃µ.

The set of Eqs. (47)-(51) are very similar to the 3+1-dimensional Friedmann

equations, with ρ̃ behaving like pressureless dust, ς2 behaving like radiation, and K
behaving like a spatial curvature term. In this analogy, the Q1 and Q2 terms in Eqs.

(49)-(51) take the place of energy exchange terms between the dust and radiation, and

between the dust and spatial curvature, respectively. Such systems have already been

studied in the context of FLRW cosmologies (see e.g. [39]). It is interesting to note

that ρ̃ behaves like a dust term, even though its effective equation of state in the lower-

dimensional system is w = 1/2.

If the Q1 and Q2 terms are non-zero then we will require evolution equations for

them in order to close the system. The evolution equation for Q2 can be found from

the equations in the appendix, and is in general a PDE. This means that in general the

expansion of the reflection symmetric surfaces cannot be solved independently at each

point in space. This is not surprising as Q2 is determined by the magnetic part of the

4-dimensional Weyl tensor. To find an evolution equation for Q1 we require information

from the full 3+1-dimensional system, as in the dimensionally reduced system this

equation corresponds to the evolution equation for the effective anisotropic pressure.

Such an equation cannot be found without knowledge of an effective equation of state,

which is absent from the 2+1-dimensional system.

5. The Propagation of Gravitational Waves

Let us now consider the propagation of gravitational waves in space-times with reflection

symmetric surfaces. To do this it is instructive to consider the gravitational analogue

of the Poynting vector∗, which can be defined as [25]

Pa = εabcE
b
dH

cd . (52)

+ Defined such that the Ricci scalar of these surfaces is (2)R = 2K.
∗ In electromagnetism the Poynting vector corresponds to the flux density of energy in the

electromagnetic field.
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This quantity is, in fact, best referred to as the “super-Poynting vector” of the

gravitational field, as it is derived from the Bel-Robinson tensor, which acts like the

super-energy-momentum tensor of the free gravitational field [40]. As such, the 4-vector

Pa does not have the dimensionality of an energy flux density, and therefore requires

some interpretation if it is to be used as a criterion for the non-existence of a flux of

gravitational waves [41]. We will do this in Section 5.1, and will use the results to

motivate our upcoming definition of “piecewise silence” in Section 5.2.

5.1. The super-Poynting vector for weak fields

In the standard linearized theory of weak-field gravitational waves the starting point is

to write the metric as a perturbation of the Minkowski space-time

gµν = ηµν + δgµν , (53)

where δgµν is small in the sense that

|δgµν | � 1 , (54)

and that additional smallness requirements on the derivatives of δgµν are satisfied (see

e.g. [42]). The Weyl tensor is then given by

Cµνρσ = δgµ[σ,ρ]ν − δgν[σ,ρ]µ , (55)

and we can choose a gauge such that ηµνδgµν = 0 and δgµν = Aµν sinφ, where φ = kµx
µ.

If we now choose the 4-velocity of the observer to be ūµ = (1, 0, 0, 0), and choose the

radiation to propagate along the z-axis along n̄µ = (0, 0, 0, 1), then the tangent 4-vector

to the ray is kµ = (ω, 0, 0, ω) = ω(ūµ + n̄µ), where ω is the angular frequency. If

we now define a screen space metric by sµν = ηµν + ūµūν − n̄µn̄ν , then we can use a

1+1+2-decomposition with respect to ūµ and n̄µ to write]

Aµν = A{µν} =


0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0

 = A+I+ + A×I× , (56)

where I+ and I× are unit linear-polarization matrices defined by [43]

I+ :=


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 , I× :=


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 , (57)

] Note that A+ := A11 follows the standard convention in the gravitational wave literature, and differs

by a factor − 3
2 from the parametrization introduced in Eq. (30).
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such that (I+)2 = IS and (I×)2 = IS, where IS is the screen space unit matrix. The

electric and magnetic parts of the Weyl tensor then take the form

Eµν =
1

2
ω2 sinφAµν , (58)

Hµν = Θµ
ρEρσΘν

σ = εµ
ρEρν , (59)

where

Θ :=


1 0 0 0

0 1√
2

1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1

 (60)

is the rotation matrix corresponding to a rotation by π/4 in the screen space, and

εµν = n̄ρūσεµνρσ (61)

is the 2-dimensional Levi-Civita tensor in the screen space. The electric and magnetic

Weyl tensor amplitudes can then be expressed in matrix form as

AE = A+I+ + A×I× , (62)

AH = ΘAEΘT = A×I+ − A+I× , (63)

so that the super-Poynting vector becomes Pµ = (0, 0, 0, Pz) where

Pz = ω4 sin2 φ(A2
+ + A2

×) . (64)

This can be compared with the energy flux density [43]

qµ =
1

32π
ω2(A2

+ + A2
×) δzµ , (65)

and leads to the following expression for the energy flux in terms of the super-Poynting

vector:

qµ =
1

16π
ω−2P̄µ , (66)

where P̄µ denotes the average of Pµ over one period. Although the relationship between

the super-Poynting vector and gravitational radiation has been considered many times

in the literature [25, 44, 45], this is to the best of our knowledge the first time that

it has been directly related to the energy flux of weak-field gravitational waves. From

the physical point of view, Eq. (66) indicates that the super-Poynting flux can be

interpreted as being proportional to the energy flux density, with a proportionality

factor that depends on the frequency of the wave. This makes it seem reasonable to

use Pµ as an indicator of the direction of energy flux in gravitational waves, even if

understanding the magnitude of that flux requires a more elaborate treatment. In what

follows we will do just this, and use the vanishing of Pµ as an indicator for the vanishing

of the flux of gravitational radiation.
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5.2. Piecewise silent universes

A special class of cosmological solutions of Einstein’s equations are the “Silent

universes”. These solutions are obtained under the assumptions of (i) irrotational dust

and (ii) a vanishing magnetic part of the Weyl tensor. These solutions are not assumed

to admit any symmetries ab initio, but are simple enough to be able to be studied using

a dynamical system approach. The non-vanishing variables for these space-times are the

the expansion scalar, the shear tensor, the electric part of the Weyl tensor, the energy

density in dust, and the cosmological constant:

{θ, σ+, σ−, E+, E−,Λ, ρ} . (67)

As Hab vanishes by assumption, it is usually said that there are no gravitational waves

in these space-times. In terms of the discussion above, this can be stated as a sufficient

condition for the super-Poynting vector to vanish everywhere, such that there is no flux

of gravitational waves between any two points in space-time.

If we want to deepen our understanding of the silent properties of the real Universe

it seems necessary that we should relax the assumption of Hab = 0 globally, and that

we could instead introduce a local notion of silence. In this spirit, and following the

discussion above, we define a universe to be piecewise silent if

(i) There is a well-defined subdivision of the universe into two or more non-overlapping

(except for the boundaries) spatial regions.

(ii) All observers comoving with the boundaries to these regions measure Pa to have

no component perpendicular to the boundary.

This definition can be seen to be satisfied for the subdivision into chambers of our

lattice universe, if we use the results of Section 3.4 and the subdivision described in

Sec. 2. Moreover, on the boundaries of these regions we have EabH
ab ≡ 0, and Hab

satisfies ◦H ≡ 0 and ‡Hab ≡ 0. The physical interpretation of this result is then that no

gravitational waves are allowed to pass through the boundaries of our lattice chambers,

and so the lattice universe is piecewise silent. Such a result does not imply that

gravitational waves play no part in the evolution of the space-time, but does illuminate

their compatibility with the symmetries of the model.

6. Discussion

In this paper we have studied the reflection symmetric surfaces that divide lattice

universes into chambers. We have identified the restrictions that reflection symmetry

imposes on kinematic and geometric quantities, and used the results to investigate the

simplified equations that result for the expansion of these surfaces, as well as for the

restrictions they impose on the propagation of gravitational waves.

We find that the area of the cell faces expands like the scale factor in a FLRW model

that is filled with dust and radiation with energy flux, even though the space-time itself

is completely devoid of any matter fields. We also find that the discrete symmetry of the
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configuration forces the scalar invariant EabHab to vanish along all reflection symmetric

surfaces, throughout the entire evolution of the model. Moreover, the only non-zero

components of the magnetic Weyl tensor are shown to lie on the reflection surface itself.

An explicit evaluation of the super-Poynting vector of the free gravitational field then

demonstrates that gravitational waves are forbidden from moving between chambers, as

on the chamber boundaries there are not enough degrees of freedom in the space-time

geometry to allow them to do so. This shows that inhomogeneous discrete cosmological

models with periodic boundary conditions are piecewise silent.
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Appendix. 1+2-dimensional Covariant Equations for Gravity

The twice contracted second Bianchi identities give the following conservation equations:

˙̃ρ+ θ(ρ̃+ p̃) = − 2u̇µq̃µ −Dµq̃µ − ςµν π̃µν (68)

h ν
µ

˙̃qν +
3

2
θq̃µ = − ςµν q̃ν −$µν q̃

ν − (ρ̃+ p̃)u̇µ −Dµp̃−Dν π̃µν − π̃µν u̇ν , (69)

where we have defined the projection tensor hµν := γµν +uµuν . The Ricci identities give

the following evolution equations:

θ̇ = − 1

2
θ2 − 2p̃− 2(ς2 −$2) +Dµu̇µ + u̇µu̇µ + 2Λ (70)

h ρ
µ h σ

ν ς̇ρς = − θςµν +D〈µu̇ν〉 + u̇〈µu̇ν〉 + π̃µν (71)

h ρ
µ h σ

ν $̇ρσ = − θ$µν +D[ν u̇µ], (72)

where ς2 = 1
2
ςµνς

µν and $2 = 1
2
$µν$

µν , and where we have included Λ. They also give

the following constraint equation:

Dνςµν −Dν$µν − 2$µν u̇
ν − 1

2
Dµθ + q̃µ = 0, (73)

The scalar curvature of the 2-spaces orthogonal to uµ is denoted (2)R, and can be used

to write

θ2

4
= ρ̃−

(2)R
2

+ ς2 −$2 + Λ. (74)

Unlike the 1 + 3-dimensional case, the uncontracted second Bianchi identities do not

give any further equations beyond those stated above. For further details of the 1+2-

dimensional approach the reader is referred to [38].
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