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Ricci flow and the holonomy group

By Brett Kotschwar at Golm

Abstract. We prove that the reduced holonomy group of a complete smooth solution
to the Ricci flow of uniformly bounded curvature cannot spontaneously contract within the
lifetime of the solution. It follows then, from an earlier result of Hamilton, that the holonomy
is exactly preserved by the equation. In particular, a solution to the Ricci flow may be Kéhler
or locally reducible at t = T if and only if the same is true of g(¢) at times ¢t < 7.

1. Introduction

‘We consider solutions to the Ricci flow

0
1.1 —g = —2Rc(g),
(1.1 58 (8)
an evolution equation for a smooth family of Riemannian metrics (M", g(¢)). A well-known
consequence of Hamilton’s strong maximum principle for systems [12] is the following char-
acterization of the image of the curvature operator Rm : A2T*M — A2T*M of a solution to
(1.1) when this operator is positive semidefinite.

Theorem (Hamilton). Suppose g(t) is a solution to (1.1) on M x [0, T] satisfying
Rm(g(t)) > 0. Then there exists § > 0 such that, for t € (0,8), image(Rm(g(t))) C A2T*M
is a smooth subbundle invariant under parallel translation with respect to g(t) and closed
under the bracket

(1.2) [, nlij = g (wixni; — @)

Moreover, for any 0 < t1 < t < T, image(Rm(g(z1))) C image(Rm(g(z2))).

The theorem is of particular utility in low dimensions, where there are few possibilities
for the subalgebra Rm(AZ Tp* M) C so(n). In three dimensions, for example, it implies that
such a solution must have Rm(g(¢)) > 0 for¢ > 0 or split locally as a metric product. The strict
code for membership in the class of solutions with nonnegative curvature operator may lead one
to wonder what possibilities there are for a solution g(¢) that attains Rm(g(¢9)) > 0 everywhere
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only after some elapsed time zo > 0. The condition Rm(g(z)) > 0 will be preserved for
t > tg, and a solution that splits locally for to < t < T must likewise split at t = ¢,
but we have no information on the properties of the solution prior to f9. In particular, we
cannot dismiss the possibility that such a solution could split spontaneously at 9. One may
wonder, more generally, whether it is possible for any solution to the Ricci flow (on a manifold
with compatible topology) to acquire a novel local metric splitting within finite time. Such a
phenomenon would be at odds with the familiar picture of the Ricci flow as a “heat equation”
for Riemannian metrics — surely it would violate some principle of unique continuation. The
basic question this paper seeks to answer is: which one?

Our main result is the following theorem. Here Hol® (g (¢)) denotes the reduced holonomy

group of g(¢).

Theorem 1.1. Suppose g(t) is a smooth complete solution to (1.1) on M x [0, T] of
uniformly bounded curvature. Then Hol®(g(¢)) C Hol®(g(T)) forall0 <t < T.

Theorem 1.1 is the “backwards-time” analog of Hamilton’s observation (cf. [12, 14]) that
the holonomy group of a smooth solution to the Ricci flow cannot expand within its lifetime.
Thus one actually has Hol®(g(¢)) = Hol®(g(0)) along the flow. One consequence is an affir-
mation of the expectation above that locally product metrics are, in a sense, rigid within the
class of solutions to the Ricci flow.

Corollary 1.2. Let (M, g(t)) be as in Theorem 1.1. Then (M, g(T)) is locally reducible
(respectively, Kdhler) if and only if (M, g(t)) is locally reducible (Kdiihler) for0 <t < T.

One can equivalently phrase Theorem 1.1 in terms of the time-invariance of the dimen-
sions of the spaces of V (;)-parallel tensors.

Theorem 1.3. If (M, g(¢)) is as in Theorem 1.1, and n € C°°(le(M)) satisfies

Ven = 0, then there exists a smooth family n(t) € C°°(le(M)) for t € [0,T] such
that Vgpyn(t) = 0 and n(T) = n.

Since the reduced holonomy groups Holg (g(t)) are connected Lie subgroups of
SO(T,M) = SO(n), Theorem 1.1 is equivalent to the following infinitesimal reformulation
(with the choice # = hol(g(T))).

Theorem 1.4. Let g(t) be a complete solution to (1.1) on M"™ x [0,T] with
sup |[Rm(x,t)| < Ko. Suppose that there exists a smooth subbundle J C A*T*M that
is invariant by Vg (r)-parallel translation and closed under the bracket [-,-1g(1). Then, if
image(Rm(g(T))) C K, it follows that image(Rm(g(¢))) C H# and that H remains invariant
by Vg (r)-parallel translation and closed under the bracket [-, g ) for all t € [0, T]. Moreover,
hol,(g(t)) S Hp forall (p,t) € M x [0, T].

We divide the proof of Theorem 1.4 into several steps. In Section 3, we reduce it to a
problem of unique continuation for a certain system; this is Theorem 3.7. In Section 4 we
embed this system in a larger (closed) system of coupled partial- and ordinary-differential
inequalities. The bulk of the work is the verification that this larger system is indeed closed;
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for this we must perform a rather careful analysis of the evolution equations of the components
of our system. For the unique continuation, we ultimately appeal to a special case of an earlier
result of the author [18] for parabolic PDE-ODE systems. The approach in that reference was
inspired by work of Alexakis [1] on weakly hyperbolic systems arising in the study of the
vacuum Einstein equations (see also [20]).

2. Motivation: Non-expansion of holonomy

As we mentioned above, it is a result of Hamilton (cf. [12, 14]) that a solution to the Ricci
flow with holonomy initially restricted to some subgroup of SO(n) will continue to have its
holonomy so restricted. For this paper, the statement of this “non-expansion” result we have in
mind is the following.

Theorem 2.1 (Hamilton). Suppose g(t) is a smooth complete solution to (1.1) with
2(0) = go and |Rm(g(x,1))| < Ko on M" x [0, T]. IfHol°(go) = G C SO(n), we have
Hol%(g(t)) c G for0 <t <T.

Theorems 1.1 and 2.1 are statements about the backwards- and forwards-time behavior
of a solution to a (weakly) parabolic system, and, despite their apparent symmetry, require
rather different methods of proof. For the purpose of comparison, we will discuss two proofs
of Theorem 2.1 in detail. The first is an elementary combination of Berger’s classification [4],
de Rham’s splitting theorem [9], and the uniqueness of solutions for the Ricci flow [6,11]. The
second, which we defer to the appendix, is essentially self-contained and closer to the argument
suggested in [14].

We first give an example to show that, in general, one cannot dispense with the restriction
that g(¢) be complete (cf. also the similar example in [8, p. 247]).

Example 2.2 (Flat-sided sphere). Let U C S? be a proper open set, xo € S2 \ U, and
ho a metric on S? of Gaussian curvature K}, > 0 satisfying Kj, = 0 on U but Ky (xo) > 0.
One can take, e.g., xo to be the north pole, U a small disk about the south pole and
¢ € C*(S2,[0,1]) with ¢ = 1 on the upper hemisphere and ¢ = 0 on U. By the theo-
rem of Kazdan—Warner [16], one can find a metric ho with K, = ¢, and, for this metric, there
exists T > 0 and a solution /(¢) to the Ricci flow defined for ¢ € [0, T') with h(0) = hg. For
any a > 0, we can define a solution g, (¢) to the Ricci flow on U by

holu (x) if (x,t) € U x[0,4d],

X, t) =
ga(x.1) {h(x,t —a) i) eUx(@a+T)
For 0 <t < a, we have K, ;) = 0, but the strong maximum principle implies Kj ) > 0 for
t > 0,50 Kg, ;) > 0forz > a. Thus (U, gq(?)) satisfies Hol®(g4 (1)) = {1d} for t < a, but
Hol%(g. (1)) = SO(2) fora <t < T.

2.1. Non-expansion via Berger’s classification. All of the ingredients of the proof
below can be found, for example, in the combination of the references [14] and [15]. The
argument can be summarized very succinctly. In the category of complete solutions to the Ricci
flow with bounded curvature, any initial isometries are preserved, and product, Kihler, and
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Einstein initial data extend uniquely to solutions of the same type. With the splitting theorem
[9] and the classification theorem [4] as it is now understood, this is enough to conclude that
any restriction of the initial holonomy is shared by the solution at later times.

We will refer to the following modern version of Berger’s theorem (cf., e.g., [15, Theo-
rem 3.4.1]).

Theorem 2.3 (Berger). If M" is simply connected and g is irreducible, then either g is
symmetric or exactly one of the following holds:

(1) Hol’(g) = SO(n),

(2) n = 2m withm > 2, and Hol®(g) = U(m) in SO2m),

(3) n = 2m withm > 2, and Hol®(g) = SU(m) in SO(2m),

(4) n = 4m withm > 2, and Hol®(g) = Sp(m) in SO(4m),

(5) n = 4m withm > 2, and Hol®(g) = Sp(m) - Sp(1) in SO(4m),
(6) n =7 and Hol®(g) = G in SO(7), or

(7) n = 8 and Hol®(g) = Spin(7) in SO(8).

First proof of Theorem 2.1. First, we may assume that M is simply connected, as
Hol%(gp) = Hol%(gy) if o is the lift of g to the universal cover of M. We may also as-
sume that Hol®(go) is irreducible. Otherwise, by de Rham’s splitting theorem, (M, go) splits
as a global product

(M, g0) = (N1 xNa X+ XNp,g1®g® P gm)-

Each metric g; will be complete and of bounded curvature | Rm(g;)| < Ko, and so, by the
existence theorems of Hamilton [11] and Shi [19], each factor N; will admit a complete solution
gi(t) of bounded curvature with g;(0) = g; on some small time interval [0, 7;] (with T;
depending only K¢ and dim(N;)). Then g(z) = g1(t) ® g2(t) ®---® gm(t) will be a
complete solution of bounded curvature on M x [0, §] for § > 0 equal to the minimum of the
T;. But, by uniqueness, there is only one solution of bounded curvature with initial data go,
hence g(t) = 2(t) on M x [0, 5]. The argument may then be iterated on intervals of uniform
size to obtain the agreement of g(¢) with a product solution on all of M x [0, T']. Since we may
then consider each factor independently, we may as well assume that g is irreducible.

Now we consider each case of Theorem 2.3 in turn. Suppose first that go is symmet-
ric. The uniqueness of solutions and the diffeomorphism invariance of the equation imply
that Isom(g(0)) C Isom(g(¢)). For a general metric g, denote by A(g) the set of isometries
A(g) = {og4 € Iso4(g) | qu = Id}. Since the composition law of Isom(g(z)) C Diff(M) and
the set of any isometry’s fixed points are independent of the metric, the preservation of initial
isometries also implies A(go) C A(g(¢)). In particular, g(¢) remains symmetric for t > 0.
But for a symmetric metric g, each fixed representative Holg (g) of the isomorphism class of
Hol%(g) can be described explicitly as the subgroup of squares of involutive isometries fixing
p (cf. [15, Proposition 3.35]). Symbolically,

HOlg(g) = Jp(g) =1Is0p(g) N{og 00y | 04,07 € A(g)}.
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Then A(go) C A(g(t)) implies J,(go) C Jp(g(?)) and, since g(¢) is symmetric, that

Hol(g(1)) = J,(g(t)) C Jp(g0) = Holp(go).

We are left then with the seven alternatives on Berger’s list to consider. The first of these
is uninteresting, as Hol%(g) C SO(n) for any metric g. The second, Hol%(go) = U(n/2),
implies g¢ is Kihler, and it is well known that from a Ké#hler initial metric of bounded curvature
one can construct a Kéhler solution of bounded curvature by the solution of an appropriate
parabolic Monge—Ampere equation for the potential. This solution may, a priori, only exist
for a short time, but for this period we must have g(t) = g(¢) by uniqueness (and hence
Hol%(g(¢)) € U(n/2)). We may then iterate as before to conclude the same on the entire
interval of existence for g(¢).

This leaves five cases. However, in each of these, g¢ is necessarily Einstein (cf. [15,
pp. 53-55]). (In fact, in the cases SU(m), Sp(m), Spin(7), or G, the metric must be Ricci-
flat.) But, associated to Einstein initial data Rc(gog) = pgo, one can construct the Einstein
solution g(¢) = (1 — 2pt)go which moves only by homothetical scaling. The holonomy is
obviously unchanged for this solution and it is unique among (at least) those of uniformly
bounded curvature. Thus g(¢) = g(¢) and G = Hol®(g(¢)) = Hol°(g(?)). i

2.2. Berger’s theorem and non-contraction of holonomy. It is natural to ask whether
one can fashion an analogous argument along for Theorem 1.1. The answer seems to be “only
partially”. The failure of this argument to extend to all cases was, in fact, the starting point for
the work in the present paper.

Of the three primary components of the preceding proof, we nevertheless retain at least
two. The classification component, coming from Berger’s and de Rham’s theorems and their
consequences, is as applicable to g(7') as it was to g(0). From [18], we also have a counterpart
to the uniqueness component: two complete solutions g(¢), g(¢) to (1.1) of uniformly bounded
curvature that agree at t = 7 > 0 must agree at times ¢t < T. From this, it follows that any
isometries of g(7') are shared by g(¢) for t < T, and that g(7T') is Einstein only if g(¢) is as
well fort < T.

What we lack, rather, is the ability to construct by hand the special “competitor” solutions
to extend the data g(7') to a solution of the same type for times ¢t < T'. Of course, if g(7T) is
Einstein, we may still construct an extension by homothetical scaling of g(7'). However, when
g(T) is Kihler, we cannot simply construct a Kihler extension g(¢) for 7 —§ <t < T by the
method above, since we must now specify instead the data for the potential at time 7. Such
“terminal-value” parabolic problems are ill-posed and lack solutions in general. The analogous
terminal-value problems for the Ricci (or Ricci—De Turck) flows are also ill-posed, and this is
an impediment, in particular, to the construction of a product extension g(¢) = g1(¢) @ g2(¢)
fort < T from product data g(T) = g1 @ g2 on Ni x N,. The trouble is that, while the
product metric g1 & g» belongs to RF(M, T'), the “image” of the time-7 Ricci flow operator
on M, we do not know whether either of the factors g; belongs to RF(N;, §) for any § > 0.

While Theorem 1.1 is not simply reducible to the backwards-uniqueness of solutions to
(1.1), we will show, nevertheless, that it is equivalent to the backwards-uniqueness of a certain
larger, mixed parabolic and ordinary-differential, system. The argument we will describe in
the next section (and carry out in those following) will be essentially self-contained and, in
particular, independent of the theorems of Berger and de Rham.
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3. Non-contraction of Hol’ (g(2)) as a problem of unique continuation

Our basic strategy is to interpret restricted holonomy as a condition on the operator
Rm : A2T*M — A2T*M. (This is also the basis of Hamilton’s approach to non-expansion of
holonomy in [14]). This characterization is natural since the curvature effectively determines
the holonomy Lie algebra (in a manner we will review below), but it offers an additional ad-
vantage for our purposes in that the curvature operator, unlike the metric, satisfies a strictly
parabolic equation.

The representation of the holonomy Lie algebra Hol(g(T)) on TM gives a subbundle
of A2T*M that is invariant under parallel translation and closed under the Lie-bracket given
by (1.2). The image of the curvature operator is contained in Hol(g(7)) and, as Rm(g(7T))
is self-adjoint, its kernel at each p therefore contains hol,, (g(T))*. The bundle hol(g(T))*
is likewise closed under parallel translation, though not in general under the Lie bracket. The
following observation shows that (as in Theorem 1.4) we may as well consider any parallel
subalgebra J¢ containing Rm(g(7)), hol(g(T)) being, in a sense, the minimal such #.

Lemma 3.1. Suppose ¥ C A*(T*M) is a smooth distribution closed under paral-
lel transport and the Lie bracket (1.2). If, for all p € M, image(Rm(g(p))) C H,, then
hol,(g) C Hp.

Proof. This follows easily from the Ambrose—Singer theorem [2] (cf. also [5, Theo-
rem 10.58]) which says that the elements of the leftmost union in the chain of inclusions

U (@moRm@or,wc | 10 CH.
qgeEM, y€Qp 4 geEM, y€Qp 4
wen?TiM

generate hol,(g). Here Q2 4 represents the space of piecewise smooth paths y : [0, 1] — M
with y(0) = p, y(1) = g and 7, represents the extension of parallel transport along the path y
to two-forms. m]

Assuming then we have such a # C A2T* M, we consider its perpendicular complement
XK = - and associated orthogonal projection operator Pr: A2T*M — X. Although we
ultimately wish to show that Rm(g(¢))| x = 0, we do not know a priori whether, fort < T,
the fibers of # and K are complementary orthogonal subspaces (or that those of J¢ are closed
under the bracket (1.2)) relative to g(¢). Thus we first define time-dependent extensions H ()
and K (t) for # and KX that retain these properties on [0, T']. Then we prove Rm(g(z))] K(t) =0
(hence image(Rm(g(z))) C H(t)) and use this to show that H () = J and K (1) =

We define H (t) and K(z) as the images of the families of projection maps P (Z) and P ()
extending Pr and Pr. We have Ve(T) Pr = Ve(T) Pr = 0and Rm(g(T)) o Pr = 0, and,
by spelling out the mandate that they remain complementary orthogonal projections, it is not
hard to determine what these extensions P (¢) and Is(t) ought to be, namely, the solutions to
D;P =0on [0, T] with P(T) = Pr and f’(T) = Pr. Here D, represents a time-like vector
tangent to the submanifold of g(¢)-orthonormal frames in the product of the frame bundle with
the interval: F(M)x[0, T'] (see (3.1) and Section 4.2). This extension, in any event, is achieved
by solving an ODE on each fiber of A2 T M. With P () so obtained, we arrive at the following
“backwards-uniqueness” problem: to show RmoP (1) =0and VP(t) =0forall0 <t < T,
given their vanishing at # = T. Once it has been established, all that remains is to verify that
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K@) = image(l6 (2)) is in fact constant in time. This is a consequence of the equation satisfied
by P (r), and we do this in Lemma 3.6 below.

The remainder of the present section will be dedicated to the reduction of Theorem 1.4
to a precise statement of the backwards-uniqueness problem described above; this will be The-
orem 3.7.

3.1. Some preliminaries. The following elementary observation will in fact be essen-
tial to the computations in Section 4.

Lemma 3.2. Suppose V is a vector space with an inner product (-,-) and a consistent
Lie bracket [-,-]. If H C V is a subalgebra, and K = H2L, then [H,K] C K.

Proof. The assumption of consistency implies that the trilinear map
X,Y,Z2)— ([X,Y], Z)
is fully antisymmetric. Thus, if &1, h, € H and k € K, we have
([h1, k], h2) = —([h1, h2]. k) =0
as [hl,hz]eH:KJ-. O

Related to the trilinear form in the above proof is the following operator, which we will
need to identify in certain of our computations that follow.

Definition 3.3. Suppose V is a vector space with inner product (-, -} and Lie bracket
[,-]. Let
7 :End(V) xEnd(V) x End(V) - V*Q V*®@ V*

be the operator defined by

T[A, B,Cl(v1,v2,v3) = ([A(v1), B(v2)], C(v3))

for A, B,C € End(V), v; € V.

For completeness, we include the proof of a few elementary properties of projection maps
and parallel translation that we will use in the sequel.

Lemma 3.4. Suppose M is connected and w : V. — M is a smooth m-dimensional
vector bundle with connection D and a compatible metric h on its fibers. (We will also use
D to represent the induced connection D : End(V) — T*"M ® End(V) ). Let H C V be an
[-dimensional smooth subbundle, K = HY, and P : V. — H, P : V — K the h- orthogonal
projections onto H and K.

(1) Forany X € TM,

PoDxPoP=PoDyPoP =PoDyPoP=PoDxPoP =0.

(2) The following are equivalent: H is closed under parallel translation, K is closed under
parallel translation, DP = 0, and DP = 0.
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_ Proof. For the first claim, we fix X € T'M, and differentiate both sides of the identity
P o P = P to obtain

DX};OP+POD)(P=D)(P.

Pre- and post-composing both sides of this result with P and using again the above identity,
we arrive at . o . o

2PoDyPoP =PoDxyPoP,
from which we COI}Clude P o DyP o P = 0. For the second equality in (1), we differentiate
both sides of P o P = 0 to obtain

Dxﬁof_’—l—lsoDXp:O.

If we now pre- and post-compose both sides with P, the first term on the left vanishes, and we
are left with P o Dy P o P = 0. The identities for DXP follow similarly.

For the second claim, first note that, since P + P =1d: V — V, we have DP = 0
if and only if DP =0. Suppose now that DP = DP = 0. Given p.q € M, X € Hy and
y : [0,1] — M a smooth curve joining p to ¢, define X(¢) € V, () by parallel transport along
y. f T = y*(%), then D7 P = 0and D7 X =0 along y. But the compatibility of the metric

with D implies that f(z) = |13(X(t))|i satisfies
f(t) = 2(Dr P(X) + P(D7(X)(1)), P(X(1))) = 0,

and f(0) = 0. Thus f = 0 and, in particular, IS(X(l)) =0,ie., X(1) € Kj- = H,. So H is
closed under parallel translation. Similarly, K is closed under parallel translation.

Suppose then that, on the other hand, H is invariant under parallel translation. Let p,
g € M,y :1[0,1] - M asmooth path connecting p and ¢, {V,}l_1 and {V;}7L T
orthonormal bases for H), and K, respectively, and V; () the parallel transports of V; along y.
Then V;(t) € Hy () fort € [0,1]. For any i, j, define A;;(t) = h(y(¢))(Vi(¢), V;(t)). Then
A;j = 0 as above. Since A4;;(0) = §;;, we have A;;(t) = J;;. In particular,

Hy = Span{Vi(l)}zl'=1 = (SPan{Vi(l)}?;lH)J—’

so Kg = span{V; (1)}, 41- Since p and g were arbitrary, K is also invariant under parallel
translation; obviously we can also reverse the roles of H and K.

Finally, suppose again that H (hence, now, also K) is invariant under parallel translation.
We wish to show that D P = 0 (which is equivalent to D P = 0 as remarked above), and for
this it suffices to show that 1 (p)(Dx P(U), W) = 0 for an arbitrary p € M, X € M,
and U, W € V,. Solety : (—€,e) — M be any smooth curve with y(0) = p and
y/(0) = X. Define U(¢) and W(t) to be the parallel transports of U and W along y and
let k() = h(y(t))(PU(t), W(t)). By the first part of this lemma, we only need to check the
“off-diagonal” components of Dy P, that is, the cases in which U and W belong to opposite
summands of V;, = H, & K. So suppose first that U € H, and W € K. Since H and K
are invariant under parallel translation, U(t) € H, ;) and W(t) € K, (1), thus

k(t) = h(y@)(U(@), W) = h(p)(U. W) = 0.

Similarly, if U € K, and W € Hp, then PU(t) = 0 and k(t) = 0. In both cases, we have
k'(0) = h(p)(DxU, W) = 0. i
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3.2. A time-dependent family of distributions. Going forward, let g(z) be a smooth
solution of (1.1) on M" fort € [0, T] and define & = g(T'). Given a tensor field V' € le (M)
that is, in some sense, “calibrated” to the metric g at fy9 € [0, T'], there is a natural (and well-
known) means of extending V' to a family of sections V(z) for ¢ € [0, T] with the promise
of preserving this calibration. Namely, one can define V(p, ¢) in each fiber le (TpM) as the
solution of the ODE

(3 1) 8 Valaz---ak — Ralvca2~“ak 4 RaZVa1c~--ak R Rak Valaz"'c
* c c c

g b1brb; b1bsr-b; bi1byb; b1bs-b;
__ RC y41ax-ar _ pc y/a1a2ag . pcC y/a1a42adg
Rb] Vcbz---b/ sz Vblc---bl Rb/ Vb1b2~~~c

for ¢t € [0, T] with V(p,t9) = V(p). Note that if V = g(tg), this procedure simply recovers
the solution g(¢), and if V' and W are related by an identification of TM with TM* according
to the metric g(¢o) (i.e., by raising or lowering indices), then V(¢) and W(¢) will be related
by the analogous identification of TM and T*M according to g(z) on [0, T]. Likewise, a
contraction of V' by g(to) evolved according to (3.1) will be the same contraction of V(¢) by
g(¢). Equation (3.1) is equivalent to considering the evaluation of the fixed tensor V' on a time-
dependent local frame evolved so as to preserve the pairwise inner products of the elements
of the frame. We will consider a somewhat more formal variation of this identification in the
next section; in the notation presented there, the above procedure is equivalent to finding a
representative V satisfying D;V = 0.

At present, though, (3.1) allows us to identify the distributions # and K with convenient
relatives H(¢) and K(r). We let Pr, Pre End(A2T* M) denote, respectively, the orthogonal
projections onto J and K with respect to /, and construct P (¢) and P(1) according to the
procedure (3.1) with P(T) = P and P(T) = Pr. Thus, in components, and here regarded
as elements of End(A2T*M) = T4(M) (see Section 4.1),

0 - _ _ _ _
Epabcd = _Rap Ppbcd - Rbp Papcd - ch Pabpd - dePabcpv

N A n . A
gpabcd = _Rap Ppbcd - Rbp Papcd - ch Pabpd - de Pabcp-
We then define
H(r) = image(P (1)) C A2T*M and K(r) = image(P(t)) C A>T*M.

We collect here the properties of these subspaces we will need in the sequel.

Lemma 3.5. Let g, h = g(T), #, K, H(t), and K(t) be defined as above, and
dm#H = k. Forallt € [0,T], dim H(t) = k, H(t) is closed under the Lie bracket (1.2)
with respect to g(t), and K(t) = H(t):. Moreover, if T is defined as in Definition 3.3, we
have

A

(3.2) TIP,P,P|=T[P,P,P]=T[P,P,P]=0.

Proof. The first three properties are easily verified from equations (1.2) and (3.1). The
last follows then from Lemma 3.2. O

We now show that if it happens that image(Rm(g(¢))) C H(¢) for all ¢, then H(¢) and
K(t) are actually independent of time.
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Lemma 3.6. With g(t), H(t), K(t) as above, suppose image(Rm(g(t))) C H(t) for
allt € [0,T]. Then H(t) = H(T) = ¥, K(t) = K(T) =

Proof. Letm = n(n —1)/2and p € M, and h = g(p,T). Choose an find an k-
orthonormal basis {(p“‘}l’él"z1 of sections for A2 Ty M such that {‘/’A}ﬁ=1 is a basis for J, and
{goA}Z’: k41 @ basis for K. We can then use the procedure described by equation (3.1) on the

individual forms ¢4 to produce a family of two-forms {<pA(t)}T=1 on T,M fort € [0, T].
This set will be a g(¢)-orthonormal basis for /\ZTI;|< M for any ¢, and moreover,

oA() if A <k,
P()(e (1)) = { if A >k,
and
o if A <k,
P() (1) = { A1) if A > k.

Thus {(pA(t)}f;:l and {(pA(t)}I’ff: %+ temain bases for H(z) and K(7), respectively. In fact,
fort € [0,T],

k m
P)y=>Y (') ®¢?®). P)= > (@'@)*®@e0).

A=1 A=k+1

Now, for any fixed ¢, we can choose an orthonormal basis {e, } of T, M relative to g(p, t);
in these components g, (p,t) = 8,p5. Let M be the symmetric matrix defined by

Rabea = —MABQbeﬁlde-
For any A, at (p, t) we have (observing the extended summation condition),
J A A A
Eﬂzb = _Raq§0qb — Rpq9aq

A A
= —RappgPqp — Roppq¥Paq
B C_A
= MBC((pap(ppqwqb + wbpwpq(paq)

= Mpc (0210 . 0Mpb + 0a,05,940) + (0510 0 ap + 01y 0500py))
= Mgc[le?. ¢€1.0%],, — Rappa®iy — Ropaq®py

= Mpc[lp". ¢“1.0%], + (Rapbg + Rpbag)¥4p

= Mgc[le?. ¢€1.0%],, Rbapq(pqp

= Mzc(lo?. ¢€1.¢"],, + Rm(p?) e,

where the penultimate line follows from the Bianchi identity. That is,

)
50" = L") + Rm(p™),

where L : /\ZTI;'F M — /\ZTI;" M is the linear map determined by
L(*) = Mpc[lp?, 91, ¢"].

Note that (3.3) is independent of the frame {e }.

3.3)
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We claim that L satisfies L(H,(t)) C Kp(t) and L(K,(¢)) C Hp(t). First, since
image(Rm(p, 1)) C Hp(t) and Rm is symmetric, it follows that K,(t) C ker(Rm(p,?)),
and hence that Mpc = 0if B > k or C > k. Also, by Lemmas 3.2 and 3.5, we have
[Hp(t), Hy(t)] € Hp(t), and [Hp(t), Kp(t)] € Kp(t). Stated in terms of the structure con-
stants

cé? = (o ¢"1.¢)
this is Cé‘lB = 0if A,B < k and C > k, or exactly one of A and B is greater than k and
C < k. Now,

(3.4) LieM= Y Y MpcCHCPPo".
B,C<k 1<D,E<m

If A <k, then each C SC is only non-zero for D < k,

L") = > MpcCHCPBE = > sg
B,C,D,E<k 1<E<k

Likewise, if A > k, the only non-zero occurrences of C gc in (3.4) are those with D > k, thus
restricting the non-zero occurrences of C g B in the sum to those with E > k. So

LM = Y Y MpcCpCRPeP= 3 T

B,C<k k<D,E k<E§m

Thus defining

V() = (0 (). 0> ). ... 0)T. W) = (0" 0). "), ... o™ (1),

and using that Rm(¢4) = 0if A > k, we can restate (3.3) as a matrix equation

Vi) (SO +M@) 0 V()
W) 0 T \ww)]"
It follows then that for all 0 < ¢ < T, for appropriate coefficients E g (1),

k
A1) =Y Eg)e®(T) e H(T) =

B=1

if A < k. Similarly, if A > k, we have (pA(t) e Kforall0 <t <T. O

3.3. A restatement of Theorem 1.4. Now we are able to frame Theorem 1.4 as a prob-
lem of unique continuation. Under the assumptions of that theorem, we have, by Lemma 3.5,
a g(t)-orthogonal decomposition A2T*M = H(t) & K(t) where H(t) remains closed under
the Lie bracket. By the symmetry of the operator Rm, we will have image(Rm(z)) C H(¢)
if and only if K(f) C ker(Rm(t)), that is, if RmoP (r) = 0 for all ¢t € [0, T]. But if we
have image(Rm(z)) C H(t), it follows from Lemma 3.6 that H(¢) = J# and K(¢) = K. To
conclude from Lemma 3.1 that hol,(g(7)) C H),, we need to know further that H(z) = J is
closed under parallel translation with respect to Vg ;) for all z. However, by Lemma 3.4, this
is true if and only if VP =0onM x [0, T]. Therefore, Theorem 1.4 is a consequence of the
following assertion.
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Theorem 3.7. Under the assumptions of Theorem 1.4, we have
(3.5) RmoP =0, VP =0

on M x [0, T]| where P = 13(t) is the projection onto K(t) with respect to g(t) in the orthog-
onal decomposition N>T*M = H(t) ® K(t) provided by Lemma 3.5.

We remark that, given the dependence of the evolutions of Vg () and IS(I) on the cur-

vature, the aims of proving Rm o P =0and VP = 0 are not independent. We will establish
them simultaneously in the course of proving Theorem 3.7.

4. A PDE-ODE system

A few back-of-the-envelope calculations should convince the reader that the system con-
sisting of R = RmoP and VP is neither parabolic nor too far from being so. First, it is easy to
see that the application of the heat operator to R produces a term involving unmatched second
derivatives of P. Schematically,

(D; — AR = ((D; — A)Rm) * P + VRm*VP + Rm*AP,

where we use V' x W to denote some linear combination of contractions of the tensors V' and
W by the metric. Since we have only defined P by the means of the fiber-wise ODE D; P=o,
we cannot expect to have much control over v p (beyond observations on the level of (1)
of Lemma 3.4). A natural option is to try to adjoin VV P itself to the system. This addition
is logically redundant from the perspective of Theorem 3.7 since V P will be parallel on any
time-slice on which P is parallel, but it comes at the cost of introducing higher order curvature
terms. This can be seen from (3.1) and the standard formula

9 k

i

for the evolution of the Christoffel symbols, which yield

= —g"(ViRjm + V;Rim — VmRij).

P R R N
§VVP = VVRm*P + VRm*xVP,

At minimum, we must introduce a component involving V Rm to our system to compensate
(unlike the second derivatives of P, the factors of VV Rm may be controlled by regarding
them, effectively, as factors of V(V Rm)). From the perspective of Theorem 3.7, the correct
(i.e., redundant) such component ought to be T = VRmo(Ild Xﬁ), that is, the element of
T*M ® End(A2T*M) given by

T(X,0) = (Vx Rm)(P (w)),

since it must also vanish on any time slice where R = 0and VP = 0. (In fact, for any
X, the images of the endomorphisms Vx Rm(g(p)) lie in hol,(g), cf. [5, Remark 10.60].)
Fortunately, with this addition, our system stabilizes. The tensor V Rm satisfies a heat-type
equation with reaction terms containing only products and contractions of Rm and V Rm:

(%—A)VRm: V Rm * Rm,
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and the Laplacian falling on the composition T generates only contractions of first- and second-
covariant derivatives of P with VRm and VV Rm. Thus we see that the application of the
heat operator to T introduces no fundamentally new quantities. While we have been rather
cavalier about the manner in which the components of the terms are combined (relative to the
decomposition H(t) @ K (t)), we nevertheless are entitled to some optimism that the collection
of Ié, YA“, VIS, and VV P will fit into a closed system of mixed differential inequalities. We will
use the rest of this section to make this heuristic argument precise.

4.1. Notation and statement. In this section, we assume we have a solution to Ricci
flow g(¢) and distributions # and X as in Theorem 1.4. Let H(¢) and K(¢) be the distributions
described in Lemma 3.5, and P (), f’(z) their associated projections. We fix notation, once
and for all, for the following collection of tensors:

R #RmoIS, R #RmoIS,
T = VRmo(Ild x P), T = VRmo(Id x P),
A=VP, B =VVP.

Note that P and P are self-adjoint elements of E = End(A2T*M). It will be convenient
to use the metric identification of E >~ (A2T*M)* ® A2T*M with A2T*M ® A>T*M and
further with the subspace of 74(M ) in which the members are antisymmetric in the first two
and last two arguments. We make this identification by selecting the normalization

1
V/\WZE(V®W—W®V)
for V, W in TM (or T*M). With respect to a local frame {e,} for T* M, we have

Pabea = (Plea Aep).ec Aeg), Papca = (Plea Aep).ec Aeg),

s0,ifw € A2T*M, then

P(w)cd = Pabcdwab’ ﬁ(w)cd = ﬁabcdwab'

We also define Ty,0pcd = VinRabed -

However, for the endomorphism Rm, since we wish to keep the notation R,p.4 consistent
with the usual convention (namely, that with respect to which one has (Rm(w), w) > 0 and
Rabba = 0 on the standard sphere), we have an additional minus sign in our formula:

Rm(w)eq = —Raped@ap = Rabdc@ab-

Similarly,
(VX Rm)(w)cd = _vaabchmwab = Tmabchmwab-

The tensors P and P, like R, are symmetric in the interchange of their first and last pairs
of indices and antisymmetric in the interchange of the elements of those pairs:

Pabcd = Pcdab = —Labdec = _Pbacdv

Pabca = Pedab = —Pabde = —Ppacd-
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We also have A,,4pcd = Vm ﬁabcd’ Buinabed = VmVa Isabcd, for which corresponding
identities hold. The tensors R and T are of course also subject to the Bianchi identities.

The tensors R, R, T, T are no longer symmetric in the interchange of the final two pairs
of indices, but remain antisymmetric in the interchange of the elements of these pairs:

4.1) Rijki = PijabRabik = —Rjik1 = —Rijik,
4.2) Tnijkt = PijabTmabik = —Twmjikl = —Tmijiks

and similarly for R and T.
Now, we let E = End(A2T*M),

X=E®(T*M®E) = Ty(M)® Ts(M),
Y=(T*MRE)®(T*"MQT*M Q E) = Ts(M) & Te(M),

and define

Xt)=RO®T@) € X,
Y(t) = A(t)® B(t) € V.

The goal of this section is to prove the following result.

Proposition 4.1. With the above definitions and under the assumptions of Theorem 1.4,
forall § > 0, there existsa C = C(n, Ko, §, T) such that on M x [§, T| we have

d 2 2 2
43) (5 —250)X|,, = COXEq) + Y-
ad_ |2 2 2 2
4.4) ‘%Y)gm < C(IXTz0) + 1IVXIg ) + 1 YIg))-

Here we use the same notation to denote the metrics on X, ¥, and TM* ® X induced by
g(t),and V = V() and A, ;) to denote the connection and Laplacian induced on X by g(7)
and its Levi-Civita connection.

Remark 4.2. The parameter § is an artifact of what will be an eventual application of
Shi’s estimates [19] for the derivatives of the curvature tensor, reflecting the degradation of the
estimates as t — 0. If M is compact, one can dispense with § in favor of an estimate valid for
all ¢ € [0, T], but with a constant C that now also depends on the suprema of the norms of the
first and second derivatives of curvature on M x [0, T].

4.2. The orthonormal frame bundle associated to g (¢). To verify (4.3) and (4.4), we
will need to examine the algebraic structure of the evolution equations of Ié, YA“, A, B rather
closely, and it will aid the computations somewhat to regard the tensors as functions on the
product of the g(¢)-orthonormal frame bundle @ (M) with the interval [0, T]. The utility of
this perspective to calculations attached to the study of the Ricci flow was first demonstrated by
Hamilton in [13]. For our application, we will borrow the notation and abide by the conventions
of [7, Appendix F], thus, in particular, some commutation formulas involving curvature will
differ by a sign from their counterparts in [13].
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Following [7], we let w : F(M) — M denote the frame bundle of M. This is a principal
GL(n, R)-bundle on M ; we take the group to act on the left. On gl(n, R), one has the standard
basis of elements {e(a, b)}Z,b=1’ with e(a, b)f = 8351‘)1. We may fix a metric & on gl(n, R)
by insisting on the orthonormality of this basis with respect to 4. Thus,

(e(a.b),e(c,d))p = 858y,

Let u : GL(n,R) x F(M) — F(M) denote the left action and, for any frame Y,
define uy : GL(n,R) — F(M) by uy(A) = w(A,Y). Then we have the isomorphism
(uy)« : gl(n,R) — Ty (F(M)y) defining the vertical spaces Vy = image((ity)«), where
7 (Y) = x. Ateach Y, the Levi-Civita connection V of g(¢) defines complementary horizontal
spaces Wy C Ty (F(M)). Foreacht € [0, T], there is a unique metric g% (¢) on F(M) which
enforces the orthogonality of the subbundles V and ‘W and for which

w: (F(M), g" (1)) —> (M, g (1))

is a submersion and

(y)x 2 (gL(n, R), h) = (Ty (F(M)x), €7 (O)1y (F(a).))

an isometry at each Y € F(M).
A solution g(¢) to the Ricci flow on M x (0, T') defines a map

g: F(M)x[0,T] - SM,(R)

with values in the symmetric n x n matrices. Likewise, a time-dependent family of sections of
le (M) may be regarded as an O(n)-equivariant matrix-valued function on

F(M) = F(M) x [0, T).
These functions are determined by their values on the submanifold

OM) =g 'ad) = | OM)gq x it} C F(M),
t€[0,T]

where O(M) gy C F(M) denotes the bundle of g()-orthogonal frames. It is convenient to
use the same notation for the tensors under both of these interpretations. Thus for 7' € T21 (M),
we will write

Tacb = T(Y)f,b = Tacb(x) =T(x)(Yq,Yp, Y°)

ata given Y € F(M), where, again, n(Y) = x, and Y¢ € T} M is the c-th element of the
frame dual to Y at x.

4.3. Elements of a global frame on T F(\M) and their commutators. We continue
to follow [7, Appendix F]. From the isomorphisms (uy)« : gl(n,R) — Ty F(M )z (), we
may generate a basis for each Vy from {e(a,b)}” , | by defining, foreach 1 < a,b < n and
Y e F(M),

Ap(Y) = (ny)«e(a.b).
The action of this vector field on a tensor is algebraic. On U € T>(M), for example, it is given
by
AZUU = S?Ubj + S?Uib,
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and on general U € le (M) by

AaUlllz Jk _8a U]llz Jk +8a U]l]2 ]k+ +80U]1]2 Jk

i1i2...0] bis...i; 27 i1b...0; i1in...b

J1 a/2 -Jk J2rriia.. Jk Jkprirjz...a
8 1112 R 8 U1112 R : 8 U1112 Jdp

The collection {Aa(Y)}a p— 1s an orthonormal basis for each Vy with respect to (the

restriction of) g%, but these vector fields will not in general be parallel to O (M). Thus it is
sometimes convenient to consider instead the vectors

4.5) Pab = (SacAz - ‘SbcAfr

It is easily checked that the set {p4p }4<p is an orthogonal basis for Ty O (M) ().
Next we define a global frame spanning the horizontal subbundle W C TF(M). Given
any x € M, vector field X € Ty M, and frame Y = (Y1,Y2,...,Y,) € F(M)y, define

yx (@) = (tey Y1, To@) Y2, - - - T (1) Yn)s

where o(¢) is any path in M with 6(0) = x and 6(t) = X and 75() : TxM — TU(,)M
denotes parallel transport along o (). Then we define, for Y € F(M)andanya = 1,2,...,n,

d
(4.6) Valy = rrif )/Ya()

That is, we define V4 |y to be the horizontal lift of Y, at Y € F(M)y.
Local coordinates {x'}”_, on M induce, in a natural way, a system of local coordinates
(X', y,) on F(M) via X' = x' o  and the expansions

a - ya(Y)_

In these coordinates,

; d
Vo = )55~k Th O3 )

Vb

Thus, for example, on a two-tensor U,
Vi (Uij) = (VU)ij = Vi Uij,

where the leftmost expression represents the action of Vi € TF(M) on the R"*_valued func-
tion on F (M), the middle expression represents the value of the R"*.valued function VU on
F(M), and the rightmost expression represents the tensor VU(x) evaluated at Y (x), Y;(x),
and Y; (x). Where the interpretation is clear from the context, we will use the notation of the
rightmost expression to represent all three cases. The set {V,|y }7_, is a basis for the horizon-
tal space Wy C Ty F(M) ateach Y. Since V,g;; = 0, each V, is also tangent to Ty O (M ).
Finally, we consider differentiation in the time direction. As the vector 3% € TFW) is

not in general tangent to (9 (M), it is convenient to work instead with the vector

0
D; = 5 + Rabgbc/\?
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which satisfies D;g;; = 0. On O (M), it is given simply by

d
Dt - 5 + Rac A?.
As remarked in Section 3, extending a tensor field V' defined on some time-slice to a time-
dependent family via the ODE (3.1) is equivalent to solving D,V = 0. In particular, for the
projections P and P, we have

4.7 Dtpabcd = D, ﬁabcd = 0.

The collection { D¢ }U{Va}2 _ U{pap }1<a<b<n forms the global frame field for T@(Tl)
with respect to which we will perform our calculations (although it will be convenient to use all
elements of the set {04p}1<q, b<n. i-€., including p,p, for a > b). As derivations on the frame
bundle, they satisfy the following commutator relations.

Lemma 4.3. Restricted to (9(74), the vectors Dy, A}, pap and Vg satisfy

(4.8) [Aa’ Vel = ngb,

4.9) [Pabs Vel = 8ac Ve — 8pc Vas

(4.10) [Di.Val = VpRacppe + RacVe = VpRpach AL + Rac Ve,
(4.11) [D: — A, Va] = RapacVoPea = 2RapacAg Ve + 2RapVp.

Proof. Equations (4.8), (4.9), and the first equalities in (4.10) and (4.11) appear in [7,
Appendix F]. For the second equality in (4.10), we compute

VpRacppe = VpRac (prAg - 5cpAg)
= (VpRac — VeRap) AP = VyRpacnr AL
For the second equality in (4.11), we compute
RapdcVoPea = Ravac(Pea Ve + Vi, peal)
= Rapac((Bce NG = 8ae &)V + (8apVe —8cpVa))
= 2(RapacAe + Rap) V.

using (4.9) in the second line. O
4.4. Evolution equations for A and B. We begin by computing the evolution equa-

tions for the components of the ordinary-differential component of our system. We will need
the following consequence of Lemma 3.2.

Lemma 4.4. The projections P and P satisfy

(4.12) Papea A Py = 0.
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Proof. Note that

Pabcd/\f;l ﬁijkl = _abdiﬁdjkl + Pabdj ﬁidkl + Pabdkﬁijdl + Pabdlﬁijkd
= —Pupid Priaj + Pabdj Priia — Pabkd Pijai + Pabdi Pijka
= ([ﬁ(ek Aep), Is(ea A eb)], e A ej)

+ ([ﬁ(ei Aej), Plea Aep)].er Aey).
In view of Lemma 3.2, we have [K(¢), H(t)] C K(¢), thus
PapeaNe Pijiy = ([P(ex Aer), Plea Aep)], Plei Aej))
+([P(ei Aej), Pleq Aep)], Plex Aerp))

which vanishes on account of antisymmetry of the map (X, Y, Z) — ([X, Y], Z). ]

In view of (4.7), the only non-zero contributions to the evolution equations for A = VP
and B = VVP come from the time-dependency of the connection. These contributions are
encoded in the commutators of D; with the horizontal vectors V,.

Proposition 4.5. Regarded as a matrix-valued function on (9(74), the tensor A evolves
according to

(4.13) DtAmijkl = RmrArijkl - ijkl Trpirm - Pipkl Trpjrm
- Pijpl Trpkrm — Lijkp Trplrm-

Proof. Since D; P;jr; = 0, we have Dy Apjijx1 = DtV Pijii = [Dy, Vi) Pijrs. Thus
from (4.10) we have

D¢ Amijki = Rmr Arijki + Trrmpg AR Pijki-

Now,
Trrmpq = Trrmuv(Puqu + Puqu) = _Trpqrm + Trrmuququ,
SO
Trrmqulq;Pijkl = _TrpqrmAgPijkl + TrrmuququAZPijkl = _TrpqrmAZPijkl’
on account of Lemma 4.4, and (4.13) follows. O

Proposition 4.6. Regarded as a matrix-valued function on (9(7/1), the tensor B evolves
according to
(4.14) Dt Bmnijki
= RmrBrnijki + RurBmrijki + Vo RmsAgijki
+ TrrmsiAnsjkl + TrrmsjAniskl + TrrmskAnijsl + TrrmslAnijks
- Asjklvm’frsirn - Aisklvmfrsjrn - Aijslvm’frskrn - ﬁijksvm’frslrn
+ Trrnvw(ﬁsjklAmvwsi + ﬁisklAmvwsj + ﬁijslAmvwsk + ﬁijksAmvwsl)-
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Proof. Asbefore, Dy Bppijki = [Dt, Vi Vn]lsijkl. We compute this commutator using
a double application of (4.10):

[D¢, Vi Val = [D¢, Vin]Vn + Vim[Dy¢, Vil
= (Rmrvr + TrrmsuA?)Vn + Vi (Rnrvr + TrrnsuAg)
= RpnrVr Vi + TrrmsuA?Vn + ViuRur Ve + Rpyr Vi Vi
+ Vm TrrnsuA? + TrrnsuVmA?~

Then, using (4.8), we have Ty rnsu Vi AY = —TrrnsmVs = Trrnms Vs, sO

(4~15) Dthnijkl = RmrBrnijkl + Ranmrijkl + VmTrrnsuA?ﬁijkl
+ (vans + Trrnms)Asijkl + TrrmsuA?Anijkl-

Now, since P + P =1d, wehave A = VP = —VP; applying this and considering the
decomposition of 7' into components as above, we compute

varrnsu = Vm (_’frsurn + Trrnvw PUU)SM)
= _vmfrsurn - Trrnvamvwsu + varrnvavwsu-
Using Lemma 4.4 again, we therefore have
(4.16) varrnsuA?ﬁijkl = _(mersurn + Trrnvamvwsu)A? ﬁijkl-
Finally, we can simplify the last line of (4.15). The last term is
TrrmsuA?Anijkl = TrrmsnAsijkl + TrrmsiAnsjkl + TrrmsjAniskl
+ TrrmskAnijsl + TrrmslAnijks’

and

VinRus + Trrnms + Trrmsn = Vi Rus + (VsRmn - vasn) + (VnRsm - Vsan)
= Van&

so the last line reduces to

(4~17) (vans + Trrnms)Asijkl + TrrmsuA?Anijkl
= VansAsijkl + Trrmsi Ansjkl + TrrmsjAniskl
+ TrrmskAnijsl + TrrmslAnijks~

Combining (4.15), (4.16), and (4.17), we then obtain (4.14). O

4.5. Evolution equations for R and 7. Recall that for 4, B € End(/\zT; M), one
can form the product A # B € End(/\sz* M) = A2 TyM* ® /\ZT;M* defined by

A#B) = 5 S {[AGM), B 0) - [oM 0",
M,N
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where {@q} is an orthonormal basis for /\ZTII:k M. This product is bilinear and symmetric in
its arguments, and with it, we define the square A* = A # A. In terms of the structure con-
stants [p™, V] = C},"Ipr (and regarded as an element of A2 TyM*® A2 Ty M™), we have

(A# B)1y = (1/2)Ayp ByoCl e CMN.

Now define
Q : End(A2T*M) — End(A2T* M)
by
(4.18) Q(A) = A% + A*
and
8 :End(A*T*M) x (TM* ® End(A’T*M)) — TM* ® End(A*T*M)
by

(4.19) S(A, F)(X,) = Ao (FuX)+ (F_X) o A+ 2(F.X)#A.

These operators arise as reaction terms in the evolution equations for R and 7.

Proposition 4.7. Viewed as matrix-valued functions on (9(74), the tensors R and T
evolve according to

(4.20) (D¢ = M) Rjjgr = —QRm);jxg,

and
(421) (Dy — M) Tijit = 2Rmp Tpijii + 2Rmpap N Thijkr — S (Rm, VRM) ;i1
Proof. Equation (4.20) is standard. For (4.21), we use (4.20) and (4.11):

(Dt — M) Tpijki = [Dt — A, Vi Rijki + Vi (Dt — A)Rijxs
= 2(Rmp Vs + Rmbap A Vi) Rijki — Vi (Q(Rm))
= 2Rup Tpijkt + 2Rmbap A Tpijir — Vi (Q(Rm)).

For the last term, note that at any p € M,

V(QRm))(em,) = Viy RmoRm + Rm oV, Rm + Rm#V,, Rm
= 8(Rm, VRm)(ey,, )

in view of the symmetry of the product #. |

Remark 4.8. We choose to leave the terms 2Ry, Tk + 2RmbdpA5Tbijkl in (4.21)
in a rather raw form for convenience in a later computation, however, we might alternatively
have written

R Tpijict + Rmbap AL Thijki
= RubdiTrajki + Rmbdj Tridaki + Rmpdak Trijai + RmbaiThijka
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where
U : End(A’T*M) x (TM* @ End(A’T*M)) - TM* @ A*’T*M ®@ A*T*M

is given by

n

UA, F)(X. 0.1 =Y _(([Alei A X). Fei.@)].n) + ([A(ei A X). F(ei.n)]. ))

i=1

in the fiber over p for {¢;} an orthonormal basis of 7, M. Alternatively, using the second
Bianchi identity and the symmetries of 7', one can define the tensor Cp; k1 = —Tmipqj Ripqi
(analogous to Hamilton’s B;jx; = —Ripgqj Ripqi) and write the evolution of 7" in the form

(Dt = M) Tpjja
= 2(Cmijki + Cmkiij — Cmijik — Cmikij + Cmikji + Cmjiik — Cmitjk — Cmjkil)
+ 2(Ckijmi — Cikjmi + Cikimj — Criimj + Cijimk — Cjitmk + Cjikmi — Cijkmi)-

If # denotes the projection T4(M) — A2T*M ® g A>T* M (where ® g denotes the symmetric
tensor product), that is,

1
PV )ijk1 = g(Vijkl —Viikt = Vijik + Viiki + Viiij — Vikij — Vaiji + Vikji)-

then the sum in parentheses on the last line in the expression above (which corresponds to
U(Rm, VRm)) is —8 - P (C ugey) where 4; X denotes inner multiplication by X in the i-th
argument.

4.6. Evolution equations for R and T. Using the results of the preceding section,
we now compute the evolutions of the components of the parabolic portion of our PDE-ODE
system. We begin with the consideration of the reaction terms @ (Rm) and § (Rm, V Rm).

Lemma 4.9. Denote temporarily R=Rm, T = VRm. Atany p € M,
(4.22) Q(R)o P = Ro R+ R*#R* + Rm#R*
and
(4.23) (8(R,T)uX)o P =RoTx + Ty o R+ (T4 #R* + Tx # R*) o P
forany X € T, M, where we use the shorthand
Tx = ToX, Tx = T0X € End(A’T; M),

and denote the adjoint of an operator A € End(/\zTI;k M) by A*.

Remark 4.10. As we observed in (4. 1) and (4 2), the operators R, R, T, T are no
longer self-adjoint. However, R* = P o R, R* = PoR, T; = P o Ty, TX =PoTx. In
coordinates, for example, RU Kkl = P bkl Ri iba» and similarly for the others.
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Proof. The origin of the first term in (4.22) is clear. For the second, we use P + P=1d
and expand to find
R#R
=((P+P)oR)#((P + P)oR)
=(PoR)#(PoR)+(PoR)#(PoR)+ (PoR)#(PoR)+ (PoR)#(PoR)
= R*#R* + 2R*# R* + R* # R*.

We claim (R* # R*) o P = 0. To see this, let p € M and {¢4} be an orthogonal basis for
/\Z(TpM). Then forany 1 < N <n(n—1)/2, we have

(R*# R*)(P(o")) = ([P(R(e™). P(R@BN]. P(e™)) - [p?. 95

| =

Aa

>

T[P. P, PI(R(p?). R(¢®), ") - [p*, ¢®]

| =

4,

>

which vanishes by Lemma 3.4. Thus

(R>+ RN oP =RoR+ (2R*#R*+ R*#R*) o P
=RoR+ (R*#R*+ R#R*)o P.

We argue similarly for (4.23). Again the first two terms are clear, and for the term in-
volving the Lie-algebraic product, we expand into components relative to the decomposition
NTyM = Hy, & Kp:

Tx #R = (Ty + Ty) #(R* + R*) = Ty # R* + Ty # R* + Tx # R*.

Then, just as before,

- _ A 1 -~ A
(Tx # R0 P(p™) = 5 D TIP. P PIT(X.¢%). Re™). ") - [p?. 0”1,
A,B
and so is zero for all N by Lemma 3.4. ]

Remark 4.11. As functions on the frame bundle, we have
(4.24) (Q(Rm) o ﬁ)ijkl = Rcdlkéijcd + 2ﬁijce (R:pql Iéequ - Rquk Iéepql)
+ 2ﬁijce(chkq Ié:pql - RCquié:qu)’
and
(425) (8(Rm,VT)o (d Xﬁ))mijkl = Rapik Tmijab + Tmavik Rijap
+ 2Pjjce (R:pql Tr:equ - R:qu Tmqul)

+ 2Pijce (Tmcpquepql - TchlqRequ)'
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Proposition 4.12. The tensor R, regarded as a matrix-valued function on (9(\M),
evolves according to

4.26) (D¢ — D) Rijkt = 2Apijab Tpabki + Bppijab Rabki + (Q(Rm) o P);jx;.
Proof. 'We have
(D; — A)R =Rmo(D; — A)P —2V,RmoV,P + (D; — A)RmoP
= —RmoAP —2V,RmoV,P + @Rm)o P,
using (4.7) and (4.20). Then
—RmoAP) k1 = —APijap Rabik = Bppijab Ravki.
and
—2(VpRmoVy P)iik; = =2V Pijap Vp Rapik = 2Apijab Tpabki»

and (4.26) follows. O

Proposition 4.13. The tensor T, viewed as a matrix-valued function on O (M), evolves
according to

@27 Dy = M) Tmiju
= 2ApijaprTmijkl + BppijabTmabkl + (’S(R’ T)o(ld XP))mijkl
+2(Rmpqi Tpgjkt + Rmpaj Tpigkt + Rmpak Tpijqt + Rmpat Tpijkq)
+2(RgimpTpqgjki + RajmpTpiqit + Tpabik (Pijg Rgamp + PijagRqbmp))-
Proof. 'We obtain the evolution equation for T by a computation similar to that for R.
Namely, we have Ty, k1 = —Pjjab Tmabki> and, as before,
(4.28) (D = A Tomiju
= ijab(Dt - A)Tmablk + 2ApijaprTmabkl + Bppijab Tmabki-

By (4.21), we have
(4~29) (Dt - A)Tmablk = 2(Rmp + RmpqrAZ)Tpablk - S(Rm, VRln)mablk»

and
S(Rm, VRM)pmapik Pijap = _(S(R» T)o(ld XP))mijkl’
so we just need to consider the contraction of the first term in (4.29) against 13,- jab-
First, since A; is a derivation, we can write

Pijab Ny Trmavik = Mg Tmijkt — Tmabik Mg Pijab-

Also,

Rmpqr = Rqrmp = (ﬁqruv + quuv)Ruvmp = Iéqrpm + Puvquuvmp,
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so, by Lemma 4.4,

A

PijamepqrAgr]Tmablk = Rmpqr mijkl — Tmablk(Rqrpm + Puvquuvmp)AZ Pijab

’
Aq
= RmpqrAcr] mijkl — TmablqurpmAzr] Pijab-

With this, we can expand to obtain

(4-30) ﬁijab(Rmp + RmpqrAZ)Tpablk
= Rmpqiqujkl + Rmqu 7Aﬂmiqkl + Rmqufmijkql + Rmpql 7Aﬂmijkq
- Tmablk(ﬁqjabiéqipm + ﬁiqabétﬂ'l’m + ﬁijquéqapm + ﬁijaqﬁqbpm)
= Rmpqifmqjkl + Rmpqj 7Aﬂmiqkl + Rmpqk 7Aﬂmijkql + Rmpqlfmijkq
~ Tngski Raipm = Tmigki Rajpm + Tmavkt (Pijqb Rgapm + Pijag Rgbpm)-

Equations (4.28), (4.29), and (4.30) then combine to yield (4.27). O

Remark 4.14. For the sequel, we observe that the quantities A, B, ﬁ, and T satisfy the
following schematic equations:

4.31) DiA=RxA+PxT,

(4.32) DiB=R*xB+T*xA+PxVT +PxTxA,

(433) (Di—AMR=T*A+R+«xB+R«R+P*R**R+ P xRxR,

(434) (Di—AT =VT*A+R*B+R+«R+P«xR**R+P*Rx*R

+PxTxR+PxR**T*

For our purposes, the key feature of these equations is that each term contains at least
one factor of (some contraction of) A, B, R, T, VT, or their adjoints. Under our hypotheses,
the other factors (including the extra linear factors of the components of our system) will be

bounded, and this is enough to satisfy the requirements of the backwards uniqueness result in
Theorem 5.1 below.

4.7. Proof of Proposition 4.1. We are now in a position to prove Proposition 4.1. By
the estimates of Shi [19], if g(¢) is a complete solution to (1.1) with
| Rm(x, Z)|g(t) < Ky

on M x [0, T], then, for all m > 1 and all § > 0, there exist constants K, = K;,(n, Ko, T, )
such that

(4.35) [V Rm(x, 0)] ;) < Km

on M x [8,T]. The tensors P and P are also clearly bounded — in fact, if dim # = k, then
|15|§(t) = k and |ﬁ|§(t) =n(m—1)/2—konM x[0,T]. So R, R, T, and T (and their
adjoints) are uniformly bounded on M x [§, T]. That A and B are also bounded is by now
more or less evident from the evolution equations (4.13), (4.14). We only need to observe first
that, since D; = a% + Rgp Ay, one has

d
DU = EU + Re U,
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for any tensor U and then that from (4.35) and the above discussion, we have, on M x [§, T],
d 0
Al =cqar+n. | SB| = cqal+ 1B+
ot ot
for an appropriate C. (Note that VI' = A+ T + P « VT.) Att = T, we have |4| = |B| = 0,
so we obtain that |A| and (consequently) | B| are bounded on M x [§, T'] as well.

Together with equations (4.31)—(4.33), these observations imply that there exists a con-
stant C = C(n, Ko, T, §) such that

(4.36) ‘gA o = C(|Algey + 1T 1g)-

(4.37) (5 oo = C(lAlgry + 1Blgwy + VT lg )

(4.38) ((% — A) o = C(lAlgy + Blg + IRIg)),

(439) \(% —A)T| = C Al + 1Blay + 1 Rlgo +1Tlg0)

on M x [8, T]. Proposition 4.1 then follows at once from the Cauchy—Schwarz inequality.

5. Backwards-uniqueness of the PDE-ODE system
The following is a special case of [18, Theorem 3.1].

Theorem 5.1. Let X and ¥ be finite direct sums of the bundles le (M), and
X € C®(X x[A,2]), Y € C®Y x [A,R2]). Suppose g(t) is a smooth, complete solu-
tion to (1.1) of uniformly bounded curvature. Further assume that the sections X, Y, and VX
are uniformly bounded with respect to g(t) and satisfy

9 2

(5.1) )(g—Ag(,))X‘ v SCUXE G FIX R+ 17 ).
3y |2

(5.2) e = C(IX150 + VX2 + 1Y 20)

for some C > 0. Then X(-,2) =0, Y(-,Q2) =0implies X =0,Y =00n M x [A4, Q].

Combining this result with Proposition 4.1, we have essentially proven Theorem 3.7; it
only remains to see that the conclusion is valid all the way down to ¢ = 0.

Proof of Theorem 3.7. With X, Y, and X(¢), Y(¢) defined as in the previous section,
we may apply Proposition 4.1 and Theorem 5.1 on M x [§, T'] for any 0 < § < T, to obtain
the conclusion of Theorem 3.7 (and hence Theorem 1.4) for all ¢+ € (0,T). But P(f) and
P(t) are smoothly defined (and are complementary g(t)-orthogonal projections) on A2T*M
forallz € [0, T] Thus the vanishing of VP and VP onM x (0, T) implies by continuity that
VP(0) = VP(O) = 0 also. Moreover, ker(P (¢)) = X and ker(P(t)) = H fort € (0,7),
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thus continuity again implies that X C ker P (0) and # C ker P (0). Since P (0) and P (0) are
complementary orthogonal projections, with

rank P (0) = rank P(t) = dim J#, rank P (0) = rank P (t) = dim X,

we must actually have ker(P(0)) = K and ker(P(0)) = J. Therefore, we also have
image(P (0)) = J, and image(l3 (0)) = X, and it follows that # and K are orthogonal
with respect to g(0). Since P (0) and f’(O) are parallel, # and K are invariant under V (g)-
parallel translation by Lemma 3.4. Finally, since (Rm 013)(t) =0for0 <t < T, it follows
that Rm(0)| % : K — A2T*M is also the zero map. The symmetry of Rm then implies that
image(Rm(0)) C # and, by Lemma 3.1, we conclude that §ol,(g(0)) C #, completing the
proof. ]

Remark 5.2. By a result of S. Bando [3] (see also [7, Remark 13.32]), if g(¢) is a
complete solution of (1.1) of bounded curvature, then (M, g(¢)) is a real-analytic manifold for
0 <t < T. Hence at any ¢ > 0, any representative hol,(g(z)) of the isomorphism class of
hHol(g(?)) is generated by the set

o0
U {Vx, Vx, - Vx, Rm(p. 1) (@) | X1. X2.....X; € T,M, 0 € ATy M};
=0

see [17, Sections II1.10, III1.9]. Thus we can localize Theorem 1.4 somewhat: If, at some
p € M, the endomorphisms coming from the covariant derivatives of Rm(g(7")) of all orders
are contained in some subalgebra H, C /\ZTP*M , then, at every ¢, hol,(g(T)) is contained
in a subalgebra isomorphic to H,. We can then apply Theorem 1.4 to conclude that, for all
(q.1) € M x [0, T], hol,(g(¢)) is contained in a subalgebra isomorphic to H. In particular,
if g(T') admits a splitting on some neighborhood U C M at some time T > 0, g(¢) must split
on a neighborhood of every p € M atalltimes 0 <t < T.

A. An alternative proof of the non-expansion of Hol® (g(®))

In this section we present a second and essentially self-contained proof of Theorem 2.1,
using the general framework of Theorem 1.1 (but different methods). Although we do not use
the maximum principle for systems in [12], the argument is close to that suggested by Hamil-
ton for [14, Theorem 4.1]. We include it here only for reference and comparison purposes.
Theorem 2.1 has the following infinitesimal reformulation, corresponding to Theorem 1.4.

Claim. Suppose # C A2T*M is a smooth subbundle that is invariant under Ve (0)-
parallel transportation and the bracket [-,-]g(p). If Rm(g(0)) C #, then it follows that
Rm(g (7)) C J# for all ¢ and that J remains invariant by Vg ()-parallel transport and the
bracket [+, ]¢ (). In particular, hol,(g(z)) C H).

Similar to the proof of Theorem 3.7, we extend the projection operators Py and Py onto
H and K = HL at time t = 0 to operators P (t) and ﬁ(t) for t > 0. The key difference
is that we accomplish this by the solution of a linear parabolic equation rather than by an
ODE. Although with this choice we lose (temporarily) the assurance that the maps remain
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orthogonal projections, it allows us to effectively decouple our system and reduce the number
of components from four to two.

Proof of the Claim. Denote by X C A2T*M the orthogonal complement of # and by
Py, Py the projections onto # and X taken with respect to the metric induced by g(0).

By assumption, g(7) is complete and Rm(g(¢)) uniformly bounded, and so we can define
P(t) and P (t) on M x [0, T] to be the unique bounded solutions to the equations

ad
(A.1) (a_ - A) abcd = _Rap Ppbcd - Rbp Papcd - chPabpd - de Pabcp,
0 ~ ~ A ~
(A~2) (E - A) Pabcd = _Rap Ppbcd - Rbp Papcd - ch Pabpd - de Pabcp

with P(0) = Pg and P 0) = Py. As functions on (9(74), the above equations are
(Dt = M) Papea = 0. (D1 = A) Papea = 0.

Since J{ is parallel initially, A, jx; = Vm ijki = 0 initially by Lemma 3.4. We claim
Amijkr =0forall0 <t <T. Its evolutlon is

(D — A)Amijkl = [(Dt A) Vm ] ijkl = 2(Rmbchf[vb + Rmcvc)ﬁijkl’
and so

(%—A)A:R*A,

that is, ]
(57 -8)4|=c1a
for C = C(n, K). Defining Q = | A|?, we thus have
0 5 i
(5 _ A)Q — 2|VVA]? + 2<(a_ . A)A A> <200,
)

O(x,1) < e2CT sup Q(x,0) =0
xXeEM

on M x [0, T'] by the maximum principle.

Strictly speaking, when M is non-compact, our use of the maximum principle requires
some justification. Since M has bounded curvature (and, in particular, a lower bound on
Rc(g())), we need only to verify that Q does not grow too quickly at infinity. We omit the
full details of this verification, but point out that for example one could use a Bernstein-type
trick, as in [19], and consider the quantity F' = (L + |P |2)Q where L > 0 is constant. Then
F satisfies F(p,0) =0, and, if L = L(n, sup |P |2) is sufficiently large, the equation

(% - A)F <CF —CyF?,

for positive constants C; = C; (Ko, L, n). Using a standard cutoff function and the maximum
principle, one can prove

1
sup F(x,t) < Csz(n, Koy, L, T)('O+ )
B () (p.0)x[0,T] p

for all p > 0. Hence, upon sending p — oo, one obtains that 0 = |V1ﬁ|2 <ConMx|0,T].
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We conclude, in any case, that P remains parallel, and must actually satisfy the ODE
D,f’ = 0. Likewise, we have VP = 0 and D;P = 0. But, by Lemmas 3.4 and 3.5, this
implies that P and P remain complementary projections, and hence that H(¢) = image(P (¢))
and K(t) = image(ﬁ(t)) remain complementary orthogonal Vg )-parallel subbundles, with
H (t) invariant under the bracket [-, -]¢(;). In particular TP, P, P] = 0 by Lemma 4.4.

Now we define R = RmoP as before. We have I§(0) = ( by assumption, and claim
R(t)=0forall0 <tz <T.Since VP =0,

(D; — A)R = Q(Rm) o P.
Using 7’[13, ﬁ, 13] = 0, we have, by (4.22) and Shi’s estimates,
|@Rm) o P|* < C|R>.

So the (uniformly bounded) quantity W = |I§|2 satisfies

(%—A)WﬁCW

with W(0) = 0; thus W(¢) = 0 by the maximum principle. Hence image(Rm(¢)) C H(¢).
Applying Proposition 3.6 shows that H(¢) = # and K(¢) = K, and the theorem is proved.
o
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