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Ricci flow and the holonomy group
By Brett Kotschwar at Golm

Abstract. We prove that the reduced holonomy group of a complete smooth solution
to the Ricci flow of uniformly bounded curvature cannot spontaneously contract within the
lifetime of the solution. It follows then, from an earlier result of Hamilton, that the holonomy
is exactly preserved by the equation. In particular, a solution to the Ricci flow may be Kähler
or locally reducible at t D T if and only if the same is true of g.t/ at times t � T .

1. Introduction

We consider solutions to the Ricci flow

(1.1)
@

@t
g D �2Rc.g/;

an evolution equation for a smooth family of Riemannian metrics .M n; g.t//. A well-known
consequence of Hamilton’s strong maximum principle for systems [12] is the following char-
acterization of the image of the curvature operator Rm W ^2T �M ! ^2T �M of a solution to
(1.1) when this operator is positive semidefinite.

Theorem (Hamilton). Suppose g.t/ is a solution to (1.1) on M � Œ0; T � satisfying
Rm.g.t// � 0. Then there exists ı > 0 such that, for t 2 .0; ı/, image.Rm.g.t/// � ^2T �M
is a smooth subbundle invariant under parallel translation with respect to g.t/ and closed
under the bracket

(1.2) Œ!; ��ij D g
kl.!ik�lj � !jk�li /:

Moreover, for any 0 < t1 < t2 � T , image.Rm.g.t1/// � image.Rm.g.t2///.

The theorem is of particular utility in low dimensions, where there are few possibilities
for the subalgebra Rm.^2T �pM/ � so.n/. In three dimensions, for example, it implies that
such a solution must have Rm.g.t// > 0 for t > 0 or split locally as a metric product. The strict
code for membership in the class of solutions with nonnegative curvature operator may lead one
to wonder what possibilities there are for a solution g.t/ that attains Rm.g.t0// � 0 everywhere
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134 Kotschwar, Ricci flow and the holonomy group

only after some elapsed time t0 > 0. The condition Rm.g.t// � 0 will be preserved for
t > t0, and a solution that splits locally for t0 < t < T must likewise split at t D t0,
but we have no information on the properties of the solution prior to t0. In particular, we
cannot dismiss the possibility that such a solution could split spontaneously at t0. One may
wonder, more generally, whether it is possible for any solution to the Ricci flow (on a manifold
with compatible topology) to acquire a novel local metric splitting within finite time. Such a
phenomenon would be at odds with the familiar picture of the Ricci flow as a “heat equation”
for Riemannian metrics – surely it would violate some principle of unique continuation. The
basic question this paper seeks to answer is: which one?

Our main result is the following theorem. Here Hol0.g.t// denotes the reduced holonomy
group of g.t/.

Theorem 1.1. Suppose g.t/ is a smooth complete solution to (1.1) on M � Œ0; T � of
uniformly bounded curvature. Then Hol0.g.t// � Hol0.g.T // for all 0 � t � T .

Theorem 1.1 is the “backwards-time” analog of Hamilton’s observation (cf. [12,14]) that
the holonomy group of a smooth solution to the Ricci flow cannot expand within its lifetime.
Thus one actually has Hol0.g.t// D Hol0.g.0// along the flow. One consequence is an affir-
mation of the expectation above that locally product metrics are, in a sense, rigid within the
class of solutions to the Ricci flow.

Corollary 1.2. Let .M; g.t// be as in Theorem 1.1. Then .M; g.T // is locally reducible
(respectively, Kähler) if and only if .M; g.t// is locally reducible (Kähler) for 0 � t < T .

One can equivalently phrase Theorem 1.1 in terms of the time-invariance of the dimen-
sions of the spaces of rg.t/-parallel tensors.

Theorem 1.3. If .M; g.t// is as in Theorem 1.1, and � 2 C1.T k
l
.M// satisfies

rg.T /� D 0, then there exists a smooth family �.t/ 2 C1.T k
l
.M// for t 2 Œ0; T � such

that rg.t/�.t/ D 0 and �.T / D �.

Since the reduced holonomy groups Hol0p.g.t// are connected Lie subgroups of
SO.TpM/ Š SO.n/, Theorem 1.1 is equivalent to the following infinitesimal reformulation
(with the choice H D hol.g.T //).

Theorem 1.4. Let g.t/ be a complete solution to (1.1) on M n � Œ0; T � with
sup jRm.x; t/j � K0. Suppose that there exists a smooth subbundle H � ^2T �M that
is invariant by rg.T /-parallel translation and closed under the bracket Œ�; ��g.T /. Then, if
image.Rm.g.T /// � H , it follows that image.Rm.g.t/// � H and that H remains invariant
by rg.t/-parallel translation and closed under the bracket Œ�; ��g.t/ for all t 2 Œ0; T �. Moreover,
holp.g.t// � Hp for all .p; t/ 2M � Œ0; T �.

We divide the proof of Theorem 1.4 into several steps. In Section 3, we reduce it to a
problem of unique continuation for a certain system; this is Theorem 3.7. In Section 4 we
embed this system in a larger (closed) system of coupled partial- and ordinary-differential
inequalities. The bulk of the work is the verification that this larger system is indeed closed;
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Kotschwar, Ricci flow and the holonomy group 135

for this we must perform a rather careful analysis of the evolution equations of the components
of our system. For the unique continuation, we ultimately appeal to a special case of an earlier
result of the author [18] for parabolic PDE-ODE systems. The approach in that reference was
inspired by work of Alexakis [1] on weakly hyperbolic systems arising in the study of the
vacuum Einstein equations (see also [20]).

2. Motivation: Non-expansion of holonomy

As we mentioned above, it is a result of Hamilton (cf. [12,14]) that a solution to the Ricci
flow with holonomy initially restricted to some subgroup of SO.n/ will continue to have its
holonomy so restricted. For this paper, the statement of this “non-expansion” result we have in
mind is the following.

Theorem 2.1 (Hamilton). Suppose g.t/ is a smooth complete solution to (1.1) with
g.0/ D g0 and jRm.g.x; t//j � K0 on M n � Œ0; T �. If Hol0.g0/ D G � SO.n/, we have
Hol0.g.t// � G for 0 � t � T .

Theorems 1.1 and 2.1 are statements about the backwards- and forwards-time behavior
of a solution to a (weakly) parabolic system, and, despite their apparent symmetry, require
rather different methods of proof. For the purpose of comparison, we will discuss two proofs
of Theorem 2.1 in detail. The first is an elementary combination of Berger’s classification [4],
de Rham’s splitting theorem [9], and the uniqueness of solutions for the Ricci flow [6,11]. The
second, which we defer to the appendix, is essentially self-contained and closer to the argument
suggested in [14].

We first give an example to show that, in general, one cannot dispense with the restriction
that g.t/ be complete (cf. also the similar example in [8, p. 247]).

Example 2.2 (Flat-sided sphere). Let U � S2 be a proper open set, x0 2 S2 n U , and
h0 a metric on S2 of Gaussian curvature Kh0

� 0 satisfying Kh0
� 0 on U but Kh0

.x0/ > 0.
One can take, e.g., x0 to be the north pole, U a small disk about the south pole and
� 2 C1.S2; Œ0; 1�/ with � � 1 on the upper hemisphere and � � 0 on U . By the theo-
rem of Kazdan–Warner [16], one can find a metric h0 withKh0

D �, and, for this metric, there
exists T > 0 and a solution h.t/ to the Ricci flow defined for t 2 Œ0; T / with h.0/ D h0. For
any a > 0, we can define a solution ga.t/ to the Ricci flow on U by

ga.x; t/ +

´
h0jU .x/ if .x; t/ 2 U � Œ0; a�,
h.x; t � a/ if .x; t/ 2 U � .a; aC T /.

For 0 < t � a, we have Kga.t/ � 0, but the strong maximum principle implies Kh.t/ > 0 for
t > 0, so Kga.t/ > 0 for t > a. Thus .U; ga.t// satisfies Hol0.ga.t// D ¹Idº for t � a, but
Hol0.ga.t// D SO.2/ for a < t < T .

2.1. Non-expansion via Berger’s classification. All of the ingredients of the proof
below can be found, for example, in the combination of the references [14] and [15]. The
argument can be summarized very succinctly. In the category of complete solutions to the Ricci
flow with bounded curvature, any initial isometries are preserved, and product, Kähler, and
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136 Kotschwar, Ricci flow and the holonomy group

Einstein initial data extend uniquely to solutions of the same type. With the splitting theorem
[9] and the classification theorem [4] as it is now understood, this is enough to conclude that
any restriction of the initial holonomy is shared by the solution at later times.

We will refer to the following modern version of Berger’s theorem (cf., e.g., [15, Theo-
rem 3.4.1]).

Theorem 2.3 (Berger). If M n is simply connected and g is irreducible, then either g is
symmetric or exactly one of the following holds:

(1) Hol0.g/ D SO.n/,

(2) n D 2m with m � 2, and Hol0.g/ D U.m/ in SO.2m/,

(3) n D 2m with m � 2, and Hol0.g/ D SU.m/ in SO.2m/,

(4) n D 4m with m � 2, and Hol0.g/ D Sp.m/ in SO.4m/,

(5) n D 4m with m � 2, and Hol0.g/ D Sp.m/ � Sp.1/ in SO.4m/,

(6) n D 7 and Hol0.g/ D G2 in SO.7/, or

(7) n D 8 and Hol0.g/ D Spin.7/ in SO.8/.

First proof of Theorem 2.1. First, we may assume that M is simply connected, as
Hol0. Qg0/ D Hol0.g0/ if Qg0 is the lift of g0 to the universal cover of M . We may also as-
sume that Hol0.g0/ is irreducible. Otherwise, by de Rham’s splitting theorem, .M; g0/ splits
as a global product

.M; g0/ Š .N1 �N2 � � � � �Nm; g1 ˚ g2 ˚ � � �˚ gm/:

Each metric gi will be complete and of bounded curvature jRm.gi /j � K0, and so, by the
existence theorems of Hamilton [11] and Shi [19], each factorNi will admit a complete solution
gi .t/ of bounded curvature with gi .0/ D gi on some small time interval Œ0; Ti � (with Ti
depending only K0 and dim.Ni /). Then Og.t/ + g1.t/ ˚ g2.t/ ˚ � � �˚ gm.t/ will be a
complete solution of bounded curvature on M � Œ0; ı� for ı > 0 equal to the minimum of the
Ti . But, by uniqueness, there is only one solution of bounded curvature with initial data g0,
hence g.t/ � Og.t/ on M � Œ0; ı�. The argument may then be iterated on intervals of uniform
size to obtain the agreement of g.t/ with a product solution on all ofM � Œ0; T �. Since we may
then consider each factor independently, we may as well assume that g0 is irreducible.

Now we consider each case of Theorem 2.3 in turn. Suppose first that g0 is symmet-
ric. The uniqueness of solutions and the diffeomorphism invariance of the equation imply
that Isom.g.0// � Isom.g.t//. For a general metric g, denote by A.g/ the set of isometries
A.g/ + ¹�q 2 Isoq.g/ j �2q D Idº. Since the composition law of Isom.g.t// � Diff.M/ and
the set of any isometry’s fixed points are independent of the metric, the preservation of initial
isometries also implies A.g0/ � A.g.t//. In particular, g.t/ remains symmetric for t > 0.
But for a symmetric metric g, each fixed representative Hol0p.g/ of the isomorphism class of
Hol0.g/ can be described explicitly as the subgroup of squares of involutive isometries fixing
p (cf. [15, Proposition 3.35]). Symbolically,

Hol0p.g/ D Jp.g/ + Isop.g/ \ ¹�q ı �r j �q; �r 2 A.g/º:
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Kotschwar, Ricci flow and the holonomy group 137

Then A.g0/ � A.g.t// implies Jp.g0/ � Jp.g.t// and, since g.t/ is symmetric, that

Hol0p.g.t// D Jp.g.t// � Jp.g0/ D Holp.g0/:

We are left then with the seven alternatives on Berger’s list to consider. The first of these
is uninteresting, as Hol0.g/ � SO.n/ for any metric g. The second, Hol0.g0/ D U.n=2/,
implies g0 is Kähler, and it is well known that from a Kähler initial metric of bounded curvature
one can construct a Kähler solution of bounded curvature by the solution of an appropriate
parabolic Monge–Ampère equation for the potential. This solution may, a priori, only exist
for a short time, but for this period we must have g.t/ � Og.t/ by uniqueness (and hence
Hol0.g.t// � U.n=2/). We may then iterate as before to conclude the same on the entire
interval of existence for g.t/.

This leaves five cases. However, in each of these, g0 is necessarily Einstein (cf. [15,
pp. 53–55]). (In fact, in the cases SU.m/, Sp.m/, Spin.7/, or G2, the metric must be Ricci-
flat.) But, associated to Einstein initial data Rc.g0/ D �g0, one can construct the Einstein
solution Og.t/ D .1 � 2�t/g0 which moves only by homothetical scaling. The holonomy is
obviously unchanged for this solution and it is unique among (at least) those of uniformly
bounded curvature. Thus Og.t/ D g.t/ and G D Hol0. Og.t// D Hol0.g.t//.

2.2. Berger’s theorem and non-contraction of holonomy. It is natural to ask whether
one can fashion an analogous argument along for Theorem 1.1. The answer seems to be “only
partially”. The failure of this argument to extend to all cases was, in fact, the starting point for
the work in the present paper.

Of the three primary components of the preceding proof, we nevertheless retain at least
two. The classification component, coming from Berger’s and de Rham’s theorems and their
consequences, is as applicable to g.T / as it was to g.0/. From [18], we also have a counterpart
to the uniqueness component: two complete solutions g.t/, Qg.t/ to (1.1) of uniformly bounded
curvature that agree at t D T > 0 must agree at times t < T . From this, it follows that any
isometries of g.T / are shared by g.t/ for t < T , and that g.T / is Einstein only if g.t/ is as
well for t < T .

What we lack, rather, is the ability to construct by hand the special “competitor” solutions
to extend the data g.T / to a solution of the same type for times t < T . Of course, if g.T / is
Einstein, we may still construct an extension by homothetical scaling of g.T /. However, when
g.T / is Kähler, we cannot simply construct a Kähler extension Qg.t/ for T � ı < t � T by the
method above, since we must now specify instead the data for the potential at time T . Such
“terminal-value” parabolic problems are ill-posed and lack solutions in general. The analogous
terminal-value problems for the Ricci (or Ricci–De Turck) flows are also ill-posed, and this is
an impediment, in particular, to the construction of a product extension Qg.t/ D Qg1.t/˚ Qg2.t/
for t < T from product data g.T / D g1 ˚ g2 on N1 � N2. The trouble is that, while the
product metric g1 ˚ g2 belongs to RF.M; T /, the “image” of the time-T Ricci flow operator
on M , we do not know whether either of the factors gi belongs to RF.Ni ; ı/ for any ı > 0.

While Theorem 1.1 is not simply reducible to the backwards-uniqueness of solutions to
(1.1), we will show, nevertheless, that it is equivalent to the backwards-uniqueness of a certain
larger, mixed parabolic and ordinary-differential, system. The argument we will describe in
the next section (and carry out in those following) will be essentially self-contained and, in
particular, independent of the theorems of Berger and de Rham.
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138 Kotschwar, Ricci flow and the holonomy group

3. Non-contraction of Hol0.g.t// as a problem of unique continuation

Our basic strategy is to interpret restricted holonomy as a condition on the operator
Rm W ^2T �M ! ^2T �M . (This is also the basis of Hamilton’s approach to non-expansion of
holonomy in [14]). This characterization is natural since the curvature effectively determines
the holonomy Lie algebra (in a manner we will review below), but it offers an additional ad-
vantage for our purposes in that the curvature operator, unlike the metric, satisfies a strictly
parabolic equation.

The representation of the holonomy Lie algebra hol.g.T // on TM gives a subbundle
of ^2T �M that is invariant under parallel translation and closed under the Lie-bracket given
by (1.2). The image of the curvature operator is contained in hol.g.T // and, as Rm.g.T //
is self-adjoint, its kernel at each p therefore contains holp.g.T //

?. The bundle hol.g.T //?

is likewise closed under parallel translation, though not in general under the Lie bracket. The
following observation shows that (as in Theorem 1.4) we may as well consider any parallel
subalgebra H containing Rm.g.T //, hol.g.T // being, in a sense, the minimal such H .

Lemma 3.1. Suppose H � ^2.T �M/ is a smooth distribution closed under paral-
lel transport and the Lie bracket (1.2). If, for all p 2 M , image.Rm.g.p/// � Hp, then
holp.g/ � Hp.

Proof. This follows easily from the Ambrose–Singer theorem [2] (cf. also [5, Theo-
rem 10.58]) which says that the elements of the leftmost union in the chain of inclusions[

q2M; 2�p;q

!2^2T �
p M

�
� ı Rm.q/ ı ��1

�
.!/ �

[
q2M; 2�p;q

�� .Hq/ � Hp:

generate holp.g/. Here �p;q represents the space of piecewise smooth paths  W Œ0; 1� ! M

with .0/ D p, .1/ D q and � represents the extension of parallel transport along the path 
to two-forms.

Assuming then we have such a H � ^2T �M , we consider its perpendicular complement
K + H? and associated orthogonal projection operator OPT W ^2T �M ! K . Although we
ultimately wish to show that Rm.g.t//jK � 0, we do not know a priori whether, for t < T ,
the fibers of H and K are complementary orthogonal subspaces (or that those of H are closed
under the bracket (1.2)) relative to g.t/. Thus we first define time-dependent extensions H.t/
andK.t/ for H and K that retain these properties on Œ0; T �. Then we prove Rm.g.t//jK.t/ � 0
(hence image.Rm.g.t/// � H.t/) and use this to show that H.t/ � H and K.t/ �K .

We defineH.t/ andK.t/ as the images of the families of projection maps NP .t/ and OP .t/
extending NPT and OPT . We have rg.T / NPT � rg.T / OPT � 0 and Rm.g.T // ı OPT � 0, and,
by spelling out the mandate that they remain complementary orthogonal projections, it is not
hard to determine what these extensions NP .t/ and OP .t/ ought to be, namely, the solutions to
Dt OP D 0 on Œ0; T � with NP .T / D NPT and OP .T / D OPT . Here Dt represents a time-like vector
tangent to the submanifold of g.t/-orthonormal frames in the product of the frame bundle with
the interval: F.M/�Œ0; T � (see (3.1) and Section 4.2). This extension, in any event, is achieved
by solving an ODE on each fiber of ^2T �pM . With OP .t/ so obtained, we arrive at the following
“backwards-uniqueness” problem: to show Rm ı OP .t/ � 0 and r OP .t/ � 0 for all 0 � t < T ,
given their vanishing at t D T . Once it has been established, all that remains is to verify that
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Kotschwar, Ricci flow and the holonomy group 139

K.t/ D image. OP .t// is in fact constant in time. This is a consequence of the equation satisfied
by OP .t/, and we do this in Lemma 3.6 below.

The remainder of the present section will be dedicated to the reduction of Theorem 1.4
to a precise statement of the backwards-uniqueness problem described above; this will be The-
orem 3.7.

3.1. Some preliminaries. The following elementary observation will in fact be essen-
tial to the computations in Section 4.

Lemma 3.2. Suppose V is a vector space with an inner product h�; �i and a consistent
Lie bracket Œ�; ��. If H � V is a subalgebra, and K + H?, then ŒH;K� � K.

Proof. The assumption of consistency implies that the trilinear map

.X; Y;Z/ 7! hŒX; Y �; Zi

is fully antisymmetric. Thus, if h1, h2 2 H and k 2 K, we have

hŒh1; k�; h2i D �hŒh1; h2�; ki D 0

as Œh1; h2� 2 H D K?.

Related to the trilinear form in the above proof is the following operator, which we will
need to identify in certain of our computations that follow.

Definition 3.3. Suppose V is a vector space with inner product h�; �i and Lie bracket
Œ�; ��. Let

T W End.V / � End.V / � End.V /! V � ˝ V � ˝ V �

be the operator defined by

T ŒA; B; C �.v1; v2; v3/ +
˝
ŒA.v1/; B.v2/�; C.v3/

˛
for A, B , C 2 End.V /, vi 2 V .

For completeness, we include the proof of a few elementary properties of projection maps
and parallel translation that we will use in the sequel.

Lemma 3.4. Suppose M is connected and � W V ! M is a smooth m-dimensional
vector bundle with connection D and a compatible metric h on its fibers. (We will also use
D to represent the induced connection D W End.V / ! T �M ˝ End.V /). Let H � V be an
l-dimensional smooth subbundle, K D H?, and NP W V ! H , OP W V ! K the h-orthogonal
projections onto H and K.

(1) For any X 2 TM ,

NP ıDX NP ı NP D OP ıDX NP ı OP D NP ıDX OP ı NP D OP ıDX OP ı OP D 0:

(2) The following are equivalent: H is closed under parallel translation, K is closed under
parallel translation, D NP � 0, and D OP � 0.
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140 Kotschwar, Ricci flow and the holonomy group

Proof. For the first claim, we fix X 2 TM , and differentiate both sides of the identity
NP ı NP D NP to obtain

DX NP ı NP C NP ıDX NP D DX NP :

Pre- and post-composing both sides of this result with NP and using again the above identity,
we arrive at

2 NP ıDX NP ı NP D NP ıDX NP ı NP ;

from which we conclude NP ıDX NP ı NP D 0. For the second equality in (1), we differentiate
both sides of OP ı NP D 0 to obtain

DX OP ı NP C OP ıDX NP D 0:

If we now pre- and post-compose both sides with OP , the first term on the left vanishes, and we
are left with OP ıDX NP ı OP D 0. The identities for DX OP follow similarly.

For the second claim, first note that, since NP C OP D Id W V ! V , we have D NP D 0

if and only if D OP D 0. Suppose now that D NP D D OP D 0. Given p, q 2 M , X 2 Hp and
 W Œ0; 1�! M a smooth curve joining p to q, define X.t/ 2 V.t/ by parallel transport along
 . If T D �. ddt /, then DT OP D 0 and DTX D 0 along  . But the compatibility of the metric
with D implies that f .t/ D j OP .X.t//j2

h
satisfies

f 0.t/ D 2
˝
DT OP .X/C OP .DT .X/.t//; OP .X.t//

˛
D 0;

and f .0/ D 0. Thus f � 0 and, in particular, OP .X.1// D 0, i.e., X.1/ 2 K?q D Hq . So H is
closed under parallel translation. Similarly, K is closed under parallel translation.

Suppose then that, on the other hand, H is invariant under parallel translation. Let p,
q 2 M ,  W Œ0; 1� ! M a smooth path connecting p and q, ¹ViºliD1 and ¹ViºmiDlC1 be
orthonormal bases for Hp and Kp respectively, and Vi .t/ the parallel transports of Vi along  .
Then Vi .t/ 2 H.t/ for t 2 Œ0; 1�. For any i , j , define Aij .t/ D h..t//.Vi .t/; Vj .t//. Then
A0ij D 0 as above. Since Aij .0/ D ıij , we have Aij .t/ D ıij . In particular,

Hq D span¹Vi .1/ºliD1 D
�
span¹Vi .1/ºmiDlC1

�?
;

so Kq D span¹Vi .1/ºmiDlC1. Since p and q were arbitrary, K is also invariant under parallel
translation; obviously we can also reverse the roles of H and K.

Finally, suppose again thatH (hence, now, alsoK) is invariant under parallel translation.
We wish to show that D NP � 0 (which is equivalent to D OP � 0 as remarked above), and for
this it suffices to show that h.p/.DX NP .U /;W / D 0 for an arbitrary p 2 M , X 2 TpM ,
and U , W 2 Vp. So let  W .��; �/ ! M be any smooth curve with .0/ D p and
 0.0/ D X . Define U.t/ and W.t/ to be the parallel transports of U and W along  and
let k.t/ D h..t//. NPU.t/;W.t//. By the first part of this lemma, we only need to check the
“off-diagonal” components of DX NP , that is, the cases in which U and W belong to opposite
summands of Vp D Hp ˚ Kp. So suppose first that U 2 Hp and W 2 Kp. Since H and K
are invariant under parallel translation, U.t/ 2 H.t/ and W.t/ 2 K.t/, thus

k.t/ D h..t//.U.t/;W.t// � h.p/.U;W / D 0:

Similarly, if U 2 Kp and W 2 Hp, then NPU.t/ � 0 and k.t/ � 0. In both cases, we have
k0.0/ D h.p/.DXU;W / D 0.
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Kotschwar, Ricci flow and the holonomy group 141

3.2. A time-dependent family of distributions. Going forward, let g.t/ be a smooth
solution of (1.1) on M n for t 2 Œ0; T � and define h + g.T /. Given a tensor field V 2 T k

l
.M/

that is, in some sense, “calibrated” to the metric g at t0 2 Œ0; T �, there is a natural (and well-
known) means of extending V to a family of sections V.t/ for t 2 Œ0; T � with the promise
of preserving this calibration. Namely, one can define V.p; t/ in each fiber T k

l
.TpM/ as the

solution of the ODE

@

@t
V
a1a2���ak

b1b2���bl
D Ra1

c V
ca2���ak

b1b2���bl
CRa2

c V
a1c���ak

b1b2���bl
C � � � CRak

c V
a1a2���c
b1b2���bl

(3.1)

�Rcb1
V
a1a2���ak

cb2���bl
�Rcb2

V
a1a2���ak

b1c���bl
� � � � �Rcbl

V
a1a2���ak

b1b2���c

for t 2 Œ0; T � with V.p; t0/ D V.p/. Note that if V D g.t0/, this procedure simply recovers
the solution g.t/, and if V and W are related by an identification of TM with TM � according
to the metric g.t0/ (i.e., by raising or lowering indices), then V.t/ and W.t/ will be related
by the analogous identification of TM and T �M according to g.t/ on Œ0; T �. Likewise, a
contraction of V by g.t0/ evolved according to (3.1) will be the same contraction of V.t/ by
g.t/. Equation (3.1) is equivalent to considering the evaluation of the fixed tensor V on a time-
dependent local frame evolved so as to preserve the pairwise inner products of the elements
of the frame. We will consider a somewhat more formal variation of this identification in the
next section; in the notation presented there, the above procedure is equivalent to finding a
representative V satisfying DtV � 0.

At present, though, (3.1) allows us to identify the distributions H and K with convenient
relatives H.t/ and K.t/. We let NPT , OPT 2 End.^2T �M/ denote, respectively, the orthogonal
projections onto H and K with respect to h, and construct NP .t/ and OP .t/ according to the
procedure (3.1) with NP .T / D NPT and OP .T / D OPT . Thus, in components, and here regarded
as elements of End.^2T �M/ Š T4.M/ (see Section 4.1),

@

@t
NPabcd D �Rap NPpbcd �Rbp NPapcd �Rcp NPabpd �Rdp NPabcp;

@

@t
OPabcd D �Rap OPpbcd �Rbp OPapcd �Rcp OPabpd �Rdp OPabcp:

We then define

H.t/ + image. NP .t// � ^2T �M and K.t/ + image. OP .t// � ^2T �M:

We collect here the properties of these subspaces we will need in the sequel.

Lemma 3.5. Let g, h D g.T /, H , K , H.t/, and K.t/ be defined as above, and
dim H D k. For all t 2 Œ0; T �, dimH.t/ D k, H.t/ is closed under the Lie bracket (1.2)
with respect to g.t/, and K.t/ D H.t/?. Moreover, if T is defined as in Definition 3.3, we
have

(3.2) T Œ OP ; NP ; NP � D T Œ NP ; OP ; NP � D T Œ NP ; NP ; OP � D 0:

Proof. The first three properties are easily verified from equations (1.2) and (3.1). The
last follows then from Lemma 3.2.

We now show that if it happens that image.Rm.g.t/// � H.t/ for all t , then H.t/ and
K.t/ are actually independent of time.
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142 Kotschwar, Ricci flow and the holonomy group

Lemma 3.6. With g.t/, H.t/, K.t/ as above, suppose image.Rm.g.t/// � H.t/ for
all t 2 Œ0; T �. Then H.t/ � H.T / D H , K.t/ � K.T / DK .

Proof. Let m D n.n � 1/=2 and p 2 M , and h D g.p; T /. Choose an find an h-
orthonormal basis ¹'AºmAD1 of sections for ^2T �pM such that ¹'AºkAD1 is a basis for Hp and
¹'Aºm

ADkC1
a basis for Kp. We can then use the procedure described by equation (3.1) on the

individual forms 'A to produce a family of two-forms ¹'A.t/ºmAD1 on TpM for t 2 Œ0; T �.
This set will be a g.t/-orthonormal basis for ^2T �pM for any t , and moreover,

NP .t/.'A.t// D

´
'A.t/ if A � k,
0 if A > k,

and

OP .t/.'A.t// D

´
0 if A � k,
'A.t/ if A > k.

Thus ¹'A.t/ºkAD1 and ¹'A.t/ºm
ADkC1

remain bases for H.t/ and K.t/, respectively. In fact,
for t 2 Œ0; T �,

NP .t/ D

kX
AD1

.'A.t//� ˝ 'A.t/; OP .t/ D

mX
ADkC1

.'A.t//� ˝ 'A.t/:

Now, for any fixed t , we can choose an orthonormal basis ¹eaº of TpM relative to g.p; t/;
in these components gab.p; t/ D ıab . Let M be the symmetric matrix defined by

Rabcd D �MAB'
A
ab'

B
cd :

For any A, at .p; t/ we have (observing the extended summation condition),

@

@t
'Aab D �Raq'

A
qb �Rbq'

A
aq

D �Rappq'
A
qb �Rbppq'

A
aq

DMBC

�
'Bap'

C
pq'

A
qb C '

B
bp'

C
pq'

A
aq

�
DMBC

��
'BapŒ'

C ; 'A�pb C '
B
ap'

C
bq'

A
qp

�
C
�
'BbpŒ'

C ; 'A�ap C '
B
bp'

C
aq'

A
pq

��
DMBC

�
Œ'A; 'C �; 'B

�
ab
�Rapbq'

A
qp �Rbpaq'

A
pq

DMBC

�
Œ'A; 'C �; 'B

�
ab
C .Rapbq CRpbaq/'

A
qp

DMBC

�
Œ'A; 'C �; 'B

�
ab
�Rbapq'

A
qp

DMBC

�
Œ'A; 'C �; 'B

�
ab
C Rm.'A/ab;

where the penultimate line follows from the Bianchi identity. That is,

(3.3)
@

@t
'A D L.'A/C Rm.'A/;

where L W ^2T �pM ! ^
2T �pM is the linear map determined by

L.'A/ DMBC

�
Œ'A; 'C �; 'B

�
:

Note that (3.3) is independent of the frame ¹eaº.
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Kotschwar, Ricci flow and the holonomy group 143

We claim that L satisfies L.Hp.t// � Kp.t/ and L.Kp.t// � Hp.t/. First, since
image.Rm.p; t// � Hp.t/ and Rm is symmetric, it follows that Kp.t/ � ker.Rm.p; t//,
and hence that MBC D 0 if B > k or C > k. Also, by Lemmas 3.2 and 3.5, we have
ŒHp.t/;Hp.t/� � Hp.t/, and ŒHp.t/;Kp.t/� � Kp.t/. Stated in terms of the structure con-
stants

CABC D
˝
Œ'A; 'B �; 'C

˛
this is CABC D 0 if A;B � k and C > k, or exactly one of A and B is greater than k and
C � k. Now,

(3.4) L.'A/ D
X

B;C�k

X
1�D;E�m

MBCC
AC
D CDBE 'E :

If A � k, then each CACD is only non-zero for D � k,

L.'A/ D
X

B;C;D;E�k

MBCC
AC
D CDBE 'E +

X
1�E�k

SAE'
E :

Likewise, if A > k, the only non-zero occurrences of CACD in (3.4) are those withD > k, thus
restricting the non-zero occurrences of CDBE in the sum to those with E > k. So

L.'A/ D
X

B;C�k

X
k<D;E

MBCC
AC
D CDBE 'E +

X
k<E�m

T AE '
E :

Thus defining

V.t/ +
�
'1.t/; '2.t/; : : : ; 'k.t/

�T
; W.t/ +

�
'kC1.t/; 'kC2.t/; : : : ; 'm.t/

�T
;

and using that Rm.'A/ � 0 if A > k, we can restate (3.3) as a matrix equation 
PV .t/

PW .t/

!
D

 
S.t/CM.t/ 0

0 T .t/

! 
V.t/

W.t/

!
:

It follows then that for all 0 � t � T , for appropriate coefficients EAB .t/,

'A.t/ D

kX
BD1

EAB .t/'
B.T / 2 H.T / D H

if A � k. Similarly, if A > k, we have 'A.t/ 2K for all 0 � t � T .

3.3. A restatement of Theorem 1.4. Now we are able to frame Theorem 1.4 as a prob-
lem of unique continuation. Under the assumptions of that theorem, we have, by Lemma 3.5,
a g.t/-orthogonal decomposition ^2T �M D H.t/˚K.t/ where H.t/ remains closed under
the Lie bracket. By the symmetry of the operator Rm, we will have image.Rm.t// � H.t/

if and only if K.t/ � ker.Rm.t//, that is, if Rm ı OP .t/ � 0 for all t 2 Œ0; T �. But if we
have image.Rm.t// � H.t/, it follows from Lemma 3.6 that H.t/ � H and K.t/ � K . To
conclude from Lemma 3.1 that holp.g.t// � Hp, we need to know further that H.t/ D H is
closed under parallel translation with respect to rg.t/ for all t . However, by Lemma 3.4, this
is true if and only if r OP � 0 on M � Œ0; T �. Therefore, Theorem 1.4 is a consequence of the
following assertion.
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144 Kotschwar, Ricci flow and the holonomy group

Theorem 3.7. Under the assumptions of Theorem 1.4, we have

(3.5) Rm ı OP � 0; r OP � 0

on M � Œ0; T � where OP D OP .t/ is the projection onto K.t/ with respect to g.t/ in the orthog-
onal decomposition ^2T �M D H.t/˚K.t/ provided by Lemma 3.5.

We remark that, given the dependence of the evolutions of rg.t/ and OP .t/ on the cur-
vature, the aims of proving Rm ı OP � 0 and r OP � 0 are not independent. We will establish
them simultaneously in the course of proving Theorem 3.7.

4. A PDE-ODE system

A few back-of-the-envelope calculations should convince the reader that the system con-
sisting of OR + Rm ı OP and r OP is neither parabolic nor too far from being so. First, it is easy to
see that the application of the heat operator to OR produces a term involving unmatched second
derivatives of OP . Schematically,

.Dt ��/ OR D
�
.Dt ��/Rm

�
� OP Cr Rm�r OP C Rm�� OP ;

where we use V �W to denote some linear combination of contractions of the tensors V and
W by the metric. Since we have only defined OP by the means of the fiber-wise ODEDt OP D 0,
we cannot expect to have much control over r.k/ OP (beyond observations on the level of (1)
of Lemma 3.4). A natural option is to try to adjoin rr OP itself to the system. This addition
is logically redundant from the perspective of Theorem 3.7 since r OP will be parallel on any
time-slice on which OP is parallel, but it comes at the cost of introducing higher order curvature
terms. This can be seen from (3.1) and the standard formula

@

@t
�kij D �g

mk
�
riRjm CrjRim � rmRij

�
;

for the evolution of the Christoffel symbols, which yield

@

@t
rr OP D rr Rm� OP Cr Rm�r OP :

At minimum, we must introduce a component involving r Rm to our system to compensate
(unlike the second derivatives of OP , the factors of rr Rm may be controlled by regarding
them, effectively, as factors of r.r Rm/). From the perspective of Theorem 3.7, the correct
(i.e., redundant) such component ought to be OT + r Rm ı.Id� OP /, that is, the element of
T �M ˝ End.^2T �M/ given by

OT .X; !/ + .rX Rm/. OP .!//;

since it must also vanish on any time slice where OR � 0 and r OP � 0. (In fact, for any
X , the images of the endomorphisms rX Rm.g.p// lie in holp.g/, cf. [5, Remark 10.60].)
Fortunately, with this addition, our system stabilizes. The tensor r Rm satisfies a heat-type
equation with reaction terms containing only products and contractions of Rm and r Rm:� @

@t
��

�
r Rm D r Rm�Rm;
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Kotschwar, Ricci flow and the holonomy group 145

and the Laplacian falling on the composition OT generates only contractions of first- and second-
covariant derivatives of OP with r Rm and rr Rm. Thus we see that the application of the
heat operator to OT introduces no fundamentally new quantities. While we have been rather
cavalier about the manner in which the components of the terms are combined (relative to the
decompositionH.t/˚K.t/), we nevertheless are entitled to some optimism that the collection
of OR, OT , r OP , and rr OP will fit into a closed system of mixed differential inequalities. We will
use the rest of this section to make this heuristic argument precise.

4.1. Notation and statement. In this section, we assume we have a solution to Ricci
flow g.t/ and distributions H and K as in Theorem 1.4. LetH.t/ andK.t/ be the distributions
described in Lemma 3.5, and NP .t/, OP .t/ their associated projections. We fix notation, once
and for all, for the following collection of tensors:

NR + Rm ı NP ; OR + Rm ı OP ;
NT + r Rm ı.Id� NP /; OT + r Rm ı.Id� OP /;

A + r OP ; B + rr OP :

Note that NP and OP are self-adjoint elements ofE + End.^2T �M/. It will be convenient
to use the metric identification of E Š .^2T �M/� ˝^2T �M with ^2T �M ˝^2T �M and
further with the subspace of T4.M/ in which the members are antisymmetric in the first two
and last two arguments. We make this identification by selecting the normalization

V ^W D
1

2
.V ˝W �W ˝ V /

for V , W in TM (or T �M ). With respect to a local frame ¹eaº for T �M , we have

NPabcd D
˝
NP .ea ^ eb/; ec ^ ed

˛
; OPabcd D

˝
OP .ea ^ eb/; ec ^ ed

˛
;

so, if ! 2 ^2T �M , then

NP .!/cd D NPabcd!ab; OP .!/cd D OPabcd!ab:

We also define Tmabcd D rmRabcd .
However, for the endomorphism Rm, since we wish to keep the notationRabcd consistent

with the usual convention (namely, that with respect to which one has hRm.!/; !i � 0 and
Rabba � 0 on the standard sphere), we have an additional minus sign in our formula:

Rm.!/cd D �Rabcd!ab D Rabdc!ab:

Similarly,
.rX Rm/.!/cd D �rmRabcdXm!ab D TmabdcXm!ab:

The tensors NP and OP , like R, are symmetric in the interchange of their first and last pairs
of indices and antisymmetric in the interchange of the elements of those pairs:

NPabcd D NPcdab D � NPabdc D � NPbacd ;

OPabcd D OPcdab D � OPabdc D � OPbacd :
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146 Kotschwar, Ricci flow and the holonomy group

We also have Amabcd D rm OPabcd , Bmnabcd D rmrn OPabcd , for which corresponding
identities hold. The tensors R and T are of course also subject to the Bianchi identities.

The tensors NR, OR, NT , OT are no longer symmetric in the interchange of the final two pairs
of indices, but remain antisymmetric in the interchange of the elements of these pairs:

ORijkl D OPijabRablk D � ORj ikl D � ORijlk;(4.1)
OTmijkl D OPijabTmablk D � OTmjikl D � OTmijlk;(4.2)

and similarly for NR and NT .
Now, we let E + End.^2T �M/,

X + E ˚ .T �M ˝E/ Š T4.M/˚ T5.M/;

Y + .T �M ˝E/˚ .T �M ˝ T �M ˝E/ Š T5.M/˚ T6.M/;

and define

X.t/ + OR.t/˚ OT .t/ 2 X;

Y .t/ + A.t/˚ B.t/ 2 Y:

The goal of this section is to prove the following result.

Proposition 4.1. With the above definitions and under the assumptions of Theorem 1.4,
for all ı > 0, there exists a C D C.n;K0; ı; T / such that on M � Œı; T � we haveˇ̌̌� @

@t
��g.t/

�
X
ˇ̌̌2
g.t/
� C

�
jXj2g.t/ C jY j

2
g.t/

�
;(4.3) ˇ̌̌ @

@t
Y
ˇ̌̌2
g.t/
� C

�
jXj2g.t/ C jrXj2g.t/ C jY j

2
g.t/

�
:(4.4)

Here we use the same notation to denote the metrics on X, Y, and TM �˝X induced by
g.t/, and r D rg.t/ and �g.t/ to denote the connection and Laplacian induced on X by g.t/
and its Levi-Civita connection.

Remark 4.2. The parameter ı is an artifact of what will be an eventual application of
Shi’s estimates [19] for the derivatives of the curvature tensor, reflecting the degradation of the
estimates as t ! 0. If M is compact, one can dispense with ı in favor of an estimate valid for
all t 2 Œ0; T �, but with a constant C that now also depends on the suprema of the norms of the
first and second derivatives of curvature on M � Œ0; T �.

4.2. The orthonormal frame bundle associated to g.t/. To verify (4.3) and (4.4), we
will need to examine the algebraic structure of the evolution equations of OR, OT , A, B rather
closely, and it will aid the computations somewhat to regard the tensors as functions on the
product of the g.t/-orthonormal frame bundle O.M/ with the interval Œ0; T �. The utility of
this perspective to calculations attached to the study of the Ricci flow was first demonstrated by
Hamilton in [13]. For our application, we will borrow the notation and abide by the conventions
of [7, Appendix F], thus, in particular, some commutation formulas involving curvature will
differ by a sign from their counterparts in [13].
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Kotschwar, Ricci flow and the holonomy group 147

Following [7], we let � W F.M/!M denote the frame bundle ofM . This is a principal
GL.n;R/-bundle onM ; we take the group to act on the left. On gl.n;R/, one has the standard
basis of elements ¹e.a; b/ºn

a;bD1
, with e.a; b/dc D ıac ı

d
b

. We may fix a metric h on gl.n;R/
by insisting on the orthonormality of this basis with respect to h. Thus,

he.a; b/; e.c; d/ih D ı
a
d ı
c
b:

Let � W GL.n;R/ � F.M/ ! F.M/ denote the left action and, for any frame Y ,
define �Y W GL.n;R/ ! F.M/ by �Y .A/ + �.A; Y /. Then we have the isomorphism
.�Y /� W gl.n;R/ ! TY .F.M/x/ defining the vertical spaces VY D image..�Y /�/, where
�.Y / D x. At each Y , the Levi-Civita connection r of g.t/ defines complementary horizontal
spaces WY � TY .F.M//. For each t 2 Œ0; T �, there is a unique metric gF .t/ on F.M/ which
enforces the orthogonality of the subbundles V and W and for which

� W
�
F.M/; gF .t/

�
! .M; g.t//

is a submersion and

.�Y /� W .gl.n;R/; h/!
�
TY .F.M/x/; g

F .t/jTY .F .M/x/

�
an isometry at each Y 2 F.M/.

A solution g.t/ to the Ricci flow on M � .0; T / defines a map

g W F.M/ � Œ0; T �! SMn.R/

with values in the symmetric n� n matrices. Likewise, a time-dependent family of sections of
T k
l
.M/ may be regarded as an O.n/-equivariant matrix-valued function on

AF.M/ + F.M/ � Œ0; T �:

These functions are determined by their values on the submanifold

AO.M/ + g�1.Id/ D
[

t2Œ0;T �

O.M/g.t/ � ¹tº � AF.M/;

where O.M/g.t/ � F.M/ denotes the bundle of g.t/-orthogonal frames. It is convenient to
use the same notation for the tensors under both of these interpretations. Thus for T 2 T 12 .M/,
we will write

T cab D T .Y /
c
ab D T

c
ab.x/ D T .x/.Ya; Yb; Y

c/

at a given Y 2 F.M/, where, again, �.Y / D x, and Y c 2 T �xM is the c-th element of the
frame dual to Y at x.

4.3. Elements of a global frame on T AF.M/ and their commutators. We continue
to follow [7, Appendix F]. From the isomorphisms .�Y /� W gl.n;R/ ! TYF.M/�.Y /, we
may generate a basis for each VY from ¹e.a; b/ºn

a;bD1
by defining, for each 1 � a; b � n and

Y 2 F.M/,
ƒab.Y / + .�Y /�e.a; b/:

The action of this vector field on a tensor is algebraic. On U 2 T2.M/, for example, it is given
by

ƒabUij D ı
a
i Ubj C ı

a
j Uib;
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148 Kotschwar, Ricci flow and the holonomy group

and on general U 2 T k
l
.M/ by

ƒabU
j1j2:::jk

i1i2:::il
D ıai1U

j1j2:::jk

bi2:::il
C ıai2U

j1j2:::jk

i1b:::il
C � � � C ıailU

j1j2:::jk

i1i2:::b

� ı
j1

b
U
aj2:::jk

i1i2:::il
� ı

j2

b
U
j1a:::jk

i1i2:::il
� : : : � ı

jk

b
U
j1j2:::a
i1i2:::il

:

The collection ¹ƒa
b
.Y /ºn

a;bD1
is an orthonormal basis for each VY with respect to (the

restriction of) gF , but these vector fields will not in general be parallel to O.M/. Thus it is
sometimes convenient to consider instead the vectors

(4.5) �ab + ıacƒ
c
b � ıbcƒ

c
a:

It is easily checked that the set ¹�abºa<b is an orthogonal basis for TYO.M/�.x/.
Next we define a global frame spanning the horizontal subbundle W � TF.M/. Given

any x 2M , vector field X 2 TxM , and frame Y D .Y1; Y2; : : : ; Yn/ 2 F.M/x , define

X .t/ + .��.t/Y1; ��.t/Y2; : : : ; ��.t/Yn/;

where �.t/ is any path in M with �.0/ D x and P�.t/ D X and ��.t/ W TxM ! T�.t/M

denotes parallel transport along �.t/. Then we define, for Y 2 F.M/ and any a D 1; 2; : : : ; n,

(4.6) rajY +
d

dt

ˇ̌̌
tD0

Ya
.t/:

That is, we define rajY to be the horizontal lift of Ya at Y 2 F.M/x .
Local coordinates ¹xiºniD1 on M induce, in a natural way, a system of local coordinates

. Qxi ; yia/ on F.M/ via Qxi D xi ı � and the expansions

Ya D y
i
a.Y /

@

@xi
:

In these coordinates,

ra D y
j
a .Y /

�
@

@ Qxj
� ykb�

i
kj .�.Y //

@

@yi
b

�
:

Thus, for example, on a two-tensor U ,

rk.Uij / D .rU/kij D rkUij ;

where the leftmost expression represents the action of rk 2 TF.M/ on the Rn
2

-valued func-
tion on F.M/, the middle expression represents the value of the Rn

3

-valued function rU on
F.M/, and the rightmost expression represents the tensor rU.x/ evaluated at Yk.x/, Yi .x/,
and Yj .x/. Where the interpretation is clear from the context, we will use the notation of the
rightmost expression to represent all three cases. The set ¹rajY ºnaD1 is a basis for the horizon-
tal space WY � TYF.M/ at each Y . Since ragij D 0, each ra is also tangent to TYO.M/.

Finally, we consider differentiation in the time direction. As the vector @
@t
2 T AF.M/ is

not in general tangent to AO.M/, it is convenient to work instead with the vector

Dt +
@

@t
CRabg

bcƒac
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Kotschwar, Ricci flow and the holonomy group 149

which satisfies Dtgij D 0. On AO.M/, it is given simply by

Dt D
@

@t
CRacƒ

a
c :

As remarked in Section 3, extending a tensor field V defined on some time-slice to a time-
dependent family via the ODE (3.1) is equivalent to solving DtV � 0. In particular, for the
projections NP and OP , we have

(4.7) Dt NPabcd � Dt OPabcd � 0:

The collection ¹Dtº[¹raºnaD1[¹�abº1�a<b�n forms the global frame field for T AO.M/

with respect to which we will perform our calculations (although it will be convenient to use all
elements of the set ¹�abº1�a; b�n, i.e., including �ab for a � b). As derivations on the frame
bundle, they satisfy the following commutator relations.

Lemma 4.3. Restricted to AO.M/, the vectors Dt , ƒab , �ab and ra satisfy

Œƒab ;rc� D ı
a
crb;(4.8)

Œ�ab;rc� D ıacrb � ıbcra;(4.9)

ŒDt ;ra� D rbRac�bc CRacrc D rpRpacbƒ
b
c CRacrc ;(4.10)

ŒDt ��;ra� D Rabdcrb�cd D 2Rabdcƒ
c
drb C 2Rabrb:(4.11)

Here � D rprp D
Pn
pD1 rprp.

Proof. Equations (4.8), (4.9), and the first equalities in (4.10) and (4.11) appear in [7,
Appendix F]. For the second equality in (4.10), we compute

rbRac�bc D rbRac
�
ıbpƒ

p
c � ıcpƒ

p

b

�
D
�
rpRac � rcRap

�
ƒpc D rpRpacbƒ

b
c :

For the second equality in (4.11), we compute

Rabdcrb�cd D Rabdc
�
�cdrb C Œrb; �cd �

�
D Rabdc

��
ıceƒ

e
d � ıdeƒ

e
c

�
rb C

�
ıdbrc � ıcbrd

��
D 2

�
Rabdcƒ

d
c CRab

�
rb;

using (4.9) in the second line.

4.4. Evolution equations for A and B. We begin by computing the evolution equa-
tions for the components of the ordinary-differential component of our system. We will need
the following consequence of Lemma 3.2.

Lemma 4.4. The projections NP and OP satisfy

(4.12) NPabcdƒ
d
c
OPijkl D 0:
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150 Kotschwar, Ricci flow and the holonomy group

Proof. Note that

NPabcdƒ
d
c
OPijkl D NPabdi OPdjkl C NPabdj OPidkl C NPabdk OPijdl C NPabdl OPijkd

D � NPabid OPkldj C NPabdj OPklid � NPabkd OPijdl C NPabdl OPijkd

D
˝�
OP .ek ^ el/; NP .ea ^ eb/

�
; ei ^ ej

˛
C
˝�
OP .ei ^ ej /; NP .ea ^ eb/

�
; ek ^ el

˛
:

In view of Lemma 3.2, we have ŒK.t/;H.t/� � K.t/, thus

NPabcdƒ
d
c
OPijkl D

˝�
OP .ek ^ el/; NP .ea ^ eb/

�
; OP .ei ^ ej /

˛
C
˝�
OP .ei ^ ej /; NP .ea ^ eb/

�
; OP .ek ^ el/

˛
which vanishes on account of antisymmetry of the map .X; Y;Z/ 7! hŒX; Y �; Zi.

In view of (4.7), the only non-zero contributions to the evolution equations for A D r OP
and B D rr OP come from the time-dependency of the connection. These contributions are
encoded in the commutators of Dt with the horizontal vectors ra.

Proposition 4.5. Regarded as a matrix-valued function on AO.M/, the tensor A evolves
according to

DtAmijkl D RmrArijkl � OPpjkl OTrpirm � OPipkl OTrpjrm(4.13)

� OPijpl OTrpkrm � OPijkp OTrplrm:

Proof. Since Dt OPijkl D 0, we have DtAmijkl D Dtrm OPijkl D ŒDt ;rm� OPijkl . Thus
from (4.10) we have

DtAmijkl D RmrArijkl C Trrmpqƒ
q
p
OPijkl :

Now,
Trrmpq D Trrmuv

�
OPuvpq C NPuvpq

�
D � OTrpqrm C Trrmuv NPuvpq;

so

Trrmpqƒ
q
p
OPijkl D � OTrpqrmƒ

q
p
OPijkl C Trrmuv NPuvpqƒ

q
p
OPijkl D � OTrpqrmƒ

q
p
OPijkl ;

on account of Lemma 4.4, and (4.13) follows.

Proposition 4.6. Regarded as a matrix-valued function on AO.M/, the tensor B evolves
according to

DtBmnijkl(4.14)

D RmrBrnijkl CRnrBmrijkl CrnRmsAsijkl

C TrrmsiAnsjkl C TrrmsjAniskl C TrrmskAnijsl C TrrmslAnijks

� OPsjklrm OTrsirn � OPisklrm OTrsjrn � OPijslrm OTrskrn � OPijksrm OTrslrn

C Trrnvw
�
OPsjklAmvwsi C OPisklAmvwsj C OPijslAmvwsk C OPijksAmvwsl

�
:
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Proof. As before,DtBmnijkl D ŒDt ;rmrn� OPijkl . We compute this commutator using
a double application of (4.10):

ŒDt ;rmrn� D ŒDt ;rm�rn CrmŒDt ;rn�

D
�
Rmrrr C Trrmsuƒ

u
s

�
rn Crm

�
Rnrrr C Trrnsuƒ

u
s

�
D Rmrrrrn C Trrmsuƒ

u
srn CrmRnrrr CRnrrmrr

CrmTrrnsuƒ
u
s C Trrnsurmƒ

u
s :

Then, using (4.8), we have Trrnsurmƒus D �Trrnsmrs D Trrnmsrs , so

DtBmnijkl D RmrBrnijkl CRnrBmrijkl CrmTrrnsuƒ
u
s
OPijkl(4.15)

C
�
rmRns C Trrnms

�
Asijkl C Trrmsuƒ

u
sAnijkl :

Now, since NP C OP D Id, we have A D r OP D �r NP ; applying this and considering the
decomposition of T into components as above, we compute

rmTrrnsu D rm
�
� OTrsurn C Trrnvw NPvwsu

�
D �rm OTrsurn � TrrnvwAmvwsu CrmTrrnvw NPvwsu:

Using Lemma 4.4 again, we therefore have

(4.16) rmTrrnsuƒ
u
s
OPijkl D �

�
rm OTrsurn C TrrnvwAmvwsu

�
ƒus
OPijkl :

Finally, we can simplify the last line of (4.15). The last term is

Trrmsuƒ
u
sAnijkl D TrrmsnAsijkl C TrrmsiAnsjkl C TrrmsjAniskl

C TrrmskAnijsl C TrrmslAnijks;

and

rmRns C Trrnms C Trrmsn D rmRns C
�
rsRmn � rmRsn

�
C
�
rnRsm � rsRnm

�
D rnRms;

so the last line reduces to�
rmRns C Trrnms

�
Asijkl C Trrmsuƒ

u
sAnijkl(4.17)

D rnRmsAsijkl C TrrmsiAnsjkl C TrrmsjAniskl

C TrrmskAnijsl C TrrmslAnijks:

Combining (4.15), (4.16), and (4.17), we then obtain (4.14).

4.5. Evolution equations for R and T . Recall that for A, B 2 End.^2T �pM/, one
can form the product A # B 2 End.^2T �pM/ Š ^2T �pM

� ˝^2T �pM
� defined by

A # B.!/ +
1

2

X
M;N

˝�
A.'M /; B.'N /

�
; !
˛
� Œ'M ; 'N �;
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152 Kotschwar, Ricci flow and the holonomy group

where ¹'˛º is an orthonormal basis for ^2T �pM . This product is bilinear and symmetric in
its arguments, and with it, we define the square A# + A # A. In terms of the structure con-
stants Œ'M ; 'N � D CMNP 'P (and regarded as an element of ^2T �pM

�˝^2T �pM
�), we have

.A # B/IJ D .1=2/AMPBNQC
PQ
I CMNJ .

Now define
Q W End.^2T �M/! End.^2T �M/

by

(4.18) Q.A/ + A2 C A#

and
S W End.^2T �M/ �

�
TM � ˝ End.^2T �M/

�
! TM � ˝ End.^2T �M/

by

(4.19) S.A; F /.X; �/ + A ı .F yX/C .F yX/ ı AC 2.F yX/ # A:

These operators arise as reaction terms in the evolution equations for R and T .

Proposition 4.7. Viewed as matrix-valued functions on AO.M/, the tensors R and T
evolve according to

.Dt ��/Rijkl D �Q.Rm/ijkl ;(4.20)

and

.Dt ��/Tmijkl D 2RmbTbijkl C 2Rmbdpƒ
p

d
Tbijkl � S.Rm;r Rm/mijkl :(4.21)

Proof. Equation (4.20) is standard. For (4.21), we use (4.20) and (4.11):

.Dt ��/Tmijkl D ŒDt ��;rm�Rijkl Crm.Dt ��/Rijkl

D 2
�
Rmbrb CRmbdpƒ

p

d
rb

�
Rijkl � rm.Q.Rm//

D 2RmbTbijkl C 2Rmbdpƒ
p

d
Tbijkl � rm.Q.Rm//:

For the last term, note that at any p 2M ,

r.Q.Rm//.em; �/ D rm Rm ıRmCRm ırm RmCRm #rm Rm

D S.Rm;r Rm/.em; �/

in view of the symmetry of the product #.

Remark 4.8. We choose to leave the terms 2RmbTbijkl C 2Rmbdpƒ
p

d
Tbijkl in (4.21)

in a rather raw form for convenience in a later computation, however, we might alternatively
have written

RmbTbijkl CRmbdpƒ
p

d
Tbijkl

D RmbdiTbdjkl CRmbdjTbidkl CRmbdkTbijdl CRmbdlTbijkd

+ U.Rm;r Rm/mijkl ;
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Kotschwar, Ricci flow and the holonomy group 153

where

U W End.^2T �M/ �
�
TM � ˝ End.^2T �M/

�
! TM � ˝^2T �M ˝^2T �M

is given by

U.A; F /.X; !; �/ D

nX
iD1

�˝�
A.ei ^X/; F.ei ; !/

�
; �
˛
C
˝�
A.ei ^X/; F.ei ; �/

�
; !
˛�

in the fiber over p for ¹eiº an orthonormal basis of TpM . Alternatively, using the second
Bianchi identity and the symmetries of T , one can define the tensor Cmijkl + �TmipqjRkpql
(analogous to Hamilton’s Bijkl D �RipqjRkpql ) and write the evolution of T in the form

.Dt ��/Tmijkl

D 2
�
Cmijkl C Cmklij � Cmijlk � Cmlkij C Cmikjl C Cmjlik � Cmiljk � Cmjkil

�
C 2

�
Ckljmi � Clkjmi C Clkimj � Cklimj C Cijlmk � Cj ilmk C Cj ikml � Cijkml

�
:

If P denotes the projection T4.M/! ^2T �M˝S^
2T �M (where˝S denotes the symmetric

tensor product), that is,

P .V /ijkl D
1

8

�
Vijkl � Vj ikl � Vijlk C Vj ikl C Vklij � Vlkij � Vklj i C Vlkj i

�
;

then the sum in parentheses on the last line in the expression above (which corresponds to
U.Rm;r Rm/) is �8 � P .Cy4em/ where yiX denotes inner multiplication by X in the i -th
argument.

4.6. Evolution equations for OR and OT . Using the results of the preceding section,
we now compute the evolutions of the components of the parabolic portion of our PDE-ODE
system. We begin with the consideration of the reaction terms Q.Rm/ and S.Rm;r Rm/.

Lemma 4.9. Denote temporarily R D Rm, T D r Rm. At any p 2M ,

(4.22) Q.R/ ı OP D R ı ORC NR� # OR� C Rm # OR�

and

(4.23) .S.R; T /yX/ ı OP D R ı OTX C TX ı ORC
�
OT �X # NR� C TX # OR�

�
ı OP

for any X 2 TpM , where we use the shorthand

TX + T yX; OTX + OT yX 2 End.^2T �pM/;

and denote the adjoint of an operator A 2 End.^2T �pM/ by A�.

Remark 4.10. As we observed in (4.1) and (4.2), the operators NR, OR, NT , OT are no
longer self-adjoint. However, NR� D NP ı R, OR� D OP ı R, NT �X D NP ı TX , OT �X D OP ı TX . In
coordinates, for example, NR�

ijkl
D NPabklRijba, and similarly for the others.
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154 Kotschwar, Ricci flow and the holonomy group

Proof. The origin of the first term in (4.22) is clear. For the second, we use NP C OP D Id
and expand to find

R #R

D
�
. OP C NP / ıR

�
#
�
. OP C NP / ıR

�
D . NP ıR/ # . NP ıR/C . OP ıR/ # . NP ıR/C . NP ıR/ # . OP ıR/C . OP ıR/ # . OP ıR/

D NR� # NR� C 2 NR� # OR� C OR� # OR�:

We claim . NR� # NR�/ ı OP � 0. To see this, let p 2 M and ¹'Aº be an orthogonal basis for
^2.TpM/. Then for any 1 � N � n.n � 1/=2, we have

. NR� # NR�/. OP .'N // D
1

2

X
A;B

˝�
NP .R.'A//; NP .R.'B//

�
; OP .'N /

˛
� Œ'A; 'B �

D
1

2

X
A;B

T Œ NP ; NP ; OP �
�
R.'A/; R.'B/; 'N

�
� Œ'A; 'B �

which vanishes by Lemma 3.4. Thus

.R2 CR#/ ı OP D R ı ORC
�
2 NR� # OR� C OR� # OR�

�
ı OP

D R ı ORC
�
NR� # OR� CR # OR�

�
ı OP :

We argue similarly for (4.23). Again the first two terms are clear, and for the term in-
volving the Lie-algebraic product, we expand into components relative to the decomposition
^2T �pM D Hp ˚Kp:

TX #R D . NT �X C OT
�
X / # . NR� C OR�/ D NT �X # NR� C OT �X # NR� C TX # OR�:

Then, just as before,

. NT �X # NR�/ ı OP .'N / D
1

2

X
A;B

T Œ NP ; NP ; OP �
�
T .X; 'A/; R.'B/; 'N

�
� Œ'A; 'B �;

and so is zero for all N by Lemma 3.4.

Remark 4.11. As functions on the frame bundle, we have

.Q.Rm/ ı OP /ijkl D Rcdlk ORijcd C 2 OPijce
�
NR�cpql

ORepqk � NR
�
cpqk

ORepql
�

(4.24)

C 2 OPijce
�
Rcpkq OR

�
epql �Rcplq

OR�epqk
�
;

and �
S.Rm;rT / ı .Id� OP /

�
mijkl

D Rablk OTmijab C Tmablk ORijab(4.25)

C 2 OPijce
�
NR�cpql

OT �mepqk �
NR�cpqk

OTmepql
�

C 2 OPijce
�
Tmcpkq OR

�
epql � Tmcplq

OR�epqk
�
:
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Kotschwar, Ricci flow and the holonomy group 155

Proposition 4.12. The tensor OR, regarded as a matrix-valued function on AO.M/,
evolves according to

.Dt ��/ ORijkl D 2ApijabTpabkl C BppijabRabkl C .Q.Rm/ ı OP /ijkl :(4.26)

Proof. We have

.Dt ��/ OR D Rm ı.Dt ��/ OP � 2rp Rm ırp OP C .Dt ��/Rm ı OP

D �Rm ı� OP � 2rp Rm ırp OP CQ.Rm/ ı OP ;

using (4.7) and (4.20). Then

�.Rm ı� OP /ijkl D �� OPijabRablk D BppijabRabkl ;

and
�2.rp Rm ırp OP /ijkl D �2rp OPijabrpRablk D 2ApijabTpabkl ;

and (4.26) follows.

Proposition 4.13. The tensor OT , viewed as a matrix-valued function on AO.M/, evolves
according to

.Dt ��/ OTmijkl(4.27)

D 2ApijabrpTmijkl C BppijabTmabkl C
�
S.R; T / ı .Id� OP /

�
mijkl

C 2
�
Rmpqi OTpqjkl CRmpqj OTpiqkl CRmpqk OTpijql CRmpql OTpijkq

�
C 2

�
ORqimp OTpqjkl C ORqjmp OTpiqkl C Tpablk

�
OPijqb ORqamp C OPijaq ORqbmp

��
:

Proof. We obtain the evolution equation for OT by a computation similar to that for OR.
Namely, we have OTmijkl D � OPijabTmabkl , and, as before,

(4.28) .Dt ��/ OTmijkl

D OPijab.Dt ��/Tmablk C 2ApijabrpTmabkl C BppijabTmabkl :

By (4.21), we have

.Dt ��/Tmablk D 2
�
Rmp CRmpqrƒ

r
q

�
Tpablk � S.Rm;r Rm/mablk;(4.29)

and
S.Rm;r Rm/mablk OPijab D �

�
S.R; T / ı .Id� OP /

�
mijkl

;

so we just need to consider the contraction of the first term in (4.29) against OPijab .
First, since ƒrq is a derivation, we can write

OPijabƒ
r
qTmablk D ƒ

r
q
OTmijkl � Tmablkƒ

r
q
OPijab:

Also,

Rmpqr D Rqrmp D
�
OPqruv C NPqruv

�
Ruvmp D ORqrpm C NPuvqrRuvmp;
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so, by Lemma 4.4,

OPijabRmpqrƒ
r
qTmablk D Rmpqrƒ

r
q
OTmijkl � Tmablk

�
ORqrpm C NPuvqrRuvmp

�
ƒrq
OPijab

D Rmpqrƒ
r
q
OTmijkl � Tmablk ORqrpmƒ

r
q
OPijab:

With this, we can expand to obtain

OPijab
�
Rmp CRmpqrƒ

r
q

�
Tpablk(4.30)

D Rmpqi OTmqjkl CRmpqj OTmiqkl CRmpqk OTmijkql CRmpql OTmijkq

� Tmablk
�
OPqjab ORqipm C OPiqab ORqjpm C OPijqb ORqapm C OPijaq ORqbpm

�
D Rmpqi OTmqjkl CRmpqj OTmiqkl CRmpqk OTmijkql CRmpql OTmijkq

� OTmqjkl ORqipm � OTmiqkl ORqjpm C Tmabkl
�
OPijqb ORqapm C OPijaq ORqbpm

�
:

Equations (4.28), (4.29), and (4.30) then combine to yield (4.27).

Remark 4.14. For the sequel, we observe that the quantities A, B , OR, and OT satisfy the
following schematic equations:

DtA D R � AC OP � OT ;(4.31)

DtB D R � B C T � AC OP � r OT C OP � T � A;(4.32)

.Dt ��/ OR D T � ACR � B CR � ORC OP � NR
�
� ORC OP �R � OR;(4.33)

.Dt ��/ OT D rT � ACR � B CR � ORC OP � NR
�
� ORC OP �R � OR(4.34)

C OP � T � ORC OP � NR� � OT �:

For our purposes, the key feature of these equations is that each term contains at least
one factor of (some contraction of) A, B , OR, OT , r OT , or their adjoints. Under our hypotheses,
the other factors (including the extra linear factors of the components of our system) will be
bounded, and this is enough to satisfy the requirements of the backwards uniqueness result in
Theorem 5.1 below.

4.7. Proof of Proposition 4.1. We are now in a position to prove Proposition 4.1. By
the estimates of Shi [19], if g.t/ is a complete solution to (1.1) with

jRm.x; t/jg.t/ � K0

on M � Œ0; T �, then, for all m � 1 and all ı > 0, there exist constants Km D Km.n;K0; T; ı/
such that

(4.35)
ˇ̌
r
.m/ Rm.x; t/

ˇ̌
g.t/
� Km

on M � Œı; T �. The tensors NP and OP are also clearly bounded – in fact, if dim H D k, then
j NP j2

g.t/
� k and j OP j2

g.t/
� n.n � 1/=2 � k on M � Œ0; T �. So NR, OR, NT , and OT (and their

adjoints) are uniformly bounded on M � Œı; T �. That A and B are also bounded is by now
more or less evident from the evolution equations (4.13), (4.14). We only need to observe first
that, since Dt D @

@t
CRabƒ

a
b

, one has

DtU D
@

@t
U C Rc�U;
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for any tensor U and then that from (4.35) and the above discussion, we have, on M � Œı; T �,ˇ̌̌ @
@t
A
ˇ̌̌
� C.jAj C 1/;

ˇ̌̌ @
@t
B
ˇ̌̌
� C.jAj C jBj C 1/

for an appropriate C . (Note that r OT D A � T C OP �rT .) At t D T , we have jAj D jBj D 0,
so we obtain that jAj and (consequently) jBj are bounded on M � Œı; T � as well.

Together with equations (4.31)–(4.33), these observations imply that there exists a con-
stant C D C.n;K0; T; ı/ such thatˇ̌̌ @

@t
A
ˇ̌̌
g.t/
� C

�
jAjg.t/ C j OT jg.t/

�
;(4.36) ˇ̌̌ @

@t
B
ˇ̌̌
g.t/
� C

�
jAjg.t/ C jBjg.t/ C jr OT jg.t/

�
;(4.37) ˇ̌̌� @

@t
��

�
OR
ˇ̌̌
g.t/
� C

�
jAjg.t/ C jBjg.t/ C j ORjg.t/

�
;(4.38) ˇ̌̌� @

@t
��

�
OT
ˇ̌̌
g.t/
� C

�
jAjg.t/ C jBjg.t/ C j ORjg.t/ C j OT jg.t/

�
(4.39)

on M � Œı; T �. Proposition 4.1 then follows at once from the Cauchy–Schwarz inequality.

5. Backwards-uniqueness of the PDE-ODE system

The following is a special case of [18, Theorem 3.1].

Theorem 5.1. Let X and Y be finite direct sums of the bundles T k
l
.M/, and

X 2 C1.X � ŒA;��/, Y 2 C1.Y � ŒA;��/. Suppose g.t/ is a smooth, complete solu-
tion to (1.1) of uniformly bounded curvature. Further assume that the sections X , Y , and rX
are uniformly bounded with respect to g.t/ and satisfyˇ̌̌� @

@t
��g.t/

�
X
ˇ̌̌2
g.t/
� C

�
jX j2g.t/ C jrX j

2
g.t/ C jY j

2
g.t/

�
;(5.1) ˇ̌̌@Y

@t

ˇ̌̌2
g.t/
� C

�
jX j2g.t/ C jrX j

2
g.t/ C jY j

2
g.t/

�
(5.2)

for some C � 0. Then X.�; �/ � 0, Y.�; �/ � 0 implies X � 0, Y � 0 on M � ŒA;��.

Combining this result with Proposition 4.1, we have essentially proven Theorem 3.7; it
only remains to see that the conclusion is valid all the way down to t D 0.

Proof of Theorem 3.7. With X, Y, and X.t/, Y.t/ defined as in the previous section,
we may apply Proposition 4.1 and Theorem 5.1 on M � Œı; T � for any 0 < ı < T , to obtain
the conclusion of Theorem 3.7 (and hence Theorem 1.4) for all t 2 .0; T /. But NP .t/ and
OP .t/ are smoothly defined (and are complementary g.t/-orthogonal projections) on ^2T �M

for all t 2 Œ0; T �. Thus the vanishing of r NP and r OP on M � .0; T / implies by continuity that
r NP .0/ D r OP .0/ D 0 also. Moreover, ker. NP .t// � K and ker. OP .t// � H for t 2 .0; T /,
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158 Kotschwar, Ricci flow and the holonomy group

thus continuity again implies that K � ker NP .0/ and H � ker OP .0/. Since NP .0/ and OP .0/ are
complementary orthogonal projections, with

rank NP .0/ D rank NP .t/ � dim H ; rank OP .0/ D rank OP .t/ � dim K;

we must actually have ker. NP .0// D K and ker. OP .0// D H . Therefore, we also have
image. NP .0// D H , and image. OP .0// D K , and it follows that H and K are orthogonal
with respect to g.0/. Since NP .0/ and OP .0/ are parallel, H and K are invariant under rg.0/-
parallel translation by Lemma 3.4. Finally, since .Rm ı OP /.t/ � 0 for 0 < t � T , it follows
that Rm.0/jK W K ! ^2T �M is also the zero map. The symmetry of Rm then implies that
image.Rm.0// � H and, by Lemma 3.1, we conclude that holp.g.0// � H , completing the
proof.

Remark 5.2. By a result of S. Bando [3] (see also [7, Remark 13.32]), if g.t/ is a
complete solution of (1.1) of bounded curvature, then .M; g.t// is a real-analytic manifold for
0 < t � T . Hence at any t > 0, any representative holp.g.t// of the isomorphism class of
hol.g.t// is generated by the set

1[
lD0

®
rX1
rX2
� � � rXl

Rm.p; t/.!/ j X1; X2; : : : ; Xl 2 TpM; ! 2 ^
2T �pM

¯
I

see [17, Sections II.10, III.9]. Thus we can localize Theorem 1.4 somewhat: If, at some
p 2 M , the endomorphisms coming from the covariant derivatives of Rm.g.T // of all orders
are contained in some subalgebra Hp � ^2T �pM , then, at every q, holq.g.T // is contained
in a subalgebra isomorphic to Hp. We can then apply Theorem 1.4 to conclude that, for all
.q; t/ 2 M � Œ0; T �, holq.g.t// is contained in a subalgebra isomorphic to Hp. In particular,
if g.T / admits a splitting on some neighborhood U �M at some time T > 0, g.t/ must split
on a neighborhood of every p 2M at all times 0 � t � T .

A. An alternative proof of the non-expansion of Hol0.g.t//

In this section we present a second and essentially self-contained proof of Theorem 2.1,
using the general framework of Theorem 1.1 (but different methods). Although we do not use
the maximum principle for systems in [12], the argument is close to that suggested by Hamil-
ton for [14, Theorem 4.1]. We include it here only for reference and comparison purposes.
Theorem 2.1 has the following infinitesimal reformulation, corresponding to Theorem 1.4.

Claim. Suppose H � ^2T �M is a smooth subbundle that is invariant under rg.0/-
parallel transportation and the bracket Œ�; ��g.0/. If Rm.g.0// � H , then it follows that
Rm.g.t// � H for all t and that H remains invariant by rg.t/-parallel transport and the
bracket Œ�; ��g.t/. In particular, holp.g.t// � Hp.

Similar to the proof of Theorem 3.7, we extend the projection operators NP0 and OP0 onto
H and K D H? at time t D 0 to operators NP .t/ and OP .t/ for t > 0. The key difference
is that we accomplish this by the solution of a linear parabolic equation rather than by an
ODE. Although with this choice we lose (temporarily) the assurance that the maps remain
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orthogonal projections, it allows us to effectively decouple our system and reduce the number
of components from four to two.

Proof of the Claim. Denote by K � ^2T �M the orthogonal complement of H and by
NP0, OP0 the projections onto H and K taken with respect to the metric induced by g.0/.

By assumption, g.t/ is complete and Rm.g.t// uniformly bounded, and so we can define
NP .t/ and OP .t/ on M � Œ0; T � to be the unique bounded solutions to the equations� @

@t
��

�
NPabcd D �Rap NPpbcd �Rbp NPapcd �Rcp NPabpd �Rdp NPabcp;(A.1) � @

@t
��

�
OPabcd D �Rap OPpbcd �Rbp OPapcd �Rcp OPabpd �Rdp OPabcp(A.2)

with NP .0/ D NP0 and OP .0/ D OP0. As functions on AO.M/, the above equations are

.Dt ��/ NPabcd D 0; .Dt ��/ OPabcd D 0:

Since H is parallel initially, Amijkl + rm OPijkl � 0 initially by Lemma 3.4. We claim
Amijkl � 0 for all 0 � t � T . Its evolution is

.Dt ��/Amijkl D
�
.Dt ��/;rm

�
OPijkl D 2

�
Rmbdcƒ

c
drb CRmcrc

�
OPijkl ;

and so � @
@t
��

�
A D R � A;

that is, ˇ̌̌� @
@t
��

�
A
ˇ̌̌
� C jAj

for C D C.n;K/. Defining Q D jAj2, we thus have� @
@t
��

�
Q D �2jrr OP j2 C 2

D� @
@t
��

�
A;A

E
� 2CQ;

so
Q.x; t/ � e2CT sup

x2M

Q.x; 0/ D 0

on M � Œ0; T � by the maximum principle.
Strictly speaking, when M is non-compact, our use of the maximum principle requires

some justification. Since M has bounded curvature (and, in particular, a lower bound on
Rc.g.t//), we need only to verify that Q does not grow too quickly at infinity. We omit the
full details of this verification, but point out that, for example, one could use a Bernstein-type
trick, as in [19], and consider the quantity F + .LC j OP j2/Q where L > 0 is constant. Then
F satisfies F.p; 0/ � 0, and, if L D L.n; sup j OP j2/ is sufficiently large, the equation� @

@t
��

�
F � C1F � C2F

2;

for positive constants Ci D Ci .K0; L; n/. Using a standard cutoff function and the maximum
principle, one can prove

sup
Bg.t/.p;�/�Œ0;T �

F.x; t/ � C3.n;K0; L; T /
��C 1

�

�
for all �� 0. Hence, upon sending �!1, one obtains thatQ D jr OP j2 � C onM � Œ0; T �.
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We conclude, in any case, that OP remains parallel, and must actually satisfy the ODE
Dt OP D 0. Likewise, we have r NP D 0 and Dt NP D 0. But, by Lemmas 3.4 and 3.5, this
implies that NP and OP remain complementary projections, and hence thatH.t/ + image. NP .t//
and K.t/ + image. OP .t// remain complementary orthogonal rg.t/-parallel subbundles, with
H.t/ invariant under the bracket Œ�; ��g.t/. In particular T Œ NP ; OP ; NP � � 0 by Lemma 4.4.

Now we define OR D Rm ı OP as before. We have OR.0/ � 0 by assumption, and claim
OR.t/ � 0 for all 0 � t � T . Since r OP � 0,

.Dt ��/ OR D Q.Rm/ ı OP :

Using T Œ NP ; OP ; NP � � 0, we have, by (4.22) and Shi’s estimates,ˇ̌
Q.Rm/ ı OP

ˇ̌2
� C j ORj2:

So the (uniformly bounded) quantity W D j ORj2 satisfies� @
@t
��

�
W � CW

with W.0/ � 0; thus W.t/ � 0 by the maximum principle. Hence image.Rm.t// � H.t/.
Applying Proposition 3.6 shows that H.t/ � H and K.t/ � K , and the theorem is proved.
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